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Abstract

Hierarchical clustering is a popular approach in a number of fields with many well

known algorithms. However, all existing work to our knowledge implements a greedy

heuristic algorithm with no explicit objective function. In this work we formalize hi-

erarchical clustering as an integer linear programming (ILP) problem with a natural

objective function and the dendrogram properties enforced as linear constraints. Our

experimental work shows that even for small data sets finding the global optimum

produces more accurate results. Formalizing hierarchical clustering as an ILP with

constraints has several advantages beyond finding the global optima. Relaxing the den-

drogram constraints such as transitivity can produce novel problem variations such as

finding hierarchies with overlapping clusterings. It is also possible to add constraints

to encode guidance such as must–link, cannot–link, must–link–before etc. Fi-

nally, though exact solvers exists for ILP we show that a simple randomized algorithm

and a linear programming (LP) relaxation can be used to provide approximate solutions

faster.

Keywords: hierarchical clustering, constraints, integer linear programming

1. Introduction

A recent survey [1] comparing non-hierarchical and hierarchical clustering algo-

rithms showed that in published scientific articles, hierarchical algorithms are used far
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more than non-hierarchical clustering. However, most research and papers focus on

non-hierarchical (partitional) clustering. Applications of hierarchical clustering typi-

cally can be divided into those that build large trees so that, for instance, a user can nav-

igate a large collection of documents, and those that build trees to represent a scientific

process, such as phylogenetic trees (evolutionary trees). We can further differentiate

these works by noting that the data collected for the first type of application is easy to

collect and hence voluminous, whilst the later application typically takes much time to

collect and are typically small.

Our own earlier work [2] showed how to scale hierarchical clustering using hash-

ing to huge data sets but in this paper the focus is the latter category of applications

involving a small number of instances taking a long time to collect and which must

be thoroughly analyzed. This means that spending hours for an algorithm to run is

not uncalled for since a precise answer is worth the wait. Colloquially, going back to

our examples, no one will complain if a dendrogram places documents in a good but

non-optimal ordering but will if species are shown to evolve in the wrong order.

Hierarchical clustering algorithms remain relatively under-studied with most algo-

rithms being relatively straight-forward greedy algorithms implemented in procedural

language. For example, in the above mentioned survey two thirds of the implemen-

tations mentioned were simple agglomerative algorithms (see Figure 1) that start with

each instance in a cluster by itself and then the closest two clusters are merged at each

and every level. Even more advanced methods published in the database literature such

as CLARANS and DBSCAN [3] still use this base approach but have more complex

distance measures or methods to build the tree iteratively. Whereas non-hierarchical

clustering algorithms have moved to elegant linear algebra formulations such as spec-

tral clustering [4] hierarchical clustering has not.

Contributions. In this work we provide the first formalization of agglomerative

clustering as an ILP problem (for a general introduction to the topic see [5] and for an

example of an application of ILP to the non-hierarchical clustering data mining prob-

lem see [6]). Formulating the problem as an ILP allows the use of high quality solvers

(free and commercial) such as CPLEX and Gurobi (used in all our experiments) to find

solutions and automatically take advantage of multi-core architectures. Formulating

2



the problem as an ILP has a number of additional benefits that we now briefly discuss

and provide details of later.

• Explicit Global Objective Function Optimizing. As mentioned most existing

work greedily determines the best join at each and every level of the hierarchy.

At no time is it possible to reset or revisit an earlier join. This is adequate when

a “near enough” dendrogram is required, such as building a tree to organize song

lists. Finding the global optima is more important when the data represents a

physical phenomenon. This is discussed in the Section Hierarchical Clustering

as an ILP, and we show this produces better quantitative results for scientific data

sets such as language evolution in Table 3 and for hierarchical organization of

fMRI scans in Table 4 .

• Novel Problem Variations with Relaxing Constraints. A side benefit of formaliz-

ing hierarchy learning is that the properties of a legal dendrogram are explicitly

modeled as constraints to the optimization. We will show how novel problem

variations can arise if some constraints are relaxed. In particular we show that

relaxing the transitivity property allows for overlapping hierarchical clustering,

that is, an instance can appear multiple times at the same level in the hierarchy

and is akin to overlapping clustering. To our knowledge the problem of building

dendrograms when an object appears multiple times is novel. This topic is ex-

plored in the Section Relaxed Problem Settings. In Figure 8 we show empirically

that our method is capable of discovering overlapping hierarchies.

• Novel Forms of Guidance By Adding Constraints. The area of constrained clus-

tering [7] has typically added constraints to procedural implementations. Here

we show how we can add a number of typically used data mining constraints

must–link, cannot–link, and must–link–before as linear constraints. This

topic is explored in the Section Adding Guidance and in Figure 9 we show this

can obtain even better empirical results.

• Approximation Schemes Finding the global optima to an intractable problem by

definition must be time consuming. However, a large literature exists on general
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methods to create approximate methods for ILPs. We provide two initial steps

in that direction by exploiting a simple randomized algorithm that can create a

factor two approximation scheme. We also explore using LP relaxations and

randomized rounding. Figure 10 shows the empirical results of how well our LP

relaxation and randomized rounding scheme compares to the optimal solution.

We organize the paper as follows. In Section 2 we describe our ILP formulation

of hierarchical clustering. In Section 3 we describe an interesting variant of this for-

mulation that allows us to learn overlapping hierarchical clustering by relaxing some

of the constraints. Adding guidance that can encode domain knowledge or problem

constraints in the form of additional ILP constraints is explored in Section 4. Section

5 describes two approximation algorithms to our overlapping hierarchical clustering

algorithms. Finally in Section 6 we describe the questions we attempted to answer

through empirical analysis and described the methods we devised to solve them as well

as our results.

