
Paper #782:Identifying and Generating Easy Sets of Constraints For Clustering

Ian Davidson ∗ and S.S. Ravi†

Abstract

Clustering under constraints is a recent innovation in the ar-
tificial intelligence community that has yielded significant
practical benefit. However, recent work has shown that
for some negative forms of constraints the associated sub-
problem of just finding a feasible clustering isNP-complete.
Theseworst caseresults for the entire problem class say noth-
ing of where and how prevalent easy problem instances are.
In this work, we show that there are large pockets within these
problem classes where clustering under constraints is easy
and that using easy sets of constraints yields better empirical
results. We then illustrate several sufficient conditions from
graph theory to identify apriori where these easy problem in-
stances are and present algorithms to create large and easy to
satisfy constraint sets.

Introduction and Motivation
Clustering is a ubiquitous unsupervised learning activity
used within artificial intelligence for object identification in
images, information retrieval and natural language under-
standing (Wagstaff et al. 2001). A recent innovation has
been the introduction of clustering under instance level con-
straints which effectively provide hints to the composition of
a desirable clustering of the instances. The most prevalent
form of constraints are must-link (ML) where two instance
must be in the same cluster and cannot-link (CL) where they
are in different clusters. These two types of constraints offer
the ability to incorporate strong background knowledge into
the clustering process. For example when clustering auto-
mobile GPS trace information to form clusters that are traffic
lanes (Wagstaff et al. 2001) the physical distance between
lanes (4 meters) can be used to generate cannot-link con-
straints between instances. However, in practice constraints
are typically randomly generated from labeled data. If two
randomly chosen instances have the same (different) label a
ML (CL) constraint is generated between them.

The main uses of ML and CL constraints have been in the
context of three classes of algorithms listed below. a) Al-
gorithms that satisfy every constraint, such as COP-k-means
(Wagstaff et al. 2001), b) algorithms that satisfy as many
constraints as possible, such as PKM (Bilenko et al. 2004),
and c) algorithms that learn a distance function (Xing et al.
2003) so that points which are part of a ML (CL) constraint
are close (far) according to the distance function. Some al-
gorithms have multiple objectives, such as MPKM (Bilenko
et al. 2004) which attempts both b) and c).

∗Department of Computer Science, University at Al-
bany - State University of New York, Albany, NY 12222.
Email:davidson@cs.albany.edu.

†Department of Computer Science, University at Al-
bany - State University of New York, Albany, NY 12222.
Email:ravi@cs.albany.edu.

However, when clustering under constraints the feasibility
sub-problem arises: Does there existanysolution that satis-
fies all constraints? For example, there is no possible clus-
tering under the constraintsML(a, b), CL(a, b), but even
for self-consistent constraints set such asCL(a, b), CL(b, c)
andCL(a, c), there is no clustering fork ≤ 2. Formally:

Definition 1. The Feasibility Problem. Given a setD of
data points, a collectionC of ML and CL constraints on
some points inD, upper (Ku) and lower bounds (Kl) on the
number of clusters, does there exist at least one partition of
D intok clusters such thatKl ≤ k ≤ Ku and all constraints
in C are satisfied?

If this question can be answered efficiently, then one can
generate feasible clustering at each iteration of a clustering
under constraints algorithm. Previous work (Davidson &
Ravi, 2005a) has producedworst caseresults for the feasi-
bility problem for clustering under ML and CL constraints
amongst others. The feasibility problem for clustering under
ML constraints is inP while clustering under CL only and
ML and CL isNP-complete, as can be shown by a reduction
from graph coloring. It is tempting then to abandon the use
of CL constraints, however, the transitivity and entailment
property of ML and CL constraints respectively (Wagstaff
et al. 2001) can result in many entailed CL constraints
and hence are quite useful. For example, the constraints
ML(a, b), ML(a, c), ML(d, e), CL(a, e) entail the addi-
tional constraintsML(a, c), CL(a, d), CL(b, d), CL(b, e),
CL(c, d) andCL(c, e).

