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Abstract 

 
The EM and1 K-Means algorithms are two popular 
search techniques that converge to a local minimum of 
their respective loss functions. The EM algorithm uses 
partial assignment of instances while the K-Means 
algorithm uses exclusive assignment. We show that an 
exclusive random assignment (ERA) algorithm that 
performs exclusive assignment based on a random 
experiment can outperform both EM and K-Means for 
mixture modeling. We show that the ERA algorithm can 
obtain better maximum likelihood estimates on three 
real world data sets. On an artificial data set, we show 
that the ERA algorithm can produce parameter estimates 
that are more likely to be closer to the generating 
mechanism. To illustrate the practical benefits of the 
ERA algorithm we test its ability in a classification 
context. We propose Latent Variable Classifier (LVC) 
that combines latent variable analysis such as mixture 
models and classification models such as Naïve Bayes 
classifiers. For each mixture component (cluster) a 
classification model is built from those observations 
assigned to the component. Our experiments on three 
UCI data sets show LVC’s obtain a greater cross-
validated accuracy than building a single classifier from 
the entire data set and probabilistic search out-performs 
the EM algorithm.  

Introduction and Motivation 
 
The K-Means and EM algorithms are popular deterministic 
approaches used extensively in mixture modeling 
(clustering) and classification. Their success is in no small 
part due to their simplicity of implementation that involves 
a basic two-step process. However, both algorithms 
converge to local optima of their respective loss functions of 
distortion and likelihood that is greatly influenced by the 
initial starting position. This means in practice the 
algorithms need to be restarted many times from random 
initial starts in the hope that different parts of the model 
space will be explored.  
 
We introduce a change to the base two-step process that 
makes the model space search stochastic in nature. We refer 
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to this type of algorithm as Exclusive Random Assignment 
(ERA). We try the ERA algorithm for mixture modeling on 
three UCI data sets and an artificial data set of varying size. 
Our hope is that the ERA algorithm will find models with a 
high log likelihood and parameters close to the generating 
mechanism, when known. To further show the practical 
benefit of the ERA algorithm we test its performance at 
classification.  
 
When building classification models it is the defacto 
standard to build a single model from the entire set of 
available data. However, many successful practitioners 
discuss dividing the observations into distinct segments and 
building models for each (Tuason and Parekh, 2000). This 
approach is prevalent in many areas of science and is known 
as the divide and conquer (DAC) strategy (Horowitz and 
Sahni, 1978). However, typically the DAC strategy requires 
a large amount of apriori knowledge of the domain and is 
often problem specific and ad-hoc in nature (Dietterich, 
2000). Many problems do not conveniently breakdown 
according to geographic or temporal boundaries but there 
may be another implicit breakdown that is not known apriori 
but could be used in a DAC strategy. We propose Latent 
Variable Classifiers (LVC) that identify the underlying 
latent variables (using mixture modeling) that exist and 
build a classification model conditioned on the value of the 
latent variable. We believe this allows the application of the 
DAC strategy to problems where no apriori division or 
segmentation scheme is available and allows a principled 
and formal way to divide a problem and re-combine the sub-
solutions for prediction. We show that for LVC the ERA 
algorithm outperforms the EM algorithm. The ERA 
algorithm does not converge to a point estimate; rather it 
continues to move around the model space. This enables the 
algorithm to escape local optima. 
 
This paper makes two contributions. It shows that ERA the 
algorithm can outperform the EM and K-Means algorithm, 
even with multiple random restarts, in the case of finding 
models with a maximum likelihood estimation and the 
smallest Kullback Leibler distance to the generating 
mechanism for mixture models. It shows that this 
improvement carries through and has practical significance 
when making predictions for LVC.  
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We begin this paper by describing the difference between 
the K-Means, EM, and ERA algorithms. Next, we introduce 
our experimental methodology for testing the three 
algorithms for mixture modeling. Then we introduce Latent 
Variable Classifiers in graphical form and describe our 
experimental methodology along with results. We conclude 
with experimental discussion and future work. 

EM, K-Means and ERA Algor ithms 
 
The Expectation Maximization (EM) algorithm (Dempster 
et al, 1977) and the K-Means clustering algorithm 
(MacQueen, 1967) are two popular search techniques. Both 
attempt to find the single best model within the model space 
though it is well known that the definition of “best”  varies 
between the two.  
 
The EM algorithm in the classical inference setting attempts 
to find the maximum likelihood estimate (MLE). The K-
Means algorithm aims to find the minimum distortion 
within each cluster for all clusters. Both algorithms consist 
of two primary steps: 
 
1) The observation assignment step: the observations are 

assigned to classes based on class descriptions. 
2) The class re-estimation step: the class descriptions are 

recalculated from the observations assigned to it. 
 
