
Efficient Hierarchical Clustering of Large High
Dimensional Datasets

Sean Gilpin
University of California, Davis

sagilpin@ucdavis.edu

Buyue Qian
IBM T. J. Watson

bqian@us.ibm.com

Ian Davidson
University of California, Davis
davidson@cs.ucdavis.edu

ABSTRACT
Hierarchical clustering is extensively used to organize high
dimensional objects such as documents and images into a
structure which can then be used in a multitude of ways.
However, existing algorithms are limited in their application
since the time complexity of agglomerative style algorithms
can be as much as O(n2 logn) where n is the number of ob-
jects. Furthermore the computation of similarity between
such objects is itself time consuming given they are high
dimension and even optimized built in functions found in
MATLAB take the best part of a day to handle collections
of just 10,000 objects on typical machines. In this paper we
explore using angular hashing to hash objects with similar
angular distance to the same hash bucket. This allows us to
create hierarchies of objects within each hash bucket and to
hierarchically cluster the hash buckets themselves. With our
formal guarantees on the similarity of objects in the same
bucket this leads to an elegant agglomerative algorithm with
strong performance bounds. Our experimental results show
that not only is our approach thousands of times faster than
regular agglomerative algorithms but surprisingly the accu-
racy of our results is typically as good and can sometimes
be substantially better.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Experimentation

Keywords
Binary Codes, Hierarchical Clustering

1. INTRODUCTION
Hierarchical clustering is used extensively to organize doc-

uments [18, 17, 5], images [2] and even graphs [13] into a hi-
erarchy. The hierarchical organization of these objects has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505527.

many advantages. The resultant hierarchy can be “cut” at
any level to achieve a k = 1 . . . n − 1 partitional cluster-
ing or used to navigate the collection. Consider a collection
of images organized into a hierarchy. We can easily return
as few or as many related images to a given query image
by navigating the tree. In particular hierarchies of complex
high dimensional objects such as images and documents are
common since they are most in need of organizing.

The flexibility of hierarchical agglomerative clustering (HAC)
comes with a computational cost. Just to calculate the dis-
tance function used by all agglomerative methods requires
O(n2) distance computations and each join requires addi-
tional computation. The well optimized CLINK algorithm
[3] that uses complete linkage distance function has time
complexity O(n2 logn). Even using the simpler to calcu-
late single linkage distance yields a quadratic time complex-
ity of O(n2) [14]. To scale hierarchical clustering to large
datasets, a linear time complexity is required. Furthermore
for high dimensional data not only is the number of pair-
wise distance calculations great, but just a single distance
calculation can be time consuming. For high dimensional
objects1 with features that are physical recordings and lie
in a positive space, it is well known that the cosine distance
function produces preferable results, [15, 1] but it requires
an inner-product calculation in the high dimensional space.
Therefore efficient and clever computation of hierarchies of
high dimensional objects offers a considerable promise of im-
mense speedup.

In this paper we explore the novel direction of using an-
gular hashing to compute a collection of hash buckets to
reduce the number of computations. A hash function sim-
ply takes an object in high dimensional space and maps to a
hash code (a binary string) and corresponding hash bucket.
Angular hashing involves creating a hash bucket so that the
distance (in terms of angle) between any two objects in the
same bucket is small. This means the closest point to any
given point typically lies in its hash bucket. Hence, after
angular hashing occurs we can perform agglomerative clus-
tering on the instances inside each hash bucket and then
perform agglomerative clustering on the hash buckets them-
selves using their binary codes to compute distances. This
is only possible since our results show that the Hamming
distance between the hash codes are representative of the
angular distances between the instance at the center of each
bucket.

1In this paper high dimensional data refers to objects with
thousands+ of dimensions.

Figure 1: A high level overview of our two step ap-
proach. After the instances are hashed to buckets we
hierarchically cluster the buckets (using their hash
codes) and then hierarchically cluster the points
within each bucket. Lemma 1 and Theorem 1 shows
why this is principled including that the Hamming
distance between hash codes approximates cosine
distance.

Our work has several advantages and contribute the fol-
lowing to the field:

• Our algorithm runs in linear time and space (see Sec-
tion 2, and Figure 5). Hence for large datasets the per-
formance improvement can be 10,000 fold faster (see
Figures 11 and 12) than traditional algorithms and
can create hierarchies of 60,000 images (see Figure 7)
in less than a minute.

• Our algorithm produces comparable results and for
some distance functions even better results than stan-
dard HAC algorithms (see Figures 8, 9).

• The relationship between Hamming and cosine dis-
tance makes our algorithm applicable to many types
of datasets of high dimension. [1, 15].

• We produce several interesting bounds (see Lemma 1,
Theorem 1) that can be used to guarantee the com-
position of the hierarchy and intelligently navigate the
hierarchy.

The rest of the paper is organized as follows. In Section
1.1 we explain the relevant previous work, and most impor-
tantly the results from angular based quantization which are
utilized in our work (see Equations 1 and 2). In Section 2 we
give the details of our algorithm. Section 2.1 first introduces
the algorithm and shows how it can be used to build a hi-
erarchy of hash buckets, while in Section 2.2 we extend the
algorithm so that it can be used to efficiently create hierar-
chies of greater detail in a recursive manner. In Section 2.3
we present our novel bounds that relate to the effectiveness
of the binary code approximations we use with respect to
our clustering algorithm and finally in Section 3 we empiri-
cally show that our algorithm not only scales well, but that
it can have as good as or better clustering results for both
image and document datasets.

