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Abstract

The Rissanen (MDL) and Wallace (MML) formulationklearning by compact
encoding only provide a decision criterion to crebstween two or more models, they
do not provide any guidance on how to search thraig model space. Typically,
deterministic search techniques such as the exjmttmaximization (EM) algorithm
have been used extensively with the MML/MDL prirlegpto find the single shortest
model. However, the probabilistic nature of the MMhd MDL approaches makes
Markov chain Monte Carlo (MCMC) sampling readilyptipable. Sampling involves
creating a stochastic process that visits each hindee model space with a chance
equal to its posterior probability and has manydfien We show that for MML
estimators using mixture modeling that sampling dard shorter models than
deterministic EM search. Samplers can be usedrforpe optimal Bayesian prediction
(OBP), also known as Bayesian model averaging wimeblves making predictions by
calculating the expectation of the predictor witspect to the posterior over all models.
We show that for prediction, OBP can outperformretree shortest model and discuss
the implications of basing predictions from a cofien of models rather than the
shortest model. Furthermore, since MML/MDL effeeliv discretizes the parameter
space attaching probability estimatis each region this makes possible sampling
across model spaces of varying dimension/complexity

Introduction

The process of inductive learning essentially alus$; generalizes or compresses
the data into a model from which predictions of thieire can be made. This was first
formally noted by Solomonoff [1] and Chaitin [2btit was not until the Rissanen
(MDL) [3] and Wallace (MML) [4] formulations of leaing by compact encoding
using Shannon’s information theory that a compw@adgpproach became available.
However, the MML and MDL approaches only providdexision criterion to choose
between two or more models, they do not provide gmgance on how to search
through the collection of possible models in thedelcspace. Though the complexity
oriented Levin's optimal universal search [5] appro for classes of inversion
problems exists, its application for probabilistigdormulated MDL/MML problems
seems difficult. Typically deterministic search haiues such as the expectation
maximization (EM) algorithm have been used extexlgiy6] with the MML/MDL
principles to find the singléest modethat results in the shortest total encoding of
model and data given the model. However, the Bayesature of the MML and MDL
approachésmeans approaches in the field of Markov chain Mo@Garlo (MCMC)
sampling are readily applicable. Sampling involeesating a stochastic process so as
to visit each model with a chance equal to its st probability and has several
benefits over trying to converge to the best modalrthermore, MML/MDL
effectively discretizes the parameter space attgchurobability estimate$o each
region making possible sampling across model spacek varying
dimension/complexityWWe show that for MML estimators using mixture maodglthat
sampling can outperform deterministic EM search eamu be used to perform optimal

1 P@).P(DP) = 21-en9t@+Length®B \yhen the lengths are measured in bits.



Bayesian prediction (OBP), also known as Bayesiadehaveraging, that outperforms
even the best model. We briefly discuss the imgibes of using OBP instead of
basing predictions from the best model.

MML Estimators

MDL/MML inference involves constructing a two-pastring to be transmitted
between a sender and receiver: the model or thebrthe observations and the
observations encoded with respect to the model.bEs¢ model has the shortest total
(sum of both parts) message length [7]. A partidulalesirable property of the
principle is that it discretizes a continuous pagten space into regions attaching a
probability estimateto each. This enables comparing models of diffeceambplexity,
such as a three class and five class clusteringghasl we have converted both models
to the same units of measure, bits of informatidachniques such as maximum
likelihood estimation compute probabiligensitiesmaking comparisons of models
with different complexities analogous to comparingpdels whose goodness is
measured in different units.

The the various formulations of the MML principleeaffectively different ways
to calculate the dimensions of each region. Fomgte, the 1968 MML Gaussian
formulation sub-optimally solved for the height amddth separatelyiq gptain

width,, = s4/12/N, height, = s,/6/(N - 1),s:samplestandardieviation, N :numberof instances
_Later formulation®f MML and MDL make use of the Fisher informatiangolve for
all the region dimensions simultaneously. The MMigrmylation being

AOPV, =,/12/F (), F (8)is theexpectedFisherinformation.Each  region has a
representative model th&iven the data is indistinguishable from all othesdels in

the region. The MML estimate for a given inductiproblem is the representative
model for the most probable region. Some highlybpide regions for the simple
univariate case are shown in Figure 1.
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Figure 1: The posterior odds ratio of the MML raggacontaining and adjacent to
the MML estimate for a 500 observation sample ftbmpopulation=0, o=1

Why Sample?

