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ABSTRACT
In many real world settings the data to analyze is heteroge-
neous consisting of (say) images, text and video. An elegant
approach when dealing with such data is to project all the
data to a common space so standard learning methods can
be used. However, typical projection methods make strong
assumptions such as the multi-view assumption (datum in
one data set are always associated with a single datum in
the other view) or that the multiple data sets have an over-
lapping feature space. Such strong assumptions limit what
data such work can be applied to. We present a framework
for projecting heterogeneous data from multiple data sets
into a common lower dimensional space using a rich range of
guidance which does not assume any overlap between the in-
stances or features in different data sets. Our work can spec-
ify inter-dataset (between instances in different data sets)
guidance and intra-dataset (between instances in the same
data set) guidance, both of which can be positively or nega-
tively weighted. We show our work offers substantially more
flexibility over related methods such as Canonical Corre-
lation Analysis (CCA) and Locality Preserving Projections
(LPP) and illustrate its superior performance for supervised
and unsupervised learning problems.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; I.2.6 [Artificial
Intelligence]: Learning

General Terms
Algorithms

Keywords
Dimensionality Reduction; Spectral Methods; Heterogeneous
Data
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1. INTRODUCTION
A growing trend in data mining and machine learning is
that the data to analyze does not consist of a single in-
stance type or come from a single source, but instead con-
tains fundamentally different instance types. This gives rise
to multiple data sets which may not have overlapping fea-
tures or common instances. Examples include personal in-
formation management (images, video, text and geographic
tags) and health care records (medical scans, written-notes
and medical records). For some special situations the multi-
view setting, where each instance has multiple descriptions
(views), is natural and many algorithms exist to exploit this
extra information [10, 18, 27]. This effectively requires the
different data sets to have overlapping instances. Similarly,
other methods require the two data sets to have overlapping
features [16].
However, a broader setting is required in many other situ-
ations. For example, consider a collection of personal data
consisting of images, videos and emails. While there are mul-
tiple types of data, instances in the different data sets do not
have common features nor do they represent different views
of the same instance. As such, a more pragmatic model is re-
quired to learn a useful embedding of the data. We propose
to use relationships between any pair of instances whether
they be in the same or different data sets. We focus on
the relations of similarity and dissimilarity between
instances. This form of guidance has been used extensively
in areas such as metric learning and constrained cluster-
ing [6,22,24]. It has been shown to be useful at making use
of many forms of guidance including side information (i.e.
from labels), personal preferences and even geometry [1]. We
use this guidance to learn an embedding in which pairs of in-
stances with the similar relationship are close to each other
and pairs of instances with the dissimilar relationship are
far from each other. Our work makes use of this type of rela-
tional information as well as weighted variations to project
all data sets to a common lower dimensional space, allowing
analysis using standard methods. For example, after project-
ing all instances to a common space we may cluster them for
organization reasons (see Figure 9). Similarly we may use a
nearest-neighbor retrieval algorithm to related objects (see
Figure 8).
Embedding two or more data sets with no overlapping fea-
ture or instances is a very challenging problem since it re-
quires embedding data to a lower dimensional space when
the data are fundamentally different and no obvious dis-
tance function exists between them. Existing methods to
achieve this aim fall into a number of different categories



with most being methods that make the multi-view assump-
tion [10,18,27]. We can characterize each by the type of guid-
ance/relationships they require the user to provide, allowing
us to see how our method is different. Figure 1 explains the
differences between common methods and our method and
below we briefly summarize their limitations so as to better
explain the contributions of our work.
Though this existing work has made significant progress in
the area of heterogenous data embedding it is limited in a
number of ways that prevents its use for embedding funda-
mentally different data types. The limitations with existing
work are:

1. They typically restrict the type of data they accept.
Many techniques make the restrictive multi-view as-
sumption [7, 10], which assumes datum in each view
have a single relationship with datum in the other
view. Other methods [16] require data sets to have
overlapping features.

