Active Bayesian Learning For Mixture Models

lan Davidson
Silicon Graphics
1300 Crittenden Ln, MS 876
Mountain View, CA 94587
inpd@hotmail.com

ADbstract

Traditionally, Bayesian inductive learning involves finding the
most probable model from the entire data set. The induction
algorithm is a passive recipient of the data. Active learning is when
the learner starts with a small sample of data and specifies
additional data points to collect to better understand the domain.
Our active learning approach involves collecting alternative
explanations (highly probable models) of the data and choosing
new data points where the models make the most different
predictions. This general idea has been qualitatively mentioned in
the Bayesian literature as a method to reduce uncertainty amongst
the competing models. We show that the approach is the optimum
way to reduce entropy amongst the competing models posterior
probabilities and provide empirical results showing its
effectiveness for active learning.

1 Introduction and Overview

Traditional inductive inference assumes that the learning algorithm passively
receives the available observations and finds the best model in the available model
space. In a Bayesian context, this is the model with the maximum a posteriori
(MAP) estimate.

Active learning studies closed-loop learners that make queries that influence what
data are added to their training set [1]. The hope is that good data choice will allow
the selection of the "best" model using fewer observations. Three situations where
active learning may be used are; when data is expensive, hard or dangerous to
collect, when the learner cannot efficiently process all the data or to increase the
rate of learning [2].

Consider the omnipotent situation where we have available all the observations, D,
from a domain and know that Grrye is the best model. Assume the model space to
search, ©, contains Grryue (Grrue 0 O).

We can state the aim of active Bayesian learning is to select Grrye as the MAP
estimate using the smallest number of observations.

This assumes the learner is a consistent estimator such as the Minimum Message
Length (MML) estimators [3][4]. An inconsistent estimator’s best model would
change with the size of the training set.

As D is too large or too expensive to collect we cannot give it to the learner to
process. Instead the initial data set is a random selection of observations, Dgy, Do [



D. We regularly add to Do, batches of new observations, D;, purposefully chosen
from D (without replacement). At any instant, the observations currently available
tothe learner is, D', where D" = Do 0 D; O D, 00 D; ... 0 Dpwhere b is the number
of batches chosen so far. We hope that &rrye Will be the most probable model using
D" whereD" O D and | D'| << |D|. The process of actually collecting a new batch of
observations can be quite complicated in certain environments. In this paper we will
assume all the observationsin D are readily available and will focus on specifying a
criterion identifying which observations to collect.

We postulate fast convergence to the true model will result when collecting
observations where the model s make the most different predictions.

1.1 Overview of the Paper

The following sections describe our active learning approach in more detail. We
show that our approach is the optimum way to reduce the entropy of the competing
models' posterior probabilities. We then attempt to show the usefulness of the
approach for active learning by describing our results for multi-variate mixture
modeling. Finally we conclude by describing other statistica and probabilistic
active learning work, our contribution and future work.

2 Active Bayesian learning from Multiple M odels.

From the initial data set and after each addition of data points to the training set the
learner will find the alternative explanations (highly probable models). This is an
active research question touching on how to identify distinct models [5][6] and
efficient mixing between modes in the posterior [7]. In this paper we will focus on
mixture modeling and use a Gibbs sampler [8] to find the alternative
explanations/models in the data. For the remainder of this paper, we will assume our
learner can find the alternative explanations/models in the model space.

Let the alternative explanations/models be hy, h,, hg, ... h,. The data collection focus
is where the models make the most different predictions. However, how is it
possible to measure the differences of two models predictions? For specific
applications such as mixture modeling key aspects of the model could be used such
as the number of classes. We choose to use a more general approach. In a Bayesian
inference setting the learnt models provide density estimations over the instance
space. Two models' predictions differ by their respective estimate of the probability
of an observation occurring in some instance space region. Consider the simple
univariate mixture model situation of two competing Gaussian models. The models
parameter estimates are N(0,1) and N(3,1). The models' predictions will differ
significantly at the intervals surrounding O and 3. In each case one model predicts
an abundance of observations which the other does not.

Our uncertainty, I, of which is the true model for the current data set is simply the
information content of the alternative models' normalized joint probabilities, as
shown in equation ( 2.1).
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Uncertainty is maximized when each model is equally likely and is minimized when
there is only one plausible model. New experiments can reduce uncertainty by
generating observations that eliminate one of the models or make one model more
probable than another. When a model’s joint probability is not high enough to be



plausible the first situation occurs. Therefore, this is an extreme case of the second
situation.

We will show the optimum way of reducing uncertainty is to collect observational
data where the models make the most different predictions. We start with the
simplest case of two alternative models (h;, hy) induced from a data set, to which,
one additional observation will be added.

