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Abstract
As A.I. algorithms are applied to more complex
domains that involve high dimensional data sets
there is a need to more saliently represent the data.
However, most dimension reduction approaches are
driven by objective functions that may not or only
partially suit the end users requirements. In this
work, we show how to incorporate general-purpose
domain expertise encoded as a graph into dimen-
sion reduction in way that lends itself to an el-
egant generalized eigenvalue problem. We call
our approach Graph-Driven Constrained Dimen-
sion Reduction via Linear Projection (GCDR-LP)
and show that it has several desirable properties.

1 Introduction and Motivation
Consider the following situation: you wish to apply a un-
supervised data-mining approach such as clustering to some
high-dimensional data such as text, video or audio. How-
ever, most algorithms have time/space complexity at least lin-
ear with respect to the number of dimensions and will hence
take a long time to converge on your data set. Furthermore,
you strongly believe that not all dimensions are necessary and
transforming the data to a lower dimensional space will make
the problem not only computationally easier but also allow
for patterns to more easily be discovered. Approaches such
as principal component analysis (PCA), factor analysis (FA)
or singular value decomposition (SVD) are appropriate in do-
mains where little background knowledge is known. How-
ever, you do have knowledge in the form of what pairs of
objects are similar or dis-similar. For example this could be
derived from a small amount of labels on the data or manually
examining a small number of instances. From this informa-
tion a graph can be constructedwith each node being an
instance and an edge indicating the relationship between the
instances, a positive edge-weight represents similarity and a
negative edge-weight dis-similarity. This graph will typically
be small since domain knowledge is known only on a small
subset of the instances but can also incorporate other informa-
tion such as local geometry to preserve the nearest neighbors
of each point. We list a general version of the problem below:
Problem 1 The Graph-Driven Constrained Dimension Re-
duction Problem.Given a weighted graphG and a data set

of pointsD in r dimensional space where the nodes inG cor-
respond to asubsetof the points inD. Find a projection of
this space into a lowers dimension space so that the pair of
nodes/points inG with a positive edge are close together and
those with a negative edge are far apart.

We will provide more detail on our solution to this problem
later but it is important to note the problem of focus in this
paper is different to spectral clustering (dimension reduction)
in two keys ways. Firstly, we are projecting the entire space
D occupies not just the points inG or D. Secondly, we do
not formulate the problem as some form of min-cut and then
solve a relaxed version of the problem.

Our work aims to find a reduced dimension space based on
the graph and is conceptually most similar toencodinga list
of must-link (similar) and cannot-link (dissimilar) instance-
level constraints into clustering algorithm which was firstin-
troduced to the data mining and machine learning commu-
nities by Wagstaff and Cardie[Wagstaff et. al. 2001] with
significant extensions by Basu and collaborators[Basu et. al.
2004]. Xing and collaborators[Xing et. al. 2002] introduced
the idea of learning a distance function then performing clus-
tering with it. In this context, the points that are part of a
must-link (cannot-link) constraint should be close together
(far apart). However, their approach does not perform dimen-
sion reduction and as we experimentally show fairs poorly in
high dimensional data. Furthermore, we allow weights in our
graph so can model degrees of belief in these propositions.

Though each of the above types of approaches were shown
to yield impressive results particularly at improving the clus-
ter accuracy when measured on extrinsic labels they have
several significant limitations. Firstly, we show in Table 1
(columns 3, 4 and 5) that these approaches do not fair well
when the data is best clustered in a reduced/lower dimen-
sional space. This is to be expected since they implicitly
assume (like most clustering algorithms) that dimension re-
duction has been performed prior to their application. How-
ever, we also show that for these data sets that classic un-
guided dimension reduction techniques such as PCA perform
poorly (see Table 1, columns 6 and 7). Secondly, trying to
simultaneously find a good clustering while also satisfying
the constraints can be quite limiting. Algorithms that attempt
to satisfy all constraints such as the COP-k-means algorithm
are known to not converge when dealing with even relatively
few number of constraints[Davidson and Ravi 2007] and



constrained spectral-clustering formulations[Coleman et. al.
2008] only exist fork > 2 for just must-link constraints and
not cannot-link constraints.

Our aim is to create an approach to address the dimension
reduction problem specifically for unsupervised learning with
the aid of hints/constraints with the following properties.