2. The type of guidance is typically limited to unweighted
positive guidance, meaning degree of belief and nega-
tively weighted guidance cannot be encoded.

3. They do not necessarily embed all instances into the
same space [20,26,30].

Our contribution to the field is we present a framework for
embedding heterogeneous sets of data with no limitations on
whether the data sets or feature space overlap. This allows
a variety of pairwise relationships such that:

1. The embedding is generated using pairwise intra-dataset
and inter-dataset relationships.

2. The relational guidance can be both positively (simi-
lar) and negatively (dissimilar) weighted which allows
associating a degree of belief to the relationship.

3. Every instance is embedded into a common space (see
Figure 5 for an embedding of three data sets).

4. Our experimental results show such guidance is useful
for supervised learning (i.e. Figure 8) and unsupervised
learning (see Figure 9).

The outline of the paper is as follows. In section 2 we de-
scribe our method. In section 3 we present experimental re-
sults of our method applied to K-Nearest Neighbors clas-
sification and K-Means Clustering. Finally, in section 4 we
discuss related work and then conclude.

2. OUR METHOD
For clarity we shall initially describe our work for just two
data sets X and Y (which may have different feature sets)
and in the following subsection show how it can be extended
to additional data sets.

2.1 Encoding Guidance
Our guidance comes in two forms: intra-dataset and inter-
dataset relationships (as shown in Figure 1) between pairs of
instances. For both forms of guidance we allow a weight to
be associated in [−1,+1]. This weight can be interpreted as
a degree-of-belief or confidence in the relationship. A large
positive/negative weight indicates strong belief that two in-
stances are very similar/dissimilar. A weight of 0 indicates
no knowledge of the relationship between the two instances.
We encode both intra-dataset and inter-data set relation-
ships into one matrix W which has a blockwise structure as
shown in Figure 2.
Let W ∈ [−1, 1](|X|+|Y |)×(|X|+|Y |) be the matrix which cap-
tures all these relations. The upper left and bottom right
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Figure 2: The block structure of W for two different data
sets. As we can see W consists of several different matrices.
WXX and WY Y encodes the intra-dataset relationships and
WXY and WYX the intra-dataset relationships.

blocks contain the intra-dataset relationships between the
instances in X and Y respectively. The upper right and
bottom left entries will contain the inter-dataset similari-
ties/dissimilarities between instances in X and Y .
We can now examine how the guidance used in related work
can be encoded in W . Earlier Manifold Learning methods
such as Locality Preserving Projections (LPP) and its vari-
ations [3, 9] are single view methods that take guidance in
the form of an adjacency matrix AG. They can be viewed
as only allowing intra-data set constraints for a single data
set. Thus, the weight matrix for LPP would be:

WLPP =
[
AX 0
0 0

]
Multi-view LPP (MVLPP) [27] is a multi-view extension of
Locality Preserving Projections. Intra-dataset guidance can
be given for each data set and is encoded in matrices AX
and AY . Within our framework, W would be:

WMVLPP =
[
AX I
I AY

]
where I is the identity matrix. The identity matrix in the
off diagonal blocks of WMVLPP captures the multi-view as-
sumption. Note that as this is a multi-view method, X and
Y must have the same number of instances which is not the
case for our method.
Canonical Correlation Analysis (CCA) also makes the multi-
view assumption but only specifies inter-dataset relations
which can be captured as follows:

WCCA =
[

0 I
I 0

]
We now discus our formulation which allow both intra-dataset
and inter-dataset relationships.