1.1 Literature Review
Hierarchical clustering has its roots in numerical and math-

ematical taxonomy [7, 4] with a primary purpose being to

organize flora and fauna into a taxonomy. Therefore the tra-
ditional agglomerative and divisive algorithms were not de-
signed to scale. Consider agglomerative algorithms, naively,
at each level O(k2) distance calculations must be performed
to find the closest clusters to join leading to the series n2 +
(n−1)2 +(n−2)2 . . . 22 ≈ n3 calculations. Two popular dis-
tance functions are single linkage (the distance between two
clusters is the closest pair’s distance such that one point is
in each cluster) and complete linkage (the distance being the
furthermost pair’s distance). By reusing prior calculations
and properties of the single linkage and complete linkage
distance functions the SLINK and CLINK algorithms time
complexities of O(n2) and O(n2 logn) are achieved. More
recent larger applications has pushed the need for even more
efficient algorithms at the cost of finding the closest pair of
clusters at each level. Since the agglomerative approach is
in itself greedy and not guaranteed to converge to any global
optima this strategy is worth pursuing. We now overview
the general directions of scaling hierarchical clustering.

Hashing and Agglomerative Clustering. There has
been some previous work on speeding up hierarchical clus-
tering using hashing. One previous work that is only specific
to single linkage [8] used locality sensitive hashing nearest
neighbor search to speed up single linkage clustering. Al-
though the purpose of their work was to speed up hierar-
chical clustering it has several limitations: 1) The authors
do not show analytically under what conditions the method
will scale and the largest data-set they evaluated empirically
had only 6,000 points (which takes a reasonable 90 minutes
using MATLAB’s standard functions on the 20-Newsgroup
dataset), 2) It is built around just one distance function (sin-
gle linkage). In our work we show that our algorithm has
provable worst case linear time and space use (See Section
2.2) and in the experimental section we empirically show
that our runtime scales to allow our method to run on very
large datasets (See Figures 8 and 9). Furthermore, our ex-
periments show our method can be applied to single, com-
plete linkage and other distance functions.

Using Cheap Secondary Distance Functions. The
canopy method [11] cleverly exploits a fast secondary dis-
tance function, that can be used to prune the number of
nearest cluster computations, and is applicable to any clus-
tering algorithm that uses distances as inputs. The canopy
method is highly dependent on a cheap similarity measure-
ment used to create the canopies and the angular based
codes in this paper could be used to create a cheap distance
measurement. However, although very useful, the canopy
method is limited in that no theoretical guarantees are given
and performance is highly dependent on the canopy param-
eters for which it is not always clear how to set. Our work
does not have these limitations. Section 2 shows that our
algorithm uses provable worst case linear time and space
and the only parameter needed for our method, the length
of binary codes, is shown in Figure 10 to improve the per-
formance in terms of Rand-Index for increasing lengths.

Angular Quantization based Binary Codes for Fast
Similarity Search. Previous work on angular quantization
hashing was limited to similarity search [6] and not applied
to hierarchical clustering. The former work shows that for
positive data-sets, binary codes can be constructed such that
their Hamming distance can approximate cosine distance.
These codes can be constructed for an entire data-set in
linear time and in our experiments for even 60,000 image

datasets take no more than 30 seconds. Our work builds
upon the idea of angular hashing and our novel contributions
are: i) The application of angular hashing to our algorithm
for hierarchical clustering (see Figure 2 for an overview of
our algorithm), ii) The performance guarantee (see Theorem
1) is novel and describes the effectiveness of the binary code
approximation for our problem.

The main results from [6] that we use are shown in Equa-
tions 1 and 2. The integer program for finding the binary
approximation is shown in Equation 1 and is used to find
the angularly closest binary landmark to a point x. In gen-
eral integer programs can be intractable, but this problem
can be solved exactly using a simple greedy algorithm which
takes O(d log d) time and space (where d is the number of
dimensions). Therefore these binary code approximations
can be calculated for an entire dataset in linear time and
space with respect to the number of points n.

b̂ = arg max
b

bTx

||b||2
s.t. b ∈ {0, 1}d (1)

One limitation of the integer program in Equation 1 is
that it can only find binary codes of length d (i.e. the num-
ber of dimensions in the binary codes must be the same as
the number of dimensions in the original points). By intro-
ducing a projection matrix R ∈ Rd×c we can simultaneously
control the size of our binary codes through the number of
columns c, but we can also do a better job of mapping our
points to binary codes of higher quality (see Lemma 1 to see
how binary codes with greater Hamming length can produce
higher quality results). Equation 2 shows the optimization
problem that allows us to control the length of our binary
codes and simultaneously rotates the original points so that
binary codes of larger Hamming length are found.

Q(B,R) =

n∑
i=1

arg max
B,R

bT
i

||bi||2
RTxi

subject to:

b ∈ {0, 1}c

RTR = Ic

(2)

Equation 2 can be approximately solved using alternat-
ing optimization by finding the best rotation, and then the
binary code approximation of those rotated points. The ad-
ditional step of calculating the best projection matrix R can
be done in linear time and space, because it only requires
finding the first c singular vectors the d×c matrix XBT (see
[6] for details of optimization problem).

