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Notation

S: set of training data

s : i point in the training set

L: cluster labels on S

l; : cluster label o§

C;: centroid of" cluster

ML : set of must-link constraints
CL : set of cannot-link constraints

« TC: the transitive closure

CC, : a connected component (sub-graph)

~
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Given a set of instancé&s
Find the “best” set partition

S={s0S0..5

Multitude of algorithms that define “best” differently

— K-Means

— Mixture Models

— Self Organized Maps

Aim is to find theunderlying structure/patterns/groups in

the data.

otivating Example in Non-Hierarchic
Clustering

/
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/ Clustering Example (Number of\

Height
A

Clusters=2)
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/ Vertical Clusters \

Height
A

.
S
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K-Means Clustering

» Standard iterative partitional clustering algorithm

* Findsk representative centroids in the dataset

— Locally minimizes the sum of distance (e.g., sqdduclidean
distance) between the data points and their caoreipg cluster

centroids
2..0sP(s.Cy)

\\ASimpIified Form of this Problem is intractaljfearey et al.’ﬂ/
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K-Means Algorithm

Randomly assign each instance to a cluster
Calculate the centroids for each cluster

For each instance
Calculate the distance to each cluster center
Assign the instance to the closest cluster

Goto 2 until distortion is small
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K Means Example (k=2)
Heigh Initialize Means
A
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K Means Example
Assign Points to Clusters
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K Means Example

Re-assign Points to Clusters

A
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K Means Example
Re-assign Points to Clusters
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K Means Example
Re-estimate Means and Converge
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/ K Means Example \

Convergence

A

.
S
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/ A Few Issues With K-Means Has\

Spawned Lots of Research

» Algorithm is typically restarted many times from random
starting centroids
— Due to sensitivity to initial centroids
« i.e. Intelligently setting initial centroid8radley & Fayyad 2000]
» Convergence time of algorithm can be slow
— Use KD-Trees to accelerate algorithislleg and Moore 1999]
» Clustering achieved may minimize VQE but has little
practical value

* Which distance function should | use?

— L1, L2, Mahalanobis etc.
» Constraints can help address these problems and more ..
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Automatic Lane Finding from GPS tracgs

[Wagstaff et al. '01]

Lane-level
navigation (e.g.,
advance notification
for taking exits)

Lane-keeping
suggestions (e.g., lane
departure warning)

» Constraints inferred from trace-contiguity (ML) & m ax-separation (CL)

© Basu and Davidson 2005 Clustering with Constraints 21

Mining GPS Traces (Schroedl et’ al)\

» Instances are represented bysthglocation on the road. We also know when a car
changes lane, but not what lane to.

e True clusters are very elongated and horizontdiggned with the lane central lines

* Regular k-means performs poorly on this problestead finding spherical clusters.

n £ 0o 1501 200 260 ann as

Figuwe 9. k-means output for data s2t 6. k = 4, with nearest clusters marked with different symbols.

22
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Unconstrained K-Means Can Provide
Not Useful Clusters

: : Only
identification [ N\ significant
for Aibo Taa 3 clusters

robots ’ shown
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/ Why Learn Distance functions?
r_‘ab‘“"\“
Nearest L »3._;3;-0 :
Neighbor g = o7

Image retrieval

Given a query image
return the K-nearest
neighbors of the
image from the
database.

Euclidean distance on
Color Coherence
Vectors returns both
images as similar to
query image
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Basic Instance Level Constraints

« Historically, instance level constraints motivated by the
availability of labeled data
— i.e., Much unlabeled data and a little labeled datilable
generally as constraints, e.g., in web page clinster
* This knowledge can be encapsulated using instance level
constraintgwagstaff et al. '01]
— Must-Link Constraints
* A pair of pointss ands (i # j) must be assigned to the same cluster.
— Cannot-Link Constraints
* A pair of pointss ands; (i # j) can not be assigned to the same cluster.

© Basu and Davidson 2005 Clustering with Constraints 25

Properties of Instance Level Constraints

e Transitivity of Must-link Constraints
— ML(a,b)andML(b,c) - ML(a,c)
— Let X and Y be sets of ML constraints
— ML(X) and ML(Y), &X, a’Y, - ML(X [7Y)

* The Entailment of Cannot link Constraints
— ML(a,b), ML(c,d)andCL(a,c) — CL(a,d),CL(b,c),CL(b,d)

— Let CC ... CG be the groups of must-linked instances (i.e.. The
connected components)

- CL(a/JCG,b [ICC) —~ CL(xy),[x [JCC, [y CC

© Basu and Davidson 2005 Clustering with Constraints 26

13



-

» o-Constraint (Minimum Separation)
— For any two cluster§, S0,
— For any two instancesl1S, s,11S U p,q
- D(s, )20

» &Constraint
— For any cluste§ |S|> 1

- Up, 009, [5,09: 62 D(s,, &), $<> S

o /
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Complex Cluster Level Constraints

ﬁonverting Cluster Level to Instance @

Constraints

+ Delta constraints?

For every point x, must-link

all points y such that

D(x,y) < ¢ i.e. conjunction
>0 of ML constraints

* Epsilon constraints?

— For every poink, must link to at least one poipsuch that D(X,y) <=,
i.e. disjunction of ML constraints

. @
will generate many instance level constraints /
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Other Constraint Types We Won't Have
Time To Cover

e Balanced Clusters
— Scalable model-based balanced clustgiingng et al. ‘03]
— Frequency sensitive competitive learnj@glanopoulos et al. '96]
* Negative background information
— Find another clustering that is quite differewanfra given set of
clusteringgGondek et al. '04]
» Clustering only with constraints

— Use constraints to cluster the data, no underlglia@nce function
e Correlation ClusteringBansal et al.’02]
 Clustering with Qualitative InformatiofiCharikar et al. '03]
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Outline
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Big Picture

» Clustering with constraints:
Partition unlabeled data into groups called clusters
+ use constraints to aid and bias clustering

 Goal:

Examples in same cluster similar, separate cluster
different +constraints are maximally respected

© Basu and Davidson 2005 Clustering with Constraints 31

Enforcing Constraints

» Clustering objective modified to enforce constraints

— Strict enforcement: find “best” feasible clusteriespecting all
constraints

— Partial enforcement: find “best” clustering maxiipaespecting
constraints

» Uses standard distance functions for clustering

[Demiriz et al.’99, Wagstaff et al.’01, Segal et@8, Davidson et al.’05,
Lange et al.’05]

