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Abstract

As A.l. algorithms are applied to more complex
domains that involve high dimensional data sets

there is a need to more saliently represent the data.

However, most dimension reduction approaches are
driven by objective functions that may not or only
partially suit the end users requirements. In this
work, we show how to incorporate general-purpose
domain expertise encoded as a graph into dimen-
sion reduction in way that lends itself to an el-
egant generalized eigenvalue problem. We call
our approach Graph-Driven Constrained Dimen-
sion Reduction via Linear Projection (GCDR-LP)
and show that it has several desirable properties.

Introduction and Motivation

of pointsD in r dimensional space where the nodessigor-
respond to asubsetof the points inD. Find a projection of
this space into a loweg dimension space so that the pair of
nodes/points itz with a positive edge are close together and
those with a negative edge are far apart.

We will provide more detail on our solution to this problem
later but it is important to note the problem of focus in this
paper is different to spectral clustering (dimension reidng
in two keys ways. Firstly, we are projecting the entire space
D occupies not just the points i@ or D. Secondly, we do
not formulate the problem as some form of min-cut and then
solve a relaxed version of the problem.

Our work aims to find a reduced dimension space based on
the graph and is conceptually most similaetecodinga list
of must-link (similar) and cannot-link (dissimilar) instee-
level constraints into clustering algorithm which was first
troduced to the data mining and machine learning commu-

Consider the following situation: you wish to apply a un- pities by Wagstaff and CardigVagstaff et. al. 200with
supervised data-mining approach such as clustering to somggnificant extensions by Basu and collaboraf@asu et. al.
high-dimensional data such as text, video or audio. How2004. Xing and collaboratorEXing et. al. 2002 introduced
ever, most algorithms have time/space complexity atl&ast | the jdea of learning a distance function then performing<lu
ear with respect to the number of dimensions and will hencegering with it. In this context, the points that are part of a
take a long time to converge on your data set. Furthermorenyst-link (cannot-link) constraint should be close togeth
you strongly believe that not all dimensions are necessaty a (far apart). However, their approach does not perform dimen
transforming the data to a lower dimensional space will mak&jon reduction and as we experimentally show fairs poorly in
the problem not only computationally easier but also allowhigh dimensional data. Furthermore, we allow weights in our
for patterns to more easily be discovered. Approaches suchraph so can model degrees of belief in these propositions.
as principal component analysis (PCA), factor analysis) (FA ™ Though each of the above types of approaches were shown
or singular value decomposition (SVD) are appropriate i1 dotg yield impressive results particularly at improving thess
mains where little background knowledge is known. How-ter accuracy when measured on extrinsic labels they have
ever, you do have knowledge in the form of what pairs ofgeveral significant limitations. Firstly, we show in Table 1
objects are similar or dis-similar. For example this coudd b (columns 3, 4 and 5) that these approaches do not fair well
derived from a small amount of labels on the data or manuallyyhen the data is best clustered in a reduced/lower dimen-
examining a small number of instances. From this _'”forma'sional space. This is to be expected since they implicitly
tion a graph can be constructedwith each node being an assume (like most clustering algorithms) that dimensien re
instance and an edge indicating the relationship between thyyction has been performed prior to their application. How-
instances, a positive edge-weight represents similantya  eyer, we also show that for these data sets that classic un-
negative edge-weight dis-similarity. This graph will typlly uided dimension reduction techniques such as PCA perform
be small since domain knowledge is known only on a smal oorly (see Table 1, columns 6 and 7). Secondly, trying to
subset of the instances but can also incorporate otheniafor - simuitaneously find a good clustering while also satisfying
tion such as local geometry to preserve the nearest neighbojhe constraints can be quite limiting. Algorithms that atpe

of each point. We list a general version of the problem belowig satisfy all constraints such as the C®feans algorithm
Problem 1 The Graph-Driven Constrained Dimension Re- are known to not converge when dealing with even relatively
duction Problem.Given a weighted grapti and a data set few number of constraintEDavidson and Ravi 20Q7and



constrained spectral-clustering formulatid@®leman et. al. most likely come at the cost of the efficient and easy imple-

2004 only exist fork > 2 for just must-link constraints and mentation that our approach gives.

not cannot-link constraints. It is now left to describe how! is calculated and for that
Our aim is to create an approach to address the dimensiome need to introduce the notion of a constraint graph. A

reduction problem specifically for unsupervised learnifipw  constraint graphG(V, E, W) consists of a vertex for each

the aid of hints/constraints with the following properties point and positive edge-weights indicating similarity aved-