2. OUR ALGORITHM
We begin this section by overviewing our algorithm and in

later subsections provide more detail. Our algorithm gains
its efficiency in two ways: 1) using Hamming distance of bi-
nary codes is faster than calculating cosine distance between
floating point vectors, and 2) we use the binary codes to dy-
namically coarsen the original problem into a collection of
subproblems that can be handled efficiently. At a high level,
our algorithm works by creating hash buckets correspond-
ing to each unique binary code, and hierarchically cluster-
ing first the hash buckets and then the set of hash points
mapped to each hash bucket. Section 2.1 describes how to
choose the length of binary codes so that clustering hash
buckets / unique binary codes are guaranteed to be efficient

without sacrificing the quality of the hierarchy. In Section
2.2 we describe how the points within each hash bucket can
be efficiently hierarchically clustered as well. Figure 2 gives
a high level overview of our algorithm. In steps 1 and 6 of the
figure, algorithmic choices are provided that are discussed in
Sections 2.1 and 2.2 respectively.

The technique we describe can be used with any agglom-
erative hierarchical clustering algorithm (e.g. single / com-
plete / average linkage), however it is designed to be only
used with cosine distance, for which we use Hamming dis-
tance to more efficiently approximate angular distances be-
tween points.

Define BCA-HAC
Input X ∈ Rn×d (points)
Output T (dendrogram)
Begin

1. Choose number of bits c for binary codes.

(a) Set c = min(blog2(
√
n)c, d) number of bits (see

Section 2.1.1).

OR

(b) Adaptively choose c (see Section 2.1.2).

2. Calculate binary codes B by solving optimization
problem in Equation 2.

3. Find the unique set of binary codes B∗ which will be
used as hash buckets.

4. Hierarchically cluster B∗, resulting in dendrogram
whose leaf nodes are Ti.

5. Set Bi to be the set of instances that have binary code
equal to the ith binary code in B∗ (i.e. the points in
the ith hash bucket).

6. Attach points from sets Bi to associated leaf nodes Ti

of hierarchy created in previous step:

(a) Attach points in Bi flatly (See Section 2.1).

OR

(b) Recursively apply BCA-HAC to points Bi using
unused portions of binary codes (See Section 2.2).

End

Figure 2: The Binary Code Approximation - Hierar-
chical Agglomerative Clustering (BCA-HAC) algo-
rithm. Section 2.1 discusses the the different meth-
ods for choosing the length of binary codes used in
Step 1. Section 2.2 discusses Step (6b).

2.1 Base Method
In this section we show how to efficiently calculate a hi-

erarchy of
√
n hash buckets in linear time and space with

respect to the total number of points. In terms of Figure 2,
in this section we will ignore option (6b) which can
used to increase the detail of our hierarchy. We will however
discuss the differences between choices (1a) and (1b), which

are alternative methods to choose the number of bits for the
binary codes. As the algorithm in 2 shows, we can create a
hierarchy out of a set of hash buckets. This can be done effi-
ciently if the number of of hash codes is small enough which
can be controlled by adjusting the length of the binary codes
created. In section 2.1.1 we discuss how to limit the number
of hash buckets, and in section 2.1.2 we discuss a method of
creating binary codes so that the number of hash buckets is
upper and lower bounded.

2.1.1 Static Methods of Creating Hash Codes
Here we show the simplest variant of our algorithm to

implement where the length of the binary codes are com-
puted apriori. If we can create

√
n or less unique binary

codes / hash buckets, then standard HAC algorithms such
as SLINK [14] are capable of hierarchically clustering them
in linear time with respect to the original number of points
n, because O(

√
n
2
) = O(n). In this section we do not recur-

sively apply the algorithm to cluster each hash bucket but
the problem of doing that in linear time and space is also
dicussed in Section 2.2. It should be noted that in all
our experimental results we use the later adaptive
method in section 2.2 to build a complete tree. We
can easily find a binary codes approximations with less than
or equal to

√
n unique codes by setting the number of bits to

c = min(blog2(
√
n)c, d), for which the total possible number

of unique binary codes is less than
√
n. Formally:

2c = 2min(blog2(
√
n)c,d)

≤ 2blog2(
√
n)c ≤ 2log2(

√
n) =

√
n

(3)

As discussed in the previous work [6], calculating the bi-
nary codes for a set of points can be done in linear time and
space. Also we can efficiently associate the original points to
the appropriate hash buckets (i.e. Step (6a)) in linear time
with respect to the number of points. For example, this can
be done by creating a binary tree of the binary codes associ-
ated with each hash bucket. Such a binary tree which would
have maximum depth c, the length of the binary codes, so
that the total time to create sets of points belonging to each
hash bucket is O(nc) time and space.

The disadvantage of choosing the number of bits using this
closed form equation is that although it provides an upper
bound on the number of unique binary codes corresponding
to hash buckets, it does not provide a lower bound. A larger
number of binary codes creates a larger degree of freedom
for the hierarchical clustering algorithm to choose the hi-
erarchical structure of the points, and so can be desirable
from that point of view. The following section describes a
method for creating binary codes in a way that will produce
a number of hash buckets with an upper and lower.