© Basu and Davidson 2005 Clustering with Constraints 32
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Example: Enforcing Constraints

Height

A
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/ Example: Enforcing Constraints\

Heigh Clustering respecting all constraints

A

ieadf === Cannotlink

Must-link

o

»
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Learning Distance Function

e Constraints used to learn clustering distance function
— ML(a,b) - aandb and surrounding points should be “close”
— CL(a,b) -~ aandb and surrounding points should be “far apart”

» Standard clustering algorithm applied with learned
distance function

[Klein et al.’02, Cohn et al.’03, Xing et al.’03aB Hillel et al.’03,
Bilenko et al.’03, Kamvar et al.’03, Hertz et all,(De Bie et al.’04]
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Example: Learning Distance Function
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Height
A

Example: Learning Distance Functio}

Space Transformed by Learned Function

ieadf == Cannotlink

Must-link
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v

Height
A

Example: Learning Distance Functio}

Clustering with Trained Function

g
ieadf === Cannotlink
Must-link
Weight
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Enforce Constraints + Learn Distance

* Integrated frameworfBasu et al.’04]

— Respect constraints during cluster assignment

— Modify distance function during parameter re-eation

* Advantage of integration

— Distance function can change the space to decceastraint

violations made by cluster assignment

— Uses both constraints and unlabeled data forilggaudistance

function

© Basu and Davidson 2005 Clustering with Constraints
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Gene Clustering Using Micro-array Dataq

Genes

Gene
expressions

Red => low
expression w.r.t
baseline

Green => high
expression w.r.t
baseline

Gene clusters

» Constraints from gene interaction information in DIP Experiments

41
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Content Management: Document Clustering

Clustering

Documents
& Ll Directory
constraints
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Personallzmg Web Search Result Clusterl

Microsoft Intesnet [l{plulel

company | products | soltions | customers | demos | press

¥ Wiy v "
Query: jaguar —v-#wm[ngw [the wet | m-Aﬁvamen Searth
WEW search forimages at Clusty.com

Clustered Results Top 178 results of at least 20,256,139 retrieved for the query jaguar (Dstails) - I
» jaguar (178) I 7
Jagual’ cars _’. Jaguar Cars(a1) 1. httpc e jaguar. com/ [newwmdel [ﬂame] [mewew] [c\us‘ers]
i waw jaguar.com - Lyco
» Club 22
» Parts2s) 2 Jaglovers - THE source for all Jaguar information jewwindow frame) feache]

; st [ducan]
Jaguar animal Lauthera sncari jaguar,Jaguar,jaguar car jaguar enthusiast,adverts discussion forums jag-

» Classici14) lovers jaglovers, club, ki, k8 xj-6 e-typa,s-type x-type stype xtype Donate NOW and
support Jag-lovers on lhnlmnlmelSuwng

» Animal(11) [ N " "
: o \nvers oty - Gpen Direclory 2 8, MSN B, Ask Jaeves 8, Looksmat 12, MSN
Macintosh OS X Mari Jaguarey e
(Jaguar) L 3. Jaguar UK - R is for Racing frewwindon firame] [eache] [preview] [cluster]

» Teame) ... winning C-TYPE - the first car ever 1o have disc brakes — Jaguar's racing technology
has been bred into the bloodline of every Jaguar, particularly the very special range of
road cars that bear ..

wwwy iaiiar-racing com. - MEK Search | WS 3 Ask . jpeve

e Constraints mined from co-occurrence |nf0rmat|on inquery web- Iogs

© Basu and Davidson 2005 Clustering with Constraints

Automatic Lane Finding from GPS tracgs

[Wagstaff et al. '01]

Lane-level
navigation (e.g.,
advance notification
for taking exits)

Lane-keeping
suggestions (e.g., lane
departure warning)

» Constraints inferred from trace-contiguity (ML) & m ax-separation (CL)
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Summary of Benefits

* Non-hierarchical Clustering

— Find clusters where standard distance functionflamot

— Find solutions with given properties

— Improve convergence time of algorithms
» Hierarchical Clustering

— Improved quality of dendrogram

— Use triangle inequality to speed up agglomeratigerithms
e Graphs

— Clustering using constraints

— Clustering graphs with real valued edges whilpeetng auxiliary
constraint graph

© Basu and Davidson 2005 Clustering with Constraints 46
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/ Learning Distance Functions \
DistBoost g % !
\q » y L X . h

Euclid

DistBoost

Euclid

DistBoost

\\E“Clid
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KI’ he Effects of Constraints on Clustering
Solutions

» Constraints divide the set of all plausible solutions into two
sets: feasible and infeasible: S £S5,

» Constraints effectively reduce the search space to S
» S:all have a common property

* So its not unexpected that we find solutions with a desired
property and find them quickly.

o /
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Effect of Constraints on Cluster Purity

[Wagstaff '02]
1
e _
= ]
s |
=l
o
< 3
=
88
sl
5 = w0 G a0 00
o = w0 El 3 T
Number of constraints Number of consiraints
s 1
—+ Overall aczuracy —— Overall aecuracy
P
=
&0
o
5 L
in b
=
P
N =
P -
& o 100 200 300 400 500 o 50 100 150 200 250 300 350 400
Number of Gonstraints Number of constraints.
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Effects of Constraints on Convergenc
Time

PIMA - Mean Number of Iterations Until Convergence Breast Cancer - Mean Number of Iterations Until
Against Number of Clusters Convergence Against Number of Clusters

Mean Number of
Iterations
Mean Number of
Iterations

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Clusters Number of Clusters

Iris - Mean Number of Iterations Until Convergence
Against Number of Clusters

Mean Number of
Iterations

2 3 4 5 6 7 8 9 10
Number of Clusters
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The Feasibility Problem

We've seen that constraints are useful ...
But is there a catch?

* We are now trying to find a clustering under all sorts of

constraints

Feasibility Problem

Given a set of data poin&a set oML andCL constraints

a lower K ) and upper bound() on the number of clusters,

is thereat least onesingle set partition dbinto k blocks,K, = k = K|

such that no constraints are violated?

i.e. CL(a,b), CL(b,c), CL(a,c), k=2?

