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Abstract res_ta_lrting of k-means clustering using_ all _of the
training data, but takes far less computation tif.
K-means clustering is one of the most popularexample, when we tak& bootstrap samples of size
clustering algorithms used in data mining. However,25% of the training data set then the techniquestait
clustering is a time consuming task, particularlithw |east four times less computation time but yields a
the large data sets found in data mining. In thép@r  good as results if we had randomly restarted k-si&an
we show how bootstrap averaging with k-means catimes using all of the training data. To test the
produce results comparable to clustering all of theeffectiveness of bootstrap averaging, we apply
data but in much less time. The approach of boagstr clustering in two popular settings: finding

(sampling with replacement) averaging consists ofrepresentative clusters of the population and
running k-means clustering to convergence on smalprediction.

bootstrap samples of the training data and averggin

similar cluster centroids to obtain a single modale Our approach yields a speedup for two reasons.

show why our approach should take less computatioE'rS“y’ we are clustering le$S data and seconc_ily
ecause the k-means algorithm converges (using

time and empirically illustrate its benefits. Weogh .
P y standard tests) more quickly for smaller data Heds

that the performance of our approach is a monotoniq dat ts f h / latica. |
function of the size of the bootstrap sample. Hawev larger data sets from the same source/populatias.
important to note that we do not need to re-start o

knowing the size of the bootstrap sample that giakl laorith i ¢ h bootst I
good results as clustering the entire data set riema aigorithm many times for each bootstrap sample.

an open and important question. Our approach is superficially similar to Bradley
and Fayyad’'s initial point refinement (IPR) [8]
approach that: 1) sub-samples the training data, 2)
Clustering is a popular data mining task [1] with k clusters each sub-sample, 3) clusters the resultan
means clustering being a common algorithm.cluster centers many times to generate refinedainit
However, since the algorithm is known to conveme t starting positions for k-means. However, we shall
local optima of its loss/objective function and is show there are key differences to their clever

sensitive to initial starting positions [8] it igpically  alternative to randomly choosing starting positions
restarted from many initial starting positions. hi

results in a very time consuming process and man
techniques are available to speed up the k-mea
clustering algorithm including preprocessing theéada
[2], parallelization [3] and intelligently settinghe
initial cluster positions [8].

1. Introduction and M otivation

We begin this paper by introducing the k-means
gorithm and explore its computational behavior. |
particular we show and empirically demonstrate why
clustering smaller sets of data leads to faster
convergence than clustering larger sets of datm fro
the same data source/population. We then introduce

In this paper we propose an alternative approach teur bootstrap averaging algorithm after which we
speeding up k-means clustering known as bootstragiscuss our experimental methodology and results. W
averaging. This approach is complimentary to otheshow that for bootstrap samples of less size than t
speed-up techniques such as parallelization. Ougriginal training data set our approach performwel
approach builds multiple models by creating smallas standard techniques but in far less time. Wa the
bootstrap samples of the training set and building discuss the related Bradley and Fayyad technigRe IP
model from each, but rather than aggregating likeand discuss differences to our own work. Finallg w

bagging [4], we average similar cluster centers taonclude and discuss future work.
produce a single model that contains k clustershig

paper we shall focus on bootstrap samples that a
smaller than the training data size. This produces Consider a set of data containing n
results that are comparable with multiple randominstances/observations each described by m agsbut

1% Background to k-means Clustering



The k-means clustering problem is to divide the range. The k-means algorithm performs gradient
instances intk clusters with the clusters partitioning descent on the distortion error surface and hence
the instancesx(... %) into the subsets Q« The converges to a local optimum of its loss functitdme(
subsets can be summarized as poi€is () in them  distortion). Convergence can be measured in a numbe
dimensional space, commonly known as centroids oof ways such as the sum of the changes in theeclust
cluster centers, whose co-ordinates are the average centroids between adjacent iterations does noteglxce
all points belonging to the subset. We shall redethis ~ some very small number epsilon (in this papét)10
collection of_ centr0|ds_obta|ned from an applicataf 3. Computational Complexity of k-means
the clustering algorithm as a model. K-meansClustering

clustering can also be thought of as vector quattiz

with the aim being to minimize the vector quaniizat As before, lem be the number of instances to
error (also known as the distortion) shown in eiquiat cluster,m be the number of attributes/columns for each
( 1). The mathematical trivial solution is to keaa instance and the number of clusters. Then it is well

