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Abstract—In many real-world applications we can model
the data as a graph with each node being an instance and
the edges indicating a degree of similarity. Side information
is often available in the form of labels for a small subset of
instance, which gives rise to two problem settings and types
of algorithm. In label propagation style algorithms, the known
labels are propagated to the unlabeled nodes. In constrained
clustering style algorithms, known labels are first converted
to pairwise constraints (Must-Link and Cannot-Link), then a
constrained cut is computed as a tradeoff between minimizing
the cut cost and maximizing the constraint satisfaction. Both
techniques are evaluated by their ability to recover the ground
truth labeling, i.e. by 0/1 loss function either directly on the
labels or on the pairwise relations generated from labels. These
two fields have developed separately, but in this paper, we show
that they are indeed related. This insight allows us to propose
a novel way to generate constraints from propagated labels,
which our empirical study shows outperforms and is more
stable than state-of-the-art label propagation and constrained
spectral clustering algorithms.

Keywords-label propagation; constrained spectral clustering;
semi-supervised learning

I. INTRODUCTION

A. Motivation

A common approach to data mining and machine learning
is take a set of instances and construct a corresponding graph
where each node is an instance and the edge weight between
two nodes is their similarity. A recent innovation has been to
add labels to a small set of nodes in the graph. This setting
gives rise to semi-supervised learning, which studies how
to use this side information to label the unlabeled nodes.
Depending on how the side information is encoded, there
are two popular categories of approaches to achieve this:

1) Label Propagation: Side information is kept in the
form of node labels. The known labels are propagated
to the unlabeled nodes. The result is usually evaluated
by 0/1 loss function (accuracy) directly on the labels.

2) Constrained Spectral Clustering: Side information is
converted to pairwise constraints. A cut is computed
by minimizing the cost of the cut while maximizing
the constraint satisfaction. The result is usually eval-
uated by 0/1 loss functions, e.g. Rand index, on the
pairwise relations generated from labels.

Both categories have been proven effective in their respec-
tive problem domains, but the relation between the two has

not been explored [1], [2]. Exploring this topic gives rise to
some interesting questions:
• Given a set of labels as side information, should we use

label propagation, or should we first convert the labels
into pairwise constraints (which is common practice for
many constrained clustering algorithms [3]), then use
constrained spectral clustering?

• Since labels are more expressive than pairwise con-
straints (a arbitrary set of pairwise constraints may not
correspond to a unique labeling), is constrained spectral
clustering inferior to label propagation?

• In the active learning setting, where we have the chance
to query an oracle for ground truth, should we query
labels (more expressive but difficult to acquire) or
constraints (less expressive but easy to acquire)?

To address these and other questions, we need a unified view
of label propagation and constrained spectral clustering.

B. Our Contribution
In this work, we explore the relation between label

propagation and constrained spectral clustering. We unify the
two areas by presenting a new framework called stationary
label propagation. This framework gives us new insights
into how side information contributes to recovering the
ground truth labeling. It also enables us to propose a novel
constraint construction technique which can benefit existing
constrained spectral clustering algorithms.

Our contributions are:
• We establish equivalence between label propagation

and constrained spectral clustering. Constrained spec-
tral clustering using a non-negative and positive semi-
definite constraint matrix is equivalent to finding a sta-
tionary labeling under label propagation (Section IV).

• We propose a novel algorithm that combines label
propagation and constrained spectral clustering. It uses
propagated labels to generate a (better) constraint ma-
trix, and then uses the constraint matrix for constrained
spectral clustering (Section V).

• We use empirical results to verify our claims, and
demonstrates the advantage of the newly proposed
algorithm over a variety of techniques. (Section VI) In
particular we show that not only is our method more
accurate (Fig. 4), but also more stable (Fig. 5). This
addresses the stability issue of the generated constraint
sets raised by Davidson et al. [4].