The worst case complexity results just make a general
statement about the feasibility problem, namely that it con-
tains a core of difficult problem instances. Of more practical
importance to users and A.I. researchers are more pragmatic
questions such as how does one apriori identify an easy
problem instance and how does one generate them? How
we define aneasyproblem instance is important. An ideal-
ized definition would of course be a set of constraints where
there is at least one feasible solution. However, since the
feasibility problem isNP-complete for CL constraints, test-
ing any necessary and sufficient condition to apriori identify
feasible constraint sets cannot be carried out efficiently so
long asP 6= NP. Furthermore, knowing that a constraint set
has a feasible solution does not make it easy to find the so-
lution. As we shall see later, the ordering of the instances in
D plays an important role for most iterative style clustering
algorithms such ask-means and EM which assign instances
to clusters in a fixed pre-determined order. Therefore, we
will adopt the definition that a problem instance is easy for a
clustering algorithm if a feasible solution can be found given
an ordering of the instances in the data set which in turn
determine the order of how the instances will be assigned
clusters. Formally:

Figure 1: A graphical representation of the feasibility
problem forML(a,b), ML(a,c), ML(d,e), ML(f,g), ML(h,i),
ML(j,k), CL(a,e), CL(i,j), CL(d,k), CL(e,l)

abc de

fghi jk

l

Definition 2. A feasibility problem instance isβ-easy if a
feasible solution can be found by an algorithmβ given the
ordering of instances in the training set which determines
the order they will be assigned to clusters.

It may help the reader to loosely interpret an easy prob-
lem as being under-constrained and a hard problem as be-
ing over-constrained such that a feasible solution is difficult
to find. In this paper we shall focus on using definition
2 with respect to the simplest constrained clustering algo-
rithm, COP-k-means (Wagstaff et al. 2001). As we shall
see constraint sets which are easy for COP-k-means are also
easy for other algorithms that assign instances to clustersin
a fixed order.

This paper attempts to make a contribution to answering
the question of what properties identify easy problems apri-
ori and how we can generate them in a manner that is useful
for practitioners and algorithm designers. We begin by sum-
marizing the previous worst case results for the feasibility
problem (Davidson & Ravi, 2005a). We then empirically
investigate properties in the feasibility landscape showing
there are large parts which are easy. We also empirically il-
lustrate that using easy sets of constraints affects the perfor-
mance of a wide variety of algorithms that use constraints.
We then discuss two sufficient conditions to identify easy
feasibility problems and then develop an algorithm to gener-
ate large constraint sets and an ordering of the instances that
makes the feasibility problem easy (see definition 2).

A Graph Coloring Interpretation of Clustering
Under Constraints and Worst Case Results

Consider the problem of clustering under an expanded
version of the set of constraints described earlier:
ML(a, b), ML(a, c), ML(d, e), ML(f, g), ML(h, i),
ML(j, k), CL(a, e), CL(i, j), CL(d, k), CL(e, l).

Regardless of the number of instances in the data set the
feasibility problem is limited to instancesa, b, . . . , l. We can
represent this problem as a graph by following the construc-
tion:

1. Compute the transitive closure of the must-linked con-
straints, producing connected componentsC1, ..., Cr.

2. Create one node for each connected component and for
each instance that is part of only a CL constraints.

3. Place an edge between those nodes that represent in-
stances that are part of CL constraints.

Figure 1 shows the result for our simple example. Finding
a feasible solution to satisfy all of the must-link constraints,
simply involves computing the transitive closure in step 1)

