
Speeding up k-means Clustering by Bootstrap Averaging

Ian Davidson and Ashwin Satyanarayana
Computer Science Dept, SUNY Albany, NY, USA, 12222.

{davidson, ashwin}@cs.albany.edu

Abstract

K-means clustering is one of the most popular
clustering algorithms used in data mining. However,
clustering is a time consuming task, particularly with
the large data sets found in data mining. In this paper
we show how bootstrap averaging with k-means can
produce results comparable to clustering all of the
data but in much less time. The approach of bootstrap
(sampling with replacement) averaging consists of
running k-means clustering to convergence on small
bootstrap samples of the training data and averaging
similar cluster centroids to obtain a single model. We
show why our approach should take less computation
time and empirically illustrate its benefits. We show
that the performance of our approach is a monotonic
function of the size of the bootstrap sample. However,
knowing the size of the bootstrap sample that yields as
good results as clustering the entire data set remains
an open and important question.

1. Introduction and Motivation

Clustering is a popular data mining task [1] with k-
means clustering being a common algorithm.
However, since the algorithm is known to converge to
local optima of its loss/objective function and is
sensitive to initial starting positions [8] it is typically
restarted from many initial starting positions. This
results in a very time consuming process and many
techniques are available to speed up the k-means
clustering algorithm including preprocessing the data
[2], parallelization [3] and intelligently setting the
initial cluster positions [8].

In this paper we propose an alternative approach to
speeding up k-means clustering known as bootstrap
averaging. This approach is complimentary to other
speed-up techniques such as parallelization. Our
approach builds multiple models by creating small
bootstrap samples of the training set and building a
model from each, but rather than aggregating like
bagging [4], we average similar cluster centers to
produce a single model that contains k clusters. In this
paper we shall focus on bootstrap samples that are
smaller than the training data size. This produces
results that are comparable with multiple random

restarting of k-means clustering using all of the
training data, but takes far less computation time. For
example, when we take T bootstrap samples of size
25% of the training data set then the technique takes at
least four times less computation time but yields as
good as results if we had randomly restarted k-means T
times using all of the training data. To test the
effectiveness of bootstrap averaging, we apply
clustering in two popular settings: finding
representative clusters of the population and
prediction.

Our approach yields a speedup for two reasons.
Firstly, we are clustering less data and secondly
because the k-means algorithm converges (using
standard tests) more quickly for smaller data sets than
larger data sets from the same source/population. It is
important to note that we do not need to re-start our
algorithm many times for each bootstrap sample.

Our approach is superficially similar to Bradley
and Fayyad’s initial point refinement (IPR) [8]
approach that: 1) sub-samples the training data, 2)
clusters each sub-sample, 3) clusters the resultant
cluster centers many times to generate refined initial
starting positions for k-means. However, we shall
show there are key differences to their clever
alternative to randomly choosing starting positions.

We begin this paper by introducing the k-means
algorithm and explore its computational behavior. In
particular we show and empirically demonstrate why
clustering smaller sets of data leads to faster
convergence than clustering larger sets of data from
the same data source/population. We then introduce
our bootstrap averaging algorithm after which we
discuss our experimental methodology and results. We
show that for bootstrap samples of less size than the
original training data set our approach performs as well
as standard techniques but in far less time. We then
discuss the related Bradley and Fayyad technique IPR
and discuss differences to our own work. Finally, we
conclude and discuss future work.

2. Background to k-means Clustering

 Consider a set of data containing n
instances/observations each described by m attributes.