The two steps are repeated until convergence to a point 
estimator is achieved. The two approaches in their general 
form at the operational level differ only slightly. In the first 
step of the K-Means algorithm, the observations are 
assigned exclusively to the most probable class in a 
probabilistically formulated problem. In the EM algorithm 
an observation is assigned partially to each cluster, the 
portion of the observation assigned depending on how 
probable (or likely) the class generated the object. 
 
In the second step, both algorithms use the attribute values 
of the observations assigned to a cluster to recalculate its 
class parameters. For K-Means we recompute the estimates 
from only those observations that are currently assigned to 
the class. However, in the EM algorithm if any portion of an 
observation is assigned to a class then its contribution to the 
class parameter estimates is weighted according to the size 
of the portion. 
 
The K-Means algorithm aims to find the minimum 
distortion within each cluster for all clusters. The distortion 
is also known as the vector quantization error. The EM 
algorithm minimizes the log loss which is precisely the local 
maximum of the likelihood that the model (the collection of 
classes) produced the data.  
 
Both algorithms converge to a local optimum of their 

respective loss functions. 
 
The ERA algorithm consists of the same two-steps as the 
EM and K-Means algorithms. However, in the first step, we 
use random exclusive assignment by assigning an 
observation exclusively to one class by a random 
experiment according to the observation’s normalized 
posterior probabilities of belonging to each cluster. In the 
second step, we calculate the parameter estimates based on 
the exclusive assignments. This process repeats as is in K-
Means and the EM algorithms. However, this algorithm will 
not converge to a point estimate as the others, instead it will 
continue to explore the model space due to its stochastic 
nature. This allows the possibility of escaping local optima. 
 
In earlier work (Davidson, 2000) we show that this 
algorithm when used in conjunction with Minimum 
Message Length (MML) estimators approximates a Gibbs 
sampler. We attempt to see if the stochastic nature of the 
algorithm benefits clustering/mixture modeling and 
classification in a non-MML setting. 

Exper imental Methodology for  Mixture 
Models 
 
The BREAST-CANCER (BC), IRIS (I), and PIMA (P) data 
sets available from the UCI collection (Merz et al, 1998) 
will be the basis of the “real world”  empirical study. For 
each data set we compare maximum likelihood estimates 
found using EM, K-Means and ERA for models built for k = 
1 to 8. We perform each algorithm 50 times from random 
restarts for one thousand iterations each.  
 
We will then compare the algorithms on artificial data to 
determine their ability to resolve over-lapping classes on the 
univariate problem. The artificial data set consists of 1000, 
500, 250 and 100 instances drawn randomly from the two 
component distribution, ~N(0,1) and ~N(3,1) shown in 
Figure 1. 
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Figure 1: Sample data from a two component mixture 
~N(0,1) and ~N(3,1). 
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Real Wor ld Data 
 
For each data set and each technique, we report the average 
and best results found for the 50 experiments. For all data 
sets we found that the K-Means algorithm performed 
significantly worse that the other algorithms. For the PIMA 
data set (Table 1 and Figure 2) we find that the ERA 
algorithm consistently finds the best model. However, the 
EM algorithm’s average results are approximately the same 
for the ERA algorithm except for k=5,6 when the ERA 
algorithm performs significantly better on average. 
 
The ERA and EM algorithms performed almost identically 
on the IRIS data set (Table 2 and Figure 3). For breast-
cancer data set the average results for the EM algorithm 
were consistently better than the ERA algorithm but the 
ERA algorithm consistently found the best model. 
 
k EM  

Ave. 
KMeans 

Ave. 
ERA  
Ave. 

EM  
Best 

KMeans  
Best 

ERA  
Best 

1 -23028 -23028 -23028 -23028 -23028 -23028 
2 -22477 -22563 -22474 -22460 -22547 -22460 
3 -21645 -21734 -21688 -21381 -21386 -21381 
4 -21389 -21424 -21390 -21213 -21252 -21192 
5 -21315 -21395 -21216 -20549 -20603 -20512 
6 -21132 -21209 -21090 -20704 -20752 -20487 
7 -20896 -20938 -20901 -19974 -20002 -19913 
8 -20661 -20699 -20638 -19889 -19981 -19895 

Table 1: Pima Data Set. Comparison of average and best 
Maximum Log Likelihood Estimates (MLLE) found using 
the EM, K-Means, and ERA algorithms. The best result for 
each category (average and best) is in bold. 
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Figure 2: Best MLL estimates found for PIMA data set. 
 