above and determining if the number of connected compo-
nents is not too much smaller thanku. Since the transitive
closure computation takes timeO(n + m) wheren is the
number of nodes andm the number of edges, the feasibility
problem for ML constraints is in the classP. Clustering to
satisfy the CL constraints is then a case of assigning each
node a value from1 to k so that no nodes connected by an
edge have the same value. This is at least as hard as the
graph coloring problem (West, 2001), which is known to
be intractable and hence clustering under CL constraints is
NP-complete. To find a feasible clustering in our example
we can assign instancesf andg to any cluster so long as
they are together. However, care must be taken to assign the
instancesde so that the assigned value does not clash with
the assignments forl and jk andabc. We shall see later
on that the node in the graph (namely,de) with the maxi-
mum degree (namely, 3) has special significance in deter-
mining easy problem instances as does the ordering of how
the graph nodes are assigned values. Reference (Davidson
& Ravi, 2005a) presents complete complexity proofs.

Investigating the Difficulty Landscape
The previous section’s worst case complexity results stated
the clustering under CL or ML and CL constraints is, in gen-
eral, difficult. In this section, we shall empirically explore
the difficulty landscape to identify the prevalence of easy
problem as per definition 2 using a popular clustering under
constraints algorithm, COP-k-Means (Wagstaff et al. 2001).
This algorithm is a common method of extendingk-Means
to ensure that all ML and CL constraints are satisfied at each
iteration. It is important to note that the COP-k-Means algo-
rithm is sensitive to the ordering of the points to be clustered;
therefore, if it does converge for a set of constraints, thenthe
constraint set can be deemed easy with respect to given the
ordering of the points. The COP-k-Means algorithm han-
dles ML constraints by first computing the transitive closure
and then replacing all the points in each transitive closureset
(connected component) with a single point which is the cen-
troid of all the points in that set, weighted by the size of the
connected component. Sincek is typically small, infeasibil-
ity due to ML constraints does not occur. The algorithm in-
corporates CL constraints by changing nearest-centroid as-
signment tonearest-feasible-centroidassignment. This is
easily programmed by creating for each point a sorted list
of centroids (in increasing order of distances) and progress-
ing down the list until a feasible centroid is found to assign
the point (Wagstaff et al. 2001) without violating a CL con-
straint. For any point, if the algorithm reaches the bottom of
this list and still cannot find a feasible assignment, the algo-
rithm halts with an indication that it cannot find a feasible
solution.

In all our experiments, we use the following common
method for generating ML and CL constraints. If the labels
of the two points agree, then an ML constraint is generated;
otherwise, a CL constraint is generated. We generate a vari-
ety of constraint set sizes 500 times and then determine what
proportion of them are easy according to the above defini-
tion. The instance labels are of course not given to the clus-
tering algorithm and we cluster withk equaling the number

Figure 2: Graph of the proportion of the 500 randomly cre-
ated constraint sets that are easy (Solid Line) according to
Definition 2 and (Crossed Line) our sufficient condition:
k > 1 + MaxDegree(CLGraph).

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Breast

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Ionosphere

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Iris

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Pima

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Wine

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Vote

Number of Constraints

P
ro

po
rt

io
n

E
as

y

Figure 3: Graph of the proportion of the 500 randomly cre-
ated constraint sets that are easy (Solid Line) according to
the definition 2 and (Crossed Line) the average number of
connected components (rescaled to fit on the same axes).

0 200 400 600

0

0.2

0.4

0.6

0.8

1

Breast

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 200 400 600

0

0.2

0.4

0.6

0.8

1

Ionosphere

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 200 400 600

0

0.2

0.4

0.6

0.8

1

Iris

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 200 400 600

0

0.2

0.4

0.6

0.8

1

Pima

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 200 400 600

0

0.2

0.4

0.6

0.8

1

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 200 400 600

0

0.2

0.4

0.6

0.8

1

Vote

Number of Constraints

P
ro

po
rt

io
n

E
as

y

of extrinsic classes in the UCI data sets.
With only CL-constraints (Figure 2) we see that for the

solid line as the number of constraints increases the propor-
tion of easy constraint sets decreases and we also note that
the transition point from being easy to not-easy is abrupt and
is at different position for each data set. The crossed line
is the proportion of times our yet to be identified sufficient
condition occurs.