Table I
TABLE OF NOTATIONS

Notation Meaning
G An undirected (weighted) graph
A The affinity matrix
D The degree matrix
I The identity matrix
L̄ The normalized graph Laplacian
Q̄ The normalized constraint matrix
P The transition matrix
N The number of nodes
y, f The class/cluster indicator vector

II. RELATED WORK AND PRELIMINARIES

In this section, we give a brief review of existing work on
label propagation and constrained spectral clustering. The
notations used throughout the remainder of the paper are
summarized in Table I.

A. Label Propagation

The idea of label propagation is that given a graph and
a small number of nodes with known labels, we want to
find a labeling of all nodes in the graph such that 1) the
labeling is smooth over the graph and 2) the labels that are
given a priori are not changed, or by too much. We focus on
two popular label propagation techniques, namely Gaussian
Fields Harmonic Function (GFHF) [5], [6] and Learning
with Local and Global Consistency (LLGC) [7].

GFHF: Given a graph G of N nodes, whose affinity
matrix is A. We assume the first N1 nodes are labeled
and the remaining N2 = N − N1 nodes are unlabeled.
Let yl ∈ RN1 be the known labels1. P = D−1A is the
transition matrix of the graph, where D is the degree matrix.
We partition P into blocks

P =

[
Pll Plu
Pul Puu

]
so that Pul is the transition probability from labeled nodes
to unlabeled nodes, Puu is the transition probability between
unlabeled nodes. GFHF considers the following iterative
propagation rule:

yt+1 =

[
yt+1
l

yt+1
u

]
=

[
I 0
Pul Puu

] [
ytl
ytu

]
. (1)

An illustration of the GFHF model is shown in Fig. 1.
From Eq.(1) we can see that the given labels yl will not

be changed during the propagation. Zhu and Ghahramani [6]
showed that yt converges to

f =

[
fl
fu

]
= lim
t→∞

yt =

[
yl

(I − Puu)−1Pulyl

]
, (2)

1For the simplicity of notations, for now we limit ourselves to the 2-
class/bi-partition problem. We use binary encoding for the class/cluster
indicator vector, i.e. y ∈ {−1, 0,+1}, where 0 means unknown. After
relaxation, y ∈ RN and 0 is used as the boundary of the two classes.

Figure 1. An illustration of the GFHF propagation model (N = 5, N1 =
1). Node 4 is labeled. The propagation from 4 to 3 and 5 is governed by
Pul (directed edges); the propagation between 1, 2, and 3 is governed by
Puu (undirected edges).

Figure 2. An illustration of the LLGC propagation model (N = 5). Node
4 is labeled. The propagation between nodes is governed by Āij (all edges
are undirected).

Zhu et al. [5] pointed out that f in Eq.(2) is also the solution
to the following regularization framework:

argmin
f∈RN

1

2

∑
i,j

Aij(fi − fj)2 +∞
N−1∑
i=1

(fi − yi)2
 . (3)

LLGC: A key difference between LLGC and GFHF is
that LLGC allows the initially given labels to be changed
during the propagation process. Assume we have a graph
G whose affinity matrix is A. Ā = D−1/2AD−1/2 is the
normalized affinity matrix. Let y0 ∈ RN be the initial
labeling. LLGC considers the following iterative propagation
rule:

yt+1 = αĀyt + (1− α)y0, (4)

α ∈ (0, 1). An illustration of the LLGC model is shown in
Fig. 2.

Zhou el al. [7] showed that yt converges to:

f = lim
t→∞

yt = (1− α)(I − αĀ)−1y0. (5)

f is also the solution to the following regularization frame-
work:

argmin
f∈RN

1

2

∑
i,j

Aij(
fi√
Dii

− fj√
Djj

)2 + µ
∑
i

(fi − yi)2
 ,

(6)
where µ = 1−α

α ∈ (0,∞) is a regularizer parameter.
GFHF is summarized in Algorithm 1. LLGC is summa-

rized in Algorithm 2.