2. Hierarchical Clustering as an ILP

In this section, we discuss how to formulate hierarchical clustering as an ILP prob-

lem. We begin with a brief introduction of hierarchical clustering that can be skipped

by the informed reader.

2.1. A Brief Introduction to Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering algorithms take as input a distance function

and create a dendrogram, which is a tree structure which can be interpreted as a k-

block set partition for each value of k between 1 and n, where n is the number of data

points to cluster. These algorithms not only allow a user to choose a particular clus-

tering granularity, but in many domains [8, 9, 10] clusters naturally form a hierarchy;

that is, clusters are part of other clusters such as in the case of phylogenetic (evolution-

ary) trees. The popular agglomerative algorithms are easy to implement as they just

begin with each point in its own cluster and progressively join two closest clusters to
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Standard agglomerative clustering

Input:

• Distance matrix for n points D ∈ n× n.

• Cluster distance function d(ci, cj), e.g. single or complete linkage.

Output: Block partitioning Dendrogramk, for each k, 1 ≤ k ≤ n.

1. ci = {xi}, 1 ≤ i ≤ n. Dendrogramn = {c1, c2, . . . , cn}.

2. for k = n− 1 down to 1 do

(a) /* Find a closest pair of clusters. */

Let (a, b) = argmin(i,j){d(ci, cj) : 1 ≤ i < j ≤ k + 1}.

(b) Obtain Dendrogramk from Dendrogramk+1 by merging cb into ca and then

deleting cb.

endfor

Figure 1: Standard agglomerative clustering. Typical variations differ by the link-

age/distance function used d(i, j) whose details can drastically change the algorithm’s

behavior and efficient implementation. For example, the single linkage distance be-

tween two clusters is defined as the smallest distance between all pairs of points from

the two different clusters.
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reduce the number of clusters by 1 until k = 1. The basic agglomerative hierarchical

clustering, which our method is compared to in this paper, is shown in Figure 1.

This algorithm is very popular and was first postulated in the 1950’s and 60’s in the

numerical taxonomy literature [11]. Though useful they are unlike most modern ma-

chine learning methods since they were not derived to optimize an objective function.

In comparison consider non-hierarchical clustering methods such as spectral cluster-

ing, k-means and mixture models. Each has an explicit object function: graph min-cut,

vector quantization error, maximum likelihood respectively, and their algorithms are

derived to optimize this function. Our purpose in this paper is to move hierarchical

clustering forward by explicitly deriving an objective function and optimizing it. We

have chosen an ILP formulation since our focus is on exact optimization.

2.2. Solving hierarchical clustering

Using ILP allows us to formally define an objective function and then find globally

optimal solutions to hierarchical clustering problems. The two challenges to an ILP

formulation are: i) ensuring that the resultant solution is a legal dendrogram; and ii)

encoding a useful objective function. In the former, though we must model the dendro-

gram as a collection of variables, those variables are clearly dependent on each other

and we must formalize this relationship. In the later, we must use these same variables

to define a meaningful objective function.

2.3. Enforcing a Legal Dendrogram

In this section, we describe how a function (referred to as merge or asMwithin the

ILP formulation) , representable using O(n2) integer variables (where n is the number

of instances), can represent any dendrogram. The variables represent what level a pair

of instances are first joined at and the constraints described in this section enforce

that these variables obey this intended meaning. The merge function is described in

Definition 1 as follows.

Definition 1. merge function

merge : (Instances× Instances)→ Levels

(a, b) 7→ first level a, b are in same cluster
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In this work we will learn this function. For a particular instance pair a, b the

intended meaning of merge(a, b) = ` is that instances a, b are in the same cluster at

level ` (and higher) of the corresponding dendrogram, but not at level `− 1 and lower.

Therefore the domain of the merge function is all pairs of instances and the range is

the integers between zero (tree bottom) and the maximum hierarchy level L (tree top).

The fact that any dendrogram from standard hierarchical clustering algorithms can

be represented using this scheme is clear, but it is not the case that any such merge

function represents a legal dendrogram. Consider a simple example with three in-

stances a, b, c and with merge(a, b) = 1, merge(a, c) = 2 and merge(b, c) = 3. Such

a merge function does not represent a legal dendrogram because it does not obey tran-

sitivity. To ensure we learn a legal dendrogram we must encode the following partition

properties: reflexivity, symmetry, and transitivity (Definitions 2,3,4). Later we shall

see how to enforce these requirements as linear inequalities in an ILP.

Definition 2. Reflexivity An instance is always in the same cluster as itself.

∀a [merge(a, a) = 0]

Definition 3. Symmetry If instance a is in the same cluster as instance b then instance

b is also in the same cluster as instance a.

∀a, b [merge(a, b) = merge(b, a)]

Definition 4. Hierarchy and Transitivity If instance a is in the same cluster as instance

b at level q and b is in the same cluster as c at level r, then a must be in the same cluster

as c at level q or r (which-ever is largest).

∀a, b, c [max (merge(a, b), merge(b, c)) ≥ merge(a, c)]

2.4. Hierarchical Clustering Objective

The objective for agglomerative hierarchical clustering is traditionally specified as

a greedy process where clusters that are closest together are merged at each level as

shown in Figure 1. These objectives are called linkage functions (e.g. single [12], com-

plete [13], UPGMA [14],WPGMA [15]) and effectively define a new distance function
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Variable Description

M(a, b)/merge(a, b) The values M(a, b) can be interpreted as the first level

that the two points are merged.