With ML and CL constraints, we note a quite unusual phe-
nomenon. Figure 3 (solid line). This result is quite coun-
terintuitive. Initially for a small number of constraints the
feasibility problem is easy for the vast majority of the 500
trials. However, the number of easy constraint sets dimin-
ishes as the number of constraints increases only to become
more prevalent again!

Why Problems are Difficult
It is of course interesting to investigate the question,
why some problem instances are easy for COP-k-means
and others are difficult. There are two potential rea-
sons. Firstly, the problem may have no feasible solu-
tion such as clustering a dataset containing the constraints
CL(a, b), CL(b, c), CL(a, c) with k = 2. Secondly, the or-

dering of instances in the training set can make finding the
solution difficult. Once again consider Figure 1. The graph
is 2 colorable; however, suppose the nodes are considered
in the order〈abc, hi, de, jk, l, fg〉. The algorithm may as-
sign color 1 to both nodesabc andhi and color 2 to node
de. Now, when nodejk is considered, it cannot be assigned
either color 1 or color 2 without violating a CL constraint.
Thus, the algorithm may terminate with an indication that
no feasible solution exists. Since all the non-hierarchical
clustering algorithms we shall empirically investigate pro-
cess instances in a fixed ordering, they may not converge or
converge to a poor solution depending on the instance order-
ing.

Effects of Using Easy Sets of Constraints
Our previous sections have defined feasibility and shown
that easy sets of constraints occur frequently for some con-
straint set sizes despite worst case complexity results. But is
there any benefit to identifying and using easy sets of con-
straints? This section attempts to answer this question em-
pirically.

The effect of using an easy set of constraints on algo-
rithms that attempt to satisfy all constraints is clear: they
will converge to a feasible solution. However, as mentioned
in the introductory section, there are other algorithms that
make use of constraints. In this section we shall explore
the effect ofCop-k-means-easy sets of constraints on a) the
PKM (partial constraint satisfaction k-means) algorithm that
attempts to satisfy as many constraints as possible (Bilenko
et al. 2004), b) the MPKM (metric learning partial constraint
satisfaction k-means) algorithm that learns a distance func-
tion and attempts to satisfy as many constraints as possible
(Bilenko et al. 2004) and c) a simple closest-cluster-join
agglomerative hierarchical clustering (CHC) algorithm that
attempts to satisfy all constraints and terminates building the
dendrogram once it cannot (Davidson & Ravi, 2005b).

Firstly, we explore algorithms that learn distance func-
tions and perform clustering when constraints can be ig-
nored. We present the results for all six data sets for when
the number of constraints sets that are easy or not-easy are
approximately the same (i.e. number of constraints in Fig-
ure 2 when y-axis equals approximately 0.5). For each data
set and non-hierarchical clustering technique we present the
number of iterations until convergence and error of the algo-
rithm as measured on the extrinsic class label forall of the
instances, not just those used to generate constraints. We see
(Table 1) that for both algorithms, for easy constraint sets,
the reduction in number of iterations and error is significant
at the 99% confidence level and in particular, the error rate
improvement is practically significant.

Due to space reasons Figure 4 shows the results for the ag-
glomerative hierarchical clustering algorithm CHC for only
two of the data sets; similar results hold for the remaining
four data sets. The first row of graphs illustrate the effort
(join attempts) required to build a dendrogram as a multiple
of the number of initial clusters less one. Since at each level
of the dendrogram a join must be between two clusters that
will not violate any constraint, more potential join calcula-
tions are required than for unconstrained dendrogram con-

Dataset Difficult - Easy Difficult - Easy
Iterations Error

Breast-MPKM 2.21 (0.43) 3.06 (1.77)
Breast-PKM 2.89 (0.78) 4.22 (2.68)
Ion.-MPKM 2.08 (1.33) 1.66 (0.99)
Ion.-PKM 2.31 (1.78) 2.36 (1.43)

