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Abstract 

K-means clustering is one of the most popular 
clustering algorithms used in data mining. However, 
clustering is a time consuming task, particularly with 
the large data sets found in data mining. In this paper 
we show how bootstrap averaging with k-means can 
produce results comparable to clustering all of the 
data but in much less time. The approach of bootstrap 
(sampling with replacement) averaging consists of 
running k-means clustering to convergence on small 
bootstrap samples of the training data and averaging 
similar cluster centroids to obtain a single model. We 
show why our approach should take less computation 
time and empirically illustrate its benefits. We show 
that the performance of our approach is a monotonic 
function of the size of the bootstrap sample. However, 
knowing the size of the bootstrap sample that yields as 
good results as clustering the entire data set remains 
an open and important question.  

1. Introduction and Motivation 

Clustering is a popular data mining task [1] with k-
means clustering being a common algorithm. 
However, since the algorithm is known to converge to 
local optima of its loss/objective function and is 
sensitive to initial starting positions [8] it is typically 
restarted from many initial starting positions. This 
results in a very time consuming process and many 
techniques are available to speed up the k-means 
clustering algorithm including preprocessing the data 
[2], parallelization [3] and intelligently setting the 
initial cluster positions [8]. 

In this paper we propose an alternative approach to 
speeding up k-means clustering known as bootstrap 
averaging. This approach is complimentary to other 
speed-up techniques such as parallelization. Our 
approach builds multiple models by creating small 
bootstrap samples of the training set and building a 
model from each, but rather than aggregating like 
bagging [4], we average similar cluster centers to 
produce a single model that contains k clusters. In this 
paper we shall focus on bootstrap samples that are 
smaller than the training data size. This produces 
results that are comparable with multiple random 

restarting of k-means clustering using all of the 
training data, but takes far less computation time. For 
example, when we take T bootstrap samples of size 
25% of the training data set then the technique takes at 
least four times less computation time but yields as 
good as results if we had randomly restarted k-means T 
times using all of the training data. To test the 
effectiveness of bootstrap averaging, we apply 
clustering in two popular settings: finding 
representative clusters of the population and 
prediction. 

Our approach yields a speedup for two reasons. 
Firstly, we are clustering less data and secondly 
because the k-means algorithm converges (using 
standard tests) more quickly for smaller data sets than 
larger data sets from the same source/population. It is 
important to note that we do not need to re-start our 
algorithm many times for each bootstrap sample.  

Our approach is superficially similar to Bradley 
and Fayyad’s initial point refinement (IPR) [8] 
approach that: 1) sub-samples the training data, 2) 
clusters each sub-sample, 3) clusters the resultant 
cluster centers many times to generate refined initial 
starting positions for k-means. However, we shall 
show there are key differences to their clever 
alternative to randomly choosing starting positions.  

We begin this paper by introducing the k-means 
algorithm and explore its computational behavior. In 
particular we show and empirically demonstrate why 
clustering smaller sets of data leads to faster 
convergence than clustering larger sets of data from 
the same data source/population. We then introduce 
our bootstrap averaging algorithm after which we 
discuss our experimental methodology and results. We 
show that for bootstrap samples of less size than the 
original training data set our approach performs as well 
as standard techniques but in far less time. We then 
discuss the related Bradley and Fayyad technique IPR 
and discuss differences to our own work. Finally, we 
conclude and discuss future work.  

2.   Background to k-means Clustering 

        Consider a set of data containing n 
instances/observations each described by m attributes. 



 

The k-means clustering problem is to divide the n 
instances into k clusters with the clusters partitioning 
the instances (x1… xn) into the subsets Q1…k. The 
subsets can be summarized as points (C1…k ) in the m 
dimensional space, commonly known as centroids or 
cluster centers, whose co-ordinates are the average of 
all points belonging to the subset. We shall refer to this 
collection of centroids obtained from an application of 
the clustering algorithm as a model. K-means 
clustering can also be thought of as vector quantization 
with the aim being to minimize the vector quantization 
error (also known as the distortion) shown in equation 
( 1 ).  The mathematical trivial solution is to have a 
cluster for each instance but typically k << n.  
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What is known today as the k-means clustering 
algorithm was postulated in a number of papers in the 
nineteen sixties [5][6]. The algorithm is extremely 
popular appearing in leading commercial data mining 
suites offered by SAS, SPSS, SGI, ANGOSS [7]. 
Typically the initial centroid locations are determined 
by assigning instances to a randomly chosen cluster 
though alternatives exist [8]. After initial cluster 
centroid placement the algorithm consists of the two 
following steps that are repeated until convergence. As 
the solution converged to is sensitive to the starting 
position the algorithm is typically restarted many 
times.  

