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Notation

• S: set of training data

• si : ith point in the training set

• L:  cluster labels on S

• l i : cluster label of si

• Cj: centroid of j th cluster

• ML : set of must-link constraints

• CL : set of cannot-link constraints

• CCi : a connected component (sub-graph)

• TC : the transitive closure 
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A Motivating Example in Non-Hierarchical 
Clustering

• Given a set of instances S

• Find the “best” set partition

S = { S1 ∪ S2 ∪… Sk}

• Multitude of algorithms that define “best” differently
– K-Means

– Mixture Models

– Self Organized Maps

• Aim is to find the underlying structure/patterns/groups in 
the data.
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Clustering Example (Number of 
Clusters=2)

Height

Weight
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Horizontal Clusters
Height

Weight



5

Clustering with Constraints© Basu and Davidson 2005 9

Vertical Clusters
Height

Weight

Clustering with Constraints© Basu and Davidson 2005 10

K-Means Clustering

• Standard iterative partitional clustering algorithm

• Finds k representative centroids in the dataset
– Locally minimizes the sum of distance (e.g., squared Euclidean 

distance) between the data points and their corresponding cluster 
centroids

∑ ∈Ss ili
i

CsD ),(

A Simplified Form of this Problem is intractable [Garey et al.’82]
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K-Means Algorithm

1. Randomly assign each instance to a cluster

2. Calculate the centroids for each cluster

3. For each instance
• Calculate the distance to each cluster center

• Assign the instance to the closest cluster

4. Goto 2 until distortion is small
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K Means Example (k=2)
Initialize Means

x

x

Height

Weight
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K Means Example
Assign Points to Clusters

x

x

Height

Weight
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K Means Example
Re-estimate Means

x

x

Height

Weight
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K Means Example
Re-assign Points to Clusters

x

x

Height

Weight
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K Means Example
Re-estimate Means

x

x

Height

Weight
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K Means Example
Re-assign Points to Clusters

x

x

Height

Weight
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K Means Example
Re-estimate Means and Converge

x

x

Height

Weight
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K Means Example
Convergence

x

x

Height

Weight
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A Few Issues With K-Means Has 
Spawned Lots of Research

• Algorithm is typically restarted many times from random 
starting centroids
– Due to sensitivity to initial centroids

• i.e. Intelligently setting initial centroids [Bradley & Fayyad 2000]

• Convergence time of algorithm can be slow
– Use KD-Trees to accelerate algorithms [Pelleg and Moore 1999]

• Clustering achieved may minimize VQE but has little 
practical value

• Which distance function should I use? 
– L1, L2, Mahalanobis etc.

• Constraints can help address these problems and more …
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Automatic Lane Finding from GPS traces 
[Wagstaff et al. ’01]

Lane-level 
navigation (e.g., 

advance notification 
for taking exits)

Lane-keeping 
suggestions (e.g., lane 
departure warning)

• Constraints inferred from trace-contiguity (ML) & m ax-separation (CL)
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Mining GPS Traces (Schroedl et’ al)

• Instances are represented by the x, y location on the road. We also know when a car 
changes lane, but not what lane to.

• True clusters are very elongated and horizontally aligned with the lane central lines

• Regular k-means performs poorly on this problem instead finding spherical clusters. 
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Unconstrained K-Means Can Provide 
Not Useful Clusters

Object 
identification

for Aibo 
robots

Only 
significant

clusters
shown
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Why Learn Distance functions?

Euclidean distance on 
Color Coherence 

Vectors returns both 
images as similar to 

query image

Nearest 
Neighbor 

Image retrieval 

Given a query image 
return the K-nearest 

neighbors of the 
image from the 

database.
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Basic Instance Level Constraints

• Historically, instance level constraints motivated by the 
availability of labeled data
– i.e., Much unlabeled data and a little labeled data available 

generally as constraints, e.g., in web page clustering

• This knowledge can be encapsulated using instance level 
constraints [Wagstaff et al. ’01]

– Must-Link Constraints
• A pair of points si and sj (i ≠ j) must be assigned to the same cluster.