Iris-MPKM 0.41 (0.23) 1.21 (0.60)
Iris-PKM 0.12 (0.04) 0.84 (0.57)

Pima-MPKM 0.47 (0.41) 1.96 (1.42)
Pima-PKM 0.47 (0.40) 1.97 (1.56)

Wine-MPKM 3.26 (1.09) 2.01 (1.17)
Wine-PKM 1.87 (1.04) 2.31 (1.69)
Vote-PKM 1.01 (0.86) 1.37 (0.78)

Vote-MPKM 1.22 (1.01) 1.42 (1.11)

Table 1: Mean difference in performance of various tech-
niques on standard UCI data sets for approximately equal
number of easy and non-easy sets of CL constraints. Results
are averaged over 500 constraint sets. P values are shown in
parenthesis at 99% confidence level

Figure 4: Graph of the mean effort for the CHC algorithm to
build a dendrogram and its size over 500 randomly generated
ML and CL constraint sets. The solid line is for difficult
problems, dashed line for easy problems.

0 100 200 300
1.5

2

2.5

3

3.5

4
Ion − Effort

Number of Constraints

E
ffo

rt

0 100 200 300
1.5

2

2.5

3

3.5

4
Ion − Effort

Number of Constraints

E
ffo

rt

0 100 200 300

0.2

0.4

0.6

0.8

Iris − Size

Number of Constraints

S
iz

e

0 100 200 300

0.2

0.4

0.6

0.8

Iris − Size

Number of Constraints

S
iz

e

struction (just the number of initial clusters less one). We
see that on average whenever the constraint set is easy re-
sults in less computational effort regardless of the number
of constraints. Similarly, the second row of graphs show
how large the dendrogram that can be constructed as a frac-
tion of the unconstrained dendrogram height. We see again
when the constraint set isnot easy that the dendrogram pre-
maturely terminates compared to when the constraint set is
easy. The notion of premature termination of dendrogram
construction is essentially that the constraint set along with
the distance measure causes a series of joins that dead-ends
at a dendrogram height that is sub-optimal in that another se-
ries of joins could have built a taller/fuller dendrogram. The
notion of premature termination for hierarchical clustering
under constraints is discussed extensively in (Davidson &
Ravi, 2005b).

Sufficient Conditions for Easiness
Our previous sections have shown that there are easy con-
straint sets and that using easy constraint sets leads to better
empirical results. In this section we outline two conditions
of the properties of the constraint graph (see Figure 1 for an
example) that are sufficient (but not necessary) for identi-
fying Cop-k-means-easy constraint sets. The first condition
is a set theoretic property of the constraints regardless of
the data set ordering. The second incorporates the data set
ordering. In a later section we illustrate how to use these
conditions to generate a set of constraints that are easy to
satisfy.

Brooks’s Theorem

To explain the phenomenon observed in Figures 2 and 3,
we will use Brooks’s theorem (West, 2001) and the notion
of entailed constraints. Brooks’s theorem points out that
if the maximum node degree of a graphG is ∆ andk ≥
∆ + 1, then the coloring problem is easy; that is, graphG
can always be colored usingk colors. Such a coloring can be
obtained usinganylinear ordering of the nodes. An example
of such an algorithm is to assign to the current nodev a color
that has not been used for any of the neighbors ofv which
have already been colored.