The initial set of observations istermed Dy to which an additional observation, x, we
add to Dy to obtain D;. We assume the joint probabilities of the data and model are
normalized so that the sum for all plausible models is one. Our am is to maximize
the information gain, Al, by the addition of the observation.

Consider equation ( 2.2 ), the observation with the greatest information content to
discriminate which is the better model will maximize equation ( 2.3 ). This occurs
when the new observation maximizes the difference of the likelihood for the two
models. One model may predict the observation will most likely occur whilst the
other that it will not. We will call A4l the information gain due to the addition of
observation(s).
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We can generalize this finding for n models and m additional data points to
determine the expression that maximizes Al. For n models and one additional data
point this occurs when the data point maximizes the sum of differencesin likelihood
between every combination of model pairs, equation ( 2.5).
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Pragmatically, generalizing this for m data points involves using equation ( 2.5) to
rank a set of observations in decreasing value. Then selecting m data points invol ves
taking the top m observations. We can formally generalize for m data points (x;...
Xm) by choosing the m points that maximize equation ( 2.6 ).
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We have described which data points will reduce the model uncertainty the most,
how to collect them will be application specific. In our empirical mixture model
trials (using uniform priors over the model space) we assume that all the data is
available, but our mixture modeler would be too slow to process it all. We start with
a small random subset of the data and rank order those observations not currently in



D" according to equation ( 2.5) from largest to smallest. The observations at the top
of thelist are those that are predicted most differently by the alternative models.

2.1 Assumptions

Our aim is to reduce uncertainty by eliminating all but one model. Therefor
phenomenon with two distinct and legitimate explanations will have only one
explanation isolated. Other work in active learning implicitly make the assumption
of the existence of only one posterior mode.

We assume that the learner can find alternative models of the data and is a
consistent estimator. The assumption that one needs to find all the alternative
models is a more considerable. Our empirical results show that not finding all the
competing models still yields good results, but we plan to investigate this area more
systematically in future work.

3 Experimental results with Mixture Modeling

We will use the MML mixture model Gibbs sampler defined in [5][8]. Each
application of the sampler consists of 10,000 sweeps/iterations to find the best
alternative models. We use a data set of six independent Gaussian variates
consisting of six classes (generation mechanism) all with means of 0 and standard
deviations of 0.5 except for class i whose i™ attribute has a mean of 1. That is,
M1 61.6=0 except pii=1, 01 61.6 =0.5. We start with a random sample of 900 data
points but have many thousands of observations available to draw on. This data set
contains many three, four, five and six class posterior modes as the classes overlap
significantly.

We compare our active data selection approach against randomly chosen data. From
the initial observations we find the four most distinct models, one each from the
three, four, five and six class model spaces and calculate the entropy in their joint
probabilities. We enforce this limitation to determine if the approach is viable if not
all the alternative models are used. Our first strategy is to add fifty randomly chosen
observations and repeat the search for the best models with the enforced limitation.
Our second strategy is to purposefully select fifty observations that maximize
equation ( 2.5) and repeat our best models search. For the remainder of this section
we shall discuss average results for one hundred trials. We show in Table 1 that our
approach maximizes Al.

Table 1: The posterior ratio of the most distinct models relative to the most probable
model on anatural logarithm scale for: the original 900 observation sample, sample
plus random observations and sample plus observation selected by guided
experiments. Average results for 100 trials.

Initial 900 Initial 900 Initial 900
observations observationsand 50  observations and 50
randomly chosen purposely chosen
observations observations

4 Class 1 1 8.03
5 Class 1.6 2.19 1

6 Class 8.14 6.57 12.73
3 Class 9.44 6.26 14.58
Entropy 0.28 0.21 0.12




We can measure how well alearner did on a data set by the Kullback-Leibler (KL)
distances between the generation mechanism and the best parameter estimates
found. When calculating the KL distances we arrange the component numbers to
overcome the identifability problems that are common in mixture models.

The KL distance between the parameters of the generation mechanism and the
parameter estimates of the six class models found from the initial sample, initial
sample and fifty random data points and initial sample and fifty purposely chosen
data pointsis 8, 5.03 and 3.82 respectively. Asthe KL distance is asymmetrical, this
and other KL distances reported are the average result, for example KL average(a,b)=
(KL(a,b)+KL(b,a))/2. For ease of writing we drop the "Average" label.

We show the KL distances between the various six class modelsin Table 2. We can
see that after adding fifty observations, our active data selection approach is closest
to the true model (first row). Interestingly the distance, KL(GnitiaL, Gactive), iS twice
as large as KL(GnimaL, Granoown) indicating the actively chosen data points were able
to support a more different model than the one found from the initial data set.