Oabc A binary variable set to 1 (TRUE) if points a, b are merged

before a, c.

wabc Specifies the reward/penalty of joining a, b over a, c. In

our work set as: D(a, c)−D(a, b) so can be either posi-

tive (reward) or negative (penalty).

L The maximum number of levels in the hierarchy. Unlike

standard agglomerative clustering where the number of

levels equals the number of points, our method allows

the number of levels to be specified, and to be explicitly

modeled as part of the objective function.

Zab≥ac Each Z variable captures the relative ordering of of two

pairs of points’ hierarchical distances (as measured in

M).

Table 1: Description of variables used in ILP formulation (See Figures 3 and 4).

(d(i, j) in Figure 1) to decide which clusters are closest and should therefore be merged

next. The intuition behind this process can be interpreted to mean that points that are

close together should be merged together before points that are far apart. Our work

formalizes this intuition into an ILP.

To formalize that intuition we created an objective function that favors hierarchies

where closer points are joined before further-away points. For example if D(a, c) (dis-

tance between a and c ) is larger than D(a, b) then the points a and c should be merged

after the points a and b are merged. This would require the merge function learnt to

have merge(a, b) < merge(a, c). Though learning the merge function directly al-

lows us to recover the dendrogram easily, it is difficult to define an objective around it.

Hence, we introduce the binary variable Oabc which is set to TRUE (value one) if the

instances a and b are merged before a and c are merged. In our formulation we must
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constrain O and merge so they are consistent with each other. We need both sets of

variables since O is useful for specifying the objective function but difficult to specify

the properties of a hierarchy on, and merge is challenging to specify an objective func-

tion on but useful for specifying the properties of a hierarchy. To complete the objective

function we introduce wabc a non-binary variable which indicates how close a and b

are compared to a and c. In our experiments we set wabc = D(a, c) −D(a, b) which

means it is set to 0 if a and b are equal distance to a and c and a positive (negative)

number if they are closer (further). Figure 2 gives an example of how our objective

works and Equations 1, 2, and 3 define it formally.

f(M) =
∑

a,b,c∈Instances

wabcOabc (1)

where:

Oabc =

 1 :M(a, b) <M(a, c)

0 : otherwise
(2)

wabc = D(a, c)−D(a, b) (3)

It should be noted that in all our experimentsO is optimized over andw is a constant

that is derived from the distance functionD. However, in practice, w could be provided

by a human expert either partially or completely. In the former case we would opti-

mize over the not specified values of w which can be considered as a semi-supervised

setting in that for some triplets you don’t know their distance relationships but learn

them. Using these variables allows an objective function shown formally in Equation 1

which captures the intuition of agglomerative hierarchical clustering (join closer points

together before further points). However, because we have formulated it and allowed

it to be solved as an ILP it will find the global optimum rather than converge to a local

optimum. This is so since the ILP does not gradually build up the solution as greedy

heuristic methods do.

2.5. ILP Transformation

Now that we have presented a global objective function for hierarchical clustering

we will address how to find globally optimum legal hierarchies by translating the prob-
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lem into an integer linear program (ILP). Figure 3 shows at a high level the optimization

problem we are solving.

Figure 4 shows the ILP equivalent of the problem in Figure 3. To ensure that

M is a legal merge function we need to ensure the resultant hierarchy is legal. This

requires encoding the constraints to enforce the previously mentioned properties of

reflexivity, symmetry, and transitivity properties (Definitions 2 - 4). Recall thatM can

be represented as square matrix of n × n variables indicating at what level a pair of

points are joined. Then reflexivity and symmetry are both easily enforced by removing

redundant variables from the matrix, in particular removing all diagonal variables for

reflexivity, and all lower triangle variables for symmetry. Transitivity can be turned

into a set of linear constraints by noticing that the previously mentioned inequality

max(M(a, b),M(b, c)) ≥M(a, c) is logically equivalent to:

(M(a, b) ≥M(a, c)) ∨ (M(b, c) ≥M(a, c)) (4)

In the final ILP (Figure 4) there is a variableZ introduced for each clause/inequality

from Equation 4 (i.e. Zab≥ac and Zbc≥ac) and there are three constraints added to

enforce that the disjunction of the inequalities is satisfied. Constraints are also added

to ensure that the O variables and the variables inM are consistent.

3. Relaxed Problem Settings - Removing Constraints

A benefit of formalizing hierarchy building is that individual parts of the formuliza-

tion can be relaxed. Here we explore two aspects of relaxation. Firstly, we can relax

the formal definitions of a legal hierarchy to obtain novel problem settings. In particu-

lar we consider the effect of relaxing the transitivity constraint of our ILP formulation

of hierarchical clustering. Relaxing transitivity allows a form of hierarchical cluster-

ing where instances can appear in multiple clusters at the same level (i.e. overlapping

clustering). Secondly, we relax the integer constraints so that we can create approxi-

mation algorithms by relaxing the problem into an LP and using randomized rounding

schemes (see Section 5).
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3.1. Overlapping Hierarchies

If the transitivity property is satisfied then the clusters at each level in the hierarchy

can be obtained by computing the connected components over the pairwise together

relations obtained from the relation M. For any level ` we say two points a and b

are together ifM(a, b) ≤ ` and then compute transitive closure over the together

relation. Furthermore, for a legal/standard hierarchy the set of maximal cliques will

be the same as the set of connected components (because the together relation will

be transitive for a hierarchy), which motivates our use of maximal cliques for non-

transitive hierarchies. When the transitivity property of the merge function is relaxed,

the clusterings corresponding to each level of the dendrogram found by taking the

maximal cliques of the level’s together relation will no longer necessarily be set a

partitions. Clustering over non-transitive relations/graphs is common in the community

detection literature [16] where overlapping clusters are learned by finding all maximal

cliques in the graph (or weaker generalizations of maximal clique). We use this same

approach in our work, finding maximal cliques for each level in the hierarchy to create

a sequence of overlapping clusterings.