cluster for each instance but typicatlyg< n. known that if the algorithm performisiterations then
. the algorithm complexity is ®@¢(nnj [9]. While k, m
VQ=33D(%,C¢(x)),whereD is a distancdunctior (1) and n are known before the algorithm begins
i=1

execution, as stated earlier the algorithm is 8lpic
run until convergence occurs, meaning thats, at
invocation, unknown. Of coursei can be
What is known today as the k-means clusteringpredetermined if the test for convergence is
algorithm was postulated in a number of paperhén t abandoned, but this is computationally inefficient.
nineteen sixties [5][6]. The algorithm is extremely
popular appearing in leading commercial data minin%

suites offered by SAS, SPSS, SGI, ANGOSS m'proportional ton (the number of instances) for a given

'tl)'yp;csaglilyntirr;e 'mggnizgtr%dgof;;ggélarihizgngust edrata source and standard tests of convergenceislhat
y gning Ins . y cn Smaller data sets will converge in less iteratitren
though alternatives exist [8]. After initial cluste

centroid placement the algorithm consists of the tw larger data sets drawn from the same population.
id p 9 : Without loss of generality, we assume a univariza
following steps that are repeated until convergeAse

the solution converged to is sensitive to the istgurt set and Euclidean distan(_:e_. We first state th@nﬂiie_h
position the algorithm is typically restarted manyWrlICh k-mea_ns tries to minimize, take the derivaf .
fimes this expression with respect to the cluster c_edtr0|
' value, set to 0 and solve to derive the expresfiah
1) The assignment step: instances are placed in the minimizes the distortion. We find that this is as
closest cluster as defined by the distance function expected, the cluster centroid update expression a:

f (%) =argmin D(X“CJ) shown below.
j

VQ:%gid(f(Xi):k)-(Ctk -x)?
2) The re-estimation step: the cluster centroids ar ki=1

andf(x) returnsthe closetclusterindex tanstancei

For the rest of this section we derive Issu
howing thati (number of iterations) is directly

recalculated from the instances assigned to the :%§VQk
cluster. K
X 1 St 2
C. = ik VQk__. Z(C k_XI)
. . . =3 i[(ctk)z‘zcthi +Xi2]
These two steps repeat until the re-estimation step i f(x)=k

leads to minimal changes in centroid values.takefirstorderderivativeset tozeroandsolve

Throughout this paper we use the version of the kﬁV?k =1 i[zctk_zxi]

means clustering algorithm commonly found in dataoC'«  “i.f(x)=k

mining applications. We use the Euclidean distanceg =[Qclct« - 3 x|

randomly assign instances to clusters to obtaitiaini i (x)=k

cluster locations and normalize each attributediea ct, = $x /o] (2)
to be between 0 and 1 by dividing by the attributes i (x)=k



We now derive an expression to calculate th

change in a cluster centroid between titre and t
below:
AC, =C'%%-C'%

1 2 t-1
= Z - )-C
IQin,fm(:)ﬁ) ‘
- 2 . _Ct—l
IQin,f%)(i('k k) (3)

asthe summationoccurs | Qy | times

A similar analysis to our own has been qrenkd
while illustrating that k-means is performing Newt®
gradient descent with a learning rate inverselgtesl

» that one centroid’s changes is below epsilon or

» that no changes in cluster centers locations
occurred, that isk,Qf =Q™

but our findings did not differ significantly. Weport
average results for 100 experiments (random rejtart
It is important to note that for a particular datg the
100 unique random starting positions are identical
regardless of data set size. That is, we start the
algorithm from the same 100 starting positions
regardless of dataset size. Each smaller datassat i
subset of the larger data sets.

to the cluster size [10] as illustrated in equat{a® ). Average No.|10% 25% 50% 75%  100%
Furthermore, from equation ( 4 ) we see that the s -Llerations

of cluster centroid change is dependent on thegehan Digit 723 806 882 894 905
in the number of instances assigned to a cluster in Pima 506 7.49 621 6.84 7.5
adjacent iterations, that is the number of instance Image 597 482 705 706 993

ass?gned tok at _timet but not t-1 plUS_those NOt  Tapble 1. The average number of iterations for k-means to
assigned tk at timet-1 but assigned at time For a  converge for a variety of data sets. Note that k=2 and results
given data source, the larger the data set the momseaverageover 100 experiments (random restarts).

