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Abstract 
The Rissanen (MDL) and Wallace (MML) formulations of learning by compact 

encoding only provide a decision criterion to choose between two or more models, they 
do not provide any guidance on how to search through the model space. Typically, 
deterministic search techniques such as the expectation maximization (EM) algorithm 
have been used extensively with the MML/MDL principles to find the single shortest 
model. However, the probabilistic nature of the MML and MDL approaches makes 
Markov chain Monte Carlo (MCMC) sampling readily applicable. Sampling involves 
creating a stochastic process that visits each model in the model space with a chance 
equal to its posterior probability and has many benefits. We show that for MML 
estimators using mixture modeling that sampling can find shorter models than 
deterministic EM search. Samplers can be used to perform optimal Bayesian prediction 
(OBP), also known as Bayesian model averaging which involves making predictions by 
calculating the expectation of the predictor with respect to the posterior over all models. 
We show that for prediction, OBP can outperform even the shortest model and discuss 
the implications of basing predictions from a collection of models rather than the 
shortest model. Furthermore, since MML/MDL effectively discretizes the parameter 
space attaching probability estimates to each region this makes possible sampling 
across model spaces of varying dimension/complexity.  

Introduction 
The process of inductive learning essentially abstracts, generalizes or compresses 

the data into a model from which predictions of the future can be made. This was first 
formally noted by Solomonoff  [1] and Chaitin [2] but it was not until the Rissanen 
(MDL) [3] and Wallace (MML) [4] formulations of learning by compact encoding 
using Shannon’s information theory that a computable approach became available. 
However, the MML and MDL approaches only provide a decision criterion to choose 
between two or more models, they do not provide any guidance on how to search 
through the collection of possible models in the model space. Though the complexity 
oriented Levin’s optimal universal search [5] approach for classes of inversion 
problems exists, its application for probabilistically formulated MDL/MML problems 
seems difficult. Typically deterministic search techniques such as the expectation 
maximization (EM) algorithm have been used extensively [6] with the MML/MDL 
principles to find the single best model that results in the shortest total encoding of 
model and data given the model. However, the Bayesian nature of the MML and MDL 
approaches1 means approaches in the field of Markov chain Monte Carlo (MCMC) 
sampling are readily applicable. Sampling involves creating a stochastic process so as 
to visit each model with a chance equal to its posterior probability and has several 
benefits over trying to converge to the best model. Furthermore, MML/MDL 
effectively discretizes the parameter space attaching probability estimates to each 
region making possible sampling across model spaces of varying 
dimension/complexity. We show that for MML estimators using mixture modeling that 
sampling can outperform deterministic EM search and can be used to perform optimal 

                                                           
1 P(θ).P(D|θ) = 2-Length(θ)+Length(D|θ) when the lengths are measured in bits. 



Bayesian prediction (OBP), also known as Bayesian model averaging, that outperforms 
even the best model. We briefly discuss the implications of using OBP instead of 
basing predictions from the best model. 

MML Estimators 
MDL/MML inference involves constructing a two-part string to be transmitted 

between a sender and receiver: the model or theory of the observations and the 
observations encoded with respect to the model. The best model has the shortest total 
(sum of both parts) message length [7]. A particularly desirable property of the 
principle is that it discretizes a continuous parameter space into regions attaching a 
probability estimate to each. This enables comparing models of different complexity, 
such as a three class and five class clustering model, as we have converted both models 
to the same units of measure, bits of information. Techniques such as maximum 
likelihood estimation compute probability densities making comparisons of models 
with different complexities analogous to comparing models whose goodness is 
measured in different units.  

The the various formulations of the MML principle are effectively different ways 
to calculate the dimensions of each region. For example, the 1968 MML Gaussian 
formulation sub-optimally solved for the height and width separately to obtain 
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. Later formulations of MML and MDL make use of the Fisher information to solve for 

all the region dimensions simultaneously. The MML formulation being 
n.informatioFisher  expected  theis)(,)(12 θθθ FFAOPV = Each region has a 

representative model that given the data is indistinguishable from all other models in 

the region. The MML estimate for a given induction problem is the representative 
model for the most probable region. Some highly probable regions for the simple 
univariate case are shown in Figure 1.  
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Figure 1: The posterior odds ratio of the MML regions containing and adjacent to 

the MML estimate for a 500 observation sample from the population µ=0, σ=1 

Why Sample? 
A good search algorithm will always choose the MML estimate, however a 

MCMC sampler stochastically chooses a region according to its posterior probability. 
The MML estimate will most often be chosen, but not always. But why sample instead 
of searching? The short answer is that it allows us more successfully to find the best 
model and to even make predictions better than this model. 