3.2. Overlapping Clustering Objective

Rather than completely relaxing the transitivity requirement we allow transitivity to

be violated with a penalty. Intuitively graphs in which transitivity is better satisfied will

lead to simpler overlapping clusterings. We therefore added transitivity in the objective

function (rather than having it as a constraint) as shown in Equation 5 which introduces

a new variable Tabc (Equation 6) whose value reflects whether the instance triple a, b, c

obeys transitivity. We also introduce a new weight wt which specifies how important

transitivity will be to the objective.

f(M) =
∑

a,b,c∈Instances

[wabcOabc + wtTabc] (5)

Tabc =

 1 : max (M(a, b),M(b, c)) ≥M(a, c)

0 : otherwise
(6)

The full ILP, with the new objective presented in Equation 5 and relaxed transitivity, is

presented in Figure 5.
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4. Adding Guidance - Adding Constraints

Guidance constraints such as must–link, cannot–link, and must–link–before

constraints can be used to encode domain knowledge or problem constraints into oth-

erwise unsupervised problems such as hierarchical clustering. Previous work showed

that hierarchical clustering results can benefit from the addition of these constraints

[17, 18, 19], but all previous work relied on ad-hoc schemes to integrate constraint

solving into agglomerative clustering algorithms. An advantage to our ILP formula-

tion of hierarchical clustering is that data mining constraints can be added naturally by

encoding them as linear constraints, which is very straight forward.

Encoding Global Must-Link and Cannot-Link Constraints. A global

cannot–link (CL) or must–link (ML) constraint, specifies that two instances must

be together or apart throughout the entire hierarchy. For must–link, this implies that

the points must have be joined from the very first level of the hierarchy as shown

in Equation 7. Typically a global cannot–link constraint would specify that two

points can never be together anywhere in the hierarchy, and thus a single cannot–link

constraint will lead to a non-full tree hierarchy (a forest). Since in this work, we do not

attempt to model non-full tree hierarchies we instead use this constraint to specify that

two points cannot be merged until the highest level (the root) as show in Equation 8.

ML(a, b) ≡M(a, b) = 1 (7)

CL(a, b) ≡M(a, b) = L (8)

Encoding Local Must-Link and Cannot-Link Constraints. While global

cannot–link or must–link constraints have been shown to improve the performance

of hierarchical clustering, they were designed for flat clustering and do not take into

account the hierarchical nature of a dendrogram. Local cannot–link (CLi) or

must–link (MLi) constraints were created to allow these constraints to address par-

ticular levels in a hierarchy. For example MLi(a, b) specifies that points a and b must

be together at level i in the hierarchy (or sooner) which is shown in Equation 9. Like-

wise CLi(a, b) specifies that a and b cannot be together at level i (in other words they
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must be merged later) as is shown in Equation 10.

MLi(a, b) ≡M(a, b) ≤ i (9)

CLi(a, b) ≡M(a, b) > i (10)

Encoding Local Must-Link-Before Constraints. Another constraint type that was

specifically devised for hierarchical clustering is the must–link–before (MLB) con-

straints [20]. In some ways this constraint is less powerful tha local must–link

constraints because they only specifies the relative ordering of how points should be

merged. However in practice local constraints are difficult to specify whereas it is gen-

erally easy to specify a must–link–before constraint. As Equation 11 shows, the

definition of MLB(a, b, c) is that points a and b must be merged before a and c or b

and c.

MLB(a, b, c) ≡ [M(a, b) <M(a, c)] ∧ [M(a, b) <M(b, c)]

≡M(a, b) <M(a, c)
(11)

The simplification of the conjunction in Equation 11 is logically equivalent because

of the properties of a hierarchy thatM obeys. IfM(a, b) <M(a, c) thenM(a, c) =

M(b, c) due to the nature of hierarchies, and thereforeM(a, b) <M(b, c).

5. Polynomial Time Approximation Algorithms

In this section we consider some theoretical results for approximations of the ILP

formulation presented in Figure 5 (i.e. the ovelapping hierarchy formulation). This

formulation allows transitivity to be violated, and has an interpretation that allows any

variable assignment to be translated into a valid hierarchy (with overlapping clusters).

5.1. Factor Two Approximation

Theorem 1. LetM0 be created by independently sampling each value from the uni-

form distribution {1 . . . L}, andM∗ be the optimal solution to ILP in Figure 5. Then

E[f(M0)] ≥ L−1
2L f(M∗).
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Proof.