The k-means clustering problem is to divide the n
instances into k clusters with the clusters partitioning
the instances (x1… xn) into the subsets Q1…k. The
subsets can be summarized as points (C1…k) in the m
dimensional space, commonly known as centroids or
cluster centers, whose co-ordinates are the average of
all points belonging to the subset. We shall refer to this
collection of centroids obtained from an application of
the clustering algorithm as a model. K-means
clustering can also be thought of as vector quantization
with the aim being to minimize the vector quantization
error (also known as the distortion) shown in equation
(1). The mathematical trivial solution is to have a
cluster for each instance but typically k << n.

i

CxDVQ
n

i
xfi i

 instance index tocluster closet thereturns f(x)and

function distance a is D where,),(
1

)(2
1 �=

=

(1)

What is known today as the k-means clustering
algorithm was postulated in a number of papers in the
nineteen sixties [5][6]. The algorithm is extremely
popular appearing in leading commercial data mining
suites offered by SAS, SPSS, SGI, ANGOSS [7].
Typically the initial centroid locations are determined
by assigning instances to a randomly chosen cluster
though alternatives exist [8]. After initial cluster
centroid placement the algorithm consists of the two
following steps that are repeated until convergence. As
the solution converged to is sensitive to the starting
position the algorithm is typically restarted many
times.

1) The assignment step: instances are placed in the
closest cluster as defined by the distance function.

),(minarg)(ji
j

i CxDxf =

2) The re-estimation step: the cluster centroids are
recalculated from the instances assigned to the
cluster.

�=
= jxf j

i
j

i Q

x
C

)(

These two steps repeat until the re-estimation step
leads to minimal changes in centroid values.
Throughout this paper we use the version of the k-
means clustering algorithm commonly found in data
mining applications. We use the Euclidean distance,
randomly assign instances to clusters to obtain initial
cluster locations and normalize each attributes’ value
to be between 0 and 1 by dividing by the attributes’

range. The k-means algorithm performs gradient
descent on the distortion error surface and hence
converges to a local optimum of its loss function (the
distortion). Convergence can be measured in a number
of ways such as the sum of the changes in the cluster
centroids between adjacent iterations does not exceed
some very small number epsilon (in this paper 10-5).

3. Computational Complexity of k-means
Clustering

 As before, let n be the number of instances to
cluster, m be the number of attributes/columns for each
instance and k the number of clusters. Then it is well
known that if the algorithm performs i iterations then
the algorithm complexity is O(kmni) [9]. While k, m
and n are known before the algorithm begins
execution, as stated earlier the algorithm is typically
run until convergence occurs, meaning that, i is, at
invocation, unknown. Of course i can be
predetermined if the test for convergence is
abandoned, but this is computationally inefficient.

 For the rest of this section we derive results
showing that i (number of iterations) is directly
proportional to n (the number of instances) for a given
data source and standard tests of convergence. That is,
smaller data sets will converge in less iterations than
larger data sets drawn from the same population.
Without loss of generality, we assume a univariate data
set and Euclidean distance. We first state the distortion
which k-means tries to minimize, take the derivative of
this expression with respect to the cluster centroid
value, set to 0 and solve to derive the expression that
minimizes the distortion. We find that this is as
expected, the cluster centroid update expression as
shown below.

[]

[]

||

,0

22

solve and zero set to ,derivativeorder first take

2)(

)(

)).(),((

)(,

)(,

)(,
2
1

)(,

22
2
1

)(,

2
2
1

2
1

1

2
2
1

k

n

kxfi
ik

t

n

kxfi
ik

t
k

n

kxfi
ik

t

k
t

k

n

kxfi
iik

t
k

t

n

kxfi
ik

t
k

K

k
k

K

k

n

i
ik

t
i

QxC

xCQ

xC
C

VQ

xxCC

xCVQ

VQ

xCkxfVQ

i

i

i

i

i

�=

�−=

� −=
∂
∂

� +−=

� −=

�=

� � −=

=

=

=

=

=

=
δ

 (2)

 We now derive an expression to calculate the
change in a cluster centroid between time t-1 and t
below:

()

()
.||

1

1

)(,

1

1

)(,

1

timesQoccurssummationtheas

Cx
Q

Cx
Q

CCC

k

n

kxfi
k

t
i

k

k
tn

kxfi
i

k

k
t

k
t

k

it

it

� −=

−�=

−=∆

=

−

−

=

−

(3)