The COP-k-means style of greedy clustering under con-
straints can be viewed as a greedy type of graph coloring
to find a feasible solution that also minimizes the algo-
rithm’s objective function. The centroids tessellate the in-
stance space into regions and the COP-k-means strategy is
to assign each node a color according to this tessellation.
Brooks’s theorem gives us a sufficient condition to iden-
tify when greedy coloring algorithms will always converge
and when they won’t. In easy instances of the feasibility
problem, the value of∆ (the maximum degree of the con-
straint graph) is less thank, and the coloring algorithm based
on Brooks’s theorem willalwayssucceed. Informally, if
the maximum number of CL-constraints involving the same
point is at mostk − 1, then the feasibility problem is easy;
otherwise, the feasibility problem will be difficult (i.e.,the
nearest-feasible-centroid assignment approach will failin
general). As the number of constraints increases, the propor-
tion of easy constraint sets diminishes since the chance of a
node being encountered ink or more constraints increases.
In figure 2 the crossed-line plots the proportion of times the
maximum degree of the graph is less thank. Since Brooks’s
theorem is asufficientcondition for easy problems, the oc-
currence of the sufficient condition always under-estimates
how often the problem is easy in practice.

Explaining the results for both ML and CL constraints
requires more effort and the use of the transitivity and en-
tailment properties of ML and CL constraints respectively.
When the number of constraints is small, the number of con-
nected components in the graph representing the clustering
problem would also be small. So, the chance of any node
being part of more thank CL constraints is small. Thus, the
problem is easy. Conversely, when the number of constraints
is large, the number of connected components will be typ-
ically the number of extrinsic labels (due to the transitive

v0

v3

...

vn−1v1 v2

Figure 5: A Star Graph withn nodes.

nature of ML-constraints), and hence the maximum degree
of the graph isk − 1 (i.e., there is a CL-constraint between
each pair of connected components). Thus, the maximum
node degree∆ andk satisfy the conditionk ≥ ∆ + 1, and
again the problem is easy. However, when the number of
constraints is not too large, the number of connected com-
ponents is typically much greater thank. This is because
many points with the same extrinsic label have not had the
opportunity to combine and form a single connected compo-
nent. Furthermore, the chance of a CL-constraint between
two connected components is large due to the entailed con-
straint property. Figure 3 (crossed-line) shows the numberof
connected components (normalized to fit on the same axes)
which is maximum when the constraint sets are difficult.

The above discussion points out at least two ways of mak-
ing the constrained clustering problem easy. Firstly, we can
make a point part of only one ML or CL constraint. This, is
achieved by sampling the pointswithout replacement while
generating constraints. Alternatively, we can makek larger
than∆. However, these are less than desirable approaches
since they limit how we can use our clustering algorithm
and constraints. Instead we may generate constraint sets so
that the maximum degree of the constraint graph is less than
k. This is achieved by ensuring that each instance is part
of k − 1 or fewer constraints. Note that Brooks’s theorem
states a∆ + 1 coloring is possible regardless of the order in
which nodes are considered. The notion ofinductivenessof
a graph, explored in the next section removes this require-
ment by providing a particular ordering and hence can sig-
nificantly reduce the number of colors needed.

Inductiveness of Graphs

When the maximum node degree of a graph is∆, Brooks’s
theorem shows how the graph can be colored using at most
∆ + 1 colors. However, there may be ways to color the
graph using far fewer colors. Consider our simple example
in Figure 1 which according to Brooks’s theorem is four-
colorable but is clearly two-colorable. Here, we examine
another graph property which generalizes Brooks’s result to
give a stronger bound on the number of colors and most im-
portantly can be used to order the instances in the training
data set to make the feasibility problem easy. The following
definition is from (Irani, 1994).

Definition 3. Let q be a positive integer. An undirected
graphG(V, E) is q-inductive if the nodes ofG can be as-
signed distinct integer values in such a way that each node
has an edge to at mostq nodes with higher assigned values.

To illustrate this definition, consider the star graph
G(V, E) shown in Figure 5. Let us assign the integer 1 to
nodev1, 2 to nodev2, . . ., n − 1 to nodevn−1 andn to
nodev0. This creates the following linear ordering of the
nodes:〈v1, v2, . . . , vn, v0〉. Examining the nodes in this or-
der, it can be seen that each node has an edge toat most one
node with a higher assigned value (each nodevi, i 6= 0, has
one edge tov0). Thus, the star graph is 1-inductive. It is
known that all trees are 1-inductive and all planar graphs are
5-inductive (Irani, 1994). The usefulness ofq-inductiveness
is shown in the following theorem from (Irani, 1994). We
have included the proof below since the proof directly leads
to an algorithm we shall use.