E[f(M0)] = E

[∑
abc

(wabcOabc + w′abcTabc)

]

=
∑
abc

wabcE [Oabc] +
∑
abc

w′abcE [Tabc]

=
∑
abc

wabc
L− 1

2L
+
∑
abc

w′abc
4L3 + 3L2 − L

6L3

=
L− 1

2L

∑
abc

wabc +
4L3 + 3L2 − L

6L3

∑
abc

w′abc

≥ L− 1

2L
f(M∗) ≈ 1

2
f(M∗)

Note that in the proof we use the following results for the values of E [Oabc] and

E [Tabc]:

E [Oabc] = p(M0(a, b) >M0(a, c)) =
L− 1

2L

E [Tabc] = p(M0(a, b) ≥M0(a, c) ∨M0(b, c) ≥M0(a, c))

= 1− 2L3 − 3L2 + L

6L3
=

4L3 + 3L2 − L

6L3

The bound E[f(M0)] ≥ L−1
2L f(M∗) is a constant given L (parameter specifying

number of levels in hierarchy), and will generally be close to one half since the number

of levels L is typically much greater than 2.

5.2. LP Relaxation

The problem in Figure 5 can be solved as a linear program by relaxing the integer

constraints, but the resulting solution,M∗f will not necessarily have all integer values.

Given such a solution, we can independently round each value up with probability

M∗f (a, b) − bM∗f (a, b)c and down otherwise. The expectation of the objective value

for the LP relaxation can be calculated and in the experimental section we calculate

both optimal integer solutions and the expectation for this simple rounding scheme.
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Figure 10 shows that their difference is usally very small. IfM0 is the solution created

by roundingM∗f , then the expectation can be calculated as:

E[f(M0)] = E

[∑
abc

(wabcOabc + w′abcTabc)

]

=
∑
abc

wabcE [Oabc] +
∑
abc

w′abcE [Tabc]

The expectation for each variable (T and O) breaks down into a piecewise func-

tion. The expectation for Oabc is listed below. This variable relies on the ordering

ofM∗f (a, b) andM∗f (a, c). When those variables are far apart (e.g. distance of 2 or

greater) then rounding them will not change the value ofOabc. When they are close the

value of Oabc will depend on how they are rounded, which breaks down into two cases

depending on whetherM∗f (a, b) andM∗f (a, c) are in the same integer boundary.

E [Oabc] =



1 : bM∗f (a, b)c > dM∗f (a, c)e

1− p1 : bM∗f (a, b)c = dM∗f (a, c)c

p2 : bM∗f (a, b)c = bM∗f (a, c)c

0 : dM∗f (a, b)e < bM∗f (a, c)c

p1 =
(
dM∗f (a, b)e −M∗f (a, b)

) (
M∗f (a, c)− bM∗f (a, c)c

)
p2 =

(
M∗f (a, b)− bM∗f (a, b)c

) (
dM∗f (a, c)e −M∗f (a, c)

)
The expectation for Tabc can be calculated using similar reasoning but it is not

listed here because it breaks down into a piecewise function with more cases and is

very large.

6. Experiments

Here we overview our data sets, research questions, and experiments in that or-

der. As in our previous work the code and data sets will be made available to aid in

reproduciblity of our results.
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6.1. Data Sets and Performance Measures

In keeping with the motivation of our work, these data sets are difficult to obtain

so the time to find the global optimum is justified. For example, the fMRI study took

many years to collect (it is a longitudinal study), the language data set is unique, and

the movie data set can only grow by a few hundred instances per year.

Languages Data Set. The language data set contains phonological, morphological,

lexical character usage of twenty four historic languages [21] (http://www.cs.

rice.edu/˜nakhleh/CPHL/). We chose this data set because it allowed us to

test our method’s ability to find a ground truth hierarchy from high dimensional data

(each instance is represented by over 200 features). These languages are known to have

evolved from each other with scientists agreeing upon the ground truth. In such prob-

lem settings, finding the exact order of evolution of the entities (in this case languages)

is important and even small improvements are considered significant.

fMRI Data Set. An important problem in cognitive research is determining how brain

behavior contributes to mental disorders such as dementia. We use a set of fMRI brain

scans of patients who had also been given a series of cognitive tests/scores by doctors.

These scores can be used to organize the patients into a natural hierarchy based on

their mental health status and forms our ground truth hierarchy. We can then cluster

the fMRI scans and see how well the hierarchy obtained from the scans matches the

hierarchy obtained from the cognitive scores. Once again finding the best hierarchy is

important since it can be used to determine those most at risk without the need for time

consuming tests/scores. Each scan consists of brain activity mapped onto a 63 × 52 ×

72 grid over 200+ time steps. Thus each instance consists of over 500,000 columns.

Movie Lens. The Move Lens data set [22] is a set of user ratings of movies. This data

set is of interest because each movie also has a set of associated genres, and the sets

of movies belonging to each genre typically have a very high overlap. For example

romantic-comedy movies will belong to two genres as well as science fiction horror

films. Thus traditional hierarchical algorithms cannot easily discover these overlapping

hierarchies as they require each data point (movies in this case) to appear only once at
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each level. In contrast our methods allow a data point to appear multiple times at each

level and hence the one movie can appear in the romance part of the tree as well as the

comedy part of the tree if it were a romantic comedy.

We created overlapping ground truth hierarchies from all the genres and cross-

genres (e.g. romantic comedy, action comedy) and tested our method’s ability to find

these overlapping clusterings as compared to standard agglomerative clustering meth-

ods.

20 Newsgroups. The 20 Newsgroups dataset is a collection of documents that are

known to be organized into a hierarchy that is shown in Table 2.

• Computers • Science

◦ Hardware * sci.med

* comp.os.mswindows.misc ◦ Technology

* comp.windows.x * sci.crypt

* comp.graphics * sci.electronics

◦ Software * sci.space

* comp.sys.ibm.pc.hardware • Politics

* comp.sys.mac.hardware * talk.politics.guns

• Recreation ◦ International

◦ Automobiles * talk.politics.mideast

* rec.autos * talk.politics.misc

* rec.motorcycles • Philosophy/Religion

◦ Sports * alt.atheism

* rec.sport.baseball ◦ Theism

* rec.sport.hockey * talk.religion.misc

• Sale * soc.religion.christian

* misc.forsale

Table 2: Hierarchical structure of the 20 Newsgroup data.

