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Abstract

The identifying of contextual outliers allows the discov-
ery of anomalous behavior that other forms of outlier de-
tection cannot find. What may appear to be normal be-
havior with respect to the entire data set can be shown
to be anomalous by subsetting the data according to spe-
cific spatial or temporal context. However, in many real-
world applications, we may not have sufficient a priori
contextual information to discover these contextual out-
liers. This paper addresses the problem by proposing a
probabilistic approach based on random walks, which can
simultaneously explore meaningful contexts and score
contextual outliers therein. Our approach has several ad-
vantages including producing outlier scores which can be
interpreted as stationary expectations and their calcula-
tion in closed form in polynomial time. In addition, we
show that point outlier detection using the stationary dis-
tribution is a special case of our approach. This allows us
to find both global and contextual outliers simultaneously
and create a meaningful ranked lists consisting of both
types of outliers. This is a major departure from exist-
ing work where an algorithm typically produces one type
of outlier. The effectiveness of our method was justified
by empirical results on real data sets, with comparison to
previous work.
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1 Introduction

1.1 Motivation

Outlier detection, also called anomaly detection, is an im-
portant but understudied branch of the data mining re-
search: only recently did the first data mining survey on
this topic become available [2]. Conventionally, the goal
of outlier detection is to find data instances that do not
conform to the normal behavior, which is typically de-
fined by the entire data set. Many methods have been
proposed in the literature and achieved success in numer-
ous real-world applications, such as network intrusion de-
tection, fraud detection, and medical informatics, to name
just a few [2, 6].

Most of the existing approaches identify outliers from
a global point of view, where each data instance is exam-
ined as deviating from normality as defined by the entire
data set. This type of outlier detection is called global out-
lier detection [2]. However, sometimes an instance may
not be an outlier when compared to the rest of the data set
but maybe an outlier in the context of a subset of the data.
This type of outlier detection is called contextual outlier
detection, where the subset with respect to which the out-
lier is examined is called the context. For example, in a
population demographic data set, a six-foot person may
not be anomalous, but in the context of individuals aged
under ten years of age would be an outlier.

As compared to global outlier detection, contextual
outlier detection is even more understudied [2]. A major
challenge of contextual outlier detection is identifying the
contexts which then allow the identification of outliers. A
data instance may appear anomalous in one context but
not in others. Therefore, the meaningfulness of the con-
text essentially decides the interestingness of the contex-
tual outliers. In order to define the proper contexts, ex-



isting contextual outlier detection techniques require the
user to a priori specify the contextual information, or the
contextual attributes, in the data set. Typical contextual
attributes used by previous work include partition labels
[16], spatial and/or temporal information [13, 14, 9], ad-
jacency in graphs [17], and profiles [5].

Unfortunately, the existing approaches on contextual
outlier detection, though very useful, have two limita-
tions. Firstly the a priori contextual information is not al-
ways available in practice. For example, a cellphone com-
pany wants to find anomalous user behavior by analyzing
the user logs. But the spatial information of the users is
part of the users’ privacy and cannot be provided (explic-
itly) to a third-party analyst. Secondly, even if we have
well-defined contexts within the data set, it is nontrivial
to find contextual outliers therein. A naive approach is to
firstly partition the data set into individual contexts and
then find outliers therein, separately and respectively, us-
ing traditional global outlier detection techniques. How-
ever, this divide and conquer style approach may not
work since by partitioning the data set, some important
structural information could be lost as we shall see in the
example below.

Since defining contexts and detecting contextual out-
liers are mutually dependent, a logical extension of ex-
isting contextual outlier detection work is to fold identi-
fying the contexts into the outlier detection question
itself by asking under which natural contexts do outliers
occur. Our work explores this more elaborate question.

Example Assume we want to find contextual outliers in
the graph as shown in Fig. 1(a). There are two obviously
contexts in the graph, namely {1, 2,3,4} and {5, 6,7, 8}.
Node 4 and 5 are contextual outliers, considering that
their connectivity is different from the majority of nodes
in their respective contexts. However, if we cut the graph
first and remove the edge (4, 5), the connectivity of node
4 and 5 will become the same as that of the other nodes
in their respective contexts (Fig. 1(b)). Consequently, we
can no longer find any type of outliers in either subgraph.

1.2 An Overview of Our Work

We propose a graph based random walk model that can
formally define contexts and contextual outliers therein.

(a) 4 and 5 are contextual outliers

(b) No outlier if separated

Figure 1: Contextual outlier detection # outlier detection
in (separated) contexts.