• The domain knowledge can be represented as a weighted
graph which can represent both domain knowledge such
as similar/dissimilar instances but also other properties
such as local geometry.

• The approach is general-purpose being usable in a wide
variety of mining algorithms and easy to implement.

• The approach is fast and computable in closed form.

• The approach produces a mapping everywhere to a re-
duced dimensional space not just for constrained points.

• The new dimensions are easily interpretable.

We show that we can do all of the above by formulating
our constrained dimension reduction problem as alinear di-
mension reduction problem that gives rise to a generalized
eigenvalue problem. A closed form solution to the problem
exists that is easily implementable in MATLAB and whose
result is easily understood as producing a new set of dimen-
sions that are a linear combination of the old ones. We call
our approach Graph-Driven Constrained Dimension Reduc-
tion via Linear Projection (GCDR-LP) for clustering.

We begin this paper by formally describing the approach in
section 2. The approach requires construction of a weighted
constraint graph and we discuss several ways of doing this
in section 3. We then show in section 4 experimentally that
clustering approaches that use constraints fair poorly on many
UCI data sets with additional noise dimensions but our ap-
proach does better. Our approach works well at reducing di-
mensionality for facial image data performing better than the
unconstrained eigen-faces (PCA-style) approach as shown in
section 5. We describe related and future work and finally
conclude by summarizing our contributions.

2 The GCDR-LP Approach
To reduce the dimensionality of the points we propose creat-
ing a linear relationship between their old positions and new
positions of the formq = AT x whereA is a r × s matrix,
x the point in the higher dimensional space (described by
a column vector) andq the point in the lower dimensional
space. Therefore the points were originally in ar dimen-
sional space and will be reduced to as dimensional space.
Where as approaches such as PCA are guided by an objec-
tive function that finds the projection that maximizes the data
variance, our approach will be guided by a user-defined con-
straint graph that captures their knowledge of the problem.
Note thatA = {a1 . . . as} and that theith column vector in
A specifies that theith dimension of the reduced space as
being some linear combination of the higher dimensions. It
should be immediately noticed that the mapping is linear and
is global/constant regardless of where the point is in the orig-
inal space. It is left to future work to explore non-linear and
possibly local mappings, but that such transformation will

most likely come at the cost of the efficient and easy imple-
mentation that our approach gives.

It is now left to describe howA is calculated and for that
we need to introduce the notion of a constraint graph. A
constraint graphG(V, E, W ) consists of a vertex for each
point and positive edge-weights indicating similarity andneg-
ative edge-weights indicating dissimilarity between the ver-
tices/points they are incident on. The absence of an edge
(zero weight) indicates that no knowledge is known about the
points. In the next section we describe ways to create con-
straint graphs, but in the mean time, consider that the only
non-zero weights in the graph are positive weights if two in-
stances are similar and negative weights if they are dissimilar
with the magnitude of the weight indicates the degree of be-
lief in this proposition.

Definition 1 Constraint Graph Definition. LetG(V, E, W )
be a basic constraint graph with the properties that for each
pair of similar instances (i,j)wi,j > 0 and for each pair of
dissimilar instanceswi,j < 0, elsewi,j = 0. Note that
implicitly wi,i = + 1 ∀ i, that wi,j = wj,i and there is a
requirement that∀ i :

∑
j wi,j > 0.

Given the definition ofG a reasonable objective function
is to map the points onto a single dimension (line) so as to
minimize the distance between the constrained points mul-
tiplied by their weight pair. In the following derivation the
column vectora specifies a points location on this line as a
linear combination of the points position in the original space.
Since the weight is negative for dissimilar instances and pos-
itive for similar instances this emphasizes our desired result
that similar points are close together and dissimilar points are
far apart. Formally:

Constrained Dimension Reduction Objective Function

argmin
a

1

2

∑

i,j

(qi − qj)
2wi,j (1)

= arg min
a

1

2

∑

i,j

(aT xi − aT xj)
2wi,j

We now show how equation 1 can be converted into a gen-
eralized eigenvalue problem that is easily solvable in MAT-
LAB or any other package that can compute eigen-vectors
and the corresponding eigenvalues.