– Cannot-Link Constraints
• A pair of points si and sj (i ≠ j) can not be assigned to the same cluster. 
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Properties of Instance Level Constraints

• Transitivity of Must-link Constraints
– ML(a,b)and ML(b,c)→ ML(a,c)

– Let X and Y be sets of ML constraints

– ML(X) and ML(Y), a∈X, a∈Y, → ML(X ∪ Y)

• The Entailment of Cannot link Constraints 
– ML(a,b), ML(c,d) andCL(a,c) → CL(a,d),CL(b,c),CL(b,d)

– Let CC1 … CCr be the groups of must-linked instances (i.e.. The 
connected components)

– CL(a ∈ CCi, b ∈ CCj) → CL(x,y), ∀x ∈ CCi, ∀ y ∈ CCj
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Complex Cluster Level Constraints

• δ-Constraint (Minimum Separation)
– For any two clusters Si, Sj ∀ i,j
– For any two instances sp∈Si, sq∈Sj ∀ p,q
– D(sp, sq) ≥ δ

• ε-Constraint
– For any cluster Si  |Si| > 1
– ∀p, sp∈Si, ∃sq∈Si : ε ≥ D(sp, sq), sp<> sq
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Converting Cluster Level to Instance Level 
Constraints 

• Delta constraints?

• Epsilon constraints?
– For every point x, must link to at least one point y such that D(x,y) <= ε, 

i.e. disjunction of ML constraints

• Will generate many instance level constraints

≥δ

For every point x, must-link 

all points y such that 

D(x,y) < δ, i.e. conjunction 
of ML constraints

ε≥
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Other Constraint Types We Won’t Have 
Time To Cover

• Balanced Clusters
– Scalable model-based balanced clustering [Zhong et al. ’03]

– Frequency sensitive competitive learning [Galanopoulos et al. ’96]

• Negative background information
– Find another clustering that is quite different from a given set of 

clusterings [Gondek et al. ’04]

• Clustering only with constraints
– Use constraints to cluster the data, no underlying distance function

• Correlation Clustering: [Bansal et al.’02]

• Clustering with Qualitative Information: [Charikar et al. ’03]
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Big Picture

• Clustering with constraints: 
Partition unlabeled data into groups called clusters  
+ use constraints to aid and bias clustering

• Goal: 
Examples in same cluster similar, separate clusters 
different + constraints are maximally respected
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Enforcing Constraints

• Clustering objective modified to enforce constraints
– Strict enforcement: find “best” feasible clustering respecting all 

constraints
– Partial enforcement: find “best” clustering maximally respecting

constraints

• Uses standard distance functions for clustering

[Demiriz et al.’99, Wagstaff et al.’01, Segal et al.’03, Davidson et al.’05, 
Lange et al.’05]
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Example: Enforcing Constraints

Cannot-link

Must-link

Height

Weight
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Example: Enforcing Constraints
Clustering respecting all constraints

Cannot-link

Must-link

Height

Weight
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Learning Distance Function

• Constraints  used to learn clustering distance function
– ML(a,b)→ a and b and surrounding points should be “close”

– CL(a,b)→ a and b and surrounding points should be “far apart”

• Standard clustering algorithm applied with learned 
distance function

[Klein et al.’02, Cohn et al.’03, Xing et al.’03, Bar Hillel et al.’03, 
Bilenko et al.’03, Kamvar et al.’03, Hertz et al.’04, De Bie et al.’04]
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Example: Learning Distance Function

Cannot-link

Must-link

Height

Weight
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Example: Learning Distance Function
Space Transformed by Learned Function

Cannot-link

Must-link

Height

Weight
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Example: Learning Distance Function
Clustering with Trained Function

Cannot-link

Must-link

Height

Weight
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Enforce Constraints + Learn Distance

• Integrated framework [Basu et al.’04]

– Respect constraints during cluster assignment

– Modify distance function during parameter re-estimation

• Advantage of integration
– Distance function can change the space to decrease constraint 

violations made by cluster assignment

– Uses both constraints and unlabeled data for learning distance 
function
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Gene Clustering Using Micro-array Data

Gene 
expressions

Gene clusters

Red => low 
expression w.r.t 

baseline

Genes

Experiments

Green => high 
expression w.r.t 

baseline

• Constraints from gene interaction information in DIP
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Content Management: Document Clustering