2.1.2 Adaptive Methods of Creating Hash Codes
In this section we describe a technique for choosing the

binary code length so that there is not only an upper bound
on the number of unique binary codes but also a lower
bound (i.e. |B∗| = Θ(

√
n). The trick to finding such a

set of codes is to search for it by iteratively expanding the
length of codes and efficiently checking the number of unique
codes/bins. Step (2d) allows us to skip searching unneces-
sary code lengths by finding the minimum number of addi-
tional bits required to meet the lower bound.

Define Adaptive-BC-Length
Input X ∈ Rn×d points
Output c,B ∈ Bc such that |B∗| = Θ(

√
n)

Begin

1. Set c = dlog2(
√
n)e

2. do

(a) Solve optimization problem to find B

(b) Calculate number of unique codes B∗

(c) ∆c = log2(2
√
n− |B∗|)

(d) if ∆c ≥ 1 then set c = c+ ∆c

3. while(∆c ≥ 1)

End

Figure 3: Description of algorithm to find number
of bits in binary codes that will yield unique number
of binary codes |B∗| = Θ(

√
n).

A simple approach is shown in Figure 3. Because checking
the number of hash buckets can be done using only linear
time and space (see Section 2.1.1), and because there are
only a constant number of possible code lengths to check
(with respect to number of points), this method is also guar-
anteed to run using linear time and space.

2.2 Efficiently Computing Subtrees
The above described method works to create a hierarchy

of Θ(
√
n) hash buckets with all of the points in the same

hash bucket connected to the tree in a flat manner (i.e. they
are all merged to the leaf corresponding to the hash bucket
they belong to at the same time). If we are interested in
further developing additional detail in the hierarchy by cre-
ating subtrees for each hash bucket, there can easily be a
large amount of work needed. For example, if the sets of
points in the same hash buckets Bi are all of equal size then
there will be O(n√

n
) points in each and performing standard

HAC will take at minimum O((n√
n

)2) = O(n) time. That

complexity may be acceptable if only a few of the hash buck-
ets need to be expanded into subtrees on a per need basis,
but if all hash buckets need to be expanded then it will take
O(n
√
n) time in the best case (uniform set sizes) which can

be unacceptable for large n.
In this section we will describe an efficient method that

allows us to recursively apply our algorithm to create sub-
trees, without calculating new sets of binary codes. Instead
we will create one set of binary codes with more bits than
previously described, and use different parts of the binary
codes on different levels of the recursive call tree. Figure 4
shows an example of how our method can be applied recur-
sively on a small example.

In order to apply our method we need longer binary codes.
If for example we only need c1 bits to create binary codes
with O(

√
n) unique values, we will need an additional c2 bits

so that each set Bi can be hierarchically organized into a

tree of
√√

n = 4
√
n hash buckets / leaf nodes. In the case of

0
1
0

0
1
1

0
1
1

0
1
0

0
1
0

1
1
0

1
1
1

1
1
1

1
0
0

1
0
0

1
0
1

1
0
1

0
0
0

0
0
0

0
0
1

0
0
1

01 11 10 00

0
1
0

0
1
1

0
1
1

0
1
0

010 011

Figure 4: Visual example of our recursive method.
The original 16 points can be hashed to

√
16 = 4

buckets which requires binary codes of length 2. Our
recursive method uses these as prefixes and uses the
additional bits to further cluster points in each of the
buckets.

binary codes that produce balanced hierarchies, recursively
applying our method r times will produce a tree with the
following number of leaf nodes:

√
n ∗ 4
√
n ∗ . . . ∗ 2r

√
n = n1− 1

2r (4)

In the more general case the number of leaf nodes will sim-
ply be the number of unique binary codes created |B∗|. We
will also generally expect that the number of bits needed
to extend will decrease by roughly half at each recursive
level (i.e. ci < ci+1 and 1

2
ci ≈ ci+1) because log2(n1/2r) =

1
2

log2(n1/2r−1

). Figure 5 shows the algorithm that formal-
izes this intuition.

The worst case time and space for the recursive algorithm
is linear with respect to the total number of points. We have
already shown that we can adaptively calculate binary codes
with desired number of unique codes using only linear time
and space. The recursive call tree has depth at most d and
the the sum of points in the sets Bi passed into the function
BCA-HAC at a specific level in the recursive hierarchy is
at most n. The amount of time and space needed for each
call to BCA-HAC is linear with respect to |B| (see Section
2.1), and therefore each level of the recursive tree takes lin-
ear time, and given the constant number of recursive levels

Input ` (desired number of leaf nodes) X (points)
Output T (tree structure where leaf nodes are binary
codes).
Begin

1. Adaptively create binary codes B such that the num-
ber of bits c produces ` ≤ |B∗| ≤ 2`

2. Create set of all points indices B.

3. Call BAC-HAC(1,B)

4. define function BAC-HAC(s (first bit),B (point indices))

(a) Set m = |B|
(b) Find c so that

√
m ≤ |B∗B,s:c| ≤

√
2m

(c) Create hierarchy T from B∗B,s:c using standard
HAC and create sets. of point Bi associated with
each leaf node Ti.