Expanding equation 1 we obtain

argmin
a

1

2
[
∑

i,j

aT xiwi,jx
T
i a−

∑

i,j

aT xiwi,jx
T
j a

−
∑

i,j

aT xjwi,jx
T
i a +

∑
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aT xjwi,jx
T
j a] (2)

Let D be a diagonal matrix such that the entrydi,i =∑
j wi,j . Then note that the first expression of the equation

2 equals
∑

i aT xidi,ix
T
i a sincew is only summed overj and

this can be written asaT XDXT a. Also, due to symmetry (by
virtue that the similarity/dissimilarity is symmetrical)then the
fourth expression of the above equation will also yield thisex-
act same result. Similarly, due to symmetry the second and



third expressions are equal and together they yield the result
−aT XWXT a and hence the objective function is:

argmin
a

aT XDXT a− aT XWXT a (3)

= arg min
a

aT X(D − W )XT a

However, equation 3 is unbounded so we add the constraint
aT XDXT a = 1 to remove scaling issues and turn the prob-
lem into a constrained optimization problem of the form:

arg min
a

aT X(D − W )XT a (4)

subject to: aT XDXT a = 1

We can turn equation 4 into a unconstrained problem by
casting it as a Lagrange multiplication problem withλ being
the Lagrange multiplier and noting that the constraint should
be rewritten to equal 0.

arg min
a

aT X(D − W )XT a− λ.(aT XDXT a− 1) (5)

= argmin
a

aT X(D − W )XT a− λ.aT XDXT a + λ (6)

taking the first order derivative with respect toa yields

arg min
a

X(D − W )XT a− λ.XDXT a + 0 (7)

arg min
a

X(D − W )XT a = λ.XDXT a (8)

We note that equation 8 is precisely in the form of a general-
ized eigenvalue problem witha being the eigen-vector of the
corresponding smallest eigenvalue which can be efficiently
solved for in closed form. The smallest eigenvalues’ eigen-
vectors that are the solutions to this problem are thea1 . . . as

discussed earlier and describe the lower dimensional space
the points are mapped to and since they are eigen-vectors
form an orthonormal basis. Since we require all entries inD
to be positive (see definition 1) then with appropriate normal-
ization ofX the expressionXDXT is symmetrical and also
diagonally dominant and hence is positive definite. There-
fore our generalized eigenvalue problem will only have real
eigenvalues.

A valid question (raised by one of the reviewers) that we
shall leave for future work is the relationship (if any) between
our objective function given in equation 1 and the objective
function shown below in equation 9. In this modified objec-
tive functionA is ar × s matrix solved for all at once.

argmin
A

∑

i,j

||AT xi − AT xj ||
2wi,j (9)

2.1 Some Simple Illustrative Examples
To illustrate and verify the approach consider the example in
Figure 1 which consists of four clusters of points each at a
different corner of the cube. Throughout this section we use
the basic constraint graph in definition 1 withwi,j = 1 for
similar instances andwi,j = −1 for dissimilar instances. It
should be noted that just like PCA it is left up to the user to
determine how many dimensions to reduce the data to.
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Figure 1: The original data in three dimensional space.

Figure 2 shows the performance of our approach for var-
ious constraint graphs where all the points of a given type
(*,o,+,x) are labeled as similar/dissimilar to another type.
In the left image we see that with two non-interacting con-
straints (Dissimilar(+,o) and Similar(x,*)) that a desirable re-
sult is achieved with the similar tagged points separating the
dissimilar tagged points. In the middle image of Figure 2
we test the transitivity property of our approach since Simi-
lar(+,x),Similar(x,*)→ Similar(+,*) and get a reasonable re-
sult, given the limitations of a linear transformation, where
the ‘x’ points are surrounded by the ‘*’ and ‘+’ points. To ob-
tain the ideal solution where all three point types are mapped
to the same region would require a non-linear transformation
of the space given the symmetry of the data.

However, our approach does have limitations. In the right
image of Figure 2 we explicitly add Dissimilar(o,*) to Sim-
ilar(+,x) and find that an undesirable results is obtained. By
looking at Figure 1 we see that no linear and global transfor-
mation could satisfy both of these constraints.

A valid question is how the transformation progresses as
the number of edges increases. Figure 3 captures the pro-
gressive transformation as more edges are added. We see that
initially only the points around the single pair of ‘x’ and ‘+’
constrained points overlap but as the number of constraints
increase so does the amount of overlap until the two sub-
populations overlap completely after the introduction of ten
edges.