Documents

Directory 
structure 

constraints

Clustering
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Personalizing Web Search Result Clustering

• Constraints mined from co-occurrence information in query web-logs

Query: jaguar

Jaguar cars

Jaguar animal

Macintosh OS X 
(Jaguar)

Clustering with Constraints© Basu and Davidson 2005 44

Automatic Lane Finding from GPS traces 
[Wagstaff et al. ’01]

Lane-level 
navigation (e.g., 

advance notification 
for taking exits)

Lane-keeping 
suggestions (e.g., lane 
departure warning)

• Constraints inferred from trace-contiguity (ML) & m ax-separation (CL)
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Summary of Benefits

• Non-hierarchical Clustering
– Find clusters where standard distance functions could not
– Find solutions with given properties
– Improve convergence time of algorithms

• Hierarchical Clustering
– Improved quality of dendrogram
– Use triangle inequality to speed up agglomerative algorithms

• Graphs
– Clustering using constraints
– Clustering graphs with real valued edges while respecting auxiliary 

constraint graph
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DistBoost

Euclid

DistBoost

Euclid

DistBoost

Euclid

Learning Distance Functions
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The Effects of Constraints on Clustering 
Solutions

• Constraints divide the set of all plausible solutions into two 
sets: feasible and infeasible: S = SF∪ SI

• Constraints effectively reduce the search space to SF

• SF all have a common property

• So its not unexpected that we find solutions with a desired 
property and find them quickly.
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Effect of Constraints on Cluster Purity
[Wagstaff ’02]
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Effects of Constraints on Convergence 
Time

PIMA - Mean Number of Iterations Until Convergence 
Against Number of Clusters
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Breast Cancer - Mean Number of Iterations Until 
Convergence Against Number of Clusters
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The Feasibility Problem

• We’ve seen that constraints are useful …

• But is there a catch?

• We are now trying to find a clustering under all sorts of 
constraints

Feasibility Problem
Given a set of data pointsS,a set of ML and CL constraints,

a lower (KL) and upper bound (Ku) on the number of clusters,

is there at least one single set partition of Sinto k blocks, KU ≥ k ≥ KL

such that no constraints are violated?

i.e. CL(a,b), CL(b,c), CL(a,c), k=2?
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Investigating the Feasibility Problem 
and Consequences?

• For a constraint type or combination:
– P :construct a polynomial time algorithm

– NP-complete : reduce from known NP-complete problem

• If the feasibility problem is in P then we can:
– Use the algorithms to check if a single feasible solution exists before 

we even apply K-Means

– Add feasibility checking as a step in K-Means. 

• If feasibility problem is NP-complete then:
– If we try to find a feasible solution at each iteration of K-Means, could 

take a long time as problem is intractable. 
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Summary of Feasibility Complexity 
Results
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Cannot Link Example

Instances a thru z
Constraints: CL(a,c), CL(d,e), CL(f,g), CL(c,g), CL(c,f)

a

c

d e

f

g

Graph K-coloring problem

Graph K-coloring problem is 
intractable for all values of 
K≥3

See [Davidson and Ravi ’05]

for polynomial reduction from 
graph K-coloring problem.
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Must Link Example

Instances a …z
ML(a,c), ML(d,e), ML(f,g), ML(c,g)

a

c

d e

f

g

M1={a,c,f,g}
M2={d,e}

Let r be the size of the transitive 
closure (i.e. r=2 above), the 
number of connected components

Infeasible if k > (n-|TC|)– r
> 26-6 – 2

i.e., can’t have too many clusters
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New Results

• Feasibility Problem for Disjunctions of ML and CL 
constraints are intractable

• But Feasibility Problem for Choice sets of ML and CL 
constraints are easy.
– ML(x, y1) ∪ ML(x, y2) … ∪ ML(x,yn) 

– i.e. x must-be linked with one of the y’s.
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Is The Feasibility Problem Really a 
Problem

• Wait! You said clustering under cannot link constraints 
was intractable.

• Worst case results say that there is one at least one “hard” 
problem instance so pessimistically we say the entire 
problem is hard.

• But when and how often does feasibility become a 
problem.

• Set k = # extrinsic clusters

• Randomly generated constraints by choosing two instances

• Run COP-k-means
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Experimental Results
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Enforcing Constraints

• Constraints are strong background information that should 
be satisfied.

