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Abstract

Traditionally, Bayesian inductive learning involves finding the
most probable model from the entire data set. The induction
algorithm is a passive recipient of the data. Active learning is when
the learner starts with a small sample of data and specifies
additional data points to col lect to better understand the domain.
Our active learning approach involves collecting alternative
explanations (highly probable models) of the data and choosing
new data points where the models make the most different
predictions. This general idea has been quali tatively mentioned in
the Bayesian li terature as a method to reduce uncertainty amongst
the competing models. We show that the approach is the optimum
way to reduce entropy amongst the competing models’ posterior
probabil i ties and provide empirical results showing its
effectiveness for active learning.

1  Introduct ion and Overview

Traditional inductive inference assumes that the learning algorithm passively
receives the available observations and finds the best model in the available model
space. In a Bayesian context, this is the model with the maximum a posteriori
(MAP) estimate.

Active learning studies closed-loop learners that make queries that influence what
data are added to their training set [1]. The hope is that good data choice wil l  allow
the selection of the "best" model using fewer observations. Three situations where
active learning may be used are; when data is expensive, hard or dangerous to
collect, when the learner cannot efficiently process al l  the data or to increase the
rate of learning [2].

Consider the omnipotent situation where we have available all  the observations, D,
from a domain and know that θTRUE is the best model. Assume the model space to
search, Θ, contains θTRUE (θTRUE ∈ Θ).

We can state the aim of active Bayesian learning is to select θTRUE as the MAP
estimate using the smallest number of observations.

This assumes the learner is a consistent estimator such as the Minimum Message
Length (MML) estimators [3][4]. An inconsistent estimator’ s best model would
change with the size of the training set.

As D is too large or too expensive to col lect we cannot give i t to the learner to
process. Instead the initial data set is a random selection of observations, D0, D0 ⊂



D. We regularly add to D0, batches of new observations, Di, purposefully chosen
from D (without replacement). At any instant, the observations currently available
to the learner is, D*, where D* = D0 ∪ D1 ∪ D2 ∪ D3 … ∪ Db where b is the number
of batches chosen so far. We hope that θTRUE wil l  be the most probable model using
D* where D* ⊂ D and | D*| << |D|. The process of actually col lecting a new batch of
observations can be quite complicated in certain environments. In this paper we wil l
assume all  the observations in D are readily available and wil l focus on specifying a
criterion identifying which observations to col lect.

We postulate fast convergence to the true model wil l  result when collecting
observations where the models make the most different predictions.

1 . 1  O ve r vi e w of  the  Paper

The fol lowing sections describe our active learning approach in more detai l. We
show that our approach is the optimum way to reduce the entropy of the competing
models’  posterior probabil i ties. We then attempt to show the usefulness of the
approach for active learning by describing our results for multi-variate mixture
modeling. Finally we conclude by describing other statistical and probabil istic
active learning work, our contribution and future work.

2  Active Bayesian learning from Mult iple Models.

From the initial data set and after each addition of data points to the training set the
learner wil l  find the alternative explanations (highly probable models). This is an
active research question touching on how to identify distinct models [5][6] and
efficient mixing between modes in the posterior [7]. In this paper we wil l  focus on
mixture modeling and use a Gibbs sampler [8] to find the alternative
explanations/models in the data. For the remainder of this paper, we wil l  assume our
learner can find the alternative explanations/models in the model space.

Let the alternative explanations/models be h1, h2, h3, … hn. The data col lection focus
is where the models make the most different predictions. However, how is i t
possible to measure the differences of two models' predictions? For specific
applications such as mixture modeling key aspects of the model could be used such
as the number of classes. We choose to use a more general approach. In a Bayesian
inference setting the learnt models provide density estimations over the instance
space. Two models' predictions differ by their respective estimate of the probabil i ty
of an observation occurring in some instance space region. Consider the simple
univariate mixture model situation of two competing Gaussian models. The models'
parameter estimates are N(0,1) and N(3,1). The models’  predictions wil l  differ
significantly at the intervals surrounding 0 and 3. In each case one model predicts
an abundance of observations which the other does not.