Modeling the problem using graph model does not limit
our work to graph based data such as social networks. Our
work is applicable so long as a transition (probability) ma-
trix can be generated from the data set. For example, we
can build a random walk graph by representing each data
instance as a node and by converting the similarity be-
tween data instances into a transition probability between
the two nodes.

The main technical result of the work is as follows.
Given a random walk graph we can easily determine a
stationary probability distribution which describes a ran-
dom walk’s steady state behavior, regardless of where the
walk starts. This steady state probabilities are easily cal-
culated as the principal eigenvector of the transition ma-
trix of the random walk graph and others have highlighted
the least visited nodes are naturally global outliers [11].
Our technical contribution is to interpret the non-principal
eigenvectors to help identify contextual outliers. Each
and every non-principal eigenvector provides a cut of the
graph as is well-known in the spectral clustering litera-
ture [18]. We illustrate how to interpret these eigenvectors
as the stationary expectations of a random indicator vari-
able. The indicator variable effectively calculates the dif-
ference in the chance of a node being visited if the random
walk starts off in one subgraph (defined by respective non-
principal eigenvectors) as opposed to starting in the other
subgraph. Then we can use the stationary expectation as
a contextual outlier score to identify contextual outliers
as nodes that are (almost) equally likely to be visited by
random walks starting from either subgraph. Conversely,
we can identify contextual inliers if the chance of visiting
a node is much larger when the random walk starts from
a particular context (subgraph) as opposed to the other.
It is important to note that our work identifies contexts
and contextual outliers by performing random walks in
the entire graph. We do not remove any edge or alter the



structure of the original graph in any way.

Based on our random walk graph model, we develop
an algorithm using eigendecomposition, which can auto-
matically and simultaneously find different contexts in the
data set and rank all the data instances by a probabilis-
tically principled outlier score with respect to their con-
texts.

To sum up, our contributions are:

1. To the best of our knowledge, this is the first work to
find contextual outliers without a priori contextual
information by automatically discovering the con-
texts.

2. We provide a flexible method of finding the contexts
and the contextual outliers, which is applicable to
both graphical and vector data.

3. We create an easily interpretable contextual outlier
score for any node as being the chance that a random
walk on the entire graph starting from both con-
texts, respectively, will visit the node. This allows
us to meaningfully rank both global and contextual
outliers.

4. We propose an efficient polynomial time algorithm
based on eigendecomposition that can automatically
and simultaneously find contexts as well as contex-
tual outliers that are interpretable from a proba-
bilistic perspective.

The rest of the paper is organized as follows: In Sec-
tion 2 we outline the preliminaries and some well-known
results so that in Section 3 we can establish a theoreti-
cal relationship between our contextual outlier score and
the stationary expectation of a node being visited under
a contextual random walk. The notion and analysis of a
contextual random walk is novel. In Section 4 we outline
our algorithm that iteratively explores contexts and con-
textual outliers in the graph, in a hierarchical fashion. In
Section 5 we evaluate our algorithm on several real-world
data sets. Empirical results validated its effectiveness and
advantage against existing approach. Finally in Section 6
we outline related work and conclude our contributions in
Section 7.

Table 1: Symbols and their meanings
The transition matrix of a random walk
The principal eigenvector of W
A non-principal eigenvector of W
The stationary distribution of a global random
walk
The stationary expectation of a contextual ran-
dom walk
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=

2 Background and Preliminaries

In this section, we survey some previous results related
to random walk graph for completeness and to introduce
notation. We first introduce the notion of a random walk
graph, which is essentially a homogeneous Markov chain
as characterized by a transition matrix. We show the well-
known result that the principal eigenvector of the transi-
tion matrix gives the stationary distribution of the nodes
being visited in the graph under a global random walk. We
then survey the previous work [11] that uses the princi-
pal eigenvector to score and rank global outliers. Readers
who are familiar with these materials can skip to Defini-
tion 2. Symbols used throughout the rest of the paper are
summarized in Table 1. It is important to note that the
matrix W we analyze throughout the paper is not a Graph
Laplacian [18], but rather a transition matrix.