• Two options
– Satisfy all constraints, but we will run into infeasibility problems

– Satisfy as many constraints as possible, but working out largest
subset of constraints is also intractable (largest-color problem)
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COP-k-Means – Nearest-”Feasible”-
Centroid Idea
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Example: COP-K-Means - 1

Cannot-link

Must-link

Height

Weight
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Example: COP-K-Means – 2
ML points Averaged

Cannot-link

Must-link

Height

Weight

x

x
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Example: COP-K-Means – 3
Nearest-Feasible-Assignment

Cannot-link

Must-link

Height

Weight

x

x
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Trying To Minimize VQE and Satisfy 
As Many Constraints As Possible

• Can’t rely on expecting that I can satisfy all constraints at 
each iteration.

• Change aim of K-Means from:
– Find a solution satisfying all the constraints and minimizing VQE 

TO
– Find a solution satisfying most of the constraints (penalized if a 

constraint is violated) and minimizing VQE

• Two tricks
– Need to express penalty term in same units as VQE/distortion
– Need to rederive K-Means (as a gradient descent algorithm) from 

first principles.
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An Approximation Algorithm – Notation

g(l), g’(l) and m(l) refer to the lth constraint
g(l) : assigned cluster for first instance in constraint
g’(l) : assigned cluster for second instance in constraint
m(l) = 1 for must link, m(l) = 0 for cannot link

Cannot-link

Must-link

x

x

l=3, m(l)=1

g(l)=x, g’(l)=x

l=2, m(l)=0

g(l)=x, g’(l)=x
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New Differentiable Objective Function

Satisfying a constraint may increase distortion
Trade-off between satisfying constraints and distortion
requires measurement in the same units

Only one is non-zero 
per constraint violation

If ML violated add 
distance between 
clusters

If CL violated add 
distance between 
cluster and nearest 
cluster
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Visualizing the Penalties

Either satisfy the constraint, or 
Assign to the “nearest” centroid but with a penalty

Cannot-link

Must-link

x

x

l=2, m(l)=0

g(l)=x, g’(l)=x

l=3, m(l)=1

g(l)=x, g’(l)=x
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Constrained K-Means Algorithm

Algorithm aims to minimize CVQE and has a formal derivation

Randomly assign each instance to a cluster.

1. Cj = Average of points assigned to j

+ Centroids of points that should be assigned to j

+ Nearest Centroids to points that should not to be 
assigned to j

2. NN assignment for each instance using new distance
Assign x to Cj iff argminj CVQE(x,Cj)

Goto 1 until ∆CVQE is small

Must Link 
Penalties

Cannot Link 
Penalties
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Approximation Algorithm Experiments

• Binary class problems.
– Use small amount of labeled data to generate ML between similar 

labeled instances and CL between different label instances

• As Wagstaff, Klein and Basu found cluster purity increases 
for k=2.

• For k>=2
– The algorithm converged in fewer iterations than regular 

unconstrained k-means
– On average vector quantization error was less than unconstrained k-

means
– Manages trade-off between satisfying constraints and minimizing 

VQE
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Hierarchical Clustering

Agglomerative Hierarchical Clustering
1. Initially, every instance is in its own cluster
2. Compute similarities between each cluster
3. Merge two most similar clusters into one.
4. Goto 2

Time Complexity O(n2)

A   B   C   D

A   B   C   D
A

B

C

D

0    3   6    1

3    0   3    2

6    3   0    5

1    2   5    0

D =

0     1     2      3     4     5      6

A     D           B                   C
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Modify the Distance Matrix (D) To Satisfy 
Instance Level Constraints (KKM02) - 1

• Metric spaces. Only changing the distance matrix 
not the distance function.

• But we must satisfy the triangle inequality

• If inequality did not hold then shortest distance 
between two points wouldn’t be a line.