2.2 Our Spectral Formulation
We wish to use the previously mentioned relational infor-
mation (encoded in W ) to project all data into a common
lower dimensional space using projection vectors a and b.
Letting I and J be index sets over X and Y we can write
the optimization problem of learning two sets of projection
vectors which respect the given guidance as



Figure 1: Different types of data embedding methods for data sets X and Y . CCA only allows similar, unweighted re-
lationships between instances in different data sets. Additionally, CCA only allows each instance to participate in a single
relationship. LPP only allows similar, weighted relationships: relationships between instances in the same data set. Our
method allows both inter-dataset and intra-dataset relationships that can be weighted, similar or dissimilar with no cardinality
restrictions.

arg min
a,b

1
2(

∑
i1∈I,i2∈I

(xTi1a− x
T
i2a)2wi1i2 +

2
∑

i∈I,j∈J

(xTi a− yTj b)2wij + (1)

∑
j1∈J ,j2∈J

(yTj1b− y
T
j2b)2wj1j2 )

The first and third terms of equation 2 optimize the intra-
dataset embedded distance between instances in X and Y
respectively based on the relational information inW , while
the second term optimizes the inter-dataset embedded dis-
tance between instances in X and Y . The objective function
matches our intuition and can even handle conflicting guid-
ance. Since our aim is to minimize the objective function
a positive wij indicates that the projection vectors should
place the two instances close together to minimize the ob-
jective. Conversely, a negative value of wij indicates the two
instances should be projected to be far apart to minimize
the objective value. Since wij is weighted the algorithm may
choose to satisfy guidance with larger weights at the cost of
guidance with smaller weights.
Through some linear algebra (explained below) and intro-
ducing a constraint so there are not infinite solutions, equa-
tion 2 can be transformed into the following:

arg min
p

pTZ(D −W )ZTp

subject to: aT (XDXXXT + λI)a = 1
where we define:

p =
[
a
b

]
Z =

[
X 0
0 Y

] (2)

Figure 3: Our formulation to embed two data sets, it can
easily be extended to multiple data sets, as discussed later.

We spend the rest of this section deriving equation 2, which
can be skipped on the first reading of this paper. The first

of the three terms in equation 2 can be expanded to:

1
2 (

∑
i1∈I,i2∈I

aTxi1wi1i2x
T
i1a−

∑
i1∈I,i2∈I

aTxi1wi1i2x
T
i2a

−
∑

i1∈I,i2∈I

aTxi1wi1i2x
T
i2a +

∑
i1∈I,i2∈I

aTxi2wi1i2x
T
i2a) (3)

Let DXX be a diagonal matrix such that the entry
DXX(i1, i1) =

∑
i2∈I

wi1i2 when i1 ∈ I. This is just a di-
agonal matrix whose diagonal entries are the sums of the
weights of the edges between instances in X. Note that in
the first expression of equation 3, for each xi we can sum
over the entire row of W and hence rewrite the term as
aTXDXXXTa. The fourth expression can be rewritten in
an identical form. The second and third expressions can be
written together in matrix form as −2aTXWXXX

Ta where
WXX corresponds to the block ofW relating X to X. Hence
equation 3 can be more concisely written as

aTXDXXXTa− aTXWXXX
Ta (4)

Letting LXX = DXX −WXX we get

aTXLXXXTa (5)

A similar transformation can be performed on the second
and third terms in equation 2 to get

arg min
a,b

aTXLXXXTa + bTY LY Y Y Tb−

2aTXWXY Y
Tb (6)

Where WXY and LY Y are defined similarly to WXX and
LXX respectively. We can then concatenate a and b into one
vector p, concatenate X and Y into Z as shown in equation
2 and concatenateWXX ,WY Y ,WXY ,WYX intoW as shown
in Figure 2. This allows us to rewrite equation 6 as:

arg min
p

pTZ(D −W )ZTp (7)



However, equation 7 can in some circumstances be trivially
solved by p = 0 and has infinite number of solutions oth-
erwise so we add the constraint aT (XDXXXT + λI)a = 1
where λ is a small positive constant and I is the identity ma-
trix. This problem can be solved as a generalized eigenvalue
problem. We do not add the typical aTXDXXXTa = 1
constraint because in order for this problem to have a real
(i.e. non-complex) solution XDXXX

T must be made pos-
itive definite which may not be the case if there is more
negative guidance for an instance that positive guidance or
X has fewer training instances than features. Note that the
constraint need not include b since it is coupled with a via
W .
Extensions to More Than Two Data Sets. This for-
mulation can naturally be extended to m data sets (hence
producing projection vectors a1 . . .am) by further adding to
W and Z, letting pT = [aT1 . . .aTm] and using the formulation
in equation 8

arg min
p

pTZ(D −W )ZTp

subject to: aT (XDXXXT + λI)a = 1
where we define:

p =

 a1
a2
. . .
am

 Z =

 X1 0 . . . 0
0 X2 . . . 0
. . . . . . . . . 0
0 0 0 Xm


(8)

Figure 4: Our formulation for m data sets.