2.1 Random Walk on Graphs

Given a data set D with n data instances {d1,...,d,}, f
is a similarity function defined as:
f:DxD—R". )

We assume that f is symmetric yet does not necessarily
satisfy the triangle inequality. Then we can model D into
a Markov random walk graph. Specifically, let A = (a;;)
be the similarity matrix where a;; = aj; = f(d;, d;),
Vi, j,1 < 4,57 < n. We can construct a random walk
graph G = (V, E) from A as follows. Each node in G
represents a data instance in D and the directed edge from
node ¢ to node j means that the transition from node ¢ to j
happens with the probability as specified by a transition



matrix IV. Let D be a diagonal matrix where

dy ==t 1= @
0 i F ]
Then the transition matrix W is defined as
W = AD !, 3)

The entries in W represents the probability of the transi-
tion from one node in G to another. Formally:

wy; = p(XH =iX" =), Vi, j,1<i,j<n, @)

where X' € {1,...,n} is the state random variable of
the Markov chain. Note that we assume the Markov chain
is time-homogeneous, i.e. w;; = p(X'T! = X! = j)
remains the same for any time ¢ > 0.

2.2 Principal Eigenvector and Stationary
Distribution

In this section we relate the principal eigenvector of a
transition matrix to the stationary distribution of a random
walk. Consider the eigendecomposition of the transition
matrix W:

Wu; = A, Vi, 1 <i<n, &)

where u; is the i-th eigenvector associated with eigen-
value \;. According to the Perron-Frobenius Theorem
[7], the following two properties hold:

Property 1. If we sort the eigenvalues in descending or-
der, we have

1>2XA 22X, > -1 (6)

Property 2. Given a transition matrix W and all its en-
tries strictly positive, there exists an eigenvector u asso-
ciated with the largest eigenvalue 1, whose entries satisfy

u(i) > 0, Vi,1 <i <n, )
where u(i) is the i-th entry of u; and
> u(i)=1. ®)

i=1

We call u the (normalized) principal eigenvector of W.

The stationary distribution is a time-invariant measure
that characterizes the behavior of a Markov random walk.
Specifically, given a n-state time-homogeneous Markov
random walk, as defined by the n X n transition matrix
W, we can define its stationary distribution as follows:

Definition 1 (Stationary Distribution). Let © =
(71, m0)T, where m; = p(X' = 1) is the probabil-
ity of node 1 being visited by a random walk (as defined
by W) at time t. If at any time t > 0, 7 satisfies:

n
T, = E TjWij, Vl,]. SZS n,
Jj=1

&)

then w is called the stationary distribution of the random
walk.

It is well-known that the stationary distribution of a
given random walk can be derived from the (normalized)
principal eigenvector of the transition matrix. Formally,
given a strictly positive transition matrix W, from Prop-
erty 2 and Definition 1, we have

Property 3. Given a strictly positive transition matrix W,
the stationary distribution of the random walk is equal
to the (normalized) principal eigenvector of the transition
matrix W :

T=u.

(10)

2.3 Global Outlier and Stationary Distribu-
tion

Intuitively, given a (global) random walk in graph G, the
less likely a node is visited by the random walk, the more
likely it is a (global) outlier. Therefore previous work [11]
used the stationary distribution as the global outlier score.
Formally:

Definition 2 (Global Outlier Score). Given a random
walk graph G and its transition matrix W, m; is the global
outlier score for node 1, Vi,1 < i < n.

The smaller the score is, the more likely node ¢ is a
(global) outlier. Informally, the global outlier score of a
node is the chance that a random walk in the graph will
visit that node.

The limitation of Definition 2 is that the stationary dis-
tribution only identifies outliers based on a global random



walk, where all the nodes are treated indifferently. It is
nontrivial to extend the notion of a stationary distribution
to contextual outlier detection, where different nodes in
the graph may belong to different contexts. In the follow-
ing section, we will show how to score contextual outliers
using the stationary expectation.

3 Contextual Random Walks and
Contextual Outliers

In the previous section we discussed finding global out-
liers using the global random walks, where an outlier is
a node that is unlikely to be visited regardless of where
the random walk starts. Though useful, this approach
cannot identify contextual outliers since no contextual in-
formation is present or used. We now discuss our ap-
proach which can identify contextual outliers using the
non-principal eigenvectors of a transition matrix and in-
terpret them as the stationary expectation of contextual
random walks.

In our model, each non-principal eigenvector of the
transition matrix uniquely defines a 2-labeling/2-coloring
of the graph. Intuitively, given a 2-coloring of the graph,
each subgraph can be considered as a context. Let ST be
one subgraph and S~ the other, we can then determine
the chance of a node being visited given the random walk
starts from S+ and S, respectively. Without loss of gen-
erality, if a node in S is much more likely to be visited
by the random walk starting from S than from S—, then
it can be considered as a contextual inlier w.r.t. ST. On
the other hand, there will be some unusual nodes whose
chance of being visited by the random walk starting from
either ST or S~ is about the same, i.c., these nodes don’t
belong strongly to either ST or S~. We call these nodes
contextual outliers. We assign contextual outlier scores
to every node in the graph so that the contextual outliers
can be discovered.