1) The assignment step: instances are placed in the 
closest cluster as defined by the distance function.  
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2) The re-estimation step: the cluster centroids are 
recalculated from the instances assigned to the 
cluster. 
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These two steps repeat until the re-estimation step 
leads to minimal changes in centroid values. 
Throughout this paper we use the version of the k-
means clustering algorithm commonly found in data 
mining applications. We use the Euclidean distance, 
randomly assign instances to clusters to obtain initial 
cluster locations and normalize each attributes’ value 
to be between 0 and 1 by dividing by the attributes’ 

range. The k-means algorithm performs gradient 
descent on the distortion error surface and hence 
converges to a local optimum of its loss function (the 
distortion). Convergence can be measured in a number 
of ways such as the sum of the changes in the cluster 
centroids between adjacent iterations does not exceed 
some very small number epsilon (in this paper 10-5). 

3. Computational Complexity of k-means 
Clustering 

       As before, let n be the number of instances to 
cluster, m be the number of attributes/columns for each 
instance and k the number of clusters. Then it is well 
known that if the algorithm performs i iterations then 
the algorithm complexity is O(kmni) [9]. While k, m 
and n are known before the algorithm begins 
execution, as stated earlier the algorithm is typically 
run until convergence occurs, meaning that, i is, at 
invocation, unknown. Of course i can be 
predetermined if the test for convergence is 
abandoned, but this is computationally inefficient.  

        For the rest of this section we derive results 
showing that i (number of iterations) is directly 
proportional to n (the number of instances) for a given 
data source and standard tests of convergence. That is, 
smaller data sets will converge in less iterations than 
larger data sets drawn from the same population. 
Without loss of generality, we assume a univariate data 
set and Euclidean distance. We first state the distortion 
which k-means tries to minimize, take the derivative of 
this expression with respect to the cluster centroid 
value, set to 0 and solve to derive the expression that 
minimizes the distortion. We find that this is as 
expected, the cluster centroid update expression as 
shown below. 
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        We now derive an expression to calculate the 
change in a cluster centroid between time t-1 and t 
below: 
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        A similar analysis to our own has been performed 
while illustrating that k-means is performing Newton’s 
gradient descent with a learning rate inversely related 
to the cluster size [10] as illustrated in equation ( 3 ). 
Furthermore, from equation  ( 4 ) we see that the size 
of cluster centroid change is dependent on the change 
in the number of instances assigned to a cluster in 
adjacent iterations, that is the number of instances 
assigned to k at time t but not   t-1 plus those not 
assigned to k at time t-1 but assigned at time t. For a 
given data source, the larger the data set the more 
likely the condition associated with the first summation 
in equation ( 4 ) will occur towards the end of the k-
means run as our experiments will illustrate later in 
this section. Whether improved tests of convergence 
that consider the data set size may remove this 
phenomenon remains an open question. 
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We now empirically illustrate our earlier claim that the 
number of iterations until convergence is related to 
data set size on a number of real world data sets as 
shown in Table 1, Table 2 and Table 3. These tables 
measure the average number of iterations until 
convergence occurs against increasing data set sizes. 
Convergence occurs if the change in (between adjacent 
iterations) clusters centroid positions when summed 
across all attributes and clusters is less than 10-5. Other 
convergence tests were applied such as: 

• the change in cluster centers is less than a 
percentage of the smallest distance between 
two clusters, 

• that one centroid’s changes is below epsilon or 

• that no changes in cluster centers locations 
occurred, that is 1, −=∀ t

k
t
k QQk  

but our findings did not differ significantly. We report 
average results for 100 experiments (random restarts). 
It is important to note that for a particular data set the 
100 unique random starting positions are identical 
regardless of data set size. That is, we start the 
algorithm from the same 100 starting positions 
regardless of dataset size. Each smaller data set is a 
subset of the larger data sets. 

Average No. 
Iterations 

10% 25%  50% 75% 100% 

Digit 7.23 8.06 8.82 8.94 9.05 

Pima 5.06 7.49 6.21 6.84 7.55 

Image 5.97 4.82 7.05 7.06 9.93 

Table 1. The average number of iterations for k-means to 
converge for a variety of data sets. Note that k=2  and results 
are average over 100 experiments (random restarts). 