« The domain knowledge can be represented as aweight(idive edge-weights indicating dissimilarity between tlege-v

graph which can represent both domain knowledge suc Ces/points they are incident on. The absence of an edge
as similar/dissimilar instances but also other propertieéze.ro weight) indicates that no knowledge is known about the
such as local geometry. points. In the next section we describe ways to create con-

straint graphs, but in the mean time, consider that the only

e The approach is general-purpose being usable in a widgon-zero weights in the graph are positive weights if two in-
variety of mining algorithms and easy to implement.  stances are similar and negative weights if they are ditsimi

e The approach is fast and computable in closed form. ~With the magnitude of the weight indicates the degree of be-

lief in thi ition.
e The approach produces a mapping everywhere to a re'—e I This propostion

duced dimensional space not just for constrained pointdefinition 1 Constraint Graph Definition LetG(V, E, W)
be a basic constraint graph with the properties that for each
pair of similar instances (i,j)v; ; > 0 and for each pair of
We show that we can do all of the above by formulatingdissimilar instancesv; ; < 0, elsew;; = 0. Note that
our constrained dimension reduction problem dis@ar di-  implicitly w;; = + 1V 4, thatw;; = w;,; and there is a
mension reduction problem that gives rise to a generalizegequirementthat/i : > w; ; > 0.
eigenvalue problem. A closed form solution to the problem ) o o .
exists that is easily implementable in MATLAB and whose ~ Given the definition o a reasonable objective function
result is easily understood as producing a new set of dimeriS to map the points onto a single dimension (line) so as to
sions that are a linear combination of the old ones. We calMinimize the distance between the constrained points mul-
our approach Graph-Driven Constrained Dimension Reducliplied by their weight pair. In the following derivation¢h
tion via Linear Projection (GCDR-LP) for clustering. column vectora specifies a points location on this line as a
We begin this paper by formally describing the approach infinear combination of the points position in the originaasp.
section 2. The approach requires construction of a weightegince the weight is negative for dissimilar instances ars po
constraint graph and we discuss several ways of doing thilive for similar instances this emphasizes our desiredltes
in section 3. We then show in section 4 experimentally thathat similar points are close together and dissimilar soane
clustering approaches that use constraints fair poorlyamym far apart. Formally: ) o ]
UCI data sets with additional noise dimensions but our ap- Constrained Dimension Reduction Objective Function
proach does better. Our approach works well at reducing di- 1
mensionality for facial image data performing better tHaa t argmin — Z(Qi — q;)%w; (1)
unconstrained eigen-faces (PCA-style) approach as shown i a 2 i,
section 5. We describe related and future work and finally 1 . P
conclude by summarizing our contributions. —argmmng Z(a T — & i) W,
2,7

e The new dimensions are easily interpretable.

2 The GCDR-LP Approach We now show how equation 1 can be converted into a gen-
To reduce the dimensionality of the points we propose createralized eigenvalue problem that is easily solvable in MAT-
ing alinear relationship between their old positions and newLAB or any other package that can compute eigen-vectors
positions of the formy = ATz whereA is ar x s matrix,  and the corresponding eigenvalues.

x the point in the higher dimensional space (described by Expanding equation 1 we obtain

a column vector) and the point in the lower dimensional

space. Therefore the points were originally in- @imen- arg minl[z azw; ;xla— ZaTxiwi xTa

sional space and will be reduced tos alimensional space. a 2 7 T 07 7

Where as approaches such as PCA are guided by an objec- ’ ’

tive function that finds the projection that maximizes theada = a"zjw; jala+ Y alzw; jal al (2)
variance, our approach will be guided by a user-defined con- i, i,

straint graph that captures their knowledge of the problem. . .
Note that4d = {a; ...a,} and that the*" column vector in Let D be a diagonal matrix such that the entfy; =

A specifies that thé' dimension of the reduced space as2-j Wii- Then note that the first expression of the equation
being some linear combination of the higher dimensions. 1€ equalsy_, a’z;d; ;2] a sincew is only summed ovef and
should be immediately noticed that the mapping is linear andhis can be written aa” X DX a. Also, due to symmetry (by

is global/constant regardless of where the pointis in thigor virtue that the similarity/dissimilarity is symmetricahjen the

inal space. ltis left to future work to explore non-lineadan fourth expression of the above equation will also yield éxs
possibly local mappings, but that such transformation willact same result. Similarly, due to symmetry the second and



third expressions are equal and together they yield thdtresu
—a XWX Taand hence the objective function is:

argmin alxDxTa—al’xwxTa (3)
= arg meiln a'’xX(D-w)XxTa

However, equation 3 is unbounded so we add the constraint

T TH H H . .. o . . .
a’ XDX"a=1toremove scaling issues and turn the prob- Figure 1: The original data in three dimensional space.
lem into a constrained optimization problem of the form:

o T Figure 2 shows the performance of our approach for var-
argmina’ X(D — W)X a (4)  ious constraint graphs where all the points of a given type
. T T. (*,0,+,X) are labeled as similar/dissimilar to anotherdyp
subjectto:a’ XDX a=1 In the left image we see that with two non-interacting con-

We can turn equation 4 into a unconstrained problem bystraints (Dissimilar(+,0) and Similar(x,*)) that a desilare-
casting it as a Lagrange multiplication problem wittbeing ~ Sult is achieved with the similar tagged points separatieg t

the Lagrange multiplier and noting that the constraint &hou dissimilar tagged points. In the middle image of Figure 2
be rewritten to equal 0. we test the transitivity property of our approach since Simi

lar(+,x),Similar(x,*)— Similar(+,*) and get a reasonable re-
o . - - sult, given the