 A similar analysis to our own has been performed
while illustrating that k-means is performing Newton’s
gradient descent with a learning rate inversely related
to the cluster size [10] as illustrated in equation (3).
Furthermore, from equation (4) we see that the size
of cluster centroid change is dependent on the change
in the number of instances assigned to a cluster in
adjacent iterations, that is the number of instances
assigned to k at time t but not t-1 plus those not
assigned to k at time t-1 but assigned at time t. For a
given data source, the larger the data set the more
likely the condition associated with the first summation
in equation (4) will occur towards the end of the k-
means run as our experiments will illustrate later in
this section. Whether improved tests of convergence
that consider the data set size may remove this
phenomenon remains an open question.

()

otherwisezerobawhenbawhere

kxfkxf

x

C

therefore
Cthenkxfkxfif

andkxfkxfifi

n

xfxfi
it

n

xfxfi
it

n

kxforkxfxfxfi
i

k

kitit

itit

itititit

itititit

,,1),(

)),(()),((

:
,0)()(

)()(,

)()(,
1

)()(,

)()(),()(,

1

1

11

11

==

�
�

�
�
�

�
�+�

�

=∆

=∆=�=
=�=∀

−−

−−

≠
−

≠

==≠

−

−

δ

δδ

 (4)

We now empirically illustrate our earlier claim that the
number of iterations until convergence is related to
data set size on a number of real world data sets as
shown in Table 1, Table 2 and Table 3. These tables
measure the average number of iterations until
convergence occurs against increasing data set sizes.
Convergence occurs if the change in (between adjacent
iterations) clusters centroid positions when summed
across all attributes and clusters is less than 10-5. Other
convergence tests were applied such as:

• the change in cluster centers is less than a
percentage of the smallest distance between
two clusters,

• that one centroid’s changes is below epsilon or

• that no changes in cluster centers locations
occurred, that is 1, −=∀ t

k
t
k QQk

but our findings did not differ significantly. We report
average results for 100 experiments (random restarts).
It is important to note that for a particular data set the
100 unique random starting positions are identical
regardless of data set size. That is, we start the
algorithm from the same 100 starting positions
regardless of dataset size. Each smaller data set is a
subset of the larger data sets.

Average No.
Iterations

10% 25% 50% 75% 100%

Digit 7.23 8.06 8.82 8.94 9.05

Pima 5.06 7.49 6.21 6.84 7.55

Image 5.97 4.82 7.05 7.06 9.93

Table 1. The average number of iterations for k-means to
converge for a variety of data sets. Note that k=2 and results
are average over 100 experiments (random restarts).

Average No.
Iterations

10% 25% 50% 75% 100%

Digit 8.51 11.04 12.11 13.15 14.19

Pima 6.29 8.88 12.83 15.09 15.61

Image 7.36 12.73 17.74 20.06 23.84

Table 2. The average number of iterations for k-means to
converge for a variety of data sets. Note that k=4 and results
are average over 100 experiments (random restarts).

Average No.
Iterations

10% 25% 50% 75% 100%

Digit 8.41 12.61 17.91 20.22 23.55

Pima 6.75 10.03 16.82 17.51 20.01

Image 7.99 11.49 12.59 13.37 16.23

Table 3. The average number of iterations for k-means to
converge for a variety of data sets. Note that k=6 and results
are average over 100 experiments (random restarts).

Figure 1 diagrammatically illustrates our experiments
showing that for larger values of k that the number of
iterations monotonically increases as the data set size
increases.

Bag Size Against Number of Iterations Until Convergence - k=6

7

9

11

13

15

17

19

21

23

25

10% 25% 50% 75% 100%

Size of Bag (% of Training Data Set)

A
ve

ra
g

e
N

u
m

b
er

 o
f

It
er

at
io

n
s

Digit

Pima

Image

Figure 1. The average number of iterations for k-means to converge for a variety of data sets for k=2, k=4 and k=6. Results are
average over 100 experiments (random restarts).