Obtaining multiple projection vectors (the k smallest eigen-
vectors for instance) allows embedding instances into a k
dimensional space.

2.3 Computational Complexity of Method.
As mentioned previously, equation 7 can be solved as a gen-
eralized eigenvalue problem. The key operations of this are
solving the generalized eigenvalue problem and matrix in-
version. For solving the generalized eigenvalue problem we
used the eig function of MATLAB, which uses the QZ
method. The complexity of the QZ method is approximately
O(66N3) and the space requirement is O(N2) where N is
the number of dimensions of X [4]. However, this will re-
turn all eigenvectors and we only require the k smallest if
we are to embed the data into k dimensional space. Instead,
libraries such as ARPACK [12] (the library used by Matlab’s
eigs function) that implement more scalable eigenproblem
methods can be used. In all our experiments the total run-
time was less than a second on a typical quad-core laptop.
Some of the other methods discussed in the paper - CCA,
LPP and Manifold Alignment - also reduce to generalized
eigendecomposition problems. Depending on the solver,
matrix inversion may also be required. Thus, these methods
have comparable complexity. Metric learning methods
require solving a Semidefinite Program (SDP). While
SDP solvers can run in polynomial time with respect to
the size of the problem, but because SDPs tend to have
many variables they generally do not scale as well to high
dimensional problems [21].

2.4 Kernelizing the Method
A limitation to our method as presented is that it can only
learn a linear transformation. This can be efficiently ad-
dressed by using the "kernel trick" to learn a nonlinear trans-
formation. The kernelized version of our formulation is:

arg min
ρ
ρTK(D −W )KT ρ (9)

subject to: αTKXXDXXK
T
XXα = 1

where we define

ρ =
[
α
β

]
Z =

[
KXX 0

0 KY Y

]
KXX and KY Y are kernels for X and Y . α and β are the
dual variables associated with X and Y .
In our experiments we use a combination of Kernels and
features to describe our data. See the experimental section
for details.

3. EXPERIMENTS
Here we propose experiments to compare our framework to
CCA. In particular we shall ask the following questions:
• How well does the embedding respect the relational
information used to drive it? (Figure 5 & Table 6).
• How does our method compare against CCA for a sim-
ple problem with just two data sets of instances (Fig-
ures 7, 8 red and green lines)?
• Can embedding more datasets using more guidance
improve results (Figure 7, 8 blue line)?
• Does clustering the heterogenous collection of in-
stances produce meaningful clusters (Figure 9) and ac-
curate clusters (Figure 10)?.

All data sets and code will be made publicly available once
the paper is accepted so as to recreate the experimental
results presented here.
Our Data Set. We focus on personal information manage-
ment problems since they are not only important but easy
for a non-expert to verify. We believe this setting is an ideal
application of our work because personal information man-
agement involves finding structure in sets of heterogeneous
instances in which arbitrary intra-dataset and inter-dataset
relationships are available.
PIM data sets containing video, text and images like the
one mentioned in the introduction are not readily available
so we use the one made publicly available in [29] that con-
tains images, text-tags and location information. The data
set consists of 500 images taken at 99 different locations
(described using longitude and latitude) around Asheville,
North Carolina. The images are tagged with one or more
of 590 possible descriptors. Each image is associated with
a single location, but images can have multiple tags and
each tag can be associated with multiple images. For our ex-
periments, images are represented using SIFT features [14]
which are used to construct a kernel, tags are represented by
simple indicator vectors that are all 0 except for the entry
corresponding to the tag which is 1 and locations are rep-
resented using a Gaussian Kernel applied to the longitude
and latitude values.
Now we give the method for constructing the guidance ma-
trix W . For each image-tag tag entry in W , we set it to 1