Algorithm 1: Gaussian Fields Harmonic Function [5]
Input: Initial labeling yl, affinity matrix A, degree

matrix D;
Output: f ;

1 P ← D−1A;
2 fu ← (I − Puu)−1Pulyl;

3 return f =

[
yl
fu

]
;

Algorithm 2: Learning with Local and Global Consis-
tency [7]

Input: Initial labeling y, affinity matrix A, degree
matrix D, α ∈ (0, 1);

Output: f ;
1 Ā← D−1/2AD−1/2;
2 f ← (I − αĀ)−1y;
3 return f ;

B. Constrained Spectral Clustering

The idea of constrained spectral clustering is that given
a graph G and some pairwise constraints, we want to find
a partition f that maximizes constraint satisfaction while
minimizing the cost on G.

In particular, Wang and Davidson [8] proposed the follow-
ing quadratic formulation for constrained spectral clustering:

argmin
f∈RN

fT L̄f,

s.t. fT Q̄f ≥ β,
fT f = 1, f ⊥ D1/21.

(7)

L̄ = I−Ā is the normalized graph Laplacian. Q̄ ∈ RN×N is
the normalized constraint matrix. Generally speaking, a large
positive Q̄ij indicates that node i and j should belong to the
same cluster, and conversely large negative entries indicate
they should be in different clusters. fT L̄f is the cost of the
cut f ; fT Q̄f measures how well f satisfies constraints in Q̄.
β is the threshold that lower bounds constraint satisfaction.
To solve Eq.(7), [8] first solves the following generalized
eigenvalue problem:

L̄f = λ(Q̄− βI)f. (8)

Then they pick the eigenvectors associated with non-negative
eigenvalues, i.e. these eigenvectors satisfy the constraint
fT Q̄f ≥ β. Among the non-negative eigenvectors, the one
that minimizes fT L̄f is the solution to Eq.(7). The algorithm
is summarized in Algorithm 3.

C. Other Related Work

Constrained clustering has been thoroughly studied in the
literature [3]. It encodes side information in the form of
pairwise constraints. If the side information is originally

Algorithm 3: Constrained Spectral Clustering [8]

Input: Affinity matrix A, degree matrix D, β;
Output: f ;

1 L̄← I −D−1/2AD−1/2;
2 Solve the generalized eigenvalue problem
L̄f = λ(Q̄− βI)f ;

3 Let F be the set of all generalized eigenvectors;
4 foreach f ∈ F do
5 f ← f/‖f‖;
6 if fT Q̄f < β then
7 Remove f from F ;
8 end
9 end

10 f ← argminf∈F f
T L̄f ;

11 return f ;

provided as labels, most of the existing techniques first
convert them into Must-Link and Cannot-Link constraints
by: {

Must-Link(i, j) i and j have the same label,
Cannot-Link(i, j) i and j have different labels.

To apply the pairwise constraints to graph partition, existing
methods either modify the affinity matrix directly [9]–[11],
or constrain the underlying eigenspace [12]–[14]. In this
work, we focus on the quadratic formulation for constrained
spectral clustering proposed in [8] for two reasons: 1) the
quadratic formulation matches nicely with the regulariza-
tion framework for label propagation (referred to as the
Generalized Label Propagation framework in [1]); 2) unlike
other algorithms, the CSC algorithm in [8] can handle
large amount of soft constraints, which is convenient for
constraints generated from propagated labels. That being
said, the equivalence we are to establish in Section IV
is not limited to the formulation in [8], but also valid
for other constrained spectral clustering formulation with a
regularization framework.

Previous work [15]–[17] studied how to use graph parti-
tion to help propagating labels from labeled data to unla-
beled data. Their problem setting is fundamentally different
from ours. The effectiveness of their algorithms relies on
the assumption that the graph partition is coherent with the
node labels (often referred to as the cluster assumption).
More specifically, it is assumed that 1) adjacent nodes in the
graph are likely to have the same label; 2) nodes on the same
structure (e.g. a well-connected subgraph) are likely to have
the same label. On the other hand, the work described in this
paper assumes that the side information (be it node labels or
pairwise constraints) contradicts the unsupervised partition
of the graph and is thus used to help finding a different
partition that better conforms to the underlying ground truth.