3 Creating the Constraint Graph
When creating the constraint graph, it helps if the weights are
envisioned as penalties that are charged if the constraintsare
not well satisfied. Any manner of methods of creating con-
straint graphs could be used so long as the following holds:

1. A positive penalty means the points should be close to-
gether, a negative penalty far apart and no penalty mean-
ing the points are unconstrained.

2. To help ensure real solutions to our generalized eigen-
value problem, the sum of penalties on a single point
must be greater than zero.

3. The constraints should be consistent and give rise to a
feasible clustering[Davidson and Ravi 2007], otherwise
the results may be meaningless. In situations where con-
straints are generated solely from the ground truth (such
as labels) the constraints generated will be consistent.

The simplest way of creating the constraint graph is by
initializing the matrix W to the identity matrix (i.e. ev-
ery point is most similar to itself) and then adding in a
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Figure 2: The transformed data in 2D space with constraints Dissimilar(+,o) & Similar(x,*) (left), Similar(x,+) & Similar(x,*)
(middle) and Similar(+,x) & Dissimilar(o,*) (right).
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Figure 3: The transformed data in 2D space with constraints Similar(x,+) for 1,3,5 and 10 constraints going left to right. Note
the more constraints the more ‘+’ and ‘x’ overlap and align.

wi,j = +1 if i and j are similar and -1 if they are dis-
similar. In addition we modify the constraint graph in
two ways to maintain local geometry and maintain consis-
tency. In addition to the constraints embedded as weights,
we add to each entrywi,j the amount 1

k
if j is one of

the k = 5 nearest neighbors ofi to preserve the local
geometry. We also propagate constraints due to transi-
tivity and entailment in the graph. Transitivity is simply
Similar(x, y), Similar(y, z) → Similar(x, z) and entail-
ment Similar(a, b), Similar(x, y), Dissimilar(a, x) →
Dissimilar(a, y), Dissimilar(b, x), Dissimilar(b, y).

We use the above constraint graph creation approach
throughout this paper, but note that more complex approaches
may be warranted if more domain knowledge exists.

4 Experimental Results - UCI
In this section we artificially create a situation that many prac-
titioners face: The data contains useful features that can be
used for clustering but many additional superfluous columns
are present and it is difficult to separate out apriori the useful
and superfluous columns.

To recreate this problem we take UCI data sets which con-
tain useful features and add many randomly generated fea-
tures so that clustering in the enlarged space yields poor re-
sults. To achieve this we take the following data sets with
number of extrinsic labels (k), instances (n) and dimen-
sions (m) in parentheses, Iris(k = 3, n = 150, m = 4),
Wine(k = 3, n = 178, m = 13), Pima(k = 2, n = 768,
m = 8), Ionsphere(k = 2, n = 351, m = 34), Glass(k = 6,
n = 214, m = 10) and Protein-Yeast(k = 6, n = 1484,
m = 8) and add in twenty columns of uniformly-distributed
random numbers. We take twenty data points and use their
labels to generate all possible entries in the graph (i.e. all

possible pairwise constraints). If two points have the same
label a similar-edge is generated between them otherwise a
dissimilar-edge is generated. For these edges the correspond-
ing must-link and cannot-link constraints are generated soas
to compare results against constrained clustering algorithms.
We cluster the data fork equaling the number of extrinsic
labels. We then try several approaches. Firstly, we clus-
ter the data in the enlarged space using regulark-means and
COP-k-means algorithms. Next we perform metric learning
using Xing et al’s approach[Xing et. al. 2002] and clus-
ter with k-means. Finally, we perform a variety of dimen-
sion reduction techniques including our own: PCA+k-means,
PCA+COP-k-means and SSDR (see related work in section
6). Supervised dimension reduction approaches such as LDA
are not applicable as only twenty data points are labeled and
these approaches do not fair well in such problems. We apply
each algorithm to 100 generated constraint sets and randomly
restart each clustering algorithm 100 times, settingk to be the
number off extrinsic labels. We report in Table 1 the average
accuracy (Rand index) each obtained when measured on the
instance labels but have scaled the results so that a value of
0.5 is the performance of guessing the most popular class.