© Basu and Davidson 2005 Clustering with Constraints
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Investigating the Feasibility Problem
and Consequences?

* For a constraint type or combination:

— P :construct a polynomial time algorithm

— NP-complete : reduce from known NP-complete proble
* If the feasibility problem is in P then we can:

— Use the algorithms to check if a single feasibletioon exists before
we even apply K-Means

— Add feasibility checking as a step in K-Means.
* If feasibility problem is NP-complete then:

— If we try to find a feasible solution at eachéiion of K-Means, could
take a long time as problem is intractable.

© Basu and Davidson 2005 Clustering with Constraints 53

Summary of Feasibility Complexity

Results
Constraint Complexity
Must-Link P
Cannot-Link NP-Complete =~
d-constraint P
e-constraimt P
Must-Link and 4§ P
Must-Link and « NP-complete
§ and € F

Table 1: Results for Feasibility Problems

© Basu and Davidson 2005 Clustering with Constraints 54
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/ Cannot Link Example \

Instances a thru z
Constraints: CL(a,c), CL(d,e), CL(f,g), CL(c,9), CLf)

Graph K-coloring problem

e Graph K-coloring problem is
a a intractable for all values of

K=3

See[Davidson and Ravi '05]
for polynomial reduction from
& graph K-coloring problem. /

© Basu and Davidson 2005 Clustering with Constraints 55

/ Must Link Example X

Instances a ...z
ML(a,c), ML(d,e), ML(f,g), ML(c,Q)

M1={a,c,f,g}

a 0 M2={d,e}
Let r be the size of the transitive
e 0 closure (i.e. r=2 above), the
number of connected components

Infeasible if k > (n-|TC|)—r
> 26-6 —2
l.e., can’t have too many cluste

© Basu and Davidson 2005 Clustering with Constraints 56
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New Results

Feasibility Problem for Disjunctions of ML and CL
constraints are intractable

But Feasibility Problem for Choice sets of ML and CL
constraints are easy.

— ML(x, y;) O ML(X, ¥,) ... O ML(x,y,)

— i.e. x must-be linked with one of the y’s.

/

© Basu

and Davidson 2005 Clustering with Constraints 57

a

o

Is The Feasibility Problem Reallyh
Problem

Wait! You said clustering under cannot link constraints
was intractable.

Worst case results say that there is one at least one “hard”
problem instance so pessimistically we say the entire
problem is hard.

But when and how often does feasibility become a
problem.

Set k = # extrinsic clusters
Randomly generated constraints by choosing two inw

Run COP-k-means

© Basu and Davidson 2005 Clustering with Constraints 58
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Experimental Results

Figure 3 Graph of the proportion of times from 500 independent trials the algorithm in figure 2
gets stuck for various number of randomly chosen ML and CL constraints, k = number of instrinsic
clagses: Iris (3), Pima (2), Breast (2) and Vote (2).
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Enforcing Constraints

« Constraints are strong background information that should
be satisfied.

* Two options

— Satisfy all constraints, but we will run into iafbility problems

— Satisfy as many constraints as possible, but wgr&ut largest
subset of constraints is also intractable (largegtr problem)

© Basu and Davidson 2005 Clustering with Constraints 61

COP-k-Means — Nearest-"Feasible”-
Centroid Idea

Input: S,: unlabeled data, 5;: labeled data, k@ the number of clusters to find, g number of
constraints to generate.

Output: A set partition of § = 5, U 5; into k clusters so that all the constraints in C = MLUCL
are satisfied.

1. ML=0,CL=10
2. loop ¢ times do

(a) Randomly chocse two distinet points z and y from 5).
(b) if(Label(z) = Label(y)) ML =ML U {z,y} else CL =CL U {z,y}

3. Compute the transitive clogure from ML to obtain the connected components CCy,...,CC,.
4. For each ¢, 1 <1 < r, replace data points in C'C; with the average of the points in C'C;.

5. Randomly generate cluster centroids Cq, ..., Cp.

6. loop until convergence do

(a) for i=1 to |5| do
(a.1) Assign s; to closest feasible cluster.
(b) Recalculate C1, ..., Cp.

© Basu and Davidson 2005 Clustering with Constraints 62




/ Example: COP-K-Means - 1 \
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Example: COP-K-Means — 2
ML points Averaged

~
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Example: COP-K-Means — 3
Nearest-Feasible-Assignment
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/Trying To Minimize VQE and Satisfy\

As Many Constraints As Possible

Can't rely on expecting that | can satisfy all constraints at

o

each iteration.
Change aim of K-Means from:

— Find a solution satisfying all the constraints amdimizing VQE

TO

— Find a solution satisfying most of the constra{penalized if a

constraint is violated) and minimizing VQE

Two tricks
— Need to express penalty term in same units as Wi§B&rtion

— Need to rederive K-Means (as a gradient descgatit#im) from

first principles.

© Basu and Davidson 2005
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An Approximation Algorithm — Notation

a(l), g'(l) and m(l) refer to theNconstraint

g(l) : assigned cluster for first instance in cosisit
g'(l) : assigned cluster for second instance insti@int
m(l) = 1 for must link, m(I) = 0 for cannot link

A
1=2, m(1)=0
1 ®* g=xgl=x e e e °
. L4 o
[ ] @uunnnp@uunnnns®
1=3, m(l)=1
X ° ,
I g()=x, g'()=x
4 [ ] [ ]
° © °
) ¢ ® o ® ° raad@ean  Cannotlink
[ ]
X Must-link
>
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New Differentiable Objective Function

Satisfying a constraint may increase distortion
Trade-off between satisfying constraints and distortion
requires measurement in the same units

1

(55)  COVQE, = - 3 Ty + _
< a0, Only one is non-zero
| per constraint violation
3 Z (T;i;z X Tj..?-)

I=1,g({l)=3
If ML violated add

where distance between
clusters
Tia = (C;—s) _
Too = (O — Cor )= Al (1), g™ If CL violated add
3.2 [ o' () (o', 90)] - distance between
Tiz = [(Ci— Cngy)® Alol),d'@)] ™} cluster and nearest
cluster
© Basu and Davidson 2005 Clustering with Constraints 68
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/ Visualizing the Penalties \

Either satisfy the constraint, or
Assign to the “nearest” centroid but with a penalty