A

B

C

d(x,y) ≤≤≤≤ d(x,z) + d(z,y) 

d(x,y) ≥≥≥≥ | d(x,z) – d(z,y) |3
3

6



38

Clustering with Constraints© Basu and Davidson 2005 75

Modify the Distance Matrix (D) To Satisfy 
Instance Level Constraints (KKM02) - 2

Algorithm
• 1):  Change ML distance instance entries in D to 0
• 2):  Calculate D’ from D using all pairwise shortest path algorithms, takes 

O(n3)
• 3):  D’’ = D’ Except Change CL distance entries to be max(D)+1

ML(A,B)

CL(A,D) A

B

C
d(x,y) ≤≤≤≤ d(x,z) + d(z,y) 

d(x,y) ≥≥≥≥ | d(x,z) – d(z,y) |

0
3

6

D
2

5

Causes
Violation

A   B   C   D
A

B

C

D

0    0   6    1

0    0   3    2

6    3   0    5

1    2   5    0

D =

1
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Modify the Distance Matrix (D) To Satisfy 
Instance Level Constraints (KKM02) - 3

d(x,y) ≤≤≤≤ d(x,z) + d(z,y) 

d(x,y) ≥≥≥≥ | d(x,z) – d(z,y) |

S

T

E

P

2 A

B

C

0
3

6   3

D

5
1

2   1 A   B   C   D
A

B

C

D

0    0   3    1

0    0   3    1

3    3   0    5

1    1   5    0

D’ =

Algorithm
• 1):  Change ML distance instance entries in D to 0
• 2):  Calculate D’ from D using all pairwise shortest path algorithms, takes 

O(n3)
• 3):  D’’ = D’ Except Change CL distance entries to be max(D)+1
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Modify the Distance Matrix (D) To Satisfy 
Instance Level Constraints (KKM02) - 4

S

T

E

P

3

But Because of entailment property of CL we “maintain” the triangle inequality

Join(A,B)

Can’t Join((A,B),D) instead Join((A,B),C) and then stop

Indirectly made d(B,D) and d(A,C) >> 6 and make inequality indirectly hold.

A

B

C

0
3

3

D

5
6

1 A   B   C   D
A

B

C

D

D’’ =

Causes Violations

0    0   3    6

0    0   3    1

3    3   0    5

6    1   5    0
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Feasibility, Dead-ends and Speeding Up 
Agglomerative Clustering

Feasibility Problem
Instance: Given a set S of points, a (symmetric)  distance 

function d(x,y)≥0 ∀x,y and a collection of C constraints.

Problem: Can S be partitioned into at least one single 

subsets (clusters) so that all constraints are satisfied?

CL(a,b), 
CL(b,c), 
CL(a,c)  

(k=3, k=2, k=1)?

a b

c

For fixed k 
equivalent to graph
coloring so NP-complete
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Feasibility Results [11,12]

NP-completeNP-completeML, CL and ε
PPδ and ε
PPML and δ
PNP-completeML and ε
PPε
PPδ
PNP-completeCL

PPML

Unspecified kGiven kConstraint
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Feasibility under ML and CL

s1 s2 s3 s4 s5 s6

ML(s1,s3), ML(ML(s2,s3), ML(s2,s4), CL(s1, s4)

Compute the Transitive Closure on ML={CC1 … CCr} O(n+mML)

s1 s2 s3 s4 s5 s6

Construct Edges {E} between Nodes based on CL: O(mCL)

s1 s2 s3 s4 s5 s6

Infeasible: iff ∃h,k : eh(si, sj) : si, sj∈ CCk : O(mCL)
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Feasibility under ML and ε

s1 s2 s3 s4 s5 s6

S’={x ∈ S : x does not have an ε neighbor}={ s5, s6}
Each of these should be in their own cluster

Compute the Transitive Closure on ML={CC1 … CCr} : O(n+m)

s1 s2 s3 s4 s5 s6

Infeasible: iff ∃i,j : si∈ CCj, si ∈ S’ : O(|S’|)

ML(s1,s2), ML(s3,s4), ML(s4,s5)
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An Algorithm for ML and CL Constraints
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Empirical Results
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Dead-end Clusterings

The Greedy Closest Join Algorithm:

Join (F,D) Join (FD,E)

But then get stuck

Alternative is: 

Join(F,C), Join(D,A), Join(E,B)

A k cluster clustering is a dead-end if it is irreducible, even though
other feasible clusterings with <k clusters exist 

E

A

B C

F

D
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Why Are Dead-Ends a Problem?