Theorem 1. SupposeG(V, E) is q-inductive.G can be col-
ored using at mostq + 1 colors.

Proof: Let n = |V |. Without loss of generality, let
〈v1, v2, . . . , vn〉 denote the ordering of the nodes which
guarantees theq-inductiveness property. We color the nodes
in reverseorder. To begin with, assign the color 1 to node
vn. To proceed by backward induction, assume that for some
j ≥ 2, nodesvj throughvn have been colored using at most
q+1 colors. Now, nodevj−1 can be colored using one of the
colors from the set{1, 2, . . . , q + 1} as follows. SinceG is
q-inductive, nodevj−1 is adjacent to at mostq of the nodes
in the setVj = {vj , . . . , vn}. Thus, among theq + 1 colors
used for the nodes inVj , there is at least one color, sayα,
that has not been used for any neighbor ofvj−1. Thus, we
can useα as the color forvj−1. Continuing in this fashion,
we can obtain a(q + 1)-coloring ofG.

The advantage of Theorem 1 over Brooks’s theorem is
that many graphs which have nodes of high degree, areq-
inductive for a small integerq.

We shall use the notion ofq-inductivenessto present an
ordering of the training instances so that satisfying all con-
straints can be easily obtained by processing the instancesin
that particular ordering. One approach to obtain such an in-
ductive ordering of the nodes is shown in Figure 6. The idea
is to repeatedly choose a node of minimum degree fromG,
output that node and delete it from the graph. (The degrees
of nodes must be updated after each deletion.) Suppose dur-
ing this iterative process, we keep track of the degrees of
the nodes chosen for deletion at each stage, andq denotes
the maximum of these degrees. Since the insertion (step b)
is at the end of the list this creates an ordering of instances
from the largest degree (most constrained) to the smallest
degree (least constrained). It is straightforward to verify that
the resulting ordering establishes theq-inductiveness ofG.
As an example, for the graph in Figure 1, the following is a
1-inductive ordering:〈fg, abc, l, de, jk, hi〉.

In the worst-case, the algorithm in Figure 6 will output
an ordering for whichq = ∆, the maximum node degree.
However, for special classes of graphs, the algorithm will do
much better. For example, it can be seen that for trees, the
algorithm will find a 1-inductive ordering, likewise, the al-
gorithm will output a 5-inductive ordering for planar graphs.

Input: Undirected graphG(V, E).
Output: An ordering〈vi1 , vi2 , . . . , vin

〉 of the nodes ofG
such thatG is q-inductive for with respect to this ordering.

1. Set listL to empty. (L will give the node ordering.)

2. For each nodev ∈ V , find the degree ofv in G.

3. while V 6= ∅ do

(a) Find a nodex ∈ V of minimum degree.
(b) Insertx at the end of listL.
(c) Delete nodex from V and all nodes incident tox
from E.

(d) For each nodey which had an edge tox, decrement
the degree ofy by 1.

4. Output the nodes in the (left to right) order given byL.

Figure 6: An Algorithm for Inductive Ordering of Nodes

Figure 7: For training sets reordered according to the q-
inductiveness of the graph (solid line) and constraint sets
that attempt to minimize the maximum degree of the con-
straint graph (crossed line): the proportion of the 500 con-
straint sets that are easy. Compare with Figure 2
.

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Breast

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Ionosphere

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Iris

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Pima

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Wine

Number of Constraints

P
ro

po
rt

io
n

E
as

y

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Vote

Number of Constraints

P
ro

po
rt

io
n

E
as

y

Generating Easy Sets of Constraints
One obvious method of using our sufficient conditions is to
generate a set of constraints from the labeled data randomly
as before and test if they are easy or not. If not, then generat-
ing another set of constraints is suggested. In this sectionwe
shall explore approaches that use our sufficient conditionsto
generate large and easy to satisfy sets of constraints.