likely the condition associated with the first suatian

: _ X Average  No.|10% 25% 50%  75%  100%
in equation ( 4 ) will occur towards the end of the  |terations

means run as our experiments will illustrate later Digit 851 1104 1211 1315 1419
this section. Whether improved tests of convergence,, 629 888 1283 1509 1561
that consider the data set size may remove thiﬁmage 736 1273 17.74 2006 23.84

phenomenon remains an open question.
Oi, if f,(x)=k = f,_,(x)=kand

if f,_,(x)=k= f(x)=kthenAC, =0,
therefore

Table 2. The average number of iterations for k-means to
converge for a variety of data sets. Note that k=4 and results
are average over 100 experiments (random restarts).

] Average  No.|10% 25% 50%  75%  100%
A% Iterations
AC, = R RO ) Digit 841 1261 1791 2022 2355
SO(f(x) K+ 3 (f(%).K) (4)  Pima 675 1003 1682 17.51 20.01
1007 T (6) OO0 T bs) Image 799 1149 1259 13.37 16.23

whered(a,b) =1, whena =Db, zerootherwise
Table 3. The average number of iterations for k-means to
converge for a variety of data sets. Note that k=6 and results

We now empirically illustrate our earlier claim tithe  areaverageover 100 experiments (random restarts).

data set size on a number of real world data setS &powing that for larger values &fthat the number of

shown in Table 1, Table 2 and Table 3. These tablegerations monotonically increases as the datssiget
measure the average number of iterations untijhcreases.

convergence occurs against increasing data sed. size
Convergence occurs if the change in (between adjace
iterations) clusters centroid positions when summed
across all attributes and clusters is less thah @fher
convergence tests were applied such as:

* the change in cluster centers is less than a
percentage of the smallest distance between
two clusters,
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Figure 1. The average number of iterations for k-meansto converge for a variety of data sets for k=2, k=4 and k=6. Results are
average over 100 experiments (random restarts).

results obtained after a few iterations was sufitito

To illustrate the point that for a given sourcedata, . :
P g determine the shape of the learning curve.

clustering smaller data sets leads to faster cgevee
we map the trajectory the cluster algorithm takes

through the instance space for different size data s ~

starting from the same starting position. To vigeal |o= ., - ©

these trajectories we will reduce the digit datatee |, . * ° " .

two dimensions. This corresponds to the data se ) Miponh
representing the starting position where the petingr | ** ; : G 8
the digit was placed onto the tablet (an excellent s -

predictor for the digit type). Some example trapeiets 05 ® 0

are shown in Figure 2 and Figure 3. o ©)

In the 100 trials the average number of iteratifmrs
the 500 instance data set is 4.33 and for 200@nnss
9.12. Over the trials in only 6 trials was the nembf
iterations for the larger data set less than far th|°=] .
smaller data set. The figures illustrate that fothidata | .| £ . .
sets the centroids quickly move to approximately th | | x " st 2
same location but the larger data set takes lotmer | x .  Cluster 4
converge. This is so because for larger data bets t|**]
condition associated with the first summation injos ® ©)
equation ( 4 ) occurs more often towards the entief
k-means run (as seen in the right-hand figures @hov ° oz o4 oo o :
IS more Crowded ne_ar the. final S:IUSter CentrOIdFigure 2. Thetrajectory of four cluster centroids through the
positions). This result is consistent with the tss0f  jrgance space. The fop figure is for 500 instances (17
Meek et al [12] which found that when calculating iterations), the bottom for 2000 instances (31 iterations).
learning curve for mixture models that allowing the Starting positions arecircled.

algorithm to reach convergence was not required, th
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Figure 3. The trajectory of four cluster centroids through the
instance space. The top figure is for 500 instances (5
iterations), the bottom for 2000 instances (8 iterations).
Starting positions are circled.

4. Description of Our Approach
We now discuss our algorithm. Note onlyragk

Our approach involves averaging similar cluster
centroids. We propose the following general-purpose
method that is used throughout the paper, howaver,
practice problem specific approaches may be better.

4.1 Signature Based Cluster Grouping

For each cluster centroid we create a signatutectma
be generated quickly and group clusters according t
the signature. We use the positions of the attedband
their values to create a signature of the form:

Signature(g)=3, ¢;*2', whereg; is thel™ attribute for
thej™ cluster of theé™ model.