A good search algorithm will always choose the MM&timate, however a
MCMC sampler stochastically chooses a region adogrtb its posterior probability.
The MML estimate will most often be chosen, but aletays. But why sample instead
of searching? The short answer is that it allowsnase successfully to find the best
model and to even make predictions better thanntioidel.

When combined with approaches such as simulate@ading, sampling can
consistently outperform deterministic greedy seagorithms such as EM at finding
the shortest encoding [8][9] as they relax the wgmatddescent requirement. The
posterior distribution for most interesting problémvolve many local minima that a
stochastic search algorithm can “escape” from. Thigarticularly true when multiple



model spaces of varying complexity are being sesatc®ur earlier work [8] shows that

a MML mixture modeler wherk (the number of clusters) is unknown can conveoge t
a model whose Kullback-Leibler distance is closethte generation mechanism (true
model) than by using BIC (Bayesian information emiion) for model class selection

and then EM to search the chosen model class.

OBP uses all available models in the model spadecan out-perform any single
model. However, using a sampler to perform OBP sewmmbe contradictory to the
essence of choosing and using the model that seBulthe shortest encoding. Even
though the model with the shortest encoding iskiést given the available data and
model space there is still uncertainty associatid this fact. This uncertainty maybe
due to the intrinsic nature of the problem if itntains two or more alternative
explanations of the data, model space selectioimemamount of data available. The
consistency of the MDL/MML estimators [10] meanattmore data or a better choice
of model space will help to remove this uncertaimty for a fixed model space and set
of data, averaging predictions over all models reesahe uncertainty associated with
stating that a particular model is the best. Sithee“computational devices” used to
model the data are rarely capable of universal edatipn the uncertainty due to the
model space selection is not removed. Formallysictan a previously unseen instance
that we must predict “+” or “-* for, a set of ddbaand the model spa&®. The OBP
approach sums the belief that the prediction is faf” each model weighted by its
posterior probability. Formally:

P(+) = Iemo P(+16)P(@)P(D | 6?)/P(D) dé, +andD areconditionally independert given

=[,.P(+.D 0)P(8)/P(D)d8

= oo P(+,D,0 )P(H)/P(D)P(B) dé, Cancelling termsandmarginalizing

= P(+, D )/P(D): P(+ | D ),C.f.P(+ |68h0rtest)

From equation ( 1 ) we see that OBC is effectivefking a prediction frorall of
the data not just a single model so is effectively removihg model uncertainty. Such
a classifier is optimal in the sense that it praguthe minimal predictive risk for a 1-0
loss function for a given data set and model spsee [11] for details.

MML and MCMC

Both Gibbs sampling and the Metropolis-Hastings oatgm are popular
approaches to construct ergodic Markov chains fepecific stationary distribution
[12], in our case the posterior defined by the ragsslengths. Gibbs sampling is
possible if conditional probability estimates oétimodel parts exists which is the case
for many latent variable models such as mixture ldidden Markov models. Consider
the situation of model being represented by a nurobeandom variables(,®... X,©.
Gibbs sampling performs asynchronousipdate of each random variable to derive the
new value of the chain at tintel. In theory there is no particular order of updatin
though usually each random variable is updatedeguence, a process known as a
sweep. Updating a random variable stochasticabygas it a new value according to
the distribution defined over all possible valueaditional on all other random variable
values. That is the conditional distribution fordaging of thei” random variable is
POCE D 300 . %a D, %00 @ L x,0).

In this paper we discuss two types of MCMC samplegproximate Gibbs
(aGibbs) and exact Gibbs (eGibbs) sampling. Thotlgé former is only an
approximation to Gibbs sampling it is worth disdngsas it can be easily implemented



for a number of MDL/MML estimators with only a minohange to the EM algorithm
producing superior results. The eGibbs algorithnrmpares favorably with other
approaches that sample across a model space dhygatymension such as reverse
jump samplers and can perform OBP. We compare thesé/pes of samplers against
standard search and prediction techniques for mextoodels, but the approaches are
applicable to most problems.