III. AN OVERVIEW OF OUR MAIN RESULTS

Here we overview the main results of this work and
discuss the relationship between them:

1) We introduce the notion of Stationary label propaga-
tion in Definition 1, Section IV-A. It can be viewed as
label propagation from a latent graph to an observed
graph (see Fig. 3 for an example).

2) The equivalence between CSC and stationary label
propagation is established in Claim 1, Section IV-B.
It states that the labeling derived from the constrained
cut found by CSC is a stationary labeling, where PGH
in Fig. 3 is the constraint matrix Q̄ and PGG is the
affinity matrix Ā. This insight provides us with better
understanding of how and why constrained spectral
clustering works (Section IV-C). In particular, any
labeling that violates the constraints will become non-
stationary under propagation.

3) LLGC is a special case of our stationary label
propagation framework, where PGH is Fig. 3 is an
identity matrix (Section IV-D).

4) Given the relationship between label propagation and
CSC established above, we propose a novel con-
straint construction algorithm. This algorithm first
propagates the labels, and then generate a constraint
matrix which is a Gaussian kernel based on the prop-
agated labels (Algorithm 4, Section V).

5) Empirical evaluation of the new algorithm with
comparison to CSC, GFHF, and LLGC is presented
in Section VI. Experimental results indicate that the
new algorithm yields better (Fig. 4) and more stable
(Fig. 5) results when given the same side information.

IV. THE EQUIVALENCE BETWEEN LABEL PROPAGATION
AND CONSTRAINED SPECTRAL CLUSTERING

In this section, we explore the relation between label
propagation and constrained spectral clustering. We propose
a novel concept called stationary label propagation, based
on a variation of the GFHF propagation framework. This
new concept enables us to give the CSC algorithm in [8]
a label propagation interpretation. We also define stationary
label propagation under the LLGC framework.

A. Stationary Label Propagation: A Variation of GFHF
Given a graph G with N nodes, all unlabeled. To establish

the label propagation process, we construct a label-bearing
latent graph H , whose nodes have a one-to-one correspon-
dence to the nodes of G. H has no in-graph edges, which
means its affinity matrix is I . There are edges from H to G,
encoded by the transition matrix PGH . The edges between
the nodes of G are encoded by the transition matrix PGG.
Fig. 3 is an illustration of our model.

Under the GFHF propagation rule (Eq.(1)), we have:

yt+1 =

[
yt+1
H

yt+1
G

]
=

[
I 0

PGH PGG

]
yt. (9)

Figure 3. An illustration of our stationary label propagation model (N =
5). G is the unlabeled graph we want to propagate labels to. H is a latent
node-bearing graph, whose node set matches the node set of G. The label
propagation inside G is governed by the transition matrix PGG (undirected
edges). The propagation from H to G is governed by the transition matrix
PGH (directed edges).

Note that ytH , y
t
G ∈ RN , I, PGH , PGG ∈ RN×N . From [6]

we know that the labeling of graph G, which is ytG in Eq.(9),
converges to:

fG = lim
t→∞

ytG = (I − PGG)−1PGHyH , (10)

The traditional GFHF framework assumes that yH is given
and we compute fG from yH using Eq.(10). However, we
now propose a new setting for label propagation, where we
do not have a set of known labels to start with, i.e. yH is
unknown. Instead, we want to find a labeling f which will
not change after the propagation has converged2, and we call
f a stationary labeling under propagation. Formally:

Definition 1 (Stationary Label Propagation). Let f ∈ RN

be a labeling of the shared node set of graph G and H .
Under the propagation rule described in Eq.(9), we call f
a stationary labeling if

f = λ(I − PGG)−1PGHf, (11)

where λ 6= 0 is a constant.