 
 
 
 
 
 
 
 

k EM  
Ave. 

KMeans 
Ave. 

ERA  
Ave. 

EM  
Best 

KMeans  
Best 

ERA  
Best 

1 -741 -741 -741 -741 -741 -741 
2 -472 -564 -472 -472 -481 -472 
3 -419 -447 -419 -418 -508 -418 
4 -402 -455 -400 -391 -460 -391 
5 -397 -491 -396 -385 -482 -385 
6 -395 -473 -395 -385 -418 -385 
7 -392 -393 -393 -384 -402 -384 
8 -391 -416 -392 -384 -484 -384 

Table 2: IRIS Data Set. Comparison of average and best 
Maximum Log Likelihood Estimates (MLLE) found using 
the EM, K-Means and ERA algorithms. The best result for 
each category (average and best) is in bold. 
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Figure 3: Best MLLE found for the IRIS  data set. 
 
k EM  

Ave. 
KMeans 

Ave. 
ERA  
Ave. 

EM  
Best 

KMeans  
Best 

ERA  
Best 

1 -15156 -15156 -15156 -15156 -15156 -15156 
2 -10130 -10160 -10143 -10046 -10074 -10079 
3 -9645 -9648 -9650 -9590 -9613 -9590 
4 -9396 -9462 -9401 -9331 -9400 -9341 
5 -9274 -9281 -9280 -9187 -9266 -9068 
6 -9138 -9228 -9137 -9014 -9112 -9000 
7 -8985 -9022 -8996 -8869 -8947 -8811 
8 -8868 -8878 -8882 -8716 -8783 -8715 

Table 3: BREAST-CANCER Data Set. Comparison of 
average and best Maximum Log Likelihood Estimates 
(MLLE) found using the EM, K-Means, and ERA 
algorithms. The best result for each category (average and 
best) is in bold. 
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Comparison of Best MLE Found For Pima Data Set
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Figure 4: Best MLLE found for BREAST-CANCER data 
set. 

Artificial Data 
 
For the different number of observations and for each 
technique we report the Kullback Leibler distance of the 
generating mechanism (Q) to the model with the greatest 
likelihood (P) for 100 experiments. We place the distance 
for each experiment into an interval and then calculate the 
relative frequency of each interval. For all sizes of the data 
sets we found that the K-Means algorithm performed worse 
that the other algorithms. For all sizes of the data set except 
the smallest, the ERA algorithm consistently found 
parameter estimates that were very close to the generation 
mechanism as shown in Table 4. 
 
KL Distance 
(Q,P) 

<0.5 [0.5,2.5) [2.5,7.5) [7.5,10) >10 

ERA- 100 0% 66% 0% 0% 34% 
ERA- 250 45% 0% 15% 8% 32% 
ERA- 500 52% 0% 0% 0% 48% 
ERA- 1000 54% 0% 0% 0% 46% 
EM - 100 0% 0% 0% 0% 100% 
EM - 250 9% 9% 3% 12% 67% 
EM - 500 0% 0% 0% 0% 100% 
EM - 1000 0% 0% 0% 1% 99% 
KM EANS- 100 0% 0% 0% 20% 80% 
KM eans- 250 0% 0% 0% 0% 100% 
KM eans- 500 0% 0% 0% 0% 100% 
KM eans-1000 0% 0% 0% 0% 100% 

Table 4: ~N(0,1), N(3,1) Data Set. Kullback-Leibler 
Distances between generating mechanism and model with 
greatest likelihood found by interval using the EM, K-
Means, and ERA algorithms. Random restarts used. The 
technique and the size of the data set are in the first column. 
 
Figure 5 shows the change in log-likelihood for the ERA 
algorithm over the course of a single experiment. We see 
that the log-likelihood can monotonically increase, as is the 
case with the K-Means and EM algorithms but need not. 
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Figure 5: For the ERA algorithm the change in log 
likelihood as a function of iteration. The “Hit”  series refers 
to the situation where the algorithm finds the generation 
mechanism as its parameter estimates. 
 
We now examine the algorithms results when the initial 
parameters are the actual generating mechanism. Even in 
this situation, the K-Means algorithm was not able to find 
the generation mechanism as its best parameter estimates. 
Instead, it finds a solution where the overlapping “ tails”  of 
the distributions are reflected inwards. 
 