To illustrate the point that for a given source of data,
clustering smaller data sets leads to faster convergence
we map the trajectory the cluster algorithm takes
through the instance space for different size data sets
starting from the same starting position. To visualize
these trajectories we will reduce the digit data set to
two dimensions. This corresponds to the data set
representing the starting position where the pen writing
the digit was placed onto the tablet (an excellent
predictor for the digit type). Some example trajectories
are shown in Figure 2 and Figure 3.

 In the 100 trials the average number of iterations for
the 500 instance data set is 4.33 and for 2000 instances
9.12. Over the trials in only 6 trials was the number of
iterations for the larger data set less than for the
smaller data set. The figures illustrate that for both data
sets the centroids quickly move to approximately the
same location but the larger data set takes longer to
converge. This is so because for larger data sets the
condition associated with the first summation in
equation (4) occurs more often towards the end of the
k-means run (as seen in the right-hand figures above, it
is more crowded near the final cluster centroid
positions). This result is consistent with the results of
Meek et’ al [12] which found that when calculating a
learning curve for mixture models that allowing the
algorithm to reach convergence was not required, the

results obtained after a few iterations was sufficient to
determine the shape of the learning curve.

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 0.2 0.4 0.6 0.8 1 1.2

Cluster 1

Cluster 2

Cluster 3

Cluster 4

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 0.2 0.4 0.6 0.8 1 1.2

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 2. The trajectory of four cluster centroids through the
instance space. The top figure is for 500 instances (17
iterations), the bottom for 2000 instances (31 iterations).
Starting positions are circled.

Bag Size Against Number of Iterations Until Convergence - k=2

4

5

6

7

8

9

10

11

10% 25% 50% 75% 100%

Size of Bag (% of Training Data Set)

A
ve

ra
g

e
N

u
m

b
er

 o
f

It
er

at
io

n
s

Digit

Pima

Image

Bag Size Against Number of Iterations Until Convergence - k=4

7

9

11

13

15

17

19

21

23

25

10% 25% 50% 75% 100%

Size of Bag (% of Training Data Set)

A
ve

ra
g

e
N

u
m

b
er

 o
f

It
er

at
io

n
s

Digit

Pima

Image

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cluster 1

Cluster 2

Cluster 3

Cluster 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 3. The trajectory of four cluster centroids through the
instance space. The top figure is for 500 instances (5
iterations), the bottom for 2000 instances (8 iterations).
Starting positions are circled.

4. Description of Our Approach

 We now discuss our algorithm. Note only a single
model is built from each bootstrap sample as k-means
is only run once on each sample.
Algorithm: Bootstrap Averaging
Input: D:Training Data,T: Number of bags, K:
Number of clusters
Output: A: The averaged centroids.
// Generate and cluster each bag
For i = 1 to T
 X i = BootStrap(D)
 Ci = k-means-Cluster(Xi , K)
// Note Ci is the set of k cluster
// centroids and Ci = {c i1 , c i2 … c iK)
EndFor
// Group similar clusters into bins
// with the bin averages stored in B1 …
// B k their sizes are S1 … Sk
For i = 1 to T

For j = 1 to K
Index = AssignToBin(c ij)

//See section on signature based comparison
 B Index += c ij

EndFor
EndFor
For i = 1 to K
 B i /= Si

 A i = B i

EndFor

Our approach involves averaging similar cluster
centroids. We propose the following general-purpose
method that is used throughout the paper, however, in
practice problem specific approaches may be better.

4.1 Signature Based Cluster Grouping

For each cluster centroid we create a signature that can
be generated quickly and group clusters according to
the signature. We use the positions of the attributes and
their values to create a signature of the form:

Signature(cij)=Σl cijl*2
l, where cijl is the lth attribute for

the jth cluster of the ith model.

As each attribute is scaled to be between zero and one
this creates a signature with the range 0 till 2m+1 as
there are m attributes. After the signature from each
cluster is derived we sort them in ascending order and
divide them into k equally size intervals to form the
groups. Throughout this paper we use this method. In
the future we plan to explore the feasibility of using
the approaches proposed by Strehl and Ghosh [11] that
involves combining multiple partitions/clusters.