if the image has the tag, 0 otherwise. Similarly, for experi-
ments that used locations, we set each image-location entry
in W to 1 if the image was taken at that location and 0
otherwise. All other entries were set to 0.
For all experiments we selected the top N most common
tags (where N varies based on the experiment) excluding
the five most common tags in the data set because they are
associated with a large majority of the images.
For all experiments except the embedding experiment in sec-
tion we 3.1:
• Images were split into training and test sets. The em-
bedding was learned using the training data and its
associated guidance and results are reported with re-
spect to the test set guidance.
• Set regularization parameters and the number of pro-
jection vectors using cross validation.

We hope our method can perform better than or comparable
to CCA using the same guidance and perform significantly
better when more guidance is used.
For our experiments we compared four methods:
• Ours: Our method embedding images and tags.
• Ours+Locations: Our method embedding images,
tags as well as locations.
• CCA: CCA embedding images and tags.
• Guess: Always predicting the K most common tags.

3.1 Embedding Experiments
Here we test how well our method embeds the data. We
purposely use all available relational information (images
to tags and images to locations) to see how well it works
with 1000s of pieces of relational guidance. The resultant
embedding is shown in Figure 5 and shows instances from
all data sets are well interspersed in the embedding. Another
test of our embedding is how well the relational information
used to drive the process is respected in the embedding.
We would hope our learning of non-linear projection vectors
will allow for most of the guidance to be respected. Figure
6 shows how well the guidance is respected both in terms of
the guidance given to the algorithm (training left plot) and
guidance not given to the algorithm (testing right plot). In
the left plot we see our method performs significantly better
than CCA and adding extra guidance does not diminish its
ability to satisfy the guidance. An important result is that
in our embedding over 90% of guidance is satisfied by 50%
of the closest pairs.
As expected, the amount of guidance satisfied is not as great
for the test set (because the test is not used to learn the em-
bedding). Nevertheless, the fraction satisfied is significantly
greater than CCA.

3.2 Classification Experiments
The type of guidance our methods can handle is novel so
there is not an elegant way to apply CCA using the guid-
ance we want to encode. Hence, we implicitly encode the re-
lationships by duplicating entries. For example, if an image
xi is associated with two tags yj , yk, then we augment the
data set used by CCA with two pairs: (xi, yj) and (xi, yk).
For our classification experiments we randomly removed
20% of the images for the test set and the remaining were
used for training. This was repeated 10 times for each exper-
iment. The experiments we ran learned a set of projection
vectors given a training set of images and tags and then
used them to embed the training and test images. To pre-

dict tags for the test set we simply use the k nearest tags in
the embedded space.
For accuracy we measured the Normalized Cumulative Dis-
counted Gain (NCDG) [11] of the predicted tags. NDCG is a
measure of how well an instances nearest tags, ordered from
closest to furthest, match the order of the tags as given in
the data set (by a domain expert). That is if an instance has
q tags, then we retrieve its q nearest tags and see how well
that ordering matches the ground truth. This is a much more
informative measure of performance than measures such as
the Rand index or precision since it factors in the orders of
the tags.
For all experiments cross validation was used to choose regu-
larization parameters and the number of projection vectors.
Figure 7 shows the performance of our method and CCA
versus varying numbers of maximum projection vectors (the
actual number of projection used was still selected using
cross validation). We see our methods performs significantly
better than CCA. Furthermore, our method is able to ob-
tain stronger results using fewer projection vectors. We con-
jecture our better performance is because our formulation is
based on minimizing embedded distance while CCA is based
on maximizing embedded covariance [7].
Figure 8 shows the performance of our method and CCA
without constraints on the maximum number of projec-
tion vectors used (essentially the right-most extreme points
in Figure 7 versus varying size training sets. We measure
performance using NDCG as before and include in our com-
parison a baseline method of guessing the most frequent tags
(Guess). As before if a test set instance has q tags, then we
retrieve the q nearest tags to the instance and note their or-
der and compare this ordering to the ground truth. We see
that for very small data sets all methods perform similarly
but as more training data becomes available our method is
able to perform significantly better than CCA which itself
only performs marginally better than Guess. This shows our
method is able to handle lots of guidance as with each ad-
ditional training instance comes more guidance and a more
complex W matrix.