3.1 Contextual Random Walk and Station-
ary Expectation

We first introduce the definitions and properties of the
contextual random walk and the stationary expectation.
Assume G is a random walk graph associated with a

strictly positive transition matrix V. First we define con-
texts in a graph:

Definition 3 (Contexts and Contextual Random Walk).
Let (S*,S57) be a 2-coloring of G, where S™ is the in-
dex set of nodes labeled as + while S~ is the index set of
nodes labeled as —. S™ and S~ satisfy

ST#0, ST #0, ST ST ={1,....,n}. D
We call (ST,87) a pair of contexts of the graph G. A
random walk in G with the existence of contexts is then
called a contextual random walk.

Now we consider the following indicator random vari-
able:
1 Xt=4X0¢e st
-1 Xt=4XesS-
0 otherwise

Yt =

K3

12)

where 1 < ¢ <mnandt=0,1,2,.... Toputitinto words,
if node ¢ is visited by a random walk at time ¢, and if the
random walk started from the context ST, we set Y! to
1; if the random walk started from S—, we set Y;? to -1;
if node 7 is not visited at time ¢, then we set Yf to 0. We
calculate the mathematical expectation of Y? as follows:

E(Y) =pX' =i,X"€ ST) —p(X' =i,X" € §7).

(13)
Consequently, if E(Y?) is (relatively) close to 1 (or -1),
it indicates that node ¢ is more likely to be visited by
the random walk starting from ST (or S~). However,
if the expectation is close to 0, it means that node ¢ is
(almost) equally likely to be visited by a random walk
starting from either context, which effectively makes the
node anomalous as compared to the other nodes which are
more strongly “aligned” with S+ or S~.

Though E(Y?) is informative for identifying contextual
outliers, it cannot be used as a contextual outlier score
directly as it has the problem of being time-dependent,
i.e., it is not a constant and always changes as ¢ increases.
Therefore we introduce a time-invariant measure which
can better help characterizing the structure of the ran-
dom walk graph and identifying contextual outliers. The
time-invariant measure is, similar to the stationary distri-
bution of a global random walk, the stationary expectation
of a contextual random walk. Though related, these two



measures should be interpreted differently. The stationary
probability distribution measures the chance of visiting a
node regardless of where the random walk starts. Whereas
the stationary expectation (as defined below) measures the
difference in the chances of a node being visited by ran-
dom walks starting from S and S, respectively. First
we define the stationary expectation of a contextual ran-
dom walk:

Definition 4 (Stationary Expectation). Given the random
walk graph G and its transition matrix W, we say the
expectation of Y!, which is i, is stationary if for all t the
following condition holds:

Wi = cz,ujwij, Vi, 1 <i<n. (14)

J=1

where c is a time-independent constant. We shall refer to
= (g1, pn)T as the stationary expectation of the
contextual random walk in G w.rt. ST and S™.

Now the question becomes how we can find a sta-
tionary expectation p given the transition matrix W.
We will show that if W is strictly positive, each of its
non-principal eigenvectors uniquely determines a pair of
contexts and the corresponding stationary expectation.
Specifically, following Property 1, let v be an eigenvector
of W associated with the eigenvalue A < 1. We call v a
non-principal eigenvector of W and the following lemma
holds:

Lemma 1. Given a non-principal eigenvector v of a

strictly positive transition matrix W, we have

v(i) =0,
1

s)

n
=

where v (i) is the i-th entry of V.

Proof. The proof is trivial and omitted due to page limit.
Please refer to textbooks on spectral analysis, say [3]. [J

With Lemma 1, we can use v to define a 2-coloring of
G, which gives us a pair of contexts:
St={i:v>0}, S ={i:v<0}. (16

Now consider the contextual random walk in G w.r.t.
(ST, 87), we have the following theorem:

Theorem 1 (The Stationary Expectation of a Contextual
Random Walk). Ifwe set pn = (pi1, - - -, jin) % to be

()
M VG

where v is a non-principal eigenvector of W associated
with the eigenvalue \, then Eq.(14) will hold. Hence
as defined in Eq.(17) is a stationary expectation of the
contextual random walk.