Average No. 
Iterations 

10% 25%  50% 75% 100% 

Digit 8.51 11.04 12.11 13.15 14.19 

Pima 6.29 8.88 12.83 15.09 15.61 

Image 7.36 12.73 17.74 20.06 23.84 

Table 2. The average number of iterations for k-means to 
converge for a variety of data sets. Note that k=4  and results 
are average over 100 experiments (random restarts). 

Average No. 
Iterations 

10% 25%  50% 75% 100% 

Digit 8.41 12.61 17.91 20.22 23.55 

Pima 6.75 10.03 16.82 17.51 20.01 

Image 7.99 11.49 12.59 13.37 16.23 

Table 3. The average number of iterations for k-means to 
converge for a variety of data sets. Note that k=6  and results 
are average over 100 experiments (random restarts). 

Figure 1 diagrammatically illustrates our experiments 
showing that for larger values of k that the number of 
iterations monotonically increases as the data set size 
increases. 
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Figure 1. The average number of iterations for k-means to converge for a variety of data sets for k=2, k=4 and k=6. Results are 
average over 100 experiments (random restarts). 

To illustrate the point that for a given source of data, 
clustering smaller data sets leads to faster convergence 
we map the trajectory the cluster algorithm takes 
through the instance space for different size data sets 
starting from the same starting position. To visualize 
these trajectories we will reduce the digit data set to 
two dimensions. This corresponds to the data set 
representing the starting position where the pen writing 
the digit was placed onto the tablet (an excellent 
predictor for the digit type). Some example trajectories 
are shown in Figure 2 and Figure 3.  

 In the 100 trials the average number of iterations for 
the 500 instance data set is 4.33 and for 2000 instances 
9.12. Over the trials in only 6 trials was the number of 
iterations for the larger data set less than for the 
smaller data set. The figures illustrate that for both data 
sets the centroids quickly move to approximately the 
same location but the larger data set takes longer to 
converge. This is so because for larger data sets the 
condition associated with the first summation in 
equation ( 4 ) occurs more often towards the end of the 
k-means run (as seen in the right-hand figures above, it 
is more crowded near the final cluster centroid 
positions). This result is consistent with the results of 
Meek et’ al [12] which found that when calculating a 
learning curve for mixture models that allowing the 
algorithm to reach convergence was not required, the 

results obtained after a few iterations was sufficient to 
determine the shape of the learning curve. 
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Figure 2. The trajectory of four cluster centroids through the 
instance space. The top figure is for 500 instances (17 
iterations), the bottom for 2000 instances (31 iterations).  
Starting positions are circled. 
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Figure 3. The trajectory of four cluster centroids through the 
instance space. The top figure is for 500 instances (5 
iterations), the bottom for 2000 instances (8 iterations). 
Starting positions are circled.  

4.   Description of Our Approach 

       We now discuss our algorithm. Note only a single 
model is built from each bootstrap sample as k-means 
is only run once on each sample. 
Algorithm: Bootstrap Averaging 
Input: D:Training Data,T: Number of bags, K: 
Number of clusters 
Output:  A: The averaged centroids. 
// Generate and cluster each bag   
For i = 1 to T 
 X i = BootStrap( D) 
 Ci  = k-means-Cluster( Xi , K) 
// Note Ci  is the set of k cluster  
// centroids and Ci  = {c i1 ,  c i2  … c iK ) 
EndFor 
// Group similar clusters into bins 
// with the bin averages stored in B1 … 
// B k their sizes are S1 … Sk 
For i = 1 to T 

For j = 1 to K 
Index = AssignToBin( c ij )  

//See section on signature based comparison 
 B Index  += c ij 

EndFor 
EndFor 
For i = 1 to K 
 B i /= Si 

 A i = B i  

EndFor  

Our approach involves averaging similar cluster 
centroids. We propose the following general-purpose 
method that is used throughout the paper, however, in 
practice problem specific approaches may be better.  

4.1 Signature Based Cluster Grouping 

For each cluster centroid we create a signature that can 
be generated quickly and group clusters according to 
the signature. We use the positions of the attributes and 
their values to create a signature of the form: 

Signature(cij)=Σl cijl*2
l, where cijl is the lth attribute for 

the jth cluster of the ith model. 