Intuitively speaking, a stationary labeling f is such a
labeling on H that after propagation, the labeling on G
will be the same as H . Recall the stationary distribution
of a transition matrix P reflects the underlying structure of
a random walk graph. Similarly, the stationary labeling of
PGG and PGH reflects the underlying structure of G and the
way labels are propagated from the latent graph H to G.

By re-organizing Eq.(11), we can see that given PGG and
PGH , their stationary labeling f can be computed by solving
the following generalized eigenvalue problem:

(I − PGG)f = λPGHf,

2Since the nodes of G and H have one-to-one correspondence, f is a
labeling of both G and H .



excluding the eigenvector associated with λ = 0. When
I − PGG and PGH are both positive semi-definite and
Hermitian matrices, under some mild conditions, above
generalized eigenvalue problem guarantees to have N real
eigenpairs [18].

B. CSC and Stationary Label Propagation

Above we proposed the concept of stationary label propa-
gation as a variation of the GFHF label propagation scheme.
Now we establish the equivalence between CSC and station-
ary label propagation.

Consider the propagation matrix in Eq.(9). We use Q̄ to
replace PGH and Ā to replace PGG. Ā = D−1/2AD−1/2

is the normalized affinity matrix of G, thus it is non-
negative and positive semi-definite. Therefore it can (with
proper normalization) serve as the transition matrix within
G. Similarly, we require the constraint matrix Q in the CSC
framework (Eq.(7)) to be non-negative and positive semi-
definite. As a result, Q̄ = D−1/2QD−1/2 is also non-
negative and positive semi-definite, and it serves as the
transitive matrix from H to G.

With the new symbols, we rewrite Eq.(11) as follows:

f = λ(I − Ā)−1Q̄f.

The stationary labeling f is now the eigenvector of the
generalized eigenvalue problem

(I − Ā)f = λQ̄f.

Since L̄ = I − Ā (L̄ is called the normalized graph
Laplacian), we have

L̄f = λQ̄f. (12)

Comparing Eq.(12) to Eq.(8), we can see that they are
equivalent when β = 0. Note that when β = 0, since Q̄ is
now positive semi-definite, the constraint in CSC is trivially
satisfied, i.e.

fT Q̄f ≥ β = 0,∀f.

Hence we have:

Claim 1. With β set to 0, CSC as formulated in Eq.(7) finds
all the stationary labeling f for given Ā and Q̄, among
which the one with the lowest cost on G will be chosen as
the solution to CSC.

Intuitively speaking, the constraint matrix Q̄ in CSC
regulates how the labels are propagated from the latent graph
H to G. CSC uses the threshold β to rule out the stationary
labelings that do not fit Q̄ well enough. The solution to CSC
is then chosen by graph G from the qualified labelings based
on the cost function fT L̄f .

C. Why Constrained Spectral Clustering Works: A Label
Propagation Interpretation

The equivalence between CSC and stationary label prop-
agation provides us with a new interpretation to why and
how the CSC algorithm works. Assume we have a graph
G. According to some ground truth, node i and j should
belong to the same cluster. However, in graph G, node i and
j are not connected. As a result, if we cut G without any
side information, node i and j may be incorrectly assigned
to different clusters. Now we assume we have a constraint
matrix Q, where Qij = 1. It encodes the side information
that node i and j should belong to the same cluster.
Under the stationary label propagation framework, Qij = 1
specifies that node i in the latent graph H will propagate
its label to node j in graph G. As a result, an incorrect
cut f where fi 6= fj will become non-stationary under the
propagation. Instead, the constrained spectral clustering will
tend to find such an f that fi = fj .

Take Fig. 3 for example, if we cut graph G by itself,
the partition will be {1, 2, 3|4, 5}. However, the constraint
matrix (PGH in the figure) specifies that node 3 and 4 should
have the same label. As a result, the constrained cut will
become {1, 2|3, 4, 5}.