Artificial Data Set. We created three artificial hierarchical clustering data sets with a

known ground truth hierarchies, so that we could use them to precisely answer im-

portant questions about our new hierarchical clustering formulation. Since we often

injected noise into our experiments many times we created small data sets so experi-

ments can be repeated many times.
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1. The first artificial hierarchy we created had 80 instances, 4 levels, was a balanced

tree, and did not have overlapping clusterings. The ground truth hierarchy for

this dataset was therefore always the same. We can turn the hierarchy into a

pairwise distance matrix with the distance between two points a and b being the

level of their first common ancestor. We increased the complexity of this dataset

by increasingly adding uniform error to the distances. We used this data set to

evaluate our basic ILP formulation which enforced transitivity (Figure 4) and

compared the results with standard hierarchical clustering algorithms (single,

complete, UPGMA, WPGMA).

2. The second artificial data set was created very similarly to the first, in that it

also had 80 instances, 4 levels and was balanced, but each of the clusters on

the highest non-root level shared 50% of their instances with another cluster

(overlap). We increased the challenge of the problem by increasingly adding

uniform error to the distance matrix.

3. The third set of artificial datasets was different than the previous two. We created

a random ground truth hierarchies by first creating a random distance matrix

and then applying a single linkage agglomerative clustering algorithm to learn

the ground truth hierarhcy. We then added increasing random uniform error to

increase the complexity of the problem.

6.1.1. Performance Measures

We use two standard measurements to evaluate our algorithm.

H-correlation. The H-Correlation [20] measures the distance to a ground truth hierar-

chy with a value of 1 being an exact perfect match and is formally defined as:

HCorr =
1

# of tripples

∑
a,b,c∈Points

δ{MGT (a, b)−MGT (a, c),ML(a, b)−ML(a, c)}

WhereMGT is the ground truth hierarchy,ML is the learned hierarchy that is being

evaluated and δ is a Kronecker delta function. The more the relative order of hierar-

chical distances agree between the learned and ground truth hierarchy, the higher the

H-Correlation.
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F1 Score. The F1 score is commonly used to compare clustering results to ground truth

clusters by first matching the clusters from the two different sets and then calculating:

F1 = 2 · precision · recall
precision+ recall

We measured F1 score by first calculating the set of all clusters generated within the

ground truth and learned dendrograms, and then matching the learned clusters with the

best true clusters. The matching between the clusters from the learned hierarchy and

the ground truth hierarchy was created so that it maximized the total F1 score.

6.2. Questions

Our contributions are formulating hierarchical clustering as an optimization prob-

lem, hence we begin our experiments with the question: 1. Does our global opti-

mization formulation of hierarchical clustering provide better results than greedy

algorithms? Our results in Tables 3 and 4 show that our method outperforms stan-

dard hierarchical clustering for real world language evolution and fMRI data sets for

finding the best hierarchy (matching the ground truth). Furthermore, Figure 6 show

that for artificial data sets our method performs better than existing greedy algorithms

when the data set contains noise in the pairwise distances. This is a likely situation as

the distances are typically measured via the instance features which may be corrupt or

contain errors.

We also explore the novel idea of overlapping hierarchies, which raises the next

experimental question: 2. Can our method find overlapping clusters in datasets?

Figure 8 shows the results of our method on Artificial Dataset 2 which was created to

contain overlapping clusters. Table 5 shows the results for a real data set of movies

where overlapping clusters naturally occur due to multiple genres and the results show

that our method had better average results as well as a smaller variance than all of the

agglomerative clustering algorithms. Finally, Table 6 shows our methods ability to find

crosspostings (messages that belong to two different newsgroups/forum topics) with

the 20 Newsgroup dataset.

3. Does the addition of constraints improve performance and run time of the

algorithms? Most work on adding constraints to clustering [7] improves clustering
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results but at the cost of efficiency. We explore if adding constraints to our formulation

improves the accuracy of recovering the ground truth hierarchy and also if it improves

performance run-time. Figure 9 shows the results for our methods.

Finally, our approximation schemes have a bound on their performance which we

test: 4. How tight is the theoretical bounds for the difference between the expected

and optimal solutions. In practice how do the random solutions compare to op-

timal solutions? The results for our experiment showing the difference between the

ILP solutions to overlapping hierarchical clustering and the LP approximation scheme

solutions are shown in Figure 10.

6.3. Experimental Methodology

We now address the research questions proposed above in order.

1. Does our global optimization formulation of hierarchical clustering provide

better results than greedy algorithms?

The results of the first experiment we used to answer this question are shown in

Figure 6, and they shows our method’s ability to outperform many standard agglomera-

tive clustering algorithms for standard hierarchical clustering (no overlapping clusters)

on artificial data (Artificial Dataset 1). The results show that our algorithm performs

better when there is increasing distance error which is expected since agglomerative

algorithms are greedy and erroneous steps cannot be undone. It is significant to note

that even in small data sets finding the global optimum is beneficial and we expect this

improvement to be larger in bigger data sets. This experiment was performed by using

the F1 score to measure the difference for learned and ground truth hierarchies and

repeating each test 10 times for each error factor. The error factor is the quantity of

error added, so that the ground truth hierarchical distances had uniform error added in

the range [0, error factor].