(d) if (c > d) return T //base case

(e) foreach Bi

i. replace(Ti, BAC-HAC(c+ 1,Bi))

End

Figure 5: Algorithm for recursively applying BCA-
HAC using one set of binary codes. The method is
defined recursively to simplify the presentation, but
it is very efficient because the same binary codes
are used in each recursive call. When moving down
the recursive call tree, prefixes of increasing size are
ignored until the entire binary code has been con-
sumed (base case). The notation B∗B,s:c describes the
unique codes when considering bits s through c, and
only the codes with indices from B.

only linear time and space is needed for the entire recursive
method.

2.3 Some Useful Bounds
Though our work uses the idea of angular hashing [6] all

of the following results are novel. These results are impor-
tant because our method relies on hierarchically clustering
hash buckets and these results show show how well the hash
buckets will approximate the original points. Lemma 1 is
necessary for proving Theorem 1, and it describes an upper
bound on the angle between two points in the same bucket.
This is a desirable property because it guarantees that two
points in the same hash bucket cannot be too dissimilar.
Figure 6 plots this bound for increasing hamming length
(number of non-zero entries or ||b||1). As the plot shows,
hash buckets with larger hamming length have better theo-
retical guarantees with respect to how angularly close points
in the same hash bucket will be.

Theorem 1 is an important result because it explains how
the sizes of the different hash buckets relate to each other.
The angular size of the cone corresponding to a hash bucket
can vary depending on the hamming length of its binary
code. A cause for concern is that the sizes of the hash

buckets could be completely disproportionate to each other,
which would lead to irregularities in how points are mapped
to hash buckets. Specifically what we would like to avoid
is the scenario where some areas of the instance space map
many points to a single hash bucket even though they are not
a dense cluster of points, while in other areas of the instance
space an equally dense set of points would be mapped to
multiple (greater than two) hash buckets. Theorem 1 guar-
antees that this scenario cannot occur and can be roughly
interpreted to guarantee that the largest hash bucket is less
than twice the size of the smallest hash bucket.

Lemma 1. The intra hash bucket maximum angu-
lar distance. Given two instances x and x′ that are as-
signed to the same hash bucket with binary code b and Ham-
ming distance greater than or equals to 2, i.e., h(x) = h(x′) =
b and ||b||1 ≥ 2. Then the following bound on the angle be-
tween x and x′ applies:

θ(x,x′) < arccos

(√
||b||1 − 1

||b||1

)

1 2 3 4 5 6 7 8 9 10

1/8 pi

 1/4 pi

3/8 pi

1/2 pi

|h(x)=b
x
|
1
 (Number Non−Zeros)

M
ax

im
um

 A
ng

le
 B

et
w

ee
n

x,
 x

’ (
R

ad
ia

ns
)

Figure 6: Plot of bound in Lemma 1 for increas-
ing hamming length (number of non-zero entries or
||b||1). As the hamming length increases (x-axis) the
maximum angle between two points mapped to the
same hash code decreases (y-axis).

Proof. According to Lemma 2 of [6], the cosine of the
angle between an arbitrary binary code b and one of its ad-
jacent binary codes (i.e their Hamming distance is one) is

bounded by
[√

||b||1−1
||b||1

,
√

||b||1
||b||1+1

]
. From the definition of

angular quantization based hashing, we can infer that the
separating boundary of two adjacent binary codes equally di-
vides the space between them (the two binary codes). There-
fore, we can conclude that since both x and x′ are assigned
to the hash bucket b, the angle between either x or x′ to

b is strictly smaller than
1

2
arccos

(√
||b||1−1
||b||1

)
. Formally,

we have θ(x,b) <
1

2
arccos

(√
||b||1−1
||b||1

)
and θ(x′,b) <

1

2
arccos

(√
||b||1−1
||b||1

)
. Then, it must be the case that the

angle between x and x′ is strictly smaller than two times

the angle between either of them to b, formally, θ(x,x′) <

arccos
(√

||b||1−1
||b||1

)
, otherwise either x and x′ would be as-

signed to an adjacent hash bucket of b.

Theorem 1. The inter hash bucket minimum angu-
lar distance guarantee. Given two arbitrary instances x
and x′ that are assigned to the same hash bucket with bi-
nary code b with Hamming length greater than or equals to
2, i.e., h(x) = h(x′) = b and ||b||1 ≥ 2. Let b′ denote
the binary code of an arbitrary hash bucket, if the Hamming
distance between b and b′ is greater than or equals to 2, i.e.,
||b− b′||1 ≥ 2. Then the angle between x and x′ is guaran-
teed to be smaller than the angle between b and b′. Formally,
under the above conditions, the following bound applies:

θ(x,x′) < θ(b,b′)

Proof. According to the Lemma 2 of [6], when the Ham-
ming distance between two binary codes b and b′ is greater

than or equals to 2, cos θ(b,b′) ≤
√

||b||1
||b||1+2

. According to

the Lemma 1 when both x and x′ are assigned to the hash

bucket b then cos θ(x,x′) >
√
||b||1−1
||b||1

. Since
√
||b||1−1
||b||1

≥√
||b||1
||b||1+2

=⇒ ||b||21 + ||b||1 − 2 > ||b||21 =⇒ ||b||1 ≥ 2, the

condition that satisfies
√
||b||1−1
||b||1

≥
√

||b||1
||b||1+2

is ||b||1 ≥ 2,

which is already satisfied as a prerequisite. This yields

the guarantee that cos θ(x,x′) >
√
||b||1−1
||b||1

≥
√

||b||1
||b||1+2

≥
cos θ(b,b′). After applying arccos to both sides of this in-
equality, the result is the bound shown in Theorem 1.