As expected the base-linek-means algorithm performs
poorly, often obtaining results only slightly better than always
guessing the most popular class. This is to be expected since
the algorithm assumes all dimensions are important and does
no implicit features selection. Similar results are obtained by
COP-k-means which though having the benefits of the con-
straints mustsatisfy them and simultaneously find a useful
clustering in the higher-dimensional space. The worst per-
forming approach is metric learning[Xing et. al. 2002] which
perform worse than regulark-means. This is to be expected
since the objective function of this and other metric learn-
ing algorithms do not explicitly try to find lower dimensional



spaces. Also, when learning a full metric their approach has
no closed form solution and maybe converging to a poor re-
sult. The performance of the PCA dimension reduction al-
gorithm with k-means is a mixture of hit and miss with re-
spect to performance improvement over regulark-means as
is the addition of PCA to constrained COP-k-means clus-
tering. This is to be expected as the objective function of
PCA attempts to find the projection that maximizes the vari-
ance which is most likely associated with the columns with
random data. With the exception of the Ionsphere data set
(which others have reported show no accuracy improvement
with the addition of constraints) the GCDR-LP algorithm out-
performs all other algorithms. This is not only indicative of
the algorithm’s performance but the general method of using
hints/constraints for dimension reduction and then perform-
ing clustering for this type of problem.

5 Experimental Results - Images

In a second type of problem typically faced by practitioners,
the available data is very high dimensional, but there are no
nuisance columns. Instead the clusters are more easily identi-
fiable in a lower dimensional space. This problem is common
when dealing with data such as images, video and audio. We
take the CMU faces data set[Mitchell 1997] which consists
of controlled portrait images and cluster the data fork = 2.
We measure performance and obtain edges/constraints using
a variety of labels including gender:{female,male}, facial ori-
entation:{up,down} and facial features:{glasses,no-glasses}.

We compare our approach against the eigen-faces approach
which is a standard method of performing dimension reduc-
tion on facial images. The eigen-face approach calculates a
hugem × m covariance matrix wherem is the number of
pixels in the image and then finds the eigen-vectors of this
matrix and in doing so projects the data along the dimension
of most variance as per PCA. Note that both approaches re-
quire the calculation of eigen-vectors, however, the PCA and
eigen-face approaches require the additional step of calculat-
ing the covariance matrix.

The experimental results are shown in Table 2. The
data sets were sampled so that there were equal number of
each class. For each problem 100 similar-edges and 100
dissimilar-edge constraints were generated. As we can see
with no dimension reduction thek-means algorithm performs
no better than random guessing. The eigen-faces approach
performed significantly better as has been reported previ-
ously, this is so since the images are controlled for light
and distance and hence the eigen-vector approach chooses
the pixels that are most variable/different/informative across
the different images. Conversely, our approach uses only the
constraint-graph to perform the dimension reduction by map-
ping similar images close together and dis-similar images far
apart and given these hints are obtained from the ground truth
are useful for improving clustering accuracy. Given the aims
of both approaches are orthogonal, a valid question is: “Can
the two approaches be combined?” To explore this question
we first performed eigen-faces on the data and then GCDR-
LP on the already reduced data sets. Performance results are
promising as the last column in Table 2 indicates and the com-

bination of approaches seems reasonable. Eigen-faces finds
the most discriminating points and GCDR-LP finds the subset
of those that are most useful for satisfying the constraints.

6 Related and Future Work

There have been several attempts to perform semi-supervised
dimension reduction. Bar-Hillel and collaborators[Bar-Hillel
et. al. 2005] add an intermediate step for Relevant Com-
ponent Analysis but their work is only limited to must-
link/similar constraints. The work of Tang and Zhong[Tang
and Zhong 2006] and Zhang et al[Zhang et. al. 2007] use
an objective function similar to that of Xing et’ al[Xing et.
al. 2002]. Their objective function sums (in the lower di-
mensional space) the distances between each pair of cannot-
linked points less the sum of the distances between each pair
of must-linked points and attempt to maximize this function.
However, there approach has several limitations. Firstly,by
not modeling the constraint graph, all constraints are created
as equally important which may be undesirable. Similarly, in
the work of[Zhang et. al. 2007] all unconstrained points are
treated equally meaning that the algorithm will attempt to pre-
serve the mapping between the distances between all pairwise
combinations of unconstrained points. In our formulation the
introduction of the constraint graph allows us the flexibility to
model constraints of different importance and clearly empha-
size what local geometry is important. We saw that in Table 1
that this additional flexibility translated into a significant im-
provement in performance over the SSDR approach of Zhang
et al [Zhang et. al. 2007] that extends the work of Tang and
Zhong[Tang and Zhong 2006].