We then tried our algorithm on Artificial Dataset 3, whose ground truth hierar-

chies were created using agglomerative clustering algorithms (single linkage), and

were therefore potentially more difficult for our algorithm to compete on. To see this,

note that in Figure 7, the single linkage algorithm performs better than the other ag-

glomerative clustering algorithms, which is unusual. We used single linkage because
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it is known to be most flexible in the types and shapes of hierarchies that is capable of

learning. Figure 7 shows not only that our ILP formulation works better than standard

agglomerative clustering in this setting, but also shows how more noisy problems ef-

fect the runtime of our ILP formulation. The plot on the right side of Figure 7 shows

that the ILP formulation can be very quick for many problems, but that increasing the

amount of noise leads to exponential increases in run time.

We next tried our algorithms on real world data sets where we know the ground

truth. Here we measure the H-correlation between the ground truth hierarchy and the

hierarchy found by the algorithms. Table 3 shows that our algorithm did a better job

of learning the ground truth hierarchy of languages as defined by our current under-

standing of language evolution. Because of the small nature of this dataset we only

performed this experiment once and reported the H-correlation. For the fMRI data

however, we were able to compare our method against standard agglomerative clus-

tering multiple times and report mean and standard deviations for the H-correlation

measures (See Table 4). Our method was statistically significantly better than agglom-

erative clustering.

Table 3: Performance of our basic ILP formulation on the languages evolution data

set evaluated using H-Correlation compared to the known ground truth dendrogram

(higher is better). No variances are reported in this experiment because of its small size

the experiment was only performed once on the entire dataset.

Algorithm H-Correlation

ILP 0.1889

Single 0.1597

Complete 0.1854

UPGMA 0.1674

WPGMA 0.1803

2. Can our method find overlapping clusters in datasets? We evaluated our

overlapping clustering formulation against standard hierarchical clustering, using Ar-

tificial Dataset 2 and presented the results in Figure 8. We used the same overlapping
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Table 4: Performance of our basic ILP formulation on fMRI data to recreate an hierar-

chy that matches the ordering of a persons fMRI scans based on their cognitive scores.

Our method has higher average H-correlation with greater than 95% confidence.

Algorithm H-Correlation Standard Deviation

ILP 0.3305 0.0264

Single 0.3014 0.0173

Complete 0.3149 0.0306

UPGMA 0.3157 0.0313

WPGMA 0.3167 0.0332

hierarchy to test how well our expected linear programming results compared to the

optimal results found using an ILP solver. Those results are presented in Figure 10 and

show that in practice using an LP solution along with a very simple rounding scheme

leads to results very close to the optimal ILP objective.

Table 5: Performance of overlapping formulation on real world data, the Movie Lens

data set with an ideal hierarchy described by genre. Our method has higher average F1

score with greater than 95% confidence.

Algorithm F1 Score Standard Deviation

LP 0.595 0.0192

Single 0.547 0.0242

Complete 0.569 0.0261

UPGMA 0.548 0.0245

WPGMA 0.563 0.0246

We also used the 20 Newsgroup dataset to test our methods ability to find over-

lapping clustering. The idea behind this experiment is that there are many newsgroup

postings that can naturally fit into multiple newsgroups. For example the newsgroups

”comp.os.mswindows.misc” and ”comp.sys.ibm.pc.hardware” are very likely to con-

tain posts that could be cross-posted since these software and hardware platforms have
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traditionally been tied together. Since the 20 Newsgroups data set we used did not

contain cross-postings, we simulated them by taking two messages from similar news-

groups and adding together their bag of word representations. We repeated this experi-

ment 10 times for different samples of the 20 Newsgroup dataset of size 100, each time

creating simulated cross postings and then used our overlapping hierarchical clustering

formulation. We then looked at the number of clusters that each point belonged to in

the entire hierarchy and measured the average of the standard points and the simulated

cross-posted points. Table 6 shows that the simulated cross postings are in many more

clusters than the standard points.

Document Types Average Number of Clusters Belonged To

Hybrid/Cross-posted Articles 236

Regular Articles 137

Table 6: Experiment that shows that points composed of two posts from different cate-

gories are more likely to belong to more clusters (appear multiple times at each level).

3. Does the addition of constraints improve performance and run time of the

algorithms? Figure 9 shows the results of our experiment that attempted to simulate

how a data mining practitioner might add constraints representing domain knowledge

to our formulation. At each iteration of this experiment we learned a hierarchy and

found errors in the result by comparing to the ground truth (from Artificial Data Set

3). Five new constraints were created during each iteration which were then added

to a list of constraints to be used in the next iteration of the experiment. As we ex-

pected, adding a small number of constraints lead to a significant increase in the qual-

ity of results as measured using H-correlation. Another side effect that we suspected

might be the case, was that adding constraints representing domain knowledge also

decreased the amount of time needed to solve the problems. These constraints added

were all must–link–before constraints which apparently have the effect of decreas-

ing the search space without increasing the difficulty of solving corresponding linear

programs.

4. How tight is the theoretical bounds for the difference between the expected
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and optimal solutions. In practice how do the random solutions compare to opti-

mal solutions?

We used the artificial overlapping hierarchy (Artificial Dataset 2) to test how well

our expected linear programming results compared to the optimal results found using

an ILP solver. Those results are presented in Figure 10 and show that in practice using

an LP solution along with a very simple rounding scheme leads to results very close to

the optimal ILP objective.