, Vi, 1 <14 <n, a7

Proof. First we need to show p; is a valid expectation
of Y!, i.e. it should be achievable under proper initial
conditions. Specifically, let

p(Xt = i, X0 € Sty = 251 V(I - et
0 ieS
and
0 ieSt
pX'=i,X"eST) =< 4 cg- (19
Svol !

where (ST,S57) are defined after Eq.(16). The initial
probabilities in Eq.(18) and (19) are valid because:

> (X' =i,X0€ 8T +pX =i,X° € §7))

i=1

(p(X'=14,X2€ M) +p(X' =4,X% € §7))

(p(X'=14,X2€ M) +p(X' =4,X € §7))
€S~
=Y pX'=iX2esN)+ Y pX'=iX'€Ss)
i€S+ €S
_ ZieS+ v (i) i - ZieS* v (i)
' Ej:l v(4)]

(20)
Following Eq.(18) and (19), the expectation of Y! be-

comes:
B(YY) =p(X! =4,X° € §*) - p(X! =i,X° € §7)
(i)
= <n o o Mo
Zj:l Iv(5)l



Vi, 1 <i<n.

Therefore p is a valid expectation of Y!, by assum-
ing the contextual random walk starts with probabilities
shown in Eq.(18) and (19). Next we show that it satis-
fies Eq.(14). Since v is an eigenvector associated with the
eigenvalue A, u as defined in Eq.(17) is also an eigenvec-
tor associated with A\, thus at any time ¢ > 0 we have

n
D winy = A,
j=1
which can be rewritten as

n
i =cC E Wig g,
j=1

where ¢ = 1/ is time-invariant. Hence Eq.(14) holds
and p is a stationary expectation of the contextual random
walk w.r.t. ST and S—. O

ey

Theorem 1 shows that each non-principal eigenvector
uniquely determines a 2-coloring of the graph, (ST, S57),
and its stationary expectation, .

3.2 Contextual Outlier and Stationary Ex-
pectation

With Theorem 1, we can now define the contextual outlier
score using the stationary expectation.

Definition 5 (Contextual Outlier Score). Given a random
walk graph associated with the transition matrix W, the
contextual outlier score of node i is |u;|, where p; is the
stationary expectation as defined in Eq.(17), w.rt. the
contexts (ST, 87) as defined in Eq.(16).

According to our definition, the contextual outlier score
of any node is always between 0 and 1. A large score
means that the node is highly expected to be visited by a
random walk starting from one of the two contexts, and is
thus a contextual inlier; a small score means that the node
is equally likely to be visited by the random walk starting
from either context, and is thus a contextual outlier.

Our contextual outlier score is time-invariant, and is
solely determined by the structure of the random walk
graph. Note that since the transition matrix W has n — 1
non-principal eigenvectors, thus we can potentially have

n — 1 pairs of contexts, and we can compute for every
node in the graph a contextual outlier score w.r.t. each
pair of contexts.

An important advantage of our contextual outlier score
is that it covers the global outlier score (based on the sta-
tionary distribution) as a special case. Formally, we have
the following corollary:

Corollary 1. The stationary distribution 7 is a special
case of stationary expectation, where X = 1 and ST =

{1,...,n}, S~ =0.
Proof. Let
v (i)

pX'=i,X' €8T = 25—, Vi,1<i<n.
Zj:l v(j)
(22)
Then 7 is a valid expectation of Y! and apparently we
have
T, = Z’wijﬂ'j. (23)
j=1
0

Corollary 1 says that we can re-interpret the global out-
lier score within our framework and compare it directly to
our contextual outlier score. Consequently, we can pro-
duce a unified ranked list containing both global outliers
and contextual outliers, ordered by their anomalousness.

3.3 Remarks

Choosing Contexts As we mentioned above, any
strictly positive transition matrix W has n — 1 non-
principal eigenvectors, each of which decides a pair of
contexts in the random walk graph. Consequently a node
would have different contextual outlier scores w.r.t. dif-
ferent contexts. However, in certain applications, we
are more interested in eigenvectors associated with larger
eigenvalues, especially the one associated with the second
largest eigenvalue, which is sometimes called the Fiedler
eigenvector. Previous work shows that the bi-partition of
arandom walk graph determined by the Fiedler eigenvec-
tor corresponds to the normalized Min-Cut of the graph
[18]. Specifically, following Eq.(16), the Fiedler eigen-
vector partitions the graph into two most separated sub-
graphs, which are more interesting to study because the



two most separated subgraphs normally imply the two
most obvious contexts in the random walk graph.