A
1=2, m(1)=0
hd ®* g=xgl=x e e e °
] L] °
L] @ummmnm Pguunans » |:3' m(|):1
° i)
I X al)=x, gh=x
M { ] [ ] .
Y ° 0. o © ieadf == Cannotlink
o o ] [ ]
° Must-link
& % /
© Basu and Davidson 2005 Clustering with Constraints 69

Constrained K-Means Algorithm

Algorithm aims to minimize CVQE and has a formal derivatior]

Randomly assign each instance to a cluster. [, st [ink

1. G =Average of points assigned to | Penalties
+ Centroids of points thashould be assigned to j

+ Nearest Centroids to pointbat should not to be
assigned to |

2. NN assignment for each instance using new dist

Assignx to G iff argmir] CVQE(x,C]) c  Link
annot Lin
\\Goto 1 untilACVQEis small Penaltiey
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Approximation Algorithm Experiments

* Binary class problems.
— Use small amount of labeled data to generate Mivden similar
labeled instances and CL between different latsthimces
» As Wagstaff, Klein and Basu found cluster purity increases
for k=2.
* For k>=2

— The algorithm converged in fewer iterations thegutar
unconstrained k-means

— On average vector quantization error was lessuhaonstrained k-

means
— Manages trade-off between satisfying constraintsrainimizing
VQE
© Basu and Davidson 2005 Clustering with Constraints 71
Outline
e Introduction [lan]
e Uses of constraints [Sugato]
» Real-world examples [Sugato]
» Benefits of constraints [lan]
» Feasibility and complexity [lan]
» Algorithms for constrained clustering
» Enforcing constraints [lan]
e Hierarchical [lan]
e Learning distances [Sugato]
« Initializing and pre-processing [Sugato]
» Graph-based [Sugato]
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/ Hierarchical Clustering \

Agglomerative Hierarchical Clustering
Initially, every instance is in its own cluster
Compute similarities between each cluster
Merge two mossimilar clusters into one.
Goto 2

oo E

Time ComplexityO(r¥)

D
1
2
5

@ 6 606 ©
0 A B CD
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/ Modify the Distance Matrix (D) To Satisfy\

Instance Level Constraints (KKM02) - 1

» Metric spaces. Only changing the distance matrix
not the distance function.

. BBut we must satisfy the triangle inequality

3 d(x,y) £d(x,z) + d(z,y)
3 d(x,y) 2| d(x,z) —d(z,y) |
6
A C
* If inequality did not hold then shortest distance
&between two points wouldn’t be a line. /
© Basu and Davidson 2005 Clustering with Constraints 74
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/ Modify the Distance Matrix (D) To Satism

Instance Level Constraints (KKMO02) - 2

2
A B C D B D
A 06i>6 1 0 3 1
@03 2 M(AB) ’
= 6
© 8305 cap) A
D1 250 d(x,y) s d(x,2) + d(z,y)

d(x,y) 2| d(x,z) - d(z)y) |
Algorithm
e 1): Change ML distance instance entries in D to 0
e 2): Calculate D’ from D using all pairwise shatt@ath algorithms, takes

O(r?)
» 3): D” =D’ Except Change CL distance entries® max(D)+1 /
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Modify the Distance Matrix (D) To Satism
Instance Level Constraints (KKM02) - 3

S @ 1 ABCD
B D
T 3 A0 o3 1
E 0 1 5 B o o3}
D' =
p ® 3 c(3) 30 5
2 A C D 1(1)5 0

d(x,y) £ d(x,z) + d(z,y)
d(x,y) 2| d(x,z) —d(z,y) |

Algorithm
* 1): Change ML distance instance entries in D to O

e 2): Calculate D’ from D using all pairwise shatt@ath algorithms, takes
o)
3): D’ =D’ Except Change CL distance entries® max(D)+1

© Basu and Davidson 2005 Clustering with Constraints 76
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/ Modify the Distance Matrix (D) To Satisfy\

Instance Level Constraints (KKM02) - 4

S B 1 D A B CD
. . 6 Ao o3(s
e 0 5 . B 0031
p 3 C 3 30 5
5 A e D@15o

But Because of entailment property of CL we “maiimtaéhe triangle inequality

Join(A,B)
Can't Join((A,B),D) instead Join((A,B),C) and thstop
Indirectly made d(B,D) and d(A,C) >> 6 and makegiaality indirectly hold.
© Basu and Davidson 2005 Clustering with Constraints 7

ﬂzeasibility, Dead-ends and Speeding\Ug

Agglomerative Clustering

Feasibility Problem

Instance: Given a set S of points, a (symmetric) distance
function d(x,ye0 [Ix,y and a collection of constraints.
Problem: CarSbe partitioned int@t least onesingle
subsets (clusters) so that all constraints are satisfjed?

CL(a,b), For fixedk

CL(b,c), ev® equivalent to graph

CL(a,c) 0 coloring so NP-complete
(k=3, k=2, k=1)7?

© Basu and Davidson 2005 Clustering with Constraints 78
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/ Feasibility Results [11,12] \

Constraint Givenk Unspecifiedk
ML P P
CL NP-complete P
o P P
€ P P
ML ande NP-complete P
ML and d P P
o ande P P
QL, CL ande |[NP-complete NP-complete /
© Basu and Davidson 2005 Clustering with Constraints 79

/ Feasibility under ML and CL \

ML(s1,8;), ML(ML(S,5;), ML(s;,8,), CL(S,, 8))

ONCRONOMBCNC

Compute the Transitive Closure on ML={CC. CC} O(n+my,, )

ONORORORCOMNC

Construct Edges {E} between Nodes based on CL: Q(m

5 & & 66 6

& Infeasible: iffCh.k: e(s, §) : s, §/CG: O(mCL)/

© Basu and Davidson 2005 Clustering with Constraints 80
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Feasibility under ML and

S={x [JS : x doesiot have ancneighbo}={ s;, s}
Each of these should be in their own cluster

ORONONONONS

ML(s1,S)), ML(S3,8,), ML(S,,S)
Compute the Transitive Closure on ML={CC. CC} : O(n+m)

ONCHONOIONO

Infeasible: iff(1,j : §//CC, 5 JS' : O(fS’])

© Basu and Davidson 2005 Clustering with Constraints 81

An Algorithm for ML and CL Constraints

ConstrainedAgglomerative(5,ML,CL) returns Dendrogram;, i = Emin .. kmaz

Notes: In Step 5 below, the term “mergeable clusters™ is used to denote a pair of clusters whose
merger does not viclate any of the given CL constraints. The value of ¢ at the end of the loop in
Step 3 gives the value of kmin.