3.3 Clustering Experiments.
A particularly novel use of heterogeneous embedding is that
it allows applying unsupervised learning techniques to in-
stances from multiple data sets. This could involve rank-
ing/retrieval, organizing (such as by using hierarchical clus-
tering methods) or, as we show here, clustering heteroge-
neous instances. As before, we use relationships between im-
ages and their geographic location as well as between tags
and images to embed images, tags and locations into a com-
mon space. We then run standard k-means clustering on the
embedded images, tags and locations.
First we show that our method can lead to meaningful clus-
terings. For k-means we set the number of clusters to 10. Due
to space restrictions, Figure 9 shows the images, tags and lo-
cations closest to the cluster centroids for just 3 such clusters
(all clusters are shown in Figure 5. From these experiments
we see that the resulting clusterings contain a mix of simi-
lar tags, locations and images. Importantly, we see that the
images and locations within each cluster are consistent with
each other. The left-hand side cluster contains of a series of
parks outside the downtown area, the right-hand side clus-
ters are of two downtown attractions: an annual rock festival
and another cultural event.



Figure 5: Visualization of embedding produced using our method on images, tags and locations using 30 tags. Circles corre-
spond to images, ’x’ to tags and ’+’ to locations. instances are color coded based on a clustering found by running K-Means
Clustering.

Figure 6: The fraction of positively weighted image-tag pairwise relationships whose distance is less than τ times the mean
image-tag distance for all image-tag pairs in the embedding. The left shows the performance on the training set while the
right shows the performance on the test set.



Figure 7: NDCG for image-tag nearest neighbor lookup versus the number of projection vectors. Number of tags was fixed to
30 and training size was all available training images.

Figure 8: NDCG for image-tag nearest neighbor lookup for increasing training set size. Number of tags was fixed to 30 and
maximum number of vectors fixed to 30.



Figure 9: Locations are marked with an X. Colors represent different clusters constructed using K-Means Clustering. Enlarged
X’s represent locations closest to centroids of three clusters. The four images closest to the centroids of the clusters are pictured
as well with a line indicated the location of the images. Tags closest to the centroids of the three clusters are: Red: wilco,
geotagged, livemusic, orangepeel, Orange: chimneyrockpark and Yellow: laaff, lexingtonave, lexingtonavenue, lexfest. Map
image was generated using Google Maps; Map Data: Google 2014.

Though visual inspection of the clusters is useful, a more
quantitative measure of performance is to compute the Rand
Index for varying training set sizes and number of clusters.
The Rand index here measures how well the image-tag re-
lations are respected by the clusters. A value of 1 means a
perfect matching. We hope that each cluster will contain im-
ages with similar tags. For these experiments we learn pro-
jection vectors on a training set, apply them to a test set,
cluster the test set and report the Rand Index. This was re-
peated for 10 different training and test sets. Our results are
shown in Figure 10. We see that regardless of the number of
clusters, our method out performs or performs comparable
to CCA and again adding in more guidance (and objects)
produces even better results.