 Log(P(D|h) M u0
 Stdev0 M u1 Stdev1 Q0||P0

 Q1||P1
 

K-
M eans 

-1954 -0.03 0.92 3.04 0.90 0.05 0.10 

EM  -1945 -0.01 1.01 2.93 1.03 0.00 0.04 
ERA -1945 0.00 1.01 2.93 1.03 0.00 0.04 

Table 5: Best model found using 1000 instances from 
~N(0,1), N(3,1) data set. The generating mechanisms are 
provided as the algorithms initial solutions. 
 
We have not explicitly determined the loss function of the 
ERA algorithm but have shown that empirically it finds 
good estimates for the likelihood function of the data. 

Combining ERA With Simulated Annealing 
 
At each iteration of the ERA algorithm  each observation is 
assigned to a class j with a probability pj/(p1+… pk). We 
may raise these normalized probabilities to the power of 1/c 
where c is a control parameter commonly known as the 
temperature in the simulated annealing community (Aarts, 
1989). This allows us to perform simulated annealing, an 
approach that asymptotically has been shown to converge to 
the global optima (Aarts, 1989). However, in practice the 
approach is useful for obtaining good local optima as it 
allows the search process to more readily leave sub-optimal 
solutions. In our experiments we have effectively kept c a 
constant at 1. We have not performed any systematic 
experiments combing the ERA algorithm with simulated 
annealing. 
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Definition of Latent Var iable Classifiers 
 
Dividing the observations by their geographic location or 
time-period are examples of an obvious DAC strategy. The 
premise behind DAC is to divide a complex problem into a 
number of easier sub-problems. By solving and then 
combining the sub-solutions, an overall solution is obtained 
(Horowitz and Sahni, 1978). For example, the DAC strategy 
in the field of combinatorial optimization makes 
combinatorially large problems tractable. If we are trying to 
find an optimal tour in a traveling salesman problem of 
thirty cities in the U.S.A., the number of possible tours is 
30!. If we determined the tour could be divided into an east 
and west coast tours of 15 cities each, with a connecting 
trip, then we have divided the problem into two sub-
problems which together have a potential number of tours of 
2.15!, a considerable saving. However, a reasonable DAC 
strategy for many problems is not always known. 
 
Latent variable analysis (Everitt, 1984) attempts to find 
unknown classes or entities to better explain commonly 
occurring patterns. For example, the notions of diseases are 
latent classes that describe commonly occurring symptoms. 
The identification of latent entities can be critical in 
decision-making. More specific treatment regimes can be 
administered to a patient given they are identified as having 
a disease. Our aim is to capture this type of two-level 
reasoning for classification problems. A common form of 
latent variable analysis is mixture models which attempt to 
identify latent classes of observations. 
 
Latent variable classifiers consist of the random variables X 
= { X1… Xn} , Y and C representing the independent 
attributes, explicit class attribute and latent class attribute 
respectively. We can consider Y to represent an overt or 
explicit externally provided class. These random variables 
take on specific values for an observation written as x1 … 
xn,  y and c. Our overall aim is to accurately predict y for 
new unseen observations. The common naïve Bayes 
classification model specifies a conditional probability for y 
given the values of x1…n as shown in ( 1 ). The independent 
variables, X1… Xn, are independent of each other given 
knowledge of Y. A similar distribution can be specified for 
regression models where y is continuous. The naïve Bayes 
classification model is show graphically in Figure 6. 

Figure 6: Graphical Model of a Naive Bayes Classifier 

 
To make better predictions we condition predictions on both 
the latent variable, C, and independent variables X. The 
independent variables, X1… Xn, are independent of each 
other given knowledge of C the latent attribute.  
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The number of latent classes, k, is typically explicitly given 
apriori though it may be part of one of the parameters to 
estimate (Davidson, 2000). The joint distribution of an 
observation and a latent class is given in equation ( 2 ) 
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If we assume the components of X are independent of each 
other given knowledge of C then the graphical model of 
mixture models is identical to the Naïve Bayes classifier 
except the top node is labeled C. Combining the two models 
allows us to specify the latent variable classifier in equation 
( 3 ).  
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In effect, each latent class has its own classifier that makes a 
prediction for y. The overall prediction for y is weighted by 
the probability of the observation belonging to the latent 
class. The LVC is shown graphically in Figure 7. 

Figure 7: Graphical Model of a Latent Variable Classifier. 
 