D. LLGC and Stationary Label Propagation

Under the LLGC propagation scheme, the propagated
labels converges to

f = (1− α)(I − αĀ)−1y0,

where α ∈ (0, 1). The stationary labeling under LLGC is:

f = λ(I − αĀ)−1f, (13)

where λ 6= 0 (the term 1− α is absorbed by λ).
Comparing Eq.(13) to Eq.(11), we have:

Claim 2. Stationary label propagation under the LLGC
framework is a special case of Definition 1, where PGG =
αĀ and PGH = I .

In other words, when propagating labels from the latent
graph H to graph G under the LLGC framework, the label
of node i in H will only be propagated to the corresponding
node i in graph G.

Combining Claim 1 and 2, we can further establish the
equivalence between CSC and LLGC:

Claim 3. With β set to 0 and Q̄ set to I (i.e. a zero-
knowledge constraint matrix), CSC finds all the stationary
labeling for given αĀ under the LLGC framework, among
which the one with the lowest cost will be chosen as the
solution to CSC.



E. Remarks

We introduced above the concept of stationary label
propagation as a variation of the GFHF label propagation
framework. However, it is important to point out several
fundamental differences between the two concepts.

The input of label propagation is a graph G with some
known node labels yl. The input of of stationary label
propagation is a graph G and the transition matrix from
a latent graph H to G. There are no known labels for sta-
tionary label propagation. Rather, we compute the stationary
labeling based on the intrinsic characteristics of PGG and
PGH (see Definition 1). The output of label propagation is
a labeling y, which changes with the input yl. The output
of stationary label propagation is a set of stationary labeling
{f}, which only depends on PGG and PGH .

V. GENERATING PAIRWISE CONSTRAINTS VIA LABEL
PROPAGATION

Inspired by the equivalence between label propagation and
constrained spectral clustering, in this section we propose a
novel algorithm that combines the two techniques for semi-
supervised graph partition (summarized in Algorithm 4).

Assume we have a graph G with some nodes labeled.
One way to construct a constraint matrix Q from the known
labels is as follows:

Qij =

{
1, i and j have the same label
0, otherwise

. (14)

The problem with this encoding scheme is that it does not
encode the Cannot-Link relation, i.e. when node i and j have
different labels, Qij is set to 0, which does not distinguish
from the case where the labels of node i and j are unknown.
In the original CSC paper [8], Cannot-Link is encoded as
Qij = −1. However, in that case, Q will no longer be non-
negative and positive semi-definite, and will lose the label
propagation interpretation we established in Claim 1.

To overcome this, we propose a new encoding scheme.
First we propagate the known labels yl to the entire graph
using the GFHF method (see Algorithm 1). Let y ∈ RN be
the propagated labels. Then Q can be encoded as follows:

Qij = exp(−‖yi − yj‖
2

2σ2
). (15)

It is easy to see that Q is now non-negative and positive
semi-definite. Since y can be viewed as the semi-supervised
embedding of the nodes, Q is essentially the similarity
matrix (or a kernel) for the nodes under the new embedding.

We choose GFHF for the label propagation step instead
of LLGC since in practice the side information is often from
domain experts or ground truth. We do not want them to be
changed during the propagation process.

After constructing Q, we normalize it to get Q̄. Then we
solve the generalized eigenvalue problem in Eq.(12) to get

Algorithm 4: CSC+GFHF
Input: Initial labeling yl, affinity matrix A, degree

matrix D;
Output: f ;

1 P ← D−1A;
2 yu ← (I − Puu)−1Pulyl;

3 y ←
[
yl
yu

]
;

4 for i = 1 to N do
5 for j = 1 to N do
6 Qij ← exp(−‖yi−yj‖

2

2σ2 );
7 end
8 end
9 DQ ← diag(

∑N
i=1Qi1, . . . ,

∑N
i=1QiN );

10 Q̄← D
−1/2
Q QD

−1/2
Q ;

11 L̄← I −D−1/2AD−1/2;
12 Solve the generalized eigenvalue problem L̄f = λQ̄f ;
13 Let F be the set of all generalized eigenvectors;
14 Remove the generalized eigenvector associated with
λ = 0 from F ;

15 f ← argmaxf∈F f
T Q̄f ;

16 return f ;

all the stationary labelings. We pick the one that maximally
satisfies the given constraints:

f∗ = argmax
f

fT Q̄f.