5. How Much Our Approach Speeds up Clustering

 If we average T bootstrap samples of size 1/s of
the training data then we expect our technique to
obtain as good results as performing T random restarts
but in less computation time. As described earlier we
expect a speedup for two reasons. The speedup due to
clustering less data will be of magnitude s since the
relative complexity of the clustering process will be
O(TkmnI) versus O(Tkmn/sI) assuming the same
number of iterations until convergence. However, as
discussed earlier for different sized data sets from the
same population/source the time to convergence is not
the same, typically In/s<In, this provides an even greater
speed up which the next set of experiments quantify.

6. Experimental Results

 The first use of our approach is its ability to find
more accurate estimates of the generating mechanism.
To test this ability we need to artificially create data to
know the actual generating mechanism. We created an
artificial data set of six clusters with six attributes. All
attributes are Gaussians with a mean of zero and a
standard deviation of 0.5 except the ith attribute of the
ith cluster which has a mean of one and a standard
deviation of 0.5. Formally, CGen={c1 … c6}, ci = {cij=1,
if i=j , otherwise 0, j = 1 to 6}. We can measure the
goodness of a clustering solution by its Euclidean

distance to these generating mechanisms. We
generated 3000 instances from this distribution fifty
times. For each sample we took 20 bootstrap samples,
built a single model from each and averaged the cluster
centroids to produce a single model. We group similar
cluster centroids using the method described earlier.

 The bootstrap averaging approach takes at least
five times less computation time than clustering all of
the data after performing 20 random restarts. If the
number of random restarts is increased to 50 and even
100 the best model (minimum distortion) from the
random restart approach still does not yield better
results than bootstrap averaging. The distance to the
true cluster centers is shown in Figure 4. This figure
shows that for 10% bootstrap sample sizes that the
averaged model is further away than the best model
from random restarts. However, for 20% bootstrap
sample size the averaged model is closer to the
generating mechanism. Determining the precise size of
the bootstrap sample when performance is as good as
clustering the entire data set remains an open question.

Distance to Generating Mechanism Versus Training Set Size
Bags of 10% of Original Training Set Size

0

0.5

1

1.5

2

2.5

100 500 1000 1500 2000 2500 3000 3500 4000

Training Set Size

K
L

 D
is

ta
n

ce
 t

o
 G

en
er

at
in

g
 M

ec
h

an
is

m

Averaged Model

Best Model

Distance to Generating Mechanism Versus Training Set Size
Bags of 20% of Original Training Set Size

0

0.5

1

1.5

2

2.5

100 500 1000 1500 2000 2500 3000 3500 4000

Training Set Size

K
L

 D
is

ta
n

ce
 t

o
 G

en
er

at
in

g
 M

ec
h

an
is

m

Averaged Model

Best Model

Figure 4. Training data size against mean distance (over 50
samples) to the generating mechanism for averaged model (20
bags) and best single model found from 20 random restarts
for the entire data set. The top graph is for bootstrap samples
of size 10% and the bottom graph 20% of the entire data set.
The decrease in computation time by using the bootstrap
averaging approach is never less than five times.

We now show results for the size of the bootstrap
sample against predictive accuracy. Though prediction

is not a common application of clustering, it allows us
to show the performance of our approach on real world
problem where we do not know the generating
mechanism or true model. We find as before that
averaging smaller bootstraps yields as accurate results
as random restarts on all of the data but in less
computation time. In all experiments we drew 50
random samples from the data, divided this data into a
training set (70%) and test set (30%). For each data set,
we randomly restarted k-means 50 times and selected
the model that minimized the distortion. We compare
this model against the model obtained by averaging
over 50 bootstrap samples.