As each attribute is scaled to be between zero and one 
this creates a signature with the range 0 till 2m+1 as 
there are m attributes. After the signature from each 
cluster is derived we sort them in ascending order and 
divide them into k equally size intervals to form the 
groups. Throughout this paper we use this method. In 
the future we plan to explore the feasibility of using 
the approaches proposed by Strehl and Ghosh [11] that 
involves combining multiple partitions/clusters. 

5. How Much Our Approach Speeds up Clustering 

         If we average T bootstrap samples of size 1/s of 
the training data then we expect our technique to 
obtain as good results as performing T random restarts 
but in less computation time. As described earlier we 
expect a speedup for two reasons. The speedup due to 
clustering less data will be of magnitude s since the 
relative complexity of the clustering process will be 
O(TkmnI) versus O(Tkmn/sI) assuming the same 
number of iterations until convergence. However, as 
discussed earlier for different sized data sets from the 
same population/source the time to convergence is not 
the same, typically In/s<In, this provides an even greater 
speed up which the next set of experiments quantify. 

6.   Experimental Results 

       The first use of our approach is its ability to find 
more accurate estimates of the generating mechanism. 
To test this ability we need to artificially create data to 
know the actual generating mechanism. We created an 
artificial data set of six clusters with six attributes. All 
attributes are Gaussians with a mean of zero and a 
standard deviation of 0.5 except the ith attribute of the 
ith cluster which has a mean of one and a standard 
deviation of 0.5. Formally, CGen={c1 … c6}, ci = {cij=1, 
if i=j , otherwise 0, j = 1 to 6}. We can measure the 
goodness of a clustering solution by its Euclidean 



 

distance to these generating mechanisms. We 
generated 3000 instances from this distribution fifty 
times. For each sample we took 20 bootstrap samples, 
built a single model from each and averaged the cluster 
centroids to produce a single model. We group similar 
cluster centroids using the method described earlier.  

       The bootstrap averaging approach takes at least 
five times less computation time than clustering all of 
the data after performing 20 random restarts. If the 
number of random restarts is increased to 50 and even 
100 the best model (minimum distortion) from the 
random restart approach still does not yield better 
results than bootstrap averaging. The distance to the 
true cluster centers is shown in Figure 4. This figure 
shows that for 10% bootstrap sample sizes that the 
averaged model is further away than the best model 
from random restarts. However, for 20% bootstrap 
sample size the averaged model is closer to the 
generating mechanism. Determining the precise size of 
the bootstrap sample when performance is as good as 
clustering the entire data set remains an open question. 
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Figure 4. Training data size against mean distance (over 50 
samples) to the generating mechanism for averaged model (20 
bags) and best single model found from 20 random restarts 
for the entire data set. The top graph is for bootstrap samples 
of size 10% and the bottom graph 20% of the entire data set. 
The decrease in computation time by using the bootstrap 
averaging approach is never less than five times. 

We now show results for the size of the bootstrap 
sample against predictive accuracy. Though prediction 

is not a common application of clustering, it allows us 
to show the performance of our approach on real world 
problem where we do not know the generating 
mechanism or true model. We find as before that 
averaging smaller bootstraps yields as accurate results 
as random restarts on all of the data but in less 
computation time. In all experiments we drew 50 
random samples from the data, divided this data into a 
training set (70%) and test set (30%). For each data set, 
we randomly restarted k-means 50 times and selected 
the model that minimized the distortion. We compare 
this model against the model obtained by averaging 
over 50 bootstrap samples. 

Digit Data Set: The accuracy of the averaged model 
and computation time for the digit data set (predicting 
3 or 8, the most difficult digit prediction decision in 
this data set) for different sized bootstrap samples are 
shown in Figure 5. The best model found from all of 
the data after the random restarts has a mean accuracy 
of 31.70% and the total computation time is 22 CPU 
minutes compared to the averaged model’s accuracy 
30.8% found in approximately 5 CPU minutes when 
using 25% of data size bootstrap sample. Note that in 
all our results we report the user time reported by the 
Linux time command. This corresponds to the amount 
of CPU time that was dedicated to the process apart 
from system kernel calls which was negligible in all 
case (under 0.01seconds). We find that similar 
speedups hold for other data sets. However, the size of 
the reduced bags when the accuracy of the averaged 
model is the same as obtained from random restarts 
from all of the data varies between data sets. 