• Theorem (in technical report)
– Let kmin < kmax, then if there is a feasible clustering with 

kmaxclusters and a “coarsening” with kmin clusters there 
exists a feasible clustering for every value between kmin 
andkmax

• But you can’t always go from a clustering with 
kmax to one with kmin clusters if you perform closest 
cluster merge. 

• That is if you use traditional agglomerative 
algorithms your dendrogram can end prematurely.
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Dead-End Results
• For dead-end situations, you can’t use agglomerative 

clustering algorithms, otherwise you’ll prematurely 
terminate the dendrogram.

No [PKDD05]ε

No [PKDD05]δ

Yes [PKDD05]CL

No [PKDD05]ML

Dead-end 
Solutions?

Constraint Dead-end 
Solutions?

Constraint

Yes [PKDD05]ML, CL & ε

No [PKDD05]δ and ε

No [PKDD05]ML and δ

No [PKDD05]ML and ε
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Speeding Up Agglomerative Clustering Using 
the Triangle Inequality - 1

A

D

B

C

Calculate distance between
a pivot and all other points
Bound distances on 
remaining pairs of points

Pivot

3

1
6

≥3

≥5

≥2

0  1     2      3     4     5      6

A     D B                   C
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Speeding Up Agglomerative Clustering Using 
the Triangle Inequality - 2

Calculate: D(a,b)=1, D(a,c) = 3, D(a,d) = 6

Save D(b,d)≥5 D(c,d)≥3

Calculate D(b,c)≥2,

A   B   C   D
A

B

C

D

D =

Let γ = 2

0    3   6    1

3 0  ≥3 ≥2

6  ≥3  0   ≥5

1  ≥2 ≥5  0 Mean number of distance calculations
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Algorithm

• Worst case result O(n2) distance calculations
• Best case calculated bound always exceeds γ : O(n-1) 
• Average case using the Markov inequality: save 1/2c distance calculations

where γ = cρ and ρ is the average distance between two points
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Outline

• Introduction [Ian]

• Uses of constraints [Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering
• Enforcing constraints [Ian]

• Hierarchical [Ian]

• Learning distances [Sugato]

• Initializing and pre-processing [Sugato]

• Graph-based [Sugato]
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Distance Learning as Convex 
Optimization [Xing et al. ’02]

• Learns a parameterized Mahalanobis distance
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Alternate formulation

• Equivalent optimization problem
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Optimization Algorithm

• Solve optimization problem using combination of
– gradient ascent: to optimize the objective

– iterated projection algorithm: to satisfy the constraints
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Distance Learning in Product Space 
[Hertz et al. ’04]

• Input:

– Data set X in Rn.

– Equivalence constraints 

• Output: function D: X xX → [0,1] such that: 

• points from the same class are close to each other.
• points from different classes are very far from each other.

• Basic Observation: 

– Equivalence constraints ⇔ Binary labels in product space

– Use boosting on product space to learn function

{

product space
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Boosting in a nutshell

A standard ML method that attempts to boost the performance of “weak” learners

Basic idea:
1. Initially, weights are set equally
2. Iterate:

i. Train weak learner on weighted data

ii. Increaseweights of incorrectly classifiedexamples (force weak learner to 
focus on difficult examples) 

3. Final hypothesis: combination of weak hypotheses
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EM on Gaussian Mixture Model

• GMM: Standard data representation that models data using a 
number of Gaussian sources

• The parameters of the sources are estimated using the EM 
algorithm:

– E step: Calculate Expected log-likelihood of the data over all possible 
assignments of data-points to sources

– M step:   Differentiate the Expectation w.r.t. theparameters
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The Weak Learner: Constrained EM

Constrained EM algorithm: fits a mixture of Gaussians to 
unlabeled data given a set of  equivalence constraints.