Digit Data Set: The accuracy of the averaged model
and computation time for the digit data set (predicting
3 or 8, the most difficult digit prediction decision in
this data set) for different sized bootstrap samples are
shown in Figure 5. The best model found from all of
the data after the random restarts has a mean accuracy
of 31.70% and the total computation time is 22 CPU
minutes compared to the averaged model’s accuracy
30.8% found in approximately 5 CPU minutes when
using 25% of data size bootstrap sample. Note that in
all our results we report the user time reported by the
Linux time command. This corresponds to the amount
of CPU time that was dedicated to the process apart
from system kernel calls which was negligible in all
case (under 0.01seconds). We find that similar
speedups hold for other data sets. However, the size of
the reduced bags when the accuracy of the averaged
model is the same as obtained from random restarts
from all of the data varies between data sets.

Image and Letter Datasets: We see in Figure 6 and
Figure 7 that for the Image and Letter data sets that the
computation speedup is approximately a factor of 3.98
and 3.54 respectively. This is so as the bootstrap
sample size must increase to 40% to obtain an
acceptable accuracy.

Determining the correct size of the reduce bag remains
an open question and we hope to explore literature
from the learning curve area [12] to address this
question in our future work. Our results indicate that
the size of the bootstrap sample size is a monotonic
function of the averaged model’s distance to the
generating mechanism (true model). This is an
advantage over the work by Bradley and Fayyad where
the size of the sub-samples leads to indifferent results
[section 3.2, 8].

Error Versus Bag Size For Averaged
M odel

30%
32%
34%
36%
38%
40%
42%
44%
46%
48%
50%

2% 10% 15% 20% 25%

CPU M inutes Versus Bag Size for Averaged
M odel

4

4.2

4.4

4.6

4.8

5

5.2

5.4

2% 10% 15% 20% 25%

Figure 5. Digit Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right
graph) for the averaged model. Note: Using the entire data set the computation time is 22 CPU minutes and accuracy is 31.7% as
compared to 30.8% in approximately 5 CPU minutes when using 25% of data size bootstrap sample

Error Versus Bag Size For Averaged
Model

30%
32%
34%
36%
38%
40%
42%
44%
46%
48%
50%

2% 10% 15% 30% 40%

CPU Minutes Versus Bag Size for Averaged
Model

5

5.2

5.4

5.6

5.8

6

6.2

6.4

2% 10% 15% 30% 40%

Figure 6. Image Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right
graph) for the averaged model. Note: Using the entire data set the computation time is 23.5 CPU minutes and accuracy is 32.7%,
as compared to accuracy of around 32.9% and 5 CPU minutes when using 40% of data size bootstrap sample.

Error Versus Bag Size For Averaged
M odel

20%
22%
24%
26%
28%
30%
32%
34%
36%
38%
40%

2% 10% 15% 30% 40%

CPU M inutes Versus Bag Size for Averaged
M odel

4

4.2

4.4

4.6

4.8

5

5.2

5.4

2% 10% 15% 30% 40%

Figure 7. Letter Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right
graph) for the averaged model. Note: Using the entire data set the computation time is 18.2 CPU minutes and accuracy is 20.6%,
as compared to accuracy of around 21.0% and 5.2 CPU minutes when using 40% of data size bootstrap sample.

Table 4 shows a summary table of the situation when
the bootstrap averaged accuracy equals the accuracy of
clustering if all the data is used. This table shows the
expected speed up ([1 / column 2] * [column 3 /
column 4], see section 5 for details) and the actual
speedup. The two numbers differ as the expected speed
up does not consider the extra overhead such as the
time required to generate the bootstrap samples. We
did not attempt to optimize our code and hence expect

the real difference between the expected and actual
figures to be closer.

Table 4. A summary of the statistics where the bootstrap
averaged accuracy approximately equals the accuracy if all
the data is clustered.

7. Discussion

We have shown that:

1. Bootstrap averaging T subsets of the data set
will typically be more computationally efficient
as randomly restarting the algorithm T times on
the entire data set. (Section 3, Table 1, Table 2
and Table 3)

2. Bootstrap averaging on a proportion of the
dataset can yield as accurate results as
clustering the entire data set (see Figure 4):
This produces results that are comparable with
random restarting of k-means clustering using
all of the training data, but takes far less
computation time.