1. Construct the transitive closure of the ML constraints (see [4] for an algorithm) resulting in
r connected components Ay, Ma. .. M
2. If two peints {x,y} are both a CL and ML constraint then output “No Sclution” and stop.
3. LetS; =5 — (U:=1 M) Let ke = 7 + |51
4. Construct an initial feasible clustering with k., clusters consisting of the r clusters M.
.« . My and a singleton cluster for each point in S1. Set £ = kmax-
5. while (there exists a pair of mergeable clusters) do
(a) Select a pair of clusters C; and O according to the specified distance criterion.
(b) Merge C into C'w and remove Cj. (The result is Dendrogram:—1.)
()t =t—1.
endwhile

Fig. 2. Agglomerative Clustering with ML and CL Constraints

© Basu and Davidson 2005 Clustering with Constraints 82
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Emp

irical Results

Data Set Distortion Purity
Unconstrained | Constrained|Unconstrained | Constrained

Tris 3z 2.7 58% G6%%
Breast 8.0 73 53% 59%
Digit (3 vs 8) 17.1 15.2 35% 43%
Pima 9.8 g1 61% 68%
Census 26.3 223 56% 61%
Sick 17.0 15.6 50% 59%

Table 2. Average Distortion per Instance and Average Percentage Cluster Purity over Entire Den-

drogram

Data Set  |Unconstrained |{Constrained
Iris 22,201 3275
Breast 487,204 59,726
Digit (3 wvs 8)| 3,996,001 030,118
Pima 588,289 61,381
Census 2.347.305,601 | 563,034,601
Sick 793,881 159,801

Table 3. The Rounded Mean Number of Pair-wise Distance Calculations for an Unconstrained
and Constrained Clustering using the § constraint

© Basu and Davidson 2005

Clustering with Constraints

Dead-end Clusterings

Definition 3. 4 feasible clustaring C' = {Cy, Ca, .., Cx} of a set S is irreducible if no

pair of clusters in C can be merged fo obtain a feasible clustering with k — 1 clusters.

A k cluster clustering is a dead-end if it is irreducible, even thoug

other feasible clusterings wittk<lusters exist

E
D A

The Greedy Closest Join Algorithm:
Join (F,D) Join (FD,E)
But then get stuck
Alternative is:
Join(F,C), Join(D,A), Join(E,B)

© Basu and Davidson 2005

Clustering with Constraints

84

42



-

Why Are Dead-Ends a Problem?

* Theorem (in technical report)

— Letk,, < kae then if there is a feasible clustering with
KnaxClusters and a “coarsening” wikl;, clusters there
exists a feasible clusteririgr every valuebetweerk,,;,

andk ..

» But you can't always go from a clustering with
K.axt0 one withk ;. clusters if you perform closest
cluster merge.

e That is if you use traditional agglomerative
&algorithms your dendrogram can end prematW

© Basu and Davidson 2005

Clustering with Constraints 85

/ Dead-End Results \

» For dead-end situations, you can’t use agglomerative
clustering algorithms, otherwise you’ll prematurely
terminate the dendrogram.

Constraint | Dead-end Constraint Dead-end
Solutions? Solutions?

ML No [PKDDO5] ML ande No [PKDDO5]

CL Yes [PKDDO5] ML and & No [PKDDO05]

0 No [PKDDO5] d ande No [PKDDO5]
No [PKDDO05] ML, CL & €

o

Yes [PKDD05]/

© Basu and Davidson 2005
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Speeding Up Agglomerative Clustering Usin
the Triangle Inequality - 1

Definition 2. (The ~ Constraint For Hierarchical Clustering) Tivo clusters whose geo-
metric centroids are separated by a distance greater than ~ cannot be joined.

Calculate distance between

a pivot and all other points 0 1

Bound distances on A D B c
remaining pairs of points

3
A B
Cpivot 22
6
1 >3
>
D 25 C
© Basu and Davidson 2005 Clustering with Constraints 87

Speeding Up Agglomerative Clustering Usin
the Triangle Inequality - 2

Lety=2
Data Set |Unconstrained|Using  Constraint
A BCOD Tris 22201 19,830
A 0 36 1 Breast 487,204 431,321
Digit (3 vs 8)| 3,996,001 3,432,021
B 3 0@ 22 Fima 588,289 501323
D= C 6 0 @ Census | 2,347.305,601 | 1,992232931

Sick 793 881 703,764

D1 22@ 0 Mean number of distance calculations

Calculate: D(a,b)=1, D(a,c) =3, D(a,d) =6
Save D(b,d35 D(c,dp3
Calculate D(b,&2,

© Basu and Davidson 2005 Clustering with Constraints 88
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Algorithm

IntelligentDistance (v, C = {Cl. L O })
returns d(i, j) Vi, 5.

1. fori =2 to n—1 dy;=D(C1,Cy) endloop
2. fori=2ton — 1 .

forj=i+lton—1 dij=l|dii—disl

ifd;; >~thend;; =~ + 1, donotjoin elsed;; = D(zixy)
endloop
endloop

3. return dy 4, ¥4, j.
Fig. 3. Function for Caleulating Distances Using the 4 Constraint and the Triangle Inequality.