3. EMPIRICAL ANALYSIS
The previous sections described our algorithm and here

we describe its performance. The algorithm we use in these
experiments is described in Figure 5 and all code and data to
reproduce these experimental results will be made available
on our website. We wish to answer the following questions:

• How efficient is our method (both building the hash
buckets and creating the dendrogram) compared to the
optimized code found in the built-in MATLAB func-
tions?

• Is the hashing method suitable for typical high dimen-
sional data such as images and documents?

• How do the quality of the dendrograms built using our
method compare to standard hierarchical agglomera-
tive clustering using a variety of linkage functions?

• How big a collection of objects can we hierarchically
cluster in less than a minute on a typical desktop ma-
chine?

To answer these questions we perform experiments on
common types of high dimensional data, images and doc-
uments, which we now describe.

3.1 Datasets
The two datasets we use in our experiments are the 20-

newsgroup dataset [10] and cifar-10 [9]. These datasets
were chosen because they are both large in terms of num-
ber of instances and number of dimensions, and also contain
ground truth labels for each instance. While our hierarchical

clustering method is capable of learning from much larger
datasets than these, standard HAC algorithms are not ca-
pable, and thus not comparable.

The 20-newsgroup data is a collection 20,000 documents
corresponding to online newsgroup posts. The documents
are preprocessed using Rainbow[12] to create a bag of words
representation with roughly 50,000 dimensions. Though this
may seem excessive, the cosine distance function measures
directional distance and is suited for such datasets. The
ground truth labels for this dataset used are the actual news-
group that a document was originally posted in of which
there are 20. This document set is of particular interest for
hierarchical clustering because the labels have a natural hi-
erarchical structure corresponding to the hierarchical nature
in which the newsgroups are organized (see Figure 1).

• Computers • Science
◦ Hardware * sci.med
* comp.os.mswindows.misc ◦ Technology
* comp.windows.x * sci.crypt
* comp.graphics * sci.electronics
◦ Software * sci.space
* comp.sys.ibm.pc.hardware • Politics
* comp.sys.mac.hardware * talk.politics.guns

• Recreation ◦ International
◦ Automobiles * talk.politics.mideast
* rec.autos * talk.politics.misc
* rec.motorcycles • Philosophy/Religion
◦ Sports * alt.atheism
* rec.sport.baseball ◦ Theism
* rec.sport.hockey * talk.religion.misc

• Sale * soc.religion.christian
* misc.forsale

Table 1: Hierarchical structure of the 20 Newsgroup
data.

The cifar-10 dataset is a subset of the 80 million tiny im-
ages dataset [16]. This subset is a collection of 60,000 32×32
images that have each been labeled with one of 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck. These classes are balanced (6000 images for each
class) and each 3072 dimensions corresponding to 3×32×32
pixel color combinations.

Figure 7: Example images from the cifar-10 dataset.
Every image has 32×32 color pixels.

3.2 Measuring Clustering Performance
To evaluate the ability of our algorithms to learn the hier-

archical structure of data, we use a common practice of eval-
uating the quality of the flat clusterings produced by cutting
the hierarchy at a given point and comparing to a ground
truth labeling/partition using Rand index. The Rand index
is the proportion of instance pairs that are either in (or not
in) the same clustering in both our set partition and the set
partition induced by the ground truth. It is naturally inter-
preted as indicative of the chance that two instances chosen

at random will be in together or apart in both our results
and the ground truth set partition.

6 (40) 7 (67) 8 (112) 9 (164) 10 (238) 11 (330) 12 (451)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Length of Binary Codes (# Unique Codes)

R
an

d−
In

de
x

BCA−CL
BCA−SL
BCA−AL
BCA−WL
CL
SL
AL
WL

Figure 8: Performance of standard HAC vs
BCA-HAC (our method) for increasing binary
codes size on the cifar-10 dataset. Plot labels
CL,SL,AL,WL correspond to complete, single, av-
erage, and weighted average linkages respectively.
Each of these standard HAC algorithms is compared
to our algorithm while used in conjunction with the
same set of linkages. 10 samples of 10000 points
were used to evaluate both our method and stan-
dard HAC. The results shown are the average over
all 10 samples.

4 (12) 5 (22) 6 (40) 7 (61) 8 (98)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Length of Binary Codes (# Unique Codes)

R
an

d−
In

de
x

BCA−CL
BCA−SL
BCA−AL
BCA−WL
CL
SL
AL
WL

Figure 9: Performance of standard HAC vs BCA-
HAC for increasing binary codes size on the 20-
Newsgroups dataset. 10 samples of 1000 points
were used to evaluate both our method and stan-
dard HAC. The results shown are the average over
all 10 samples.