3. The results of bootstrap averaging
monotonically improve as a function of the
bootstrap sample size (see Figure 5, Figure 6
and Figure 7): As we increase the size of the
bootstrap sample, the accuracy improves, until
at some point the accuracy is comparable to
that when the entire dataset is used.

Determining the size of the bags at which the
averaged model performs as well as clustering the
entire data set varies from data set to data set hence
remains an open question.

A valid question is: how is our approach related to
the IPR approach. For the rest of this section we
empirically show that the two approaches obtain quite
different results.

7.1 Is Bootstrap Averaging a Generalization of IPR

 We begin by showing that the bootstrap averaging
approach inherently does not produce a model that
minimizes the distortion. That is, we are not

compensating for some search inefficiency of the k-
means algorithm as the IPR approach is effectively
doing, instead we are minimizing another loss function
as Table 5 indicates. The IPR approach attempts to
find a good set of initial positions and then applies the
k-means clustering algorithm to further minimize the
distortion. The second column in this table is the result
of applying bootstrap averaging. The first column was
generated by initializing the clustering algorithm to the
averaged model and clustering the entire training data.
We find that the k-means algorithm that performs a
gradient descent on the distortion error surface finds
another model that further minimizes the distortion but
yields worse performance. The averaged models are
statistically significantly better at the 95% confidence
level.

 Starting from Averaged
Model

Averaged Model

Digit 27.9% (5.6) 23.6% (2.3)
Image 31.3% (4.6) 24.3% (4.1)
Pima 32.3% (3.2) 27.9% (3.3)
Letter 23.7% (4.1) 17.5% (2.3)

Abalone
1
 25.6% (5.1) 19.9% (3.1)

Adult 33.4% (7.1) 25.2% (4.5)

Table 5. Collection of data sets. The average and in
parentheses standard deviation test set error statistics for the
predictive ability of models found by starting k-means from
the averaged model and the averaged model for 50 random
divisions of training (70%) and test (30%) sets.

 In our next set of experiments we show that
bootstrap averaging performs quite differently to IPR.
To illustrate this point clearly, we show that for
bootstrap samples of equal size to the training data set
that the results that k-means with IPR converges to is
quite different from the bootstrap averaged model. In
Table 6 the averaged model is significantly better (at
the 95% confidence level) than k-means with IPR. The
first column refers to the prediction ability of the
model minimizing the distortion from 100 random
restarts of the algorithm on the original training data.
The second column refers to the prediction ability of
the model minimizing distortion from 100 IPR selected
starting solutions on the original training data. The
final column (our approach) refers to the single model
that is the average of all 20 bags.

1 Predicting sex of abalone

Bootstrap
Sample
Size
Required

Random
Restarts:
Ave.
Number
of
Iterations

Bootstrap
Averaging:
Ave.
Number of
Iterations

Expected
(Actual)
Speed Up

Digit 25% 123.44 74.68 6.61 (4.63)

Image 40% 82.11 41.23 4.97 (3.98)

Letter 40% 72.57 43.45 4.17 (3.54)

 Random Restart IPR
Restart

Averaged Model

Digit
2
 30.6% (6.7) 29.5% (4.4) 23.6% (2.3)

Image 35.5% (9.8) 29.3% (5.2) 24.3% (4.1)

Pima 33.5% (4.5) 31.2% (3.1) 27.9% (3.3)

Letter 22.0% (6.4) 21.3% (3.2) 17.5% (2.3)

Abalone1 25.3% (7.9) 22.4% (4.5) 19.9% (3.1)

Adult 34.3% (10.3) 28.9% (5.4) 25.2% (4.5)

Table 6. Collection of data sets. The average and in
parentheses standard deviation test set error statistics for the
predictive ability of models found by applying k-means in a
variety of situations over 50 random divisions of training
(70%) and test (30%) sets.