Our work has the benefit of being a linear transformation
and a logical next step is to explore non-linear transforma-
tion that make use of constraints for dimension reduction.
Though there exists well understood and mature work for
non-linear dimension reduction[Roweis and Saul 2000], it
is not straight-forward to extend this work for constraint-
graphs. In particular, in these approaches the reduced space
only defines distances between pointsin the training set,
which poses problems since typically the number of con-
strained points is very small and a subset of all points avail-
able. Furthermore, these approaches rarely have closed form
solutions as ours does and hence will not scale well for the
large amounts of data found in mining tasks. Finally, it would
also be interesting to determine if our form of dimension re-
duction is useful for classification algorithms.

7 Conclusion

We propose the graph-driven constrained dimension reduc-
tion by linear projection (GCDR-LP) approach that given a
weighted graph attempts to find a series of dimensions that
are linear combinations of the old dimensions. The objective
function of our approach essentially tries to find a low dimen-
sional space that makes the points/nodes in the graph with a
positive edge-weight closer together and those with a negative
edge-weight further apart. The constraint graph can be cre-
ated in any number of ways and we explored also having ad-
ditional entries for each instancesk-nearest neighbors so as to



Dataset k-means COP-k-means Xing+k-means PKM PCA+ PCA+ SSDR+ GCDR-LP+
k-means COP-k-means k-means k-means

Iris 58% 54% 48% 49% 51% 59% 59% 68%
Wine 54% 49% 45% 46% 46% 57% 55% 61%
Pima 53% 52% 51% 53% 55% 52% 54% 59%

Ionsphere 61% 58% 53% 52% 62% 59% 58% 60%
Glass 63% 64% 59% 58% 59% 62% 61% 66%

Protein 59% 55% 53% 55% 60% 58% 59% 68%

Table 1: Results of applying a variety of algorithms to UCI data sets with 20 columns of random noise added and 20 similar
and dissimilar constraints/edges. The first four techniques cluster in the higher dimensional space, the latter four reduce the
dimensionality to the original number of dimensions and then perform clustering. Results are averaged over 100 constraint sets
and randomly restarting the clustering algorithm 100 timesfor each. Results in bold show statistically significant better results
than next best technique using a student pair-wise t-test at95% CI.

Data- k-means Eigen-faces Eigen-faces GCDR-LP Eigen-faces-
set k-means COP-k-means +k-means then-GCDR-LP+k-means

Female/Male 51% 65% 62% 70% 73%
Up/Down 52% 66% 63% 73% 76%

Sunglasses/Not 54% 70% 66% 78% 83%

Table 2: Results of applying a variety of algorithms to CMU Faces data sets of 128x128 pixels using 100 similar and dissimilar
constraints/edges. Results are averaged over 100 sets of constraints/edges and 100 random restarts of the clustering algorithm.
Results in bold show statistically significant better results than next best technique using a student pair-wise t-testat 95% CI.

maintain the underlying local geometry. Our problem formu-
lation is easily solved as a generalized eigen-value problem
which is implementable in MATLAB and has a closed form
solution. This has advantages over metric learning techniques
that do not perform dimension reduction or have closed form
solutions and hence may converge to a poor solution.

After the transformation any number of algorithms could
be used to cluster the data and in this work we exploredk-
means and have also used agglomerative hierarchical cluster-
ing (results not shown). We show that our approach is useful
for performing dimension reduction to help non-hierarchical
clustering algorithms such ask-means which outperformsk-
means, COP-k-means, PCA+k-means, PCA+COP-k-means,
metric learning approach (Xing et’ al[Xing et. al. 2002])+k-
means, PKM[Basu et. al. 2004] and SSDM[Zhang et. al.
2007]. This result not only shows the utility of our algorithm
but the general approach of separating the constraint satisfac-
tion and clustering problems. For the CMU faces database we
show the approach of using constraints for dimension reduc-
tion produces better results than eigen-faces and can be used
in conjunction with eigen-faces to obtain even better results.
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