As each attribute is scaled to be between zercoard
this creates a signature with the range 0 flli*2as
there arem attributes. After the signature from each
cluster is derived we sort them in ascending oashel
divide them intok equally size intervals to form the
groups. Throughout this paper we use this method. |
the future we plan to explore the feasibility oings
the approaches proposed by Strehl and Ghosh [&f] th
involves combining multiple partitions/clusters.

5. How Much Our Approach Speeds up Clustering

If we averagd bootstrap samples of sizesf
the training data then we expect our technique to
obtain as good results as performihgandom restarts
but in less computation time. As described easker

model is built from each bootstrap sample as k'meanexpect a speedup for two reasons. The speedupdue 1

is only run once on each sample.

Al gorithm Bootstrap Averaging
Input: D:Training Data,T: Number of bags, K:
Number of clusters
Output: A: The averaged centroids.
/I Generate and cluster each bag
Fori=1to T

X, =BootStrap( D)

C = k-means-Cluster( X, K)

/I Note G is the set of k cluster
/I centroids and G ={c i1, Ci2 ...Cik)
EndFor
/I Group similar clusters into bins
/I with the bin averages stored in B; ...
/I B | their sizes are S ... &
Fori=1to T
Forj=1to K

Index = AssignToBin( Cj )
//See section on signature based comparison
B Index += Cij

EndFor
EndFor
Fori=1to K
B i /= Si
A i = B i

EndFor

clustering less data will be of magnitudesince the
relative complexity of the clustering process Wik
O(Tkmnl) versus O(kmn/sl) assuming the same
number of iterations until convergence. However, as
discussed earlier for different sized data setsiftbe
same population/source the time to convergencetis n
the same, typicallyi<In, this provides an even greater
speed up which the next set of experiments quantify

6. Experimental Results

The first use of our approach is its ability todin
more accurate estimates of the generating mechanisir
To test this ability we need to artificially creatata to
know the actual generating mechanism. We created ar
artificial data set of six clusters with six attrtes. All
attributes are Gaussians with a mean of zero and ¢
standard deviation of 0.5 except tifeattribute of the
i cluster which has a mean of one and a standarc
deviation of 0.5. FormallyCge={C1 ...Cs}, G = {Cj=1,
if i=j, otherwise 0j = 1 to 6}. We can measure the
goodness of a clustering solution by its Euclidean



distance to these generating mechanisms. Wi not a common application of clustering, it allous
generated 3000 instances from this distributioty fif to show the performance of our approach on realdvor
times. For each sample we took 20 bootstrap sampleproblem where we do not know the generating
built a single model from each and averaged thetetu mechanism or true model. We find as before that
centroids to produce a single model. We group ammil averaging smaller bootstraps yields as accuratdtses
cluster centroids using the method described earlie as random restarts on all of the data but in less
computation time. In all experiments we drew 50
random samples from the data, divided this dataant

h training set (70%) and test set (30%). For each sk,

we randomly restarted k-means 50 times and selectec
the model that minimized the distortion. We compare
Fhis model against the model obtained by averaging
over 50 bootstrap samples.

The bootstrap averaging approach takes &t le
five times less computation time than clusteririgoél
the data after performing 20 random restarts. & t
number of random restarts is increased to 50 ard ev
100 the best model (minimum distortion) from the
random restart approach still does not yield bette
results than bootstrap averaging. The distancéné¢o t
true cluster centers is shown in Figure 4. Thisireg Digit Data Set: The accuracy of the averaged model
shows that for 10% bootstrap sample sizes that thand computation time for the digit data set (preolc
averaged model is further away than the best modé or 8, the most difficult digit prediction decision
from random restarts. However, for 20% bootstrapthis data set) for different sized bootstrap sasple
sample size the averaged model is closer to thshown in Figure 5. The best model found from all of
generating mechanism. Determining the precisedize the data after the random restarts has a meanaagcur
the bootstrap sample when performance is as good a$ 31.70% and the total computation time is 22 CPU
clustering the entire data set remains an opertignes minutes compared to the averaged model's accuracy
- - - — 30.8% found in approximately 5 CPU minutes when
T age o 10 of rgnal Tramng SevSze. using 25% of data size bootstrap sample. Noteithat
all our results we report the user time reportedhay