We estimate the parameters of the latent class and 
classification models simultaneously. This is extremely 
quick if the classification model is a simple learner such as 
the naive Bayes classifier but in practice any classifier can 
be used. The parameter estimation technique regardless of 
the algorithm will be identical to that of a mixture modeler 
except that there will an additional two terms, the 
probability of the extrinsic class and the probability of the 
extrinsic class given the observation values.  
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Exper imental Methodology for  LVC 
 
The BREAST CANCER (BC), IRIS (I), and PIMA (P) data 
sets available from the UCI collection (Merz et al, 1998) 
will be the basis of this empirical study. For each data set 
we try the EM and ERA algorithms. The K-Means 
algorithm is not tried due to its poor prior performance. 
 
For each data set we compare the cross-validated accuracy 
of models built for k = 1 to 8. Of course k=1 is just building 
a single model from the entire data set and is our base line 
for comparison. We expect that for k>2 the overall cross-
validated accuracy will be an improvement over k=1. For 
each value of k we perform ten-fold cross validation twenty 
time reporting the mean of the ten-fold cross-validated 
accuracy and the standard deviation of the cross-validated 
accuracy. The mean and standard deviation of the accuracy 
over all folds is used to calculate the Mean Square Error 
(MSE). 

Exper imental Results 
 

K 1 2 3 4 5 6 7 8 

M ean 66.0 75.0 72.8 68.4 68.2 68.7 68.9 69.4 

M SE 11.7 6.48 7.89 10.40 10.5 10.1 10.0 9.63 

Table 6: The accuracy (%) for the pima data set using the 
EM algorithm. 
 

K 1 2 3 4 5 6 7 8 

M ean 66.0 76.9 74.0 69.2 69.3 72.7 71.3 71.9 

M SE 11.7 4.49 5.75 8.54 8.4 8.1 7.80 8.0 

Table 7: The accuracy (%) for the pima data set using the 
ERA algorithm. 
 

k 1 2 3 4 5 6 7 8 

M ean 53.4 72.7 94.5 95.6 95.8 96.2 96.1 96.2 

M SE 23.0 9.23 0.87 0.44 0.47 0.41 0.42 0.44 

Table 8: The accuracy (%) for the iris data set using the EM 
algorithm 
 

k 1 2 3 4 5 6 7 8 

M ean 53.4 73.7 95.5 96.6 96.6 96.8 96.7 97.6 

M SE 23.0 6.31 0.67 0.21 0.24 0.33 0.32 0.32 
Table 9: The accuracy (%) the iris data set using the ERA 
algorithm 
 

K 1 2 3 4 5 6 7 8 

M ean 92.2 96.4 95.9 96.2 96.4 96.3 96.1 95.9 

M SE 0.72 0.23 0.70 0.37 0.26 0.18 0.28 0.24 

Table 10: The accuracy (%) for the breast cancer data set 
using the EM algorithm 

 
K 1 2 3 4 5 6 7 8 

M ean 92.2 96.0 97.5 96.0 96.1 96.4 96.5 96.2 

M SE 0.72 0.22 0.17 0.23 0.21 0.18 0.17 0.19 

Table 11: The accuracy (%) for the breast cancer data set. 
using the ERA algorithm 

Discussion  
 
We see that the LVC obtained more accurate results than 
building a single model from the entire data set (k=1). 
Increases in accuracy as a proportion of room for 
improvement where 26.4%,  91.8% and 53.8% for the Pima, 
Iris and Breast-Cancer data sets when using the EM 
algorithm to find the maximum likelihood estimates. This 
increased to 32%,  94.5% and 67.9% respectively when 
using the ERA algorithm. For all data sets for nearly every 
value of k the MSE obtained using the ERA algorithm is 
less than the MSE obtained using the EM algorithm. From 
our experimental results for LVC we see that the ERA 
algorithm’s improved ability at finding a better maximum 
likelihood estimate translate into more accurate predictions 
and lower mean square errors.  

Conclusion and Future Work 
 
By making a minor change to the EM and K-Means 
algorithms a random search algorithm that does not 
converge to a point estimate occurs. We illustrated how the 
ERA algorithm can find better maximum likelihood 
estimates for mixture modeling and more accurate 
predictive results and a lower MSE for LVCs.  
 
As the ERA algorithm does not converge to a single point 
estimate but keeps on exploring the model space it is worth 
exploring if making predictions from a number of models 
found as it moves through the model space yields even 
better results. We also plan to determine if raising the 
posterior probabilities to the power of 1/c and slowly 
decreasing c yields better results. This is akin to performing 
simulated annealing. It is known what loss function the EM 
and K-Means algorithms minimize and we intend to 
determine the precise loss function for the ERA algorithm. 
Finally, we will empirically compare our approach to 
stochastic variations of the EM algorithm such as SEM and 
MCEM. 
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