Extension of Our Model For the simplicity of formu-
lation, we have always assumed that the transition matrix
W is strictly positive, which makes G' a complete graph.
However, with some trivial modifications, our model can
be extended to more general cases. For example, let A be
an affinity graph, where a node is only connected to its
k nearest neighbors. As a result the random walk graph
will not be a complete graph, or not even connected. In
this case, assuming it has p connected components, we
can still construct the transition matrix W, and among its
n eigenvalues, we will have \y = ... = A\, = 1. The
nonzero entries in v; are the nodes belong to the i-th con-
nected component of the graph. Each of the (n — p) non-
principal eigenvectors will define a 2-coloring of one of
the p connected components. Therefore our model will
simply treat each connected component as a graph and
score outliers therein. Detailed formulation is omitted
from this paper due to space limit.

4 Algorithm

In this section, we discuss the implementation of our con-
textual outlier score in practice. We propose a hierarchi-
cal algorithm which iteratively partitions the data set until
the size of the subgraph is smaller than a user-specified
threshold «. Both global and contextual outliers are de-
tected and ranked during each iteration. The outline of
our algorithm is shown in Algorithm 1.

The input of our algorithm is a graph G and its associ-
ated transition matrix W. The transition matrix W is gen-
erated by normalizing a given similarity matrix A, where
a;; is the similarity between the i-th and j-th data in-
stances. The choice of similarity function is application-
dependent. In our experiments we show that promising
results are obtained using the Euclidean distance as well
as the inner product.

While we hierarchically partition the graph G into
smaller subgraphs, we use a queue Q to store the sub-
graphs to be partitioned. A user-specified threshold « is
used to decide when we stop to further partition a sub-
graph, since as the subgraph becomes smaller, it’s less
likely to have meaningful contexts within itself.

Algorithm 1: Hierarchical contextual outlier detec-
tion

e 3

10

11
12
13

14
15
16

17
18

19
20
21
22

Input: Random walk graph GG with transition matrix
W, queue Q, threshold «;

Output: A sorted list L, consisting of tuples as

defined in Eq.(24);

Q + 0; 0.enqueue (G,W);

L — (;

repeat

(G, W) «— Q.dequeue ();

if |G| > o then

Compute the (normalized) principal

eigenvector of W, which is u;

foreach i € G do
Add {i,G,u(i)} to L ; /* global
outliers =/
end
Compute the Fiedler eigenvector of W,
which is v;

St —{i:v(i)>0},5 « {i:v(i) <0};
foreachi ¢ ST do

Add {3, 5%, |v(i)/ 325_ v(j)[} to L;
/+ contextual outliers in
ST «/

end

foreachi € S~ do

Add {i, 57, |v(i)/ X2, v(j)|} to L3
/+ contextual outliers in
ST x/

end

Generate the transition matrices for ST and
S, respectively;

Q.enqueue (ST, Wt);

Q.enqueue (S—,W7);

end
until O is empty ;




The output of our algorithm is a ranked outlier list L,
whose entries are tuples in the form of

{instance, context, score}, 24)

where instance is the index of the data instance;

context is the context with respect to which that data

instance is examined; score is the outlier score of that

data instance. Note that one instance may appear more

than once in L because it has different outlier scores with
respect to different contexts.

Our algorithm involves computing the first and second
largest eigenvalues and eigenvectors of an n X n matrix,
where n is the number of data instances. Therefore its
complexity is dominated by the complexity of eigende-
composition. Note that if the transition matrix is gener-
ated from the k-nearest-neighbor graph, then it will be
very sparse when k is small, which leads to much faster
eigendecomposition.

S Empirical Study

5.1 Illustrative Example

We first illustrate that our method is able to find meaning-
ful contexts and contextual outliers therein. Fig. 2(a) is a
random headshot image. We converted this image into a
graph such that each node corresponds to a pixel in the im-
age; for each pixel we extracted its RGB color as well as
its position; then we built the transition matrix based on
the Euclidean distance between the color and spatial in-
formation of two nodes. Our method discovered two most
stable/meaningful contexts in the image: the face and the
background. As shown in Fig. 2(b), our method also iden-
tified contextual outliers in the face context, including
the glasses (dark), the eyes (dark), the cheeks (highlight),
the forehead (highlight), etc. This means that a random
walk starting on the face is unlikely to visit those areas
since they are locally different to their surroundings. As a
contrast, there is no significant outlier in the background
context, because the color of the background is uniform
(Fig. 2(c)). We can see that our method captured natural
contexts and scored contextual outliers therein in a way
that conforms well to human observation.

(b) Face

(a) Original image

(c) Background

Figure 2: Contexts and contextual outliers in a headshot
image. Dark pixels are outliers.