When combined with approaches such as simulated annealing, sampling can 
consistently outperform deterministic greedy search algorithms such as EM at finding 
the shortest encoding [8][9] as they relax the gradient descent requirement. The 
posterior distribution for most interesting problem involve many local minima that a 
stochastic search algorithm can “escape” from. This is particularly true when multiple 



model spaces of varying complexity are being searched. Our earlier work [8] shows that 
a MML mixture modeler where k (the number of clusters) is unknown can converge to 
a model whose Kullback-Leibler distance is closer to the generation mechanism (true 
model) than by using BIC (Bayesian information criterion) for model class selection 
and then EM to search the chosen model class. 

OBP uses all available models in the model space and can out-perform any single 
model. However, using a sampler to perform OBP seems to be contradictory to the 
essence of choosing and using the model that results in the shortest encoding. Even 
though the model with the shortest encoding is the best given the available data and 
model space there is still uncertainty associated with this fact. This uncertainty maybe 
due to the intrinsic nature of the problem if it contains two or more alternative 
explanations of the data, model space selection or the amount of data available. The 
consistency of the MDL/MML estimators [10] means that more data or a better choice 
of model space will help to remove this uncertainty but for a fixed model space and set 
of data, averaging predictions over all models removes the uncertainty associated with 
stating that a particular model is the best. Since the “computational devices” used to 
model the data are rarely capable of universal computation the uncertainty due to the 
model space selection is not removed. Formally, consider a previously unseen instance 
that we must predict “+” or “–“ for, a set of data D and the model space Θ. The OBP 
approach sums the belief that the prediction is “+” for each model weighted by its 
posterior probability. Formally: 
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From equation ( 1 ) we see that OBC is effectively making a prediction from all of 
the data not just a single model so is effectively removing the model uncertainty. Such 
a classifier is optimal in the sense that it produces the minimal predictive risk for a 1-0 
loss function for a given data set and model space, see [11] for details.  

MML and MCMC 
Both Gibbs sampling and the Metropolis-Hastings algorithm are popular 

approaches to construct ergodic Markov chains for a specific stationary distribution 
[12], in our case the posterior defined by the message lengths. Gibbs sampling is 
possible if conditional probability estimates of the model parts exists which is the case 
for many latent variable models such as mixture and hidden Markov models. Consider 
the situation of model being represented by a number of random variables, X1

(t)… Xn
(t). 

Gibbs sampling performs an asynchronous update of each random variable to derive the 
new value of the chain at time t+1. In theory there is no particular order of updating 
though usually each random variable is updated in sequence, a process known as a 
sweep. Updating a random variable stochastically assigns it a new value according to 
the distribution defined over all possible values conditional on all other random variable 
values. That is the conditional distribution for updating of the i th random variable is 
P(Xi

(t+1 )| x1
(t) … xi-1

(t), xi+1
(t) … xn

(t)).  

In this paper we discuss two types of MCMC samplers: approximate Gibbs 
(aGibbs) and exact Gibbs (eGibbs) sampling. Though the former is only an 
approximation to Gibbs sampling it is worth discussing as it can be easily implemented 



for a number of MDL/MML estimators with only a minor change to the EM algorithm 
producing superior results. The eGibbs algorithm compares favorably with other 
approaches that sample across a model space of varying dimension such as reverse 
jump samplers and can perform OBP. We compare these two types of samplers against 
standard search and prediction techniques for mixture models, but the approaches are 
applicable to most problems. 

A Graphical View of Mixture Models  
Figure 2 shows the variables/parameters used in mixture models. The model (M) 

consists of the parameters for each cluster θ1…θk , while q1…qk is the cluster’s relative 
frequency. The data X is a fixed collection (hence its shading) of observations/instances 
with the purpose of clustering to allocate each to a group, this allocation is represented 
by the latent Z variables. The arrows in the diagram represent the influence of one part 
on another and can be used to derive the conditional probability estimates. 