Our uncertainty, I, of which is the true model for the current data set is simply the
information content of the alternative models' normalized joint probabil i ties, as
shown in equation ( 2.1 ).
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Uncertainty is maximized when each model is equally l ikely and is minimized when
there is only one plausible model. New experiments can reduce uncertainty by
generating observations that el iminate one of the models or make one model more
probable than another. When a model’ s joint probabil i ty is not high enough to be



plausible the first situation occurs. Therefore, this is an extreme case of the second
situation.

We wil l  show the optimum way of reducing uncertainty is to col lect observational
data where the models make the most different predictions. We start with the
simplest case of two alternative models (h1, h2) induced from a data set, to which,
one additional observation wil l  be added.

The initial set of observations is termed D0 to which an additional observation, x, we
add to D0 to obtain D1. We assume the joint probabil i ties of the data and model are
normalized so that the sum for all  plausible models is one. Our aim is to maximize
the information gain, ∆I, by the addition of the observation.

Consider equation ( 2.2 ), the observation with the greatest information content to
discriminate which is the better model wil l  maximize equation ( 2.3 ). This occurs
when the new observation maximizes the difference of the l ikel ihood for the two
models. One model may predict the observation wil l most l ikely occur whilst the
other that i t wil l not. We wil l  cal l ∆I the information gain due to the addition of
observation(s).

maximized is )|()|( when occurs This

))(ln().(

:is minimize  toexpression the)()()( as

 and)()( space, model over the priors uniform assume  weIf

 maximized is )|()()|()( when maximized is expression this

,))|()(ln().|()( 

is expression hen thisconstant t gnormalizin a as )( treat  weif

)(

)|()|()(
ln

)(

)|()|()(

01

2

1

01

21

212111

2

1
110

2

1
1

2

1
2

1
1

0
2

1
1

0
010

hxPhxP

xPxP

xPDPDP

hPhP

hDPhPhDPhP

hDPhPhDPhPI

DhP

DhP

hxPhDPhP

DhP

hxPhDPhP
IIII

i
ii

i
iiii

j
j

i

j
j

iii

j
j

iii

−

−

=
=

−

−−=

∩

∩∩
−−=−=∆

∑

∑

∑

∑
∑∑

=

=

=

=

==

( 2.2 )

( 2.3 )

( 2.4 )

We can generalize this finding for n models and m additional data points to
determine the expression that maximizes ∆I. For n models and one additional data
point this occurs when the data point maximizes the sum of differences in likel ihood
between every combination of model pairs, equation ( 2.5 ).
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Pragmatical ly, generalizing this for m data points involves using equation ( 2.5 ) to
rank a set of observations in decreasing value. Then selecting m data points involves
taking the top m observations. We can formally generalize for m data points (x1…
xm) by choosing the m points that maximize equation ( 2.6 ).

∑ ∑ ∏∏
= ==

−
n

i

n m

k
jkj

m

k
iki hxPhDPhxPhDP

1 1+i=j 1
0

1
0 )|()|()|()|( ( 2.6 )

We have described which data points wil l  reduce the model uncertainty the most,
how to col lect them wil l be application specific. In our empirical mixture model
trials (using uniform priors over the model space) we assume that al l  the data is
available, but our mixture modeler would be too slow to process it al l. We start with
a small random subset of the data and rank order those observations not currently in



D* according to equation ( 2.5 ) from largest to smallest. The observations at the top
of the l ist are those that are predicted most differently by the alternative models.

2 . 1  Ass umpt i ons

Our aim is to reduce uncertainty by el iminating all  but one model. Therefor
phenomenon with two distinct and legitimate explanations wil l have only one
explanation isolated. Other work in active learning implicitly make the assumption
of the existence of only one posterior mode.