7. Conclusion

Hierarchical clustering is an important method of analysis. Most existing work

focuses on heuristics to scale these methods to huge data sets which is a valid research

direction if data needs to be quickly organized into any meaningful structure. However,

some (often scientific) data sets can take years to collect and although they are much

smaller, they require more precise analysis at the expense of time. In particular, a good

solution is not good enough and a better solution can yield significant insights. In

this work we explored two such data sets: language evolution and fMRI data. In the

former the evolution of one language from another is discovered and in the later the

organization of patients according to their fMRI scans indicates the patients most at

risk. Here the previously mentioned heuristic methods perform not as well, which is

significant since even small improvements are worthwhile.

We present to the best of our knowledge the first formulation of hierarchical clus-

tering as an integer linear programming problem with an explicit objective function

that is globally optimized. Our formulation has several benefits. It can find accurate

hierarchies because it finds the global optimum. We found this to be particularly im-

portant when the distance matrix contains noise (see Figure 8). Since we formalize the

dendrogram creation with an objective function that is constrained we can easily relax

and add constraints. We showed that relaxing the dendrogram properties/constraints

can lead to novel problem settings. In particular we explored relaxing transitivity to

discover overlapping clustering, where an instance can appear multiple times in the hi-

erarchy. To our knowledge the problem of overlapping hierarchical clustering has not
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been addressed before. We also showed that many of the guidance-style constraints

(and more) used in hierarchical settings can be represented as linear inequalites and

hence added to the ILP.

We believe this work will move forward hierarchical clustering from being imple-

mented as heuristic by making it formally modeled and optimized. This occurred in

the 1990’s to non-hierarchical clustering with the introduction of linear algebra formu-

lations such as spectral clustering but has not occurred in hierarchical clustering.
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(a) Ground truth hierarchy used as distance matrix D.
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(b) Learned hierarchy and corresponding merge function.

Figure 2: Explanation of our objective function (see Equation 1). The top figure shows

a ground truth hierarchy and its corresponding merge function encoding which in this

hypothetical is used as the distance matrix as input to our method. The bottom figure

shows a potential output from our method in terms of both the hierarchy and the cor-

responding merge matrix. If we look at the objective variable O123 that depends on

the merge function of the bottom figure (whose relevant values are highlighted in red),

then we can see the value should be 1 becauseM(1, 2) <M(1, 3). However this will

not lead to a reward in the objective function because w123 = D(1, 2) − D(1, 3) =

1 − 1 = 0, which is appropriate because we do not want to reward the solution for

disagreeing with the input data.

29



arg max
M,O

∑
{a,b,c∈Instances}

wabc ∗Oabc

subject to :

(1)M is a legal merge function

(2)Oabc =

 1 :M(a, b) <M(a, c)

0 : otherwise

Figure 3: High level optimization problem for hierarchical clustering. Constraint 1

specifies that we find a legal dendrogram. Constraint 2 ensures that M and O are

consistent with each other .

arg max
M,O,Z

∑
a,b,c∈Instances

wabc ∗Oabc

subject to :

O,Z,M are integers. See notation in Table 1.

0 ≤ O ≤ 1, 0 ≤ Z ≤ 1

1 ≤M ≤ L

Zab≥ac + Zbc≥ac ≥ 1

−L ≤M(a, c)−M(a, b)− (L+ 1)Oabc ≤ 0

−L ≤M(a, b)−M(a, c)− (L+ 1)Zab≥ac + 1 ≤ 0

−L ≤M(b, c)−M(a, c)− (L+ 1)Zbc≥ac + 1 ≤ 0

Figure 4: ILP formulation of hierarchical clustering with global objective. The third

constraint specifies the number of levels the dendrogram can have by setting the pa-

rameter L. The fourth constraint forces the O objective variables to have the meaning

specified in Equation 2. Constraints 5-7 specify thatM must be a valid dendrogram.
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arg max
M,O,Z

∑
a,b,c∈Instances

[wabc ∗Oabc + wt ∗ Tabc]

subject to :

T,O,Z,M are integers.

0 ≤ T ≤ 1, 0 ≤ O ≤ 1, 0 ≤ Z ≤ 1

1 ≤M ≤ L

−L ≤M(a, c)−M(a, b)− (L+ 1)Oabc ≤ 0

−L ≤M(a, b)−M(a, c)− (L+ 1)Zab≥ac + 1 ≤ 0

−L ≤M(b, c)−M(a, c)− (L+ 1)Zbc≥ac + 1 ≤ 0

Zab≥ac + Zbc≥ac ≥ Tabc

Figure 5: ILP formulation with relaxation on transitivity property that allows overlap-

ping hierarches.
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Figure 6: First Artificial Dataset. Effect of noise on prediction performance. F1 score

versus noise in distance function. Comparison of basic ILP formulation on artificial

data against a variety of standard competitors.
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Figure 7: (Left) Average hierarchical accuracy (H-correlation) plotted against increas-

ing amounts of error added to the artificial data set (Artificial Dataset 3). (Right) Aver-

age time required to solve problems plotted against increasing error.
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Figure 8: Ability to find overlapping clusterings. F1 score versus noise in distance

function. Comparison of overlapping ILP formulation on artificial data against a variety

of competitors.
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Figure 9: Hierarchical accuracy (H-correlation) and speed plotted against increasing

amounts of must–link–before constraints generated from ground truth. At each

iteration we add 5 new constraints based on discrepancies of what was learned from

previous iteration, and the ground truth. These experiments were measured using the

Artificial Dataset 3.
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Figure 10: Measuring optimality of randomized solutions. Performance versus noise
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