4. RELATED WORK
The related work falls into a number of distinct areas which
we now survey.
Graph Driven Dimension Reduction. Much work has
been done on graph based embeddings for machine learning.
Locally Linear Embedding [19] and Laplacian Eigenmaps [2]
are both popular graph based embedding techniques. Here
we can view the graphs as encoding intra-dataset similar
relationships which are used to embed one data set. [17], [8]
and [9] learn projection vectors for out-of-sample embed-
dings. Many graph embedding methods were unified by the
graph embedding framework of [25]. Multi-view extensions
to these techniques have been proposed such as [18,27] but,
unlike our work, neither allows arbitrary inter-dataset rela-
tionship.
Manifold Alignment.Manifold Alignment methods [6,22]
model multiple data sets as lying on manifolds and attempts

to learn projections which align these manifolds. The key
different between their work and ours is they model the data
as lying on a manifold, while we do not.
Multi-View Dimension Reduction. Multi-view dimen-
sionality reduction has also received a great deal of attention
in the machine learning community. Canonical Correlation
Analysis (CCA) [10] is a classical technique that has been
applied to multi-view dimensionality reduction [7]. Recent
work has considered the use of 3 view CCA for embedding
images, tags and semantic classes [5]. These works can be
viewed as embedding multiple data sets but under very lim-
ited relational information, namely an instance from a data
set can only have a relationship with a single instance from
another data set.
Heterogeneous Learning. Learning with multiple sources
has received some attention. The problem of clustering with
heterogenous instances and side information was addressed
in [29]. [13] and [26] studied Heterogeneous Transfer Learn-
ing in which relational information is used to transfer knowl-
edge from different domains. In [13] the source domain is
documents and the target domain is images labeled with
tags while in [26] the source and target domains are text
documents in different languages.
Multi-modal Similarity and Metric Learning. Learn-
ing with heterogeneous data has been addressed using Simi-
larity Learning [15] and Metric Learning [23,28]. While these
works address a similar problem, they differ greatly from
our work. First, none of these works propose incorporat-
ing weighted guidance and [28] does not allow intra-dataset
guidance. [15] requires solving an expensive semidefinite pro-
gram. [23] suggests a graphic model for metric learning with
heterogeneous data with the goal of being more scalable



Figure 10: Rand Index for clusterings found via k-Means with preprocessing by CCA, our method and our method also using
locations. From left to right, k = 2, 5, 10.

than [15]. While their framework is more scalable, the opti-
mization problem they propose cannot be solved for exactly
and has many parameters that need to be set which makes
it more difficult to use than our framework.

5. CONCLUSION
The complexity of modern data sets has made analysis a
great challenge. A growing tend is for data to be heteroge-
neous consisting of fundamentally different data from differ-
ent sources. An elegant method is to project such data to a
common space so standard algorithms can be used, but ex-
isting methods make strong assumptions such as there being
overlapping instances or features to perform this projection.
We proposed a flexible technique for embedding heteroge-
neous data into a common space. Our method differs from
existing work in that it can provide weighted, positive and
negative guidance using both inter-dataset and intra-dataset
relationships. Most importantly, it does not assume the in-
stances or features in the different data sets overlap. Exist-
ing multi-view work such as CCA typically can only provide
positive unweighted guidance of limited cardinality (that is
each instance can be paired with only a single other in-
stance). Though manipulating the data can help alleviate
some of these situations, such as duplicating instances to re-
move the cardinality restriction, we seek a more principled
method.
Our spectral formulation learns a projection vectors for each
data set such that intra-dataset and inter-dataset guidance
is respected. Guidance takes the form of weighted values be-
tween −1 (dissimilar) and 1 (similar) with no limits on the
amount of guidance given for a particular instance. In our
experimental results testing the embedding (see Figure 6)
we see that our method does a good job of of embedding
the data to respect the guidance given to it. In our exper-
iments our method performs better than or at least com-
parable to CCA for both classification and clustering appli-
cations. Our classification experiments use the embedding
our method learns to perform K-Nearest Neighbors classifi-
cation (see Figures 7 and 8). Our results on clustering show
that it produces meaningful clusterings (see Figure 9) whose
Rand index (see Figure 10) is better than those achieved by
a comparable method.
Our plans for future work are to explore further uses of em-
bedding data into a common space and in particular explore

new forms of guidance. Additionally, we plan to investigate
connections between our work and Spectral Graph Theory.
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