 

 

 

 

 

 

 

M = f(Z, X) 

Z = g(M, X) 

 

M

X

Z

= { θ1… θk , q1… qk}

{x1… xn}=

{z11… znk}=

Figure 2. The parts of a clustering model and the dependencies between each part 

This graphical representation of mixture modeling shows the central problem is to 
find the values of M and Z that minimize the message length. However, there exists a 
circular dependency of M depending partially on Z which in turn depends on M. The 
EM (expectation maximization) algorithm addresses this situation by iteratively 
calculating the expected value of Z and then choosing the values for M that are 
maximized given the Z values. Such iterative algorithms are common approaches in 
combinatorial optimization a common example being Newton’s algorithm. In the MML 
context the expected Z values for each observation/instance are calculated from the 
message lengths P(zij)=2-MessLen(zij=1) / Σk 2

-MessLen(zik=1), while the values for M are the 
MML estimates given the Z values. This approach of calculating the expected values 
for the latent (hidden) variables in the model makes the EM approach easily applicable 
to a variety of problems such as hidden Markov models where the gamma variables are 
latent in the Rabiner notation [13]. 

Approximate Gibbs Sampling (AGS) 
MCMC sampling treats M and Z as being random variables aiming to create a 
stochastic process that produces a stationary distribution (the posterior) over them. 
Rather than calculating the expected values now only one of zi,1… zi,k is set to one, the 
remainder are set to zero. In aGibbs sampling we sample the Z values by randomly and 
exclusively assigning each instance to only one cluster according to the distribution 
given by the message lengths. The values of M are still chosen to be the MML estimate. 



That is the g function is stochastic while the f function is deterministic. Our results 
using this approach against the EM algorithm with and without BIC for model class 
selection for a small 3-class clustering problem show its ability to find models that are 
shorter and better performing on unseen data. This small change is readily applicable to 
a variety of problems that have used EM to solve latent variables problems. We show 
some empirical results in Figure 3, see [9] for more empirical results. 

 Lowest Error  Mean Error  Shortest ML  Mean ML 
Approximate Gibbs Sampler – k=3 0.05 0.08 6925 6944 

EM Algorithm – k=3 0.07 0.11 6927 7027 
Approximate Gibbs Sampler – k unknown  0.05 0.09 6925 6946 

BIC and EM Algorithm – k unknown 0.07 0.14 6927 7037 

Figure 3: Approximate Gibbs sampling against EM for the IRIS data set for 1000 trials 
from random restarts. The error is the percentage of observations that have labels 
different to the majority of observations within the cluster. We assign observations to 
their most probable cluster. 

Exact Gibbs Sampling (EGS) 
Functionally, exact Gibbs sampling differs from approximate Gibbs sampling only 

that we update all parts of the model stochastically and don’t automatically pick the 
MML region containing the MML estimate. That is the f function is stochastic. Though 
this is a small functional change the amount of computation to achieve this change is 
substantially more. Rather than performing one message length calculation for the 
MML estimate containing region we need to now calculate the message lengths for 
each region. We propose a method where the message length of the Gaussian MML 
regions are viewed as a two-dimensional sequence and derive an efficient approach to 
calculate the probability of any region relative to the MML estimate containing region 
(details omitted in extended abstract). Empirically we show for the hand written digit 
recognition problem shown in Figure 5 that OBP using MML estimators outperforms 
the single best model found using either EM or eGibbs sampling. We present some of 
results in Figure 4. 

 Lowest Error Mean Error 
Approximate Gibbs Sampler 12% 15% 

EM Algorithm 13% 17% 
OBP Using Exact Gibbs Sampler  9% 11% 

Figure 4: Comparing OBP with the best model found using approximate Gibbs and EM 
for the Digit data set for 1000 random division of data into training (80%) and test 

(20%) data sets. 

Figure 5: Examples of Differently Drawn Numbers from the UCI Digit Dataset. 



 

 

To do ???? 

 

Maths for 68 estimators 

Maths for 87 estimators 

Results for 2 variate problem 

Results for digit data set 
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