Figures 8 and 9 both compare our method with standard
HAC using the Rand index. In these figures the horizon-
tal lines represent the standard HAC results, and the other

lines represent the results of our methods for varying num-
ber length binary codes. Note the longer the binary code
the more hash buckets (shown in parentheses in the figure’s
x-axis labels) and the more complex the algorithm’s behav-
ior. On the far left hand side of the x-axis is the binary
code length dictated by choosing the length statically with
the results for increasing binary code lengths shown for the
remainder of the axis. The plots represent the averages of
repeating the experiments 10 times with random samples of
the original dataset (samples of size 10,000 from the popu-
lation of 60,000 for cifar-10 and 5,000 from the population
of 20,000 for 20-newsgroups). Though our method can han-
dle much larger datasets, our purpose here is to compare
against existing methods which can take 10+ hours for the
later dataset.

These results show that single linkage, the fastest stan-
dard HAC algorithm (O(n2) versus O(n2 logn) for complete
and average linkage algorithms), performs poorly on both
of these datasets. However, when our method is combined
with single-linkage clustering, our results are consistently as
good as or better than the standard single linkage results.
An interesting trend in this result is that as the number
of unique codes increases, our algorithm decreases perfor-
mance, until it converges with the performance of standard
single linkage. We believe this is the because as the number
of unique codes increases, the more the results converge to
the single linkage algorithm’s results since there are fewer
points in each hash bucket. Contrast this with the results
for complete linkage where performance increases with the
number of unique codes. Clearly complete linkage is a much
better fit for both of these datasets but it is interesting to
note why our method is so much better. We note that our
method is comparable to the average and weighted average
linkage methods which effectively measure the distance be-
tween clusters as the distances between the middle of the
clusters. Similarly the hash code falls approximately at the
center of the hyper-cone that encompasses all instances in
the hash bucket. Therefore we can reason that when our
approach merges together hash buckets it is doing a simi-
lar calculation to the average and weighted average linkage
methods. Since the focus of our work is efficient clustering,
we will leave it to future work to better understand when
these performance improvements occur.

The experiment whose results in Figure 10 was designed
to test if the design decisions used in our recursive formula-
tion of our algorithm could hurt performance. Specifically
for our algorithm to work we need to create binary codes
that are longer than would otherwise be needed. The ques-
tion we try to answer then, is if we create long binary codes,
does it negatively effect the quality of appropriately sized
prefixes. Figure 10 shows the results of increasing binary
code lengths on the performance of the nonrecursive formu-
lation of our algorithm. The non-recursive formulation uses
only the first 10 bits (chosen adaptively) of the binary code
to create a low detail hierarchy, and the remaining bits are
completely ignored. What the plot shows is that increas-
ing the number of bits on the scale that would be used in
our recursive algorithm does not decrease the quality of the
prefixes. To our surprise the quality of the prefixes actually
increases, which we believe is a side effect of the alternating
optimization used to solve Equation 2 being better suited to
this setting. To support that claim we show on the x-axis

in parenthesis the number of unique binary codes found for
the prefix set increases for longer total binary code lengths.

10 (245) 15 (344) 20 (386) 25 (443) 30 (449) 35 (482) 40 (474) 45 (453) 50 (447)
0.6

0.65

0.7

0.75

0.8

Binary Code Length (# Truncated Binary Codes)

R
an

d−
In

de
x

10 (245) 15 (344) 20 (386) 25 (443) 30 (449) 35 (482) 40 (474) 45 (453) 50 (447)
0

1

2

3

4
x 10

4

U

ni
qu

e
B

in
ar

y
C

od
es

Figure 10: This figure demonstrates that using bi-
nary codes of longer length in the recursive pro-
cess of BCA-HAC does not hurt performance. This
experiment used all 60,000 points from cifar-10
dataset. The left hand y-axis shows Rand-Index per-
formance for increasing code lengths, and the right
hand y-axis show the number of unique binary codes
in the lengthened binary codes (whereas values in
parenthesis of x-axis only show number of unique
codes in prefix of length 10).

3.3 Runtime Performance
Figures 11 and 12 show the run time results of our al-

gorithms for increasing sized samples of the cifar10 and 20-
newsgroups datasets respectively. Note that the former dataset
has approximately 3,000 dimensions and the later 50,000 di-
mension. Our speedup for the image dataset (Figure 11) is
approximately 100 fold and in the later document dataset
(Figure 12) is 10,000 fold faster (note the y-axis is the square
root).

Finally, we wish to determine how big of a real dataset we
can completely hierarchically cluster in less than a minute.
We were able to cluster the 60,000 images of the cifar-10
dataset (see Figure 7) in less than one minute. The total
computation time can be broken up into three parts: bi-
nary code computation, data structures for indexing sets of
points in each bin, and time spent hierarchically clustering
hash buckets. The time to calculate the binary codes was
6 seconds The data structures used to efficiently find sets
of points in hash buckets were produced using the Matlab
unique function which only took less than 1 second for the
set of 60,000 binary codes produced. Finally it took 1 sec-
ond to perform single-linkage HAC on the collections of hash
buckets. Note that since we recursively apply our algorithm
(option 6b) in Figure 2) we build a complete dendrogram.
This gives a total of approximately 8 seconds.