8. Conclusion

K-Means clustering is a popular but time consuming
algorithm used in data mining. It is time consuming as
it converges to a local optimum of its loss function (the
distortion) and the solution converged to is particularly
sensitive to the initial starting positions. As a result its
typical use in practice involves applying the algorithm
from many randomly chosen initial starting positions.

In this paper we explore an approach we term
bootstrap averaging. Bootstrap averaging builds
multiple models by creating small bootstrap samples
of the training set and building a single model from
each, similar cluster centers are then averaged to
produce a single model that contains k clusters. If we
average T bags of size 1/s of the entire data set then
our approach takes less time than randomly restarting
the algorithm T times by a factor of at least s. Knowing
the value of s where the averaged model performs as
well as clustering the entire data set varies between
data sets. The speedup is because the computational
complexity of k-means is linear with respect to the
number of data points. In practice we find that the
speedup our approach provides is in fact greater than s
since the standard test for convergence (the change in
cluster centroids is less than some small number,
epsilon) do not consider the size of the training data
set. Our results indicate that the number of iterations of
the algorithm until convergence is proportional to the
size of the data set. In future work we will explore
developing tests of convergence that factor in the data
set size.

2 Predicting digit 3 or 8

Our empirical results show that bootstrap sampling can
achieve comparable results as clustering all of the data
but in less computation time. We perform experiments
to measure a clustering model’s results in two ways: 1)
distance to the generating mechanism and 2) predictive
ability. However, knowing the size of the sample that
performs as well as clustering the entire data set
remains an open question. We hope to explore using
the learning curve literature to determine potential
ways to address this question.

Our research empirically shows that clustering bigger
data sets is not always desirable. No doubt that
clustering large data sets offer additional benefits
namely producing better results, but our experiments
indicate that bootstrapping smaller portions of the
dataset can produce this benefit as well but at a
reduction in computation time.

9. References

[1] Han J., and Kamber M., Data Mining: Concepts and
Techniques, Morgan Kauffman, 2000.

[2] Pelleg, D. and Moore, A, "Accelerating Exact k-
means Algorithms with Geometric Reasoning",
KDD-99, Proc. of the Fifth ACM SIGKDD Intern.
Conf. On Knowledge Discovery and Data Mining,
page 277-281.

[3] Dhillon, I. S. and Modha, D. M., A Data Clustering
Algorithm on Distributed Memory Multiprocessors,
in Large-Scale Parallel Data Mining, Lecture Notes
in Artificial Intelligence, Volume 1759, pages 245-
260, 2000.

[4] L. Breiman. Bagging predictors. Machine Learning,
26(2):123-140, 1996.

[5] MacQueen, J., Some Methods for classification and
analysis of multiattribute instances, Fiftieth Berkeley
Symposium on Mathematics, Statistics and
Probability, vol 1, 1967.

[6] Max, J., Quantizing for Minimum Distortion, IEEE
Transactions on Information Theory, 6, pages 7-12,
1960

[7] H. Edelstein, The Two Crows Report: 1999. Available
at http://www.twocrows.com/

[8] P. Bradley, U. Fayyad, Refining Initial Points for k-means
Clustering. ICML 1998.

[9] Hartigan, J., Clustering Algorithms, Wiley Publishing,
1975.

[10] Bottou, L., and Bengio, Y., Convergence properties
of the k-means algorithm. In G. Tesauro and D.
Touretzky, editors, Adv. in Neural Info. Proc.

Systems, volume 7, pages 585--592. MIT Press,
Cambridge MA, 1995.

[11] A. Strehl and J. Ghosh. Cluster ensembles - a
knowledge reuse framework for combining multiple
partitions. Journal on Machine Learning Research
(JMLR), 3:583-617, December 2002.

[12] C. Meek, B. Thiesson, and D. Heckerman. The
learning-curve method applied to model-based
clustering. Journal of Machine Learning Research,
2:397--418, 2002.