Modification in case of equivalence constraints:

E step: sum only over assignments which comply with the 
constraints

The DistBoost algorithm

9

4

2

1

3

5

7

8

6

(1) Learn constrained 
GMM

(2) Generate “weak”
distance function

(3-4) Compute “weak”
distance function 
weight α

t

For t = 1,…,T

Input: weighted 
data-points + eq. 
constraints

1 2( , ) 0.1th x x =
3 4( , ) 0.2th x x =
5 6( , ) 0.7th x x =

K

Final distance function:
1

( , ) ( , )
T

i j t t i jt
D x x h x xα

=
=∑

(5-6) Update weights 
on pairs of points

(7) Translate weights on 
pairs to weights on 
data points
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Integrated Approach: HMRF
[Basu et al. ’04]

} P(L): Prior over constraints

} P(S|L): Data Likelihood

s1

s2 s3

s4

l4

l2 l3

l1

. .
. .

.
. .

.

Markov 
Random 

Field (MRF)

Hidden RVs of 
cluster labels: L

Observed 
data values: S

Goal of constrained 
clustering: estimation of 

P(L,S) on HMRF

Hidden Markov 
Random Field 

(HMRF)

Cannot-link

Must-link

Joint probability
P(L,S) = P(L).P(S|L)
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Constrained Clustering on HMRF
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MRF potential

• Generalized Potts (Ising) potential:
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HMRF-KMeans: Objective Function

∑
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HMRF-KMeans: Algorithm
Initialization: 

– Use neighborhoods derived from constraints to initialize clusters

Till convergence:
1. Point assignment:

– Assign each point s to cluster h* to minimize both distance and 
constraint violations 

2. Mean re-estimation: 

– Estimate cluster centroids C as means of each cluster

– Re-estimate parameters A of DA to minimize constraint violations
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HMRF-KMeans: Convergence

Theorem:

HMRF-KMeans converges to a local minima of JHMRF for 
for Bregman divergencesD (e.g., KL divergence, squared 
Euclidean distance) or directional distances(e.g., Pearson’s 
distance, cosine distance)
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Ablation/Sensitivity Experiment

• MPCK-Means: both constraints and distance learning

• MK-Means: only distance learning

• PCK-Means: only constraints

• K-Means: purely unsupervised
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Evaluation Measure
• Compare cluster partitioning to class labels on the dataset

• Mutual Information measurecalculated only on test set 

[Strehl et al. ’00]

2/)]()([

);(

KHCH

KCI
MI

+
=

Low

High

MI valueUnderlying classesCluster partitions
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Experiment Results:  PenDigits subset
(squared Euclidean distance)
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Outline

• Introduction [Ian]

• Uses of constraints [Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering
• Enforcing constraints [Ian]

• Hierarchical [Ian]

• Learning distances [Sugato]

• Initializing and pre-processing [Sugato]

• Graph-based [Sugato]
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Finding Informative Constraints 
given a quota of Queries

• Active learning for constraint acquisition [Basu et al.’04]:
– In interactive setting, constraints obtained by queries to a user

– Need to get informative constraints to get better clustering

• Two-phase active learning algorithm:

– Explore:Use farthest-firsttraversal [Hochbaum et al.’85]to explore 
the data and find K pairwise-disjoint neighborhoods (cluster skeleton) 
rapidly

– Consolidate:Consolidate basic cluster skeleton by getting more points 
from each cluster, within max (K-1) queries for any point
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Algorithm: Explore

• Pick a point s at random, add it to neighborhood N1 , 
λ

= 1

• While queries are allowed and (
λ

< k)

– Pick point s farthest from existing λ neighborhoods

– If by querying s is cannot-linkedto all existing neighborhoods, 
then  set λ = λ +1, start new neighborhood Nλ with s

– Else, add s to neighborhood with which it is must-linked
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Height

Weight

Active Constraint Acquisition for Clustering
Explore Phase
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.

Height

Weight

Active Constraint Acquisition for Clustering
Explore Phase
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.

.
Height

Weight

Active Constraint Acquisition for Clustering
Explore Phase
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Height

Weight

Active Constraint Acquisition for Clustering
Explore Phase
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.
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.

Height

Weight

Active Constraint Acquisition for Clustering
Explore Phase
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Weight

Active Constraint Acquisition for Clustering
Explore Phase
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.

.

.

Height

Weight

Active Constraint Acquisition for Clustering
Explore Phase
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Algorithm: Consolidate

• Estimate centroids of each of the 
λ

neighborhoods

• While queries are allowed
– Randomly pick a point s not in the existing neighborhoods

– Query s with each neighborhood (in sorted order of decreasing 
distance from s to centroids) until must-linkis found

– Add s to that neighborhood to which it is must-linked
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.