Image and Letter Datasets: We see in Figure 6 and 
Figure 7 that for the Image and Letter data sets that the 
computation speedup is approximately a factor of 3.98 
and 3.54 respectively. This is so as the bootstrap 
sample size must increase to 40% to obtain an 
acceptable accuracy. 

Determining the correct size of the reduce bag remains 
an open question and we hope to explore literature 
from the learning curve area [12] to address this 
question in our future work. Our results indicate that 
the size of the bootstrap sample size is a monotonic 
function of the averaged model’s distance to the 
generating mechanism (true model). This is an 
advantage over the work by Bradley and Fayyad where 
the size of the sub-samples leads to indifferent results 
[section 3.2, 8]. 
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Figure 5. Digit Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right 
graph) for the averaged model. Note: Using the entire data set the computation time is 22 CPU minutes and accuracy is 31.7% as 
compared to 30.8% in approximately 5 CPU minutes when using 25% of data size bootstrap sample 
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Figure 6. Image Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right 
graph) for the averaged model. Note: Using the entire data set the computation time is 23.5 CPU minutes and accuracy is 32.7%, 
as compared to accuracy of around 32.9% and 5 CPU minutes when using 40% of data size bootstrap sample. 
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Figure 7. Letter Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right 
graph) for the averaged model. Note: Using the entire data set the computation time is 18.2 CPU minutes and accuracy is 20.6%, 
as compared to accuracy of around 21.0% and 5.2 CPU minutes when using 40% of data size bootstrap sample. 

Table 4 shows a summary table of the situation when 
the bootstrap averaged accuracy equals the accuracy of 
clustering if all the data is used. This table shows the 
expected speed up ([1 / column 2] * [column 3 / 
column 4], see section 5 for details) and the actual 
speedup. The two numbers differ as the expected speed 
up does not consider the extra overhead such as the 
time required to generate the bootstrap samples. We 
did not attempt to optimize our code and hence expect 

the real difference between the expected and actual 
figures to be closer.  

 



 

Table 4.  A summary of the statistics where the bootstrap 
averaged accuracy approximately equals the accuracy if all 
the data is clustered.  

 

7.   Discussion 

We have shown that: 

1. Bootstrap averaging T subsets of the data set 
will typically be more computationally efficient 
as randomly restarting the algorithm T times on 
the entire data set. (Section 3, Table 1, Table 2 
and Table 3)  

2. Bootstrap averaging on a proportion of the 
dataset can yield as accurate results as 
clustering the entire data set (see Figure 4): 
This produces results that are comparable with 
random restarting of k-means clustering using 
all of the training data, but takes far less 
computation time. 

3. The results of bootstrap averaging 
monotonically improve as a function of the 
bootstrap sample size (see Figure 5, Figure 6 
and Figure 7): As we increase the size of the 
bootstrap sample, the accuracy improves, until 
at some point the accuracy is comparable to 
that when the entire dataset is used.  

Determining the size of the bags at which the 
averaged model performs as well as clustering the 
entire data set varies from data set to data set hence 
remains an open question. 

A valid question is: how is our approach related to 
the IPR approach. For the rest of this section we 
empirically show that the two approaches obtain quite 
different results. 

7.1  Is Bootstrap Averaging a Generalization of IPR 

        We begin by showing that the bootstrap averaging 
approach inherently does not produce a model that 
minimizes the distortion. That is, we are not 

compensating for some search inefficiency of the k-
means algorithm as the IPR approach is effectively 
doing, instead we are minimizing another loss function 
as Table 5 indicates. The IPR approach attempts to 
find a good set of initial positions and then applies the 
k-means clustering algorithm to further minimize the 
distortion. The second column in this table is the result 
of applying bootstrap averaging. The first column was 
generated by initializing the clustering algorithm to the 
averaged model and clustering the entire training data. 
We find that the k-means algorithm that performs a 
gradient descent on the distortion error surface finds 
another model that further minimizes the distortion but 
yields worse performance. The averaged models are 
statistically significantly better at the 95% confidence 
level. 