To derive a bi-partition from f∗, we simply assign nodes
corresponding to the positive entries in f∗ to one cluster
and negative entries the other. Notice that our algorithm,
unlike the original CSC algorithm in [8], is parameter-free.

Extension to K-Way Partition: For the simplicity of
notations, in this paper we assumed that the graph has 2
classes/clusters. It is straightforward to extend our formu-
lation and algorithm to K-way case. To extend the label
propagation step to K-class, we can use the following
encoding scheme: Let y ∈ RN×K , and

yij =

{
1 node i belongs to class/cluster j
0 otherwise

.

The way we construct Q from y in Eq.(15) remains the
same, except that yi is now a 1×K row vector. To extend
the constrained spectral clustering step to K-way partition,
instead of taking the top-1 eigenvector that maximizes
fT Q̄f , we take the top-(K − 1) eigenvectors:

argmax
fi

K−1∑
i=1

fTi Q̄fi.

Let F be the N×(K−1) matrix whose columns are the fi’s.
A K-way partition can be derived by performing K-means
on the rows of F [19].



Table II
THE UCI BENCHMARKS

Identifier #Instances #Attributes
Hepatitis 80 19

Iris 100 4
Wine 119 13
Glass 214 9

Ionosphere 351 34
Breast Cancer 569 30

VI. EMPIRICAL STUDY

Our empirical study aims to answer the following ques-
tions:

1) Does label propagation dominate constrained spectral
clustering or vice versa?

2) How does our new algorithm compare to state-of-the-
art label propagation and constrained spectral cluster-
ing techniques in terms of recovering the ground truth
partition?

3) Does our new algorithm yield more stable results, i.e.
is it able to generate more helpful constraint set from
given labels?

A. Experiment Setup

We used six different UCI benchmark dataset, namely
Hepatitis, Iris, Wine, Glass, Ionosphere and Breast Cancer
Wisconsin (Diagnostic) [20] (see Table II). We removed the
SETOSA class from the Iris data set, which is the class that is
well separated from the other two. For the same reason we
removed Class 3 from the Wine data set. We also removed
data instances with missing values. After preprocessing, all
datasets have two classes with ground truth labels. We used
the RBF kernel to construct the infinity matrix of the graph:

Aij = exp(−‖xi − xj‖2

2σ2
),

where xi is the feature vector of the i-th instance, i =
1, . . . , N .

We implemented five different techniques for our experi-
ments:
• Spectral: Spectral clustering [21] on the graph without

side information. This serves as the baseline perfor-
mance.

• GFHF: The Gaussian fields harmonic function algo-
rithm for label propagation [5] (Algorithm 1). We
propagate the known labels (yl) on the graph, and
partition the graph based on the propagated labels (f )
by assigning nodes with positive label values to one
cluster and negative the other.

• LLGC: The learning with global and local consistency
algorithm for label propagation [7] (Algorithm 2). The
regularization parameter in LLGC was set to α = 0.5
(which means the two terms in Eq.(6) are equally
weighted) throughout the experiments.

• CSC: The original constrained spectral clustering al-
gorithm in [8]. The constraint matrix was generated
directly from given labels where Qij = 1 if the two
nodes have the same label, −1 if the two nodes have
different labels, 0 otherwise.

• CSC+GFHF: The constrained spectral clustering algo-
rithm where the constraint matrix is constructed from
propagated labels following Eq.(15) (Algorithm 4).