Our comparison is more than fair to standard HAC clus-
tering methods because we use the built-in optimized matlab
standard libraries for the methods (pdist, linkage etc.),
while our methods are written in using user created Matlab
functions and script. The core computational functions of

6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

Log Base 2 of Number of Points Sampled

E
la

ps
ed

 T
im

e
in

 S
ec

on
ds

HAC
BCA−HAC

Figure 11: Time of standard HAC compared to our
method for the cifar10 dataset (3,072 dimensions).
For standard HAC we stopped after sample sizes
of 213 = 8192 because for the next largest sample
size the algorithm did not converge in a reasonable
amount of time (terminated after 12 hours). These
figures were produced using single linkage for both
standard HAC and for our method BC-HAC.

Matlab libraries are implemented in machine compiled lan-
guages such as Fortran, whereas our functions and scripts
are not, however our functions take advantage of same parts
of those libraries, such as matrix multiplication and sorting.

4. CONCLUSIONS
Hierarchical clustering is used extensively to organize doc-

uments and images. Agglomerative methods are particularly
popular but suffer from two main problems that limit their
application to typically no more than 10,000 instances: i)
The time complexity requires at least quadratic distance cal-
culations, and ii) The commonly used cosine distance func-
tion requires a time consuming inner-product. Minimizing
the number of these calculations offers promise to scale ag-
glomerative methods to handle much larger datasets.

We propose the first angular hashing based method for ef-
ficient hierarchical clustering. Angular hash functions create
a series of hash buckets, each of which has its own hash code
and can be used to allocate instances to the hash buckets.
Our approach (see Figures 2 and 5) builds a dendrogram by
both hierarchically clustering the points in each hash bucket
and then clustering the hash buckets hierarchically based on
their hash codes. This is possible since we show that the an-
gle between the instances at the approximate center of the
hash bucket is related to the Hamming distance of the hash
codes.

We tried our method on a collection of images (3,000 di-
mensions) and documents (50,000 dimensions). We found
that our method achieves a speed-up of 100 times for the
former dataset and 10,000 times for the latter higher di-
mensional dataset. Unusually we found that our method
produced results as good as or better (when measured com-
pared to the ground truth) than the commonly used single
linkage, complete linkage, average linkage and weighted av-

8 9 10 11 12 13
0

20

40

60

80

100

120

Log Base 2 of Number of Points Sampled

E
la

ps
ed

 T
im

e
in

 S
qr

t(
S

ec
on

ds
)

HAC
BCA−HAC

Figure 12: Time of standard HAC compared to our
method for the 20-newsgroups data-set (50,000 di-
mensions). This figure uses a sqrt transformed y-
axis and therefore for sample sizes of 213 = 8192 our
algorithm is roughly 10,000 times faster than stan-
dard HAC.

erage distance functions. We postulated that this is so since
our method approximates the more suitable average cluster
distance function. In practice our methods can easily scale
to hierarchically cluster 60,000 images in under a minute
of computation and it can scale to data sets of 100,000’s of
points which was not previously possible with agglomerative
clustering.

5. REFERENCES
[1] S. Basu, I. Davidson, and K. L. Wagstaff, editors.

Constrained Clustering: Advances in Algorithms,
Theory, and Applications. Chapman and Hall/CRC, 1
edition, Aug. 2008.

[2] D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen.
Hierarchical clustering of www image search results
using visual, textual and link information. In
Proceedings of the 12th annual ACM international
conference on Multimedia, pages 952–959. ACM, 2004.

[3] D. Defays. An efficient algorithm for a complete link
method. The Computer Journal, 20(4):364–366, 1977.

[4] B. S. Everitt, S. Landau, and M. Leese. Cluster
Analysis. Wiley Publishing, 4th edition, 2009.

[5] S. Gilpin and I. Davidson. Incorporating sat solvers
into hierarchical clustering algorithms: an efficient and
flexible approach. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 1136–1144. ACM,
2011.

[6] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik.
Angular quantization-based binary codes for fast
similarity search. In P. Bartlett, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages
1205–1213. 2012.

[7] J. A. Hartigan. Clustering Algorithms. John Wiley &
Sons, Inc., New York, NY, USA, 99th edition, 1975.

[8] H. Koga, T. Ishibashi, and T. Watanabe. Fast
agglomerative hierarchical clustering algorithm using
locality-sensitive hashing. Knowledge and Information
Systems, 12(1):25–53, 2007.

[9] A. Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, University of
Toronto, 2009.

[10] K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the Twelfth International Conference
on Machine Learning, pages 331–339, 1995.

[11] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In Proceedings of
the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’00, pages
169–178, New York, NY, USA, 2000. ACM.

[12] A. K. McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/ mccallum/bow,
1996.

[13] S. E. Schaeffer. Graph clustering. Computer Science
Review, 1(1):27 – 64, 2007.

[14] R. Sibson. Slink: an optimally efficient algorithm for
the single-link cluster method. The Computer Journal,
16(1):30–34, 1973.

[15] A. Singhal. Modern Information Retrieval: A Brief
Overview. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering,
24(4):35–42, 2001.

[16] A. Torralba, R. Fergus, and W. T. Freeman. 80
million tiny images: A large data set for
nonparametric object and scene recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 30(11):1958–1970, 2008.

[17] P. Willett. Recent trends in hierarchic document
clustering: A critical review. Information Processing &
Management, 24(5):577 – 597, 1988.

[18] Y. Zhao, G. Karypis, and U. Fayyad. Hierarchical
clustering algorithms for document datasets. Data
Mining and Knowledge Discovery, 10(2):141–168,
2005.