A Graphical View of Mixture Models

Figure 2 shows the variables/parameters used ituneixmodels. The modeM(
consists of the parameters for each cluétet 4, , whileq;...q is the cluster’s relative
frequency. The datd is a fixed collection (hence its shading) of olagipns/instances
with the purpose of clustering to allocate each twoup, this allocation is represented
by the latenZ variables. The arrows in the diagram represenirtthéence of one part
on another and can be used to derive the conditpyohability estimates.

= {6...6,q...9}
M =1(Z,X) = (X X}
Z=9g(M, X)
< = {z;... 74

Figure 2. The parts of a clustering model and #ygeddencies between each part

This graphical representation of mixture modelihgwss the central problem is to
find the values oM andZ that minimize the message length. However, thrigsa
circular dependency d¥l depending partially o@ which in turn depends oM. The
EM (expectation maximization) algorithm addressess tsituation by iteratively
calculating theexpectedvalue of Z and then choosing the values figfr that are
maximized given th& values. Such iterative algorithms are common aptres in
combinatorial optimization a common example beirgvton’s algorithm. In the MML
context the expected values for each observation/instance are calailatan the
message lengths BY=2Messenti=t) | 5, pMesstentk=l) " whijle the values foM are the
MML estimates given th& values. This approach of calculating the expestddes
for the latent (hidden) variables in the model nzaltee EM approach easily applicable
to a variety of problems such as hidden Markov n®ddere the gamma variables are
latent in the Rabiner notation [13].

Approximate Gibbs Sampling (AGS)

MCMC sampling treatdM and Z as being random variables aiming to create a
stochastic process that produces a stationaryiliton (the posterior) over them.
Rather than calculating the expected values noy oné¢ ofz ;... z is set to one, the
remainder are set to zero. In aGibbs sampling wepkatheZ values by randomly and
exclusively assigning each instance to only onateluaccording to the distribution
given by the message lengths. The valugd afe still chosen to be the MML estimate.



That is theg function is stochastic while thfefunction is deterministic. Our results
using this approach against the EM algorithm witlkl avithout BIC for model class

selection for a small 3-class clustering problemvslits ability to find models that are

shorter and better performing on unseen data. §rhidl change is readily applicable to
a variety of problems that have used EM to soltentavariables problems. We show
some empirical results in Figure 3, see [9] for emempirical results.

| Lowest Error Mean Error  Shortest ML  Mean ML
Approximate Gibbs Sampler — k=3 0.05 0.08 6925 6944
EM Algorithm — k=3 0.07 0.11 6927 7027
Approximate Gibbs Sampler — k unknown 0.05 0.09 6925 6946
BIC and EM Algorithm — k unknown 0.07 0.14 6927 7037

Figure 3: Approximate Gibbs sampling against EMtfar IRIS data set for 1000 trials

from random restarts. The error is the percentdgebservations that have labels

different to the majority of observations withireteluster. We assign observations to
their most probable cluster.

Exact Gibbs Sampling (EGS)

Functionally, exact Gibbs sampling differs from eppmate Gibbs sampling only
that we update all parts of the model stochasticatid don’'t automatically pick the
MML region containing the MML estimate. That is thieinction is stochastic. Though
this is a small functional change the amount of potation to achieve this change is
substantially more. Rather than performing one emgsdength calculation for the
MML estimate containing region we need to now cktaithe message lengths for
each region. We propose a method where the me$sagih of the Gaussian MML
regions are viewed as a two-dimensional sequendalarive an efficient approach to
calculate the probability of any region relativeth®e MML estimate containing region
(details omitted in extended abstract). Empirically show for the hand written digit
recognition problem shown in Figure 5 that OBP gdifiML estimators outperforms
the single best model found using either EM or &Sisampling. We present some of
results in Figure 4.

| Lowest Error Mean Error
Approximate Gibbs Sampler 12% 15%
EM Algorithm 13% 17%
OBP Using Exact Gibbs Sampler 9% 11%

Figure 4: Comparing OBP with the best model fousthg approximate Gibbs and EM
for the Digit data set for 1000 random divisiondzta into training (80%) and test

6836285225

(20%) data sets.
Figure 5: Examples of Differently Drawn Numbersnfrohe UCI Digit Dataset.



To do ??7??

Maths for 68 estimators
Maths for 87 estimators
Results for 2 variate problem
Results for digit data set
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