5.2 Quantitative Evaluation

5.2.1 Methodology

The quantitative evaluation of contextual outlier detec-
tion itself is an open problem because there is no com-
monly accepted ground truth for contextual outliers. An
easy way to generate such ground truth is to use synthetic
data, where we insert outliers based on human intuition
or domain knowledge. However, synthetic data could of-
ten differ too much from real data. Therefore, instead of
synthetic data, we generated ground truth using the class
labels of real-world data sets. Specifically, given a data
set with class labels, we first convert it into a random walk
graph. Then we discover two contexts within it using the
2-coloring indicated by the Fiedler eigenvector. Note that
this partition is equivalent to a normalized Min-Cut of the
graph. Next we label each context by the label of the ma-
jority class in that context. The minority class in each con-
text is then labeled as true contextual outliers. This can be
interpreted as the contextual outliers being the instances
most likely to contain class label noise. The ground truth
contexts are given by the class labels and contextual out-
liers are those instances most likely not to be of this class.
Note that due to the limited availability of ground truth
(labels), we did not let the threshold « to decide when the
iterative partition should end: the number of partition per-
formed was decided by the number of classes in the data
set.

We apply our method to rank contextual outliers in
each context, respectively, and compare our answer to
the ground truth. Hence we essentially turn the out-
lier detection problem into a retrieval problem, where



we can compute the precision, recall and f-score of our
method. Specifically, precision is the fraction of true con-
textual outliers among the contextual outliers found by
our method; recall is the fraction of contextual outliers
found by our method among all true contextual outliers;
and f-score is the average of precision and recall, defined
as f-score = 2 X precision x recall/(precision + recall).

We also implemented a baseline method for compari-
son. It uses the same contexts defined by the Fiedler vec-
tor. But instead of computing the contextual outlier score,
it ranks global outliers within each context, separately, us-
ing the stationary distribution based method as described
in [11]. Note that we chose this method instead of pop-
ular outlier detection techniques say LOF[1] because this
method adopted the same random walk graph model as
the one used by us, and it ranks outlier in a probabilistic
framework, thus is ready for direct comparison with our
algorithm.

5.2.2 Results and Analysis

The first data set we used was Iris from the UCI
Archive. It has 3 classes: setosa, versicolor and
virginica. Each class has 50 instances and each in-
stance has 4 attributes. For visualization purposes, we
projected the data set onto a 2-dimensional space, using
the standard PCA technique [4]. Then we converted the
data set into a transition matrix using Euclidean distance.

When we applied our method to discover contexts, we
noticed that the set osa class can be perfectly partitioned
from the remaining 2 classes, which means that there’s
no contextual outliers in these contexts (setosa vs. the
remaining two). Thus we removed setosa and contin-
ued to partition the rest of data (Fig. 3(a)). As a result,
the first context contained 54 instances, among which 43
were versicolor and 11 virginica. Thus the first
context was labeled as versicolor and had 11 true
contextual outliers. Similarly, the other context was la-
beled as virginica and had 7 true contextual outliers
(Fig. 3(b)).

We scored contextual outliers using our method (Con-
textual Outlier Detection, COD) as well as the baseline
method (Baseline), respectively. Both methods reported
the top-10 contextual outliers from each context. We can
clearly see in Fig. 3(c) that our method effectively iden-
tified most of the contextual outliers, while the baseline

—— Global score
= Contextual score
0.015¢
0.01f
0.005
0

20 40 60 80 100
Figure 5: Global and contextual outlier scores for all data
instances in the trimmed iris data set, sorted in ascend-
ing order.

method tended to report data points that are far away from
the majority of the entire data set, but ignored the true con-
textual outliers (Fig. 3(d)). In fact, as shown in Fig. 4, our
method consistently outperformed the baseline method in
terms of precision, recall and f-score, in both contexts.
More importantly, our method had high precision when
only reporting a small number of outliers, which is favor-
able in practice. Recall that our contextual outlier score
covers the global outlier score as a special case and thus
makes it possible to measure the interestingness of global
and contextual outliers in a unified framework. In Fig. 5,
we show both the global and contextual outlier scores for
all data instances in the i ris data set, which are sorted in
ascending order. We can see that even if we report global
outliers together with contextual outliers, our algorithm
would report 15 contextual outliers before reporting the
most probable global outlier.