Table 2: The Mean KL distances between the various six class models. Average results

for 100 trials.
True Model Initial Data D+ Random ID + Active
(1D) Data Selection
True Model 0 8.00 5.03 3.82
Initial Data 8.00 0 1.08 2.54
D+ Random 5.03 1.08 0 2.55
Selection
ID+ Active 3.82 2.54 2.55 0
Selection

We add six fifty-observation batches, re-running the mixture modeler after each
addition. Figure 1 shows the mean KL Distance between the true model and the best
six-class models found from the respective data sets. The parameter estimates of the
models found from the actively selected data are always closer to the generation
mechanisms' parameters. After the addition of all 300 observations our approach is
nearly twice as close.

The KL Distance To The True Model versus Number Of
Additional Observations
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Figure 1: The Mean KL DiStanceS, KL(GTRUEy BACTIVE) and KL(GTRUEy eRANDOM)
between the best six-class models found and the true mode! after the addition of batches
of fifty observations. Average results for 100 independent executions. Standard deviation
of resultsfor active and random selection after the addition of 50 pointsis 0.42 and 0.56



respectively. Standard deviation of resultsfor active and random selection after the
addition of 300 pointsis0.24 and 0.38 respectively. Average resultsfor 100 trias.

4 Summary of Other Active Learning Work

Active learning has its roots in at least the three fields; machine learning [2],
Bayesian inference [9] [10] and statistics [1]. | will limit my discussion to the work
of Mackay and Cohn as their work is most relevant to the ideas in this paper. Most
active learning work in machine learning [11] focuses on non-probabilistic
approaches such as Windowing. The simplest form of Windowing [12] involves
adding those test set observations that are mis-classified to the training set.

Our approach to active learning has been postulated generally in the Bayesian
experimental design literature [13]. Sivia states that, “a model selection experiment
will be optimised if most of the data are collected where the competing hypotheses
give (dragtically) different predictions’. However, he gives only qualitative advice.

Mackay's work on active data selection has some similarity to our own [10]. He
uses information theoretic objective functions to actively select data. His third
problem definition discusses maximizing the information gain (or reducing the
uncertainty) between two competing hypotheses by the addition of one data point to
the original N. Equation ( 4.1) illustrates the objective function to maximize.

Al =1y —1 . wherel =-5 P(h).log(P(h)) ¢ 41)
i=1

Mackay specifically addresses optimally reducing model uncertainty for Bayesian
interpolation. Bayesian interpolation involves making inferences about a function
f(x) from data derived from the function at coarse intervals [13]. The probability of
a new observation, x, is P(x|hy) = Normal(uj,cjz), these parameters are for the
specific data point and are obtained from the interpolation model's best-fit
parameters. He shows that the expected information gain from the addition of one

data point is:
O (4.2)
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This expression is maximized when the observation's value chosen causes ;-, to
be maximally separated and o;-0, to "differ significantly from each other". Thisis
precisely where the models should make the most different predictions. Our
approach is similar to Mackay's work with respect to the objective function to
minimize and we believe is consistent with and generalizes his findings for a
general Bayesian setting.

Whether purposeful data point choices bias our inferences in favoring the wrong
model is an important question that Mackay addresses. As Bayesian inference is
consistent with the likelihood principle that states we make our inferences from the
data we collect not the data we don't collect, no biasis introduced.

Cohn, Ghahramani and Jordan [1] discuss how to select data to minimize the
variance of the learning error for unbiased supervised learning. Their approach uses
the variance of the learner as an objective function to minimize. For the example of
mixture modeling, they use the EM algorithm to find the best parameter estimates.
The adjusted variance of the learner is calculated using a Monte Carlo
approximation from a set of sample reference points. Those points that minimize the
variance are then added to the data set. As is noted by the authors, for high
dimensional space, the number of reference points drawn may need to be large.



5 Conclusion

We have presented an approach to active Bayesian learning from multiple models.
The approach involves using distinct highly probable models of the data to select
observations whose chance of occurring are predicted differently by the models.

We compare our approach against adding observations that are randomly chosen for
multivariate mixture modeling. We show formally and empirically that our approach
is better at reducing the entropy amongst the competing model’s posterior
probabilities. We empirically show that applying this approach in an active learning
context resultsin the best model's parameter estimates being closer to the generation
mechanism's parameters. Our approach is similar to Mackay's work, as both our
objective functions are to minimize the entropy of the competing models posterior
probabilities. Mackay suggests an approach specifically for Bayesian interpolation
whilst we focus on a general approach for Bayesian learning that we illustrate using
mixture modeling. We believe that our approach is consistent with and generalizes
Mackay’ s findings.

We plan further work to understand key aspects of the approach and their effect on the
rate of uncertainty reduction. Examples of these aspects include sensitivity to finding all
or some of the most probable models and the batch size of observations to add. We aso
wish to explore either formally or empirically the rate of convergence to the true model.
A more long-term objective is comparison againg active learners in which only one
model isused [1].
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