» Worst case resuld(r?) distance calculations

e Best case calculated boualivaysexceedy : O(n-1)

* Average case using the Markov inequality: sai&e distance calculations
wherey = cpoandpis the average distance between two points

© Basu and Davidson 2005 Clustering with Constraints 89
Outline
e Introduction [lan]
e Uses of constraints [Sugato]
» Real-world examples [Sugato]
» Benefits of constraints [lan]
» Feasibility and complexity [lan]
» Algorithms for constrained clustering
» Enforcing constraints [lan]
 Hierarchical [lan]
e Learning distances [Sugato]
« Initializing and pre-processing [Sugato]
» Graph-based [Sugato]
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/ Distance Learning as Convex \

Optimizationxing et al. '02]

» Learns a parameterized Mahalanobis distance

min > |ls s [h=min > (s -s)"A(s -s))

(s,s;)OML (s,s;)OML
Z“ S 7S ”A2 1
(5,5,)0CL
st. ApO
© Basu and Davidson 2005 Clustering with Constraints 91

/ Alternate formulation \

» Equivalent optimization problem

max g(A)= > llss; ll,

(s,s;)0CL

f(A= Xllss sl M-C
(s,sj)DML

st. ApO M - C,

. /

© Basu and Davidson 2005 Clustering with Constraints 92




Optimization Algorithm

» Solve optimization problem using combination of
— gradient ascent: to optimize the objective
— iterated projection algorithm: to satisfy the doaisits

Iterate

Iterate
A:=argming {||4A" — A||p: A" € C1}
A= argming {||A" — Al|p : A’ € Ca}
until A converges
A=A+a(Vag(A4))iv.s

until convergence

© Basu and Davidson 2005 Clustering with Constraints 93

Distance Learning in Product Space
[Hertz et al. '04]

Input: C
— Data seKXin R". O/O O

— Equivalence constraints O

@)

Output: function DX *X - [0,1] such that: O
-
product space
« points from the same class are close to each other.
« points from different classes are very far from eaitier.

Basic Observation:

— Equivalence constraints Binary labels in product space

— Use boosting on product space to learn function

© Basu and Davidson 2005 Clustering with Constraints 94
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Boosting in a nutshell

A standard ML method that attempts to boost théopmiance of “weak” learners

Basic idea:
1. Initially, weights are setqually
2. lterate:

i. Train weak learner on weighted data

ii. Increaseweights ofincorrectly classifiedexamples (force weak learner to
focus on difficult examples)

3. Final hypothesiszombination of weak hypotheses

© Basu and Davidson 2005 Clustering with Constraints 95

EM on Gaussian Mixture Model

 GMM: Standard data representation that models data using
number of Gaussian sources

* The parameters of the sources are estimated using the EM
algorithm:

— E step: Calculate Expected log-likelihood of tlagadover all possible
assignments of data-points to sources

— M step: Differentiate the Expectation w.r.t. fegameters

© Basu and Davidson 2005 Clustering with Constraints 96




The Weak Learner: Constrained EM

Constrained EM algorithm: fits a mixture of Gaussians to
unlabeled data given a set of equivalence constraints.

Modification in case of equivalence constraints:

E step: sum only over assignments which comply witthe
constraints

© Basu and Davidson 2005 Clustering with Constraints 97

The DistBoost algorithm

Fort=1,....T
Input: weighted (1) Learn constrained (2) Generate “weak”
data-points + eq. GMM distance function

constraints
6 © o
&) 0' o —>
, T ohep=or )
(3-4) Compute “weak”
(5)

distance function

® I weight o,
]
]
o O.",o
(7) Translate weights o
pairs to_weights on %% (5-6) Update weights
data points Op on pairs of points

Final distance function: ~ D(X, X ) = thzlat h(x X)

49



/ Integrated Approach: HMRF \
[Basu et al. '04]

Markov : Hidden RVs of

‘Random cluster labelst
Field (MRF):

™~

‘ P(L): Prior over constraint%

Observed
data valuesS

| P(SIL): Data Likelihood|

Hidden Markov
Random Field
(HMRF)

Joint probability Goal of constrained [ '*#¢=** canotin
P(L,S) = P(L).P(S|L)  clustering: estimation of———tustin

© Basu and Davidson 2005 P(L’S) on HMRF 99

/ Constrained Clustering on HMRF\

Constraint
potentials

Pr(L) OexpFY V(s,s;.1.1)]
ivj Cluster
distortion

Pr(S|L) Oexp[-),D(s,C,)]
S

Joint

probability U Overall objective of
constrained
clustering

Pr(L,S) = Pr(S|L)Pr(L)

\—IogPr(L,S)D(ZD(s,Q)+ZV(S1S’|iv|J)J /
S i

© Basu and Davidson 2005 Clustering with Constraints 100

50



4 N

MRF potential

* Generalized Potts (Ising) potential:

W, DA(SS;) if 1, #1;,(s,s,) ML

V(8.,5,1,01,) = 1% [Danm—Dalss)] i 1 =1,,(5,5)0CL

1

0 else

o /

© Basu and Davidson 2005 Clustering with Constraints 101

/ HMRF-KMeans: Objective Functi \

on

KMeans distortion ML violation: constraint-based

J ke =Z§DSDA(S’C“)- Z i

=

- T
(si,sj)0CL
st.li=l;

CL violation/constyint-based
Penalty function: distance-based

-log P(S|L)
\ -log P(L) /
© Basu and Davidson 2005 Clustering with Constraints 102
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HMRF-KMeans: Algorithm

Initialization:
— Use neighborhoods derived from constraints taaiiie clusters

Till convergence
1. Point assignment:

Assign each poirgto clusterh” to minimizeboth distance and
constraint violations

2. Mean re-estimation:

Estimate cluster centroid@sas means of each cluster

Re-estimate parametekf D, to minimize constraint violations

© Basu and Davidson 2005 Clustering with Constraints

103

HMRF-KMeans: Convergence

Theorem:

HMRF-KMeans converges to a local minimalgf;rg for
for Bregman divergencdd (e.g., KL divergence, squared

Euclidean distance) alirectional distancefe.g., Pearson’s

distance, cosine distance)

© Basu and Davidson 2005 Clustering with Constraints
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e MPCK-Means: both constraints and distance learning

Ablation/Sensitivity Experiment

* MK-Means: only distance learning
« PCK-Means: only constraints
* K-Means: purely unsupervised
© Basu and Davidson 2005 Clustering with Constraints 105

/ Evaluation Measure \

» Compare cluster partitioning to class labels on the dataset
* Mutual Information measurealculated only on test set

I(CK) [Strehl et al. '00]

T[HO)+H(K)]/2

Cluster partitions | Underlying classes Ml value

Low
g = -

© Basu and Davidson 2005 Clustering with Constraints 106
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Experiment Results: PenDigits subse
(squared Euclidean distance)

0.9 T
085+ @ p s AT e Q
= 0.8 -
k=
T
E 075+
2
=
T 0.7 MPCK-Means —&—
= MK-Means —=—
= 065 PCK-Means —2&— | |
) K-Means — > —
06g -
0-55 1 1 I
0 200 400 600 800 1000
Number of Constraints
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 Hierarchical [lan]
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Finding Informative Constraints
given a quota of Queries