For each trial, we randomly revealed a subset of ground
truth labels as side information. We applied the above
algorithms to find a bi-partition, using the given label set.
We evaluated the clustering results against the ground truth
labeling using adjusted Rand index [22]. Adjust Rand index
equal to 0 means the clustering is as good as a random
partition and 1 means the clustering perfectly matches the
ground truth. This measure is considered more informative
when the sizes of the classes are imbalance. For each dataset,
we varied the size of the known label set from 5% to 50%
of the total size. We randomly sampled 100 different label
sets for each size.

B. Results and Analysis

The accuracy of our algorithm: We report the average
adjusted Rand index of all five techniques on the UCI
benchmark datasets in Fig. 4. The x-axis is the number
of known labels. Existing constrained spectral clustering
(CSC) and label propagation (GFHF and LLGC) algorithms
managed to improve over the baseline method (Spectral)
only on three of six datasets. They failed to find a better
partition on Wine, Glass, and Breast Cancer, even with a
large number of known labels. In contrast, our approach
(CSC+GFHF) was able to outperform the baseline method
on all six datasets with a small number of labels. More
importantly, our algorithm consistently outperformed its
competitors (CSC, GFHF and LLGC) on all datasets.

The stability of our algorithm: To examine the stability
of our algorithm as compared to existing approaches, we
computed their performance gain over the baseline method
(Spectral). Specifically, we counted out of 100 random
trials how many times the four techniques (GFHF, LLGC,
CSC, and CSC+GFHF) can outperform the baseline, respec-
tively. Note that previous work on constrained clustering [4]
showed that a given constraint set could contribute either
positively or negatively to the clustering, therefore being able
to generate constraints that are more likely to be helpful is
crucial in practice. In Fig. 5 we report the percentage of
trials with positive performance gain for all four techniques.
We can see that CSC+GFHF consistently outperformed its
competitors on all but one dataset (all four techniques per-
formed comparably on the Hepatitis dataset). It is especially
the case when we start with a very small number of labels,
which means the constraint matrix for CSC is very sparse
and unstable. Label propagation mitigated the problem by
constructing a dense constraint matrix (CSC+GFHF). As



the number of known labels increased, the results of the
two algorithms eventually converged. Fig. 5 suggests that
the label propagation step indeed helped to generate better
constraint sets.

Comparing existing label propagation and constrained
spectral clustering algorithms: From both Fig. 4 and 5
we can see that CSC generated very similar, sometimes
identical, results to the two label propagation algorithms
over the six datasets, LLGC in particular. This observation
supported the equivalence we established between these
approaches.

VII. CONCLUSION AND FUTURE WORK

In this work we explored the relationship between two
popular semi-supervised graph learning techniques: label
propagation, which uses node labels as side information,
and constrained spectral clustering, which uses pairwise con-
straints as side information. We related the two approaches
by introducing a new framework called stationary label
propagation, under which either nodes labels or pairwise
constraints can be encoded as the transition matrix from a
latent graph to the observed unlabeled graph. A stationary
labeling will then simultaneously capture the characteristics
of the observed graph and the side information. Inspired by
this new insight, we propose a new constraint construction
algorithm. Instead of generating pairwise constraints directly
from the given labels, our algorithm generates constraints
from a kernel based on the propagated labels. Empirical
results suggested that our algorithm is more accurate at re-
covering the ground truth labeling than state-of-the-art label
propagation and constrained spectral clustering algorithms.
More importantly, its performance is also more stable over
randomly chosen label sets.

Given the promising results, in the future we wish to study
active learning settings where labels and pairwise constraints
are queried collectively in order to maximize the efficiency.
The label propagation interpretation to constrained spec-
tral clustering can also facilitate the study of the utility
of the constraints given to various constrained clustering
algorithms. This will help practitioners to build algorithms
with more predictable outcomes.
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Figure 4. The average adjusted Rand index over 100 randomly chosen label sets of varying sizes. (UCI benchmarks)
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Figure 5. The percentage of randomly chosen label sets that lead to positive performance gain with respect to the spectral clustering baseline. (UCI
benchmarks)