We also chose the wine data set from the UCI Archive,
which has three classes. We converted the data set into a
random walk graph, also using Euclidean distance. The
normalized Min-Cut then partitioned the data set into two
parts, where one subgraph contained 59 instances from
Class 1, 34 from Class 2; the other subgraph contained 48
instances from Class 3, 37 from Class 2. Thus instances
from Class 2 became natural contextual outliers in both
subgraphs and were labeled as ground truth outliers. We
applied our method as well as the baseline method to rank
contextual outliers in both contexts. The result is shown
in Fig. 6, which is consistent to the result on the Iris
data set.
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Figure 3: Trimmed Iris data set with two classes (versicolor and virginica).
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To further justify the effectiveness and advantage of
our method, we used the 20 Newsgroups data set,
which consists of articles from 20 different topics, 1000
in each. Each time we extracted two classes from the
data set and constructed the random walk graph using in-
ner product distance. We tried random combinations of
classes and computed the average precision, recall and f-
score. Specifically, we chose four science related topics,
namely sci.crypt, sci.electronics, sci.med,
and sci.space. We enumerated all the 6 possible com-
binations between them. We report the average precision,
recall, and f-score at the point where the number of re-
ported outliers is equal to the number of true outliers, as
shown in Table 2. Outlier ratio is the ratio of true con-
textual outliers in the selected data set. Again, the results
showed that our method (left columns) performed twice
as good as the baseline method (right columns) in terms
of precision, recall, and f-score.

6 Related Work

Since the quality of identified contextual outliers heavily
relies on the meaningfulness of the specified context [10],
many existing approaches require a priori contextual in-
formation, which can be sequential [13], spatial [14, 9],
profile [5], statistical [16], and so forth. However, these
approaches won’t work well in the case where we don’t
have sufficient a priori information of the potential con-
texts.

Our work uses spectral analysis on a random walk
graph to simultaneously explore meaningful contexts and
contextual outliers therein. Spectral analysis has been
proved to be a powerful tool to study the structure of a
graph [3]. Its main application in data mining is spectral
clustering [12, 18], where the eigenvectors can be inter-
preted as a series of bi-partition of the graph. However,
most spectral clustering techniques use the eigenvectors
of graph Laplacian to partition the graph, whereas we use
transition matrix and have different interpretations of the
eigenvalues and eigenvectors.

Moonesinghe and Tan [11] introduced random walk
model for global outlier detection and used the princi-
pal eigenvector of the transition matrix as global outlier
score. The equivalence between the principal eigenvector
and the stationary distribution has also been used to rank

web pages and achieved tremendous success [8]. Skil-
licorn [15] used spectral graph analysis to explore anoma-
lous structure in a graph. Both of their methods were fo-
cused on outlier detection in a global point of view, and
did not address contextual outliers.

7 Conclusion and Future Work

Contextual outlier detection typically requires a context
to be specified a priori. In this work, we explore auto-
matic and unsupervised identification of contexts and the
contextual outliers therein. Our approach is applicable to
graph data as well as vector data if this data can be con-
verted to a graph where the edge weights correspond to
the similarity between points.

We identify contexts as a 2-coloring of a random walk
graph. We introduce the notion of stationary expectation,
which is a generalization of the stationary distribution, as
our contextual outlier score. For a give node its contex-
tual outlier score characterizes difference in the chance of
a random walk performed in the entire graph (not just the
subgraph) visiting the node given the walk starts from ei-
ther context. Our contextual outlier score is time-invariant
and is solely determined by the structure of the random
walk graph. Note that when we identify contexts, we do
not modify the graph structure in any way such as by re-
moving edges. Therefore, our approach is not the same
as performing a multi-way cut on the graph and then ap-
plying global outlier detection separately in each individ-
ual subgraph.

Our algorithm produces a ranked list of tuples like
{instance, context, score}. Note that an instance may ap-
pear multiple times in this list, but w.r.t. different contexts
and different contextual outlier scores. Our method also
covers the global outliers as a special case. We validate
the effectiveness of our method by empirical results on
real-world data. Our method consistently outperforms the
baseline method on different data sets.

Our next extension will be to look at time-evolving
graphs. This can essentially model data sets where the
points are not fixed but have a trajectory, or that graph
edges (e.g. social networks) evolve over time. To analyze
this more complex data we shall also explore multi-way
partitions of the graph that can discover multiple contexts
in a graph simultaneously.



Table 2: Results on 20 Newsgroups data (COD vs. Baseline)

Selected classes Outlier ratio Precision Recall F-score

crypt & electr. .0440 5463 | 2720 | .2445 | .1325 | .3091 | .1694
crypt & med .0155 5202 | 2759 | 2814 | .1624 | .3412 | .1939
crypt & space .0110 3412 | .2239 | 1600 | .1168 | .1991 | .1466
electr. & med 2745 5085 | .4395 | 2547 | 2112 | .3131 | .2624
electr. & space .0910 5319 | 2601 | .2659 | .1143 | .3271 | .1430
med & space .0215 4035 | 2440 | .1945 | .1015 | .2414 | .1282
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