» Active learning for constraint acquisitig®asu et al.’04]

— In interactive setting, constraints obtained bgrigs to a user
— Need to geinformative constraints to get better clustering

» Two-phase active learning algorithm:

— Explore:Use farthest-firsttraversal[Hochbaum et al.’85}to explore

the data and fin&k pairwise-disjoint neighborhoods (cluster skeleton)
rapidly

— ConsolidateConsolidate basic cluster skeleton by getting npaiats

from each cluster, within ma¥-1) queries for any point

© Basu and Davidson 2005

Clustering with Constraints 109

Algorithm: Explore

* Pick a pointsat random, add it to neighborhobdg, /. = 1
* While queries are allowed ant< k)
— Pick points farthest from existing neighborhoods

— If by queryingsis cannot-linkedo all existing neighborhoods,
then seh =A+1, start new neighborhodd with s

— Else, addto neighborhood with which it iswust-linked

© Basu and Davidson 2005 Clustering with Constraints 110
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Kctive Constraint Acquisition for Clusterin
_ Explore Phase
)
© Basu and Davidson 2005 Clustering with Constraints 111

Kctive Constraint Acquisition for Clusterin
| Explore Phase
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Kctive Constraint Acquisition for Clusterﬁ

Height

Explore Phase

A
. e ®* ° ° ]
L ]
L ] ° ¢
L]
° L ]

L] L ] ° ° .

. L ] L] L] °
® L] ° L ]
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Kctive Constraint Acquisition for Clust(%

Height

Explore Phase

A
L ] L] ® ® L) n
L ] *
. . ‘¢‘.
. "‘
L ]
* “‘
‘t
R I
*
® oo’ L ] ° ° o
I“ L ] L] L] °
L]
L] ° L ]
>
Weight
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Kctive Constraint Acquisition for Clusterﬁ

Height

Explore Phase

A
. e ®* ° ° ]
L ] *
. ® “‘.
) "‘
L ]
* “‘
“
¢‘*
*
L] L ]
“ ® ® L]
‘t ) L] LJ °
L] ° . n
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Kctive Constraint Acquisition for Clust(%

Explore Phase

Height
A

»
>
Weight

© Basu and Davidson 2005
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Active Constraint Acquisition for Clusterin
Explore Phase

Height
A

»
>

Weight
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© Basu and Davidson 2005 Clustering with Constraints

Algorithm: Consolidate

» Estimate centroids of each of th@eighborhoods

* While queries are allowed
— Randomly pick a poirg not in the existing neighborhoods
— Querys with each neighborhood (in sorted order of decrepsi
distance fronsto centroids) untimust-linkis found

— Addsto that neighborhood to which it msust-linked

© Basu and Davidson 2005 Clustering with Constraints 118
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Kctive Constraint Acquisition for Clusterﬁ

Consolidate Phase

Height
A

\
>
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Kctive Constraint Acquisition for Clust(%

Consolidate Phase

Height
A

»
>
Weight
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Kctive Constraint Acquisition for Clusterﬁ

Consolidate Phase

Height
A

\
>
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Kctive Constraint Acquisition for Clust(%

Consolidate Phase

Height
A

»
>
Weight
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Kctive Constraint Acquisition for Clusterm

Consolidate Phase
Height
A
© Basu and Davidson 2005 Clustering with Constraints 123

/ Experiments: 20-Newsgroups subset

0.9 T —) I ra
0.8
0.7

Mutual Information
o
(8]

0.3 5 Active PCK-Means —G&—
' PCK-Means —&—

i _
0,2 K-Means —X—
01 Ak 1 L L 1
0 200 400 600 800 1000
Number of Pairwise Constraints
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Confusion Matrices

Clusterl Cluster2 Cluster3

) Misc 71 12 17

No constraints
Guns 25 61 14
Mideast 12 36 52

Clusterl Cluster2 Cluster3

Misc 84 7 9

20 queries
Guns 5 91 4

& Mideast 7 7 86 /

125
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/ Algorithms to Seed K-Means WhQ

FeasibilityProbIemis IN P[Davidson et al. *05]

» Each algorithm will find a feasible solution.

e You can build upon each to make them minimize the
vector quantization error (or what-ever objective function

your algorithm has) as well.

= -/

© Basu and Davidson 2005 Clustering with Constraints




Finding a Feasible Clustering for ML
Constraints

MNote: Whenever a feasible solution exists, the following
algorithm outputs a collection of /Ky clusters satisfying
all the must-link constraints.

L . et - ~ Must link constraints are Transitive:
. Compute the transitive closure of the constraints in . .
', Let this computation result in r sets of points, M_L(a’b)’ ML(b,C) ImplleS ML(a,c). Replace
denoted by My, My, ..., M,. with ML(a,b,c)
2 Let 58 = 85— |J_y Mi. (5" denotes the subset
of points that are not involved in any must-link :
constraint.) See paper for an algorithm
r = # connected components

=

d.if r = Ky then

(a) Let A = (|Jl_g, M) U 5" S’ are those points not part of
(b) Output M, ..., Mi,—1, A ML constraints
else
Too many connected components merge

if |8'| < K¢—r then - .
¥ some: doesn’t violate ML constraints

Output  “There 12 no =olutiony

//

else

(a) Tet ¢ — K¢—r. Partition S into 7 Too many clusters to find.

clusters A4, ..., A; arbitrarily.

(b) Output M, - My, Ay, - Ay < K, <= n-r

Figure 1: Algorithm for the ML-Feasibility Problem Clustering with Constraints 127

Finding a Feasible Clustering Under the
d Constraint

1. for each point & do

(a) Determine the set X; C 5§ — |s;} of points
such that for each point =; € Xj, dis ,xy) <
a.

(b} For each point x; £ X; | create the must-link
constraint {s; , =;}.

2. Let €' denote the set of all the must-link constraints
created in Step 1. Use the algorithm for the MIL-
feasibility problem (Figure 1) with point set 5,
constraint set C' and the values K, and K.