 Starting from Averaged 
Model 

Averaged Model 

Digit 27.9% (5.6) 23.6% (2.3) 
Image 31.3% (4.6) 24.3% (4.1) 
Pima 32.3% (3.2) 27.9% (3.3) 
Letter 23.7% (4.1) 17.5% (2.3) 

Abalone
1
 25.6% (5.1) 19.9% (3.1) 

Adult 33.4% (7.1) 25.2% (4.5) 

Table 5. Collection of data sets. The average and in 
parentheses standard deviation test set error statistics for the 
predictive ability of models found by starting k-means from 
the averaged model and the averaged model for 50 random 
divisions of training (70%) and test (30%) sets. 

        In our next set of experiments we show that 
bootstrap averaging performs quite differently to IPR. 
To illustrate this point clearly, we show that for 
bootstrap samples of equal size to the training data set 
that the results that k-means with IPR converges to is 
quite different from the bootstrap averaged model. In 
Table 6 the averaged model is significantly better (at 
the 95% confidence level) than k-means with IPR. The 
first column refers to the prediction ability of the 
model minimizing the distortion from 100 random 
restarts of the algorithm on the original training data. 
The second column refers to the prediction ability of 
the model minimizing distortion from 100 IPR selected 
starting solutions on the original training data. The 
final column (our approach) refers to the single model 
that is the average of all 20 bags. 

 

 

                                                 
1 Predicting sex of abalone 

 
 

Bootstrap 
Sample 
Size 
Required 

Random 
Restarts: 
Ave. 
Number 
of 
Iterations 

Bootstrap 
Averaging: 
Ave. 
Number of 
Iterations 

Expected 
(Actual) 
Speed Up 

Digit 25% 123.44 74.68 6.61 (4.63) 

Image 40% 82.11 41.23 4.97 (3.98) 

Letter 40% 72.57 43.45 4.17 (3.54) 



 

 Random Restart IPR 
Restart 

Averaged Model 

Digit
2
 30.6% (6.7) 29.5% (4.4) 23.6% (2.3) 

Image 35.5% (9.8) 29.3% (5.2) 24.3% (4.1) 

Pima 33.5% (4.5) 31.2% (3.1) 27.9% (3.3) 

Letter 22.0% (6.4) 21.3% (3.2) 17.5% (2.3) 

Abalone1 25.3% (7.9) 22.4% (4.5) 19.9% (3.1) 

Adult 34.3% (10.3) 28.9% (5.4) 25.2% (4.5) 

Table 6. Collection of data sets. The average and in 
parentheses standard deviation test set error statistics for the 
predictive ability of models found by applying k-means in a 
variety of situations over 50 random divisions of training 
(70%) and test (30%) sets. 

8.   Conclusion  

K-Means clustering is a popular but time consuming 
algorithm used in data mining. It is time consuming as 
it converges to a local optimum of its loss function (the 
distortion) and the solution converged to is particularly 
sensitive to the initial starting positions. As a result its 
typical use in practice involves applying the algorithm 
from many randomly chosen initial starting positions. 

In this paper we explore an approach we term 
bootstrap averaging. Bootstrap averaging builds 
multiple models by creating small bootstrap samples 
of the training set and building a single model from 
each, similar cluster centers are then averaged to 
produce a single model that contains k clusters. If we 
average T bags of size 1/s of the entire data set then 
our approach takes less time than randomly restarting 
the algorithm T times by a factor of at least s. Knowing 
the value of s where the averaged model performs as 
well as clustering the entire data set varies between 
data sets. The speedup is because the computational 
complexity of k-means is linear with respect to the 
number of data points. In practice we find that the 
speedup our approach provides is in fact greater than s 
since the standard test for convergence (the change in 
cluster centroids is less than some small number, 
epsilon) do not consider the size of the training data 
set. Our results indicate that the number of iterations of 
the algorithm until convergence is proportional to the 
size of the data set. In future work we will explore 
developing tests of convergence that factor in the data 
set size. 

                                                 
2 Predicting digit 3 or 8 

Our empirical results show that bootstrap sampling can 
achieve comparable results as clustering all of the data 
but in less computation time. We perform experiments 
to measure a clustering model’s results in two ways: 1) 
distance to the generating mechanism and 2) predictive 
ability. However, knowing the size of the sample that 
performs as well as clustering the entire data set 
remains an open question. We hope to explore using 
the learning curve literature to determine potential 
ways to address this question. 

Our research empirically shows that clustering bigger 
data sets is not always desirable. No doubt that 
clustering large data sets offer additional benefits 
namely producing better results, but our experiments 
indicate that bootstrapping smaller portions of the 
dataset can produce this benefit as well but at a 
reduction in computation time. 
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