’ Linux time command. This corresponds to the amount
s e — of CPU time that was dedicated to the process apari
from system kernel calls which was negligible ih al
case (under 0.0lseconds). We find that similar
- speedups hold for other data sets. However, tleedsiz

25

erating Mechanism

0 Gen
=

¢

KL Distance

T w0 mm im0 2 w0 0w the reduced bags when the accuracy of the average
model is the same as obtained from random restarts
Distance to Generating Mechanism Versus Training Set Size from a” Of the da.ta Val'leS between data SetS

Bags of 20% of Original Training Set Size

Image and Letter Dataset$Ve see in Figure 6 and

Figure 7 that for the Image and Letter data setsttie
. computation speedup is approximately a factor 8 3.
o™ and 3.54 respectively. This is so as the bootstrap
sample size must increase #f)% to obtain an
acceptable accuracy.

00w w00 0 0w 0o Determining the correct size of the reduce bag nesna
an open question and we hope to explore literature
Figure 4. Training data size against mean distance (over 50  from the learning curve area [12] to address this
samples) to the generating mechanism for averaged model (20 question in our future work. Our results indicatett
bags) and best single model found from 20 random restarts o gjze of the bootstrap sample size is a monotoni
for the entire data set. The top graph isfor bootstrap samples . , .
of size 10% and the bottom graph 20% of the entire data set. function of the averaged model's distance to the
The decrease in computation time by using the bootstrap ~ generating mechanism (true model). This is an
averaging approach is never lessthan five times. advantage over the work by Bradley and Fayyad where
F;he size of the sub-samples leads to indifferestlte

[section 3.2, 8].

~

KL Distance to Generating Mechanism
-

We now show results for the size of the bootstra
sample against predictive accuracy. Though prexticti
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Figure 5. Digit Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right
graph) for the averaged model. Note: Using the entire data set the computation time is 22 CPU minutes and accuracy is 31.7% as

compared to 30.8% in approximately 5 CPU minutes when using 25% of data size bootstrap sample
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Figure 6. Image Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right
graph) for the averaged model. Note: Using the entire data set the computation timeis 23.5 CPU minutes and accuracy is 32.7%,

as compared to accuracy of around 32.9% and 5 CPU minutes when using 40% of data size bootstrap sample.

40%
38%
36%
34%
32%
30%
28%
26%
24%
22%

Error Versus Bag Size For Averaged

CPU Minutes Versus Bag Size for Averaged

20% -1

Model Model

5.4
5.2

5
4.8
4.6
4.4
4.2

T T T 4 T T T T
2% 10% 15% 30% 40% 2% 10% 15% 30% 40%

Figure 7. Letter Data Set. Training data size against predictive error (over 50 samples) (left graph) and computation time (right
graph) for the averaged model. Note: Using the entire data set the computation time is 18.2 CPU minutes and accuracy is 20.6%,
as compared to accuracy of around 21.0% and 5.2 CPU minutes when using 40% of data size bootstrap sample.

Table 4 shows a summary table of the situation whefne real difference between the expected and actua
the bootstrap averaged accuracy equals the accofacyfigures to be closer.

clustering if all the data is used. This table stdthe

expected speed up ([1 / column 2] * [column 3 /

column 4], see section 5 for details) and the actua

speedup. The two numbers differ as the expectestispe

up does not consider the extra overhead such as the

time required to generate the bootstrap samples. We

did not attempt to optimize our code and hence expe



Bootstrap Random  Bootstrap  Expected compensating for some search inefficiency of the k-

Sample  Restarts:  Averaging: (Actual) means algorithm as the IPR approach is effectively
gzeuired Q‘u’fﬁber Q‘u’fﬁber of Speed Up doing, instead we are minimizing another loss fiamct
& of lterations as Table 5 indicates. The IPR approach attempts tc
| terations find a good set of initial positions and then agplihe
Digit 250 123.44 74.68 6.61(4.63) k-means clustering algorithm farther minimize the
Image 40% 8211 41.23 4.97 (3.98) distortion. The second column in this table is rbsult
L etter 40% 72.5; 43 4t 4.17 (3.54 of applying bootstrap averaging. The first columasw

Table 4. A summary of the statistics where the bootstrap
averaged accuracy approximately equals the accuracy if all

generated by initializing the clustering algorithonthe
averaged model and clustering the entire training data.

the data is clustered. We find that the k-means algorithm that performs a

1.

gradient descent on the distortion error surfaodsdi
another model that further minimizes the distortoart