Figure 2: Algorithm for the §-Feasibility Problem

© Basu and Davidson 2005 Clustering with Constraints 128
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Finding a Feasible Clustering Under th
€ Constraint

6. if t+r > K,

then /* We may have too many clusters. */
(a) Merge clusters Xg _y, X —ep1y o0 Ko
into a single new cluster X, _;.
(b) Output the K, clusters Cy, Ca, ..., Gy,

1. Find the set S§; C § such that no point in S; has ¥, X X
an e-neighbor. Let ¢ = |Si| and Sz = § — 54, 1y A2y oo ALt
2. Construct the awdliary graph G(V, E) for S (see else /* We have too few clusters. */
Definition 3.1). Let & have r connected compo- (a) Let N = +r. Construet spanning trees
nents (CCs) denoted by &y, Ga, ..., G, Ty, Ta, ..., T, corresponding to the CCs
of &
3. Let N* = ¢+ min{l.r}. (Note: To satisfy the

(b) while (N < K;) do

e-constraint, at least N* clusters must be used.) .
’ ’ ! (i) Find a tree T; with at least two nodes

4. 1f N* > K, then Output “No feasible solution” If no such tree exists, output “No

and stop. feasible solution” and stop.
(ii) Let v be a leafl in tree T;. Delete v
5. Let &y, Oy, ..., €} denote the singleton clusters w o s e e s

from T;.
corresponding to points in Sy Let Xy, Xo, ... X, fom

denote the clusters corresponding to the CCs of G. (ifi) Delete the point corresponding to v

from cluster X; and form a new sin-
gleton cluster X4 containing that
point.
(iv) N=N+1.
(e) Output the Ky clusters £, Cg, ..., Gy,
(1, Xay oy Xrcp—te
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Outline

¢ Introduction
* Uses of constraints
» Real-world examples

[lan]
[Sugato]
[Sugato]

» Benefits of constraints [lan]
» Feasibility and complexity [lan]
» Algorithms for constrained clustering
» Enforcing constraints [lan]
 Hierarchical [lan]
e Learning distances [Sugato]
« Initializing and pre-processing [Sugato]
e Graph-based [Sugato]
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Graph-based Clustering

« Data input as graph:

real valued edges
between pairs of
points denotes
similarity
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Constrained Graph-based Clustering

e Clustering criterion:

minimize normalized
cut

» Possible solution:
Spectral Clustering
[Kamvar et al. '03]

e Constrained graph
clustering:

minimize cut in input
graph while maximally
respecting constraints
in auxilliary constraint
graph

n
W Tagetkag
MediaControl M
Frontier Justice

|
Papetual War for Peretual Peace:

| L a
Drcaming War - War oniraq

Forbidden Truth
The Greatest Sedtionis Silence
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Losing BinLaden

|
Why America Slept I

n )
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o0
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n
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Kernel-based Clustering

» 2-circles data not linea o s
(s s
separable o B ° o g
. 08f ®C o, o
 transform to high-D $o 0o
using kernel < e W@ 50
9 0.6- ) H:#fiJr Tt oe
© % L ﬁ% ® 5
le —c |12 oo
e.g.,< %1 SZ >=e lIsi=s,I §§ +++ # o
n oL +5 4 N +{r 3
0. @ hy ¥ @
g % F’{iﬁ» w &0
. . . a [+]
 cluster kernel similarity T °%
. . . Q
matrix usingweighted 0.2r Cowe <, - 83
(o}
kernel K-Means o o8
5 ; ‘ ‘ ‘ ;
0 0.2 0.4 0.6 0.8 1
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Constrained Kernel-based Clustering

¢ Use the data and the
specified constraints to
create appropriate 08¢
kernel
0.6
0.4f
0.2f
o ‘ ‘ ; ‘ j
0 0.2 0.4 0.6 0.8 1
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SS-Kernel-KMeanuilis et al.'05]

e Contributions:

— Theoretical equivalence between constrained grhysitering and
weighted kernel KMeans

— Unifies vector-based and graph-based constrailistecing using kernels

e Algorithm:
— Forms a kernel matrix from data and constraints
— Runs weighted kernel KMeans

* Benefits:
— HMRF-KMeans and Spectral Clustering are specis¢ga
— Fast algorithm for constrained graph-based clunger
— Kernels allow constrained clustering with non-&ineluster boundaries
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Kernel for HMRF-KMeans with squared
Euclidean distance

j

K W,
JHMRF:ZZ||S1_CC||2_ Z _”|+ Z

0=

c=l s0s (s,s)EML | S (si,sj)HCL | i |
stli=l; stli=l;
K=S+W,
S_h’ =55,
wherey,\ _ W, if (s,s;) ML
ij _ ;
w, if (s,s;)0CL
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/Kernel for Constrained Normalized—&

Objective

K links(V_,V \V.) W, W,
J ormCut — < = . + .
rome cZ=1: deg{,) (s ,s,,-Z)I;ML degVi) (s syc degy,)

st.li=l; stli=l;

K =D*AD+D™WD,

A, = graphaffinity (i, j),
h D =diagonadegreamatrix
WReT® sy w i (s,5,)0ML

T

o

-w; if (s,s,)0CL

/
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Experiment: PenDigits subset

- - - HMRF-KMeans
0.9k - SS5-Kernel-KMeans-Linear,
—— 38-Kernel-KMeans-Exp

NMI Value
(=)
-
(5]

0BBE - - _ -7 P

0.61

0.55——
& 100

200

300 400 500
Number of Constraints
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Experiment: Yeast Gene network

0.9
— - - 8S-Kernel-KMeans-NormCut

0.8H SS-Kernel-KMeans-RatiocAssoc
—— 85-Kernel-KMeans-RatioCut
0.77 -+ SpeciralLearning A

NMI Value
(=]
4]

=
'S
T

0.3}
0.2t
0.1 : ‘ ' :
100 200 300 400 500
Number of Consiraints
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Today we talked about ...
 Introduction [lan]
» Uses of constraints [Sugato]
* Real-world examples [Sugato]
» Benefits of constraints [lan]
» Feasibility and complexity [lan]
» Algorithms for constrained clustering
» Enforcing constraints [lan]
 Hierarchical [lan]
e Learning distances [Sugato]
« Initializing and pre-processing [Sugato]
» Graph-based [Sugato]
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Thanks for Your Attention.
We Hope You Learnt a Few Things

Sugato will be available until Tuesday morning
lan will be available until Monday afternoon
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