We assume that the learner can find alternative models of the data and is a
consistent estimator. The assumption that one needs to find al l the alternative
models is a more considerable. Our empirical results show that not finding al l the
competing models sti ll  yields good results, but we plan to investigate this area more
systematical ly in future work.

3  Experimenta l resu lts with Mixture Modeling

We wil l  use the MML mixture model Gibbs sampler defined in [5][8]. Each
application of the sampler consists of 10,000 sweeps/iterations to find the best
alternative models. We use a data set of six independent Gaussian variates
consisting of six classes (generation mechanism) al l with means of 0 and standard
deviations of 0.5 except for class i whose ith attribute has a mean of 1. That is,
µ1…6,1..6=0 except µi,i=1, σ1..6,1..6 =0.5. We start with a random sample of 900 data
points but have many thousands of observations available to draw on. This data set
contains many three, four, five and six class posterior modes as the classes overlap
significantly.

We compare our active data selection approach against randomly chosen data. From
the initial observations we find the four most distinct models, one each from the
three, four, five and six class model spaces and calculate the entropy in their joint
probabil i ties. We enforce this l imitation to determine if the approach is viable i f not
all the alternative models are used. Our first strategy is to add fi fty randomly chosen
observations and repeat the search for the best models with the enforced l imitation.
Our second strategy is to purposeful ly select fi fty observations that maximize
equation ( 2.5 ) and repeat our best models search. For the remainder of this section
we shall discuss average results for one hundred trials. We show in Table 1 that our
approach maximizes ∆I.

Table 1: The posterior ratio of the most distinct models relative to the most probable
model on a natural logarithm scale for: the original 900 observation sample, sample
plus random observations and sample plus observation selected by guided
experiments. Average results for 100 trials.

Initial 900
observations

Initial 900
observations and 50

randomly chosen
observations

Initial 900
observations and 50
purposely chosen

observations

4 Class 1 1 8.03

5 Class 1.6 2.19 1

6 Class 8.14 6.57 12.73

3 Class 9.44 6.26 14.58

Entropy 0.28 0.21 0.12



We can measure how well a learner did on a data set by the Kullback-Leibler (KL)
distances between the generation mechanism and the best parameter estimates
found. When calculating the KL distances we arrange the component numbers to
overcome the identifabi l ity problems that are common in mixture models.

The KL distance between the parameters of the generation mechanism and the
parameter estimates of the six class models found from the initial sample, initial
sample and fi fty random data points and initial sample and fi fty purposely chosen
data points is 8, 5.03 and 3.82 respectively. As the KL distance is asymmetrical, this
and other KL distances reported are the average result, for example KLAverage(a,b)=
(KL(a,b)+KL(b,a))/2. For ease of writing we drop the "Average" label.

We show the KL distances between the various six class models in Table 2. We can
see that after adding fi fty observations, our active data selection approach is closest
to the true model (first row). Interestingly the distance, KL(θINITIAL, θACTIVE), is twice
as large as KL(θINITIAL, θRANDOM) indicating the actively chosen data points were able
to support a more different model than the one found from the initial data set.

Table 2: The Mean KL distances between the various six class models. Average results
for 100 trials.

True Model Initial Data
(ID)

ID+ Random
Data

ID + Active
Selection

True Model 0 8.00 5.03 3.82

Initial Data 8.00 0 1.08 2.54

ID+ Random
Selection

5.03 1.08 0 2.55

ID+ Active
Selection

3.82 2.54 2.55 0

We add six fi fty-observation batches, re-running the mixture modeler after each
addition. Figure 1 shows the mean KL Distance between the true model and the best
six-class models found from the respective data sets. The parameter estimates of the
models found from the actively selected data are always closer to the generation
mechanisms’ parameters. After the addition of al l 300 observations our approach is
nearly twice as close.

The KL Distance To The True Model versus Number Of 
Additional Observations
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Figure 1: The Mean KL Distances, KL(θTRUE, θACTIVE) and KL(θTRUE, θRANDOM)
between the best six-class models found and the true model after the addition of batches
of fifty observations. Average results for 100 independent executions. Standard deviation
of results for active and random selection after the addition of 50 points is 0.42 and 0.56



respectively. Standard deviation of results for active and random selection after the
addition of 300 points is 0.24 and 0.38 respectively. Average results for 100 trials.