We begin this section by using the result of Brooks’s the-
orem so as to generate constraint graphs thatattemptsto cre-
ate no node with a degree greater thank − 1. In essence our
constraint generation approach tries to distribute the num-
ber of CL constraints amongst as many instances as pos-
sible so that no node is involved in significantly more CL
constraints than any other. We then ran the previous exper-
iments reported in Figure 2 except using our new constraint
generation approach. The results for this new experiment
are shown in Figure 7 crossed line. Comparing these re-
sults to Figure 2 we see that we can generate constraint sets
with nearly twice as many constraints before the problem be-
comes over-constrained. This has significant practical ben-

efit as it has been previously shown that more constraints
lead to improved clustering quality (Wagstaff et al. 2001;
Bilenko et al. 2004; Davidson & Ravi, 2005a). The results
for making use of Brooks’s theorem seem almost too good
to believe. However, upon careful examination of the la-
beled data the results hold up to scrutiny. Take the Iris data
set which contains 150 instances with 50 each of one of the
three extrinsic classes. Clustering withk = 3 it is possi-
ble purposefully create 75 constraints and create a constraint
graph with a degree of at most one and 150 constraints with a
maximum degree at most 2. Above 150 constraints the max-
imum degree of the graph must be three and the problem
becomes difficult. Looking at our graph it is around the 150
constraint mark that the problem starts to become difficult.

Next we use the algorithm in Figure 6 to reorder con-
strained instances so that they form an easy constraint set.
Note that this algorithm may create a different instance or-
dering for each constraint set. We then ran the previous
experiments reported in Figure 2 with theexact same con-
straint setsexcept that the instances were re-ordered. The
results for this new experiment but with reordered instances
is shown in Figure 7 (solid line). We see that the transition
point from when the randomly generated constraint sets be-
come consistently (proportion close to 0) difficult has shifted
approximately 100 constraints to the right. This essentially
means that this approach of generating easy constraint sets
allows us to use nearly ten times as many cannot link con-
straints before over-constraining the problem.

Conclusion
We have shown that despite worst case results the difficulty
landscape for randomly generated sets of constraints con-
tains many easy (under-constrained)problem instances. Fur-
thermore, our empirical results show that for equally size
easy and difficult constraint sets, the easy sets produce sig-
nificantly better performance results. We then presented two
sufficient conditions to identify easy constraint sets and ap-
proaches to create constraint sets that attempt to satisfy the
conditions. Our empirical results indicate that creating con-
straint sets in this purposeful manner (rather than randomly)
can lead to using up to ten times as many constraints before
the problems becomes difficult (over-constrained).

References
Bilenko, M., Basu, S., & Mooney, R. J. (2004). Integrating
constraints and metric learning in semi-supervised cluster-
ing. Proc. of 21st Intl Conf. on Machine Learning.

Davidson, I., & Ravi, S. S. (2005a). Clustering with
constraints: Feasibility issues and the k-means algorithm.
Proc. of SIAM Intl. Conf. on Data Mining.

Davidson, I., & Ravi, S. S. (2005b). Hierarchical clustering
with constraints: Theory and practice.ECML/PKDD 2005.

S. Irani, “Coloring Inductive Graphs Online”,Algorith-
mica, Vol. 11, No. 1, Jan. 1994, pp. 53–72.

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001).
Constrained k-means clustering with background knowl-
edge.Proc. of 18th Intl. Conf. on Machine Learning.

D. B. West,Introduction to Graph Theory, Second Edition,
Prentice Hall, Inc., Englewood Cliffs, NJ, 2001.
Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2003).
Distance metric learning, with application to clustering
with side-information.NIPS 15.