7. Discussion yields worse performance. The averaged models are
" - 0 :
We have shown that: Iset\allglstlcally significantly better at the 95% cal#nce
Bootstrap averagind@ subsets of the data set Starting from Averaged ~ Averaged M odel
will typically be more computationally efficient _ M odel
as randomly restarting the algoritiifrtimes on Digit 27.9% (5.6) 23.6% (2.3)
theentire data set. (Section 3, Table 1, Table 2 'Fr)‘ri‘r"jr‘ﬁae g;gz//" E;‘g; 22‘;:;(;//0 (éé))
. 0 . . 0 .
and Table 3) Letter 23.7% (4.1) 17.5% (2.3)
Bootstrap averaging on a proportion of the Aapaone 25.6% (5.1) 19.9% (3.1)
dataset can vyield as accurate results as Adult 33.4% (7.1) 25.2% (4.5)

clustering the entire data set (see Figure 4):l'able 5. Collection of data sets. The average and in

This produces _results that are compa_rable V_Vmbarentheses standard deviation test set error statistics for the
random restarting of k-means clustering usingpredictive ability of models found by starting k-means from
all of the training data, but takes far lessthe averaged model and the averaged model for 50 random
computation time. divisions of training (70%) and test (30%) sets.

The results of bootstrap  averaging In our next_ set of experiments_ we show that
monotonically improve as a function of the bootstrap averaging performs quite differently |
bootstrap sample size (see Figure 5, Figure go illustrate this point clearly, we show that for
and Figure 7): As we increase the size of the?0ootstrap samples of equal size to the training dat
bootstrap sample, the accuracy improves, untifhat the results that k-means with IPR convergeis to

at some point the accuracy is comparable tfluite different from the bootstrap averaged mottel.
that when the entire dataset is used. Table 6 the averaged model is significantly befeer

the 95% confidence level) than k-means with IPRe Th

Determining the size of the bags at which thefirst column refers to the prediction ability ofeth
averaged model performs as well as clustering thgnodel minimizing the distortion from 100 random
entire data set varies from data set to data setehe restarts of the algorithm on the original trainidata.
remains an open question. The second column refers to the prediction abiity

A valid question is: how is our approach related tothe model m|n|m|Z|ng distortion from 100 IPR se&ztt

the IPR approach. For the rest of this section wétarting solutions on the original training dateheT

empirically show that the two approaches obtairtequi final column (our approach) refers to the singledeio
different results. that is the average of all 20 bags.

7.1 IsBootstrap Averaging a Generalization of IPR

We begin by showing that the bootstrap averaging
approach inherently does not produce a model that

minimizes the distortion. That is, we are not

1 Predicting sex of abalone



Our empirical results show that bootstrap sampiig
achieve comparable results as clustering all otitta

but in less computation time. We perform experiraent
to measure a clustering model’s results in two ways
distance to the generating mechanism and 2) preglict
ability. However, knowing the size of the samplatth
performs as well as clustering the entire data set
remains an open question. We hope to explore using

Random Restart IPR Averaged M odel
Restart

Digitz 30.6% (6.7) 29.5% (4.4) 23.6% (2.3)
Image] 35.5% (9.8) 29.3% (5.2) 24.3% (4.1)
Pima] 33.5% (4.5) 31.2% (3.1) 27.9% (3.3)
Letter| 22.0% (6.4) 21.3% (3.2) 17.5% (2.3)
Abalonel 25.3% (7.9) 22.4% (4.5) 19.9% (3.1)
Adult] 34.3% (10.3) 28.9% (5.4) 25.2% (4.5)

Table 6. Collection of data sets. The average and in
parentheses standard deviation test set error statistics for the
predictive ability of models found by applying k-means in a
variety of situations over 50 random divisions of training
(70%) and test (30%) sets.

8. Conclusion

K-Means clustering is a popular but time consumin
algorithm used in data mining. It is time consumasgy
it converges to a local optimum of its loss funat{the
distortion) and the solution converged to is pattdy
sensitive to the initial starting positions. Asesult its

the learning curve literature to determine poténtia
ways to address this question.

Our research empirically shows that clustering &igg

data sets is not always desirable. No doubt that
clustering large data sets offer additional begefit
namely producing better results, but our experisent
indicate that bootstrapping smaller portions of the
Yataset can produce this benefit as well but at a
reduction in computation time.
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