.

.

Height

Weight

Active Constraint Acquisition for Clustering
Consolidate Phase
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Active Constraint Acquisition for Clustering
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.
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Active Constraint Acquisition for Clustering
Consolidate Phase
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Experiments: 20-Newsgroups subset
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Confusion Matrices

523612Mideast

146125Guns

171271Misc

Cluster3Cluster2Cluster1

8677Mideast

4915Guns

9784Misc

Cluster3Cluster2Cluster1

No constraints

20 queries
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Algorithms to Seed K-Means When 
Feasibility Problemis in P [Davidson et al. ’05]

• Each algorithm will find a feasible solution.

• You can build upon each to make them minimize the 
vector quantization error (or what-ever objective function 
your algorithm has) as well.
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Finding a Feasible Clustering for ML 
Constraints

Must link constraints are Transitive: 
ML(a,b), ML(b,c) implies ML(a,c). Replace 
with  ML(a,b,c)

See paper for an algorithm
r = # connected components

S’ are those points not part of
ML constraints

Too many connected components merge
some: doesn’t violate ML constraints

Too many clusters to find.

r < K l <= n-r
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Finding a Feasible Clustering Under the 
δ Constraint
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Finding a Feasible Clustering Under the 
ε Constraint
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Outline

• Introduction [Ian]

• Uses of constraints [Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering
• Enforcing constraints [Ian]

• Hierarchical [Ian]

• Learning distances [Sugato]

• Initializing and pre-processing [Sugato]

• Graph-based [Sugato]
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Graph-based Clustering

• Data input as graph: 

real valued edges 
between pairs of 
points denotes 
similarity
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Constrained Graph-based Clustering
• Clustering criterion:

minimize normalized 
cut

• Possible solution:

Spectral Clustering

[Kamvar et al. ’03]

• Constrained graph 
clustering: 

minimize cut in input 
graph while maximally 
respecting constraints 
in  auxilliary constraint 
graph
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Kernel-based Clustering

• 2-circles data not linearly 
separable

• transform to high-D 
using kernel

• cluster kernel similarity 
matrix using weighted 
kernel K-Means

2
21 ||||

21,.,. ssessge −−>=<
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Constrained Kernel-based Clustering

• Use the data and the 
specified constraints to 
create appropriate 
kernel
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SS-Kernel-KMeans[Kulis et al.’05]

• Contributions:
– Theoretical equivalence between constrained graph clustering and

weighted kernel KMeans

– Unifies vector-based and graph-based constrained clustering using kernels

• Algorithm:
– Forms a kernel matrix from data and constraints

– Runs weighted kernel KMeans 

• Benefits:
– HMRF-KMeans and Spectral Clustering are special cases

– Fast algorithm for constrained graph-based clustering

– Kernels allow constrained clustering with non-linear cluster boundaries
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Kernel for HMRF-KMeans with squared 
Euclidean distance

∑∑∑ ∑
=

∈= ∈
=

∈

+−−=

ji

ji ici

ji

ji i
llts

CLss l

ij
k

c Ss
llts

MLss l

ij
ciHMRF S

w

S

w
CsJ

..
),(1

..
),(

2

||||
||||









∈−
∈+

=

=
+=

CLssw

MLssw
W

ssS

WSK

jiij

jiij
ij

jiij

),( if 

),( if 
,.

 where

,



69

Clustering with Constraints© Basu and Davidson 2005 137

Kernel for Constrained Normalized-Cut 
Objective
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Experiment: PenDigits subset
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Experiment: Yeast Gene network
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Today we talked about …

• Introduction [Ian]

• Uses of constraints [Sugato]

• Real-world examples [Sugato]

• Benefits of constraints [Ian]

• Feasibility and complexity [Ian]

• Algorithms for constrained clustering
• Enforcing constraints [Ian]

• Hierarchical [Ian]

• Learning distances [Sugato]

• Initializing and pre-processing [Sugato]

• Graph-based [Sugato]
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Thanks for Your Attention.
We Hope You Learnt a Few Things

Sugato will be available until Tuesday morning

Ian will be available until Monday afternoon
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