4  Summary of Other Act ive Learning Work

Active learning has its roots in at least the three fields; machine learning [2],
Bayesian inference [9] [10] and statistics [1]. I wil l l imit my discussion to the work
of Mackay and Cohn as their work is most relevant to the ideas in this paper. Most
active learning work in machine learning [11] focuses on non-probabil istic
approaches such as Windowing. The simplest form of Windowing [12] involves
adding those test set observations that are mis-classified to the training set.

Our approach to active learning has been postulated generally in the Bayesian
experimental design l i terature [13]. Sivia states that, “a model selection experiment
wil l  be optimised if most of the data are col lected where the competing hypotheses
give (drastically) different predictions” . However, he gives only quali tative advice.

Mackay’ s work on active data selection has some similari ty to our own [10]. He
uses information theoretic objective functions to actively select data. His third
problem definition discusses maximizing the information gain (or reducing the
uncertainty) between two competing hypotheses by the addition of one data point to
the original N. Equation ( 4.1 ) il lustrates the objective function to maximize.
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Mackay speci fical ly addresses optimally reducing model uncertainty for Bayesian
interpolation. Bayesian interpolation involves making inferences about a function
f(x) from data derived from the function at coarse intervals [13]. The probabil i ty of
a new observation, x, is P(x|hj) = Normal(µj,σj

2), these parameters are for the
speci fic data point and are obtained from the interpolation model's best-fi t
parameters.  He shows that the expected information gain from the addition of one
data point is:
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This expression is maximized when the observation's value chosen causes µ1-µ2 to
be maximally separated and σ1-σ2 to "differ significantly from each other". This is
precisely where the models should make the most different predictions. Our
approach is similar to Mackay's work with respect to the objective function to
minimize and we believe is consistent with and general izes his findings for a
general Bayesian setting.

Whether purposeful data point choices bias our inferences in favoring the wrong
model is an important question that Mackay addresses. As Bayesian inference is
consistent with the l ikel ihood principle that states we make our inferences from the
data we collect not the data we don't col lect, no bias is introduced.

Cohn, Ghahramani and Jordan [1] discuss how to select data to minimize the
variance of the learning error for unbiased supervised learning. Their approach uses
the variance of the learner as an objective function to minimize. For the example of
mixture modeling, they use the EM algorithm to find the best parameter estimates.
The adjusted variance of the learner is calculated using a Monte Carlo
approximation from a set of sample reference points. Those points that minimize the
variance are then added to the data set. As is noted by the authors, for high
dimensional space, the number of reference points drawn may need to be large.



5  Conclusion

We have presented an approach to active Bayesian learning from multiple models.
The approach involves using distinct highly probable models of the data to select
observations whose chance of occurring are predicted differently by the models.

We compare our approach against adding observations that are randomly chosen for
multivariate mixture modeling. We show formally and empirically that our approach
is better at reducing the entropy amongst the competing model’ s posterior
probabil i ties. We empirically show that applying this approach in an active learning
context results in the best model 's parameter estimates being closer to the generation
mechanism's parameters. Our approach is similar to Mackay’ s work, as both our
objective functions are to minimize the entropy of the competing models posterior
probabil i ties. Mackay suggests an approach specifical ly for Bayesian interpolation
whilst we focus on a general approach for Bayesian learning that we i l lustrate using
mixture modeling. We believe that our approach is consistent with and general izes
Mackay’ s findings.
We plan further work to understand key aspects of the approach and their effect on the
rate of uncertainty reduction. Examples of these aspects include sensitivity to finding all
or some of the most probable models and the batch size of observations to add. We also
wish to explore either formally or empirically the rate of convergence to the true model.
A more long-term objective is comparison against active learners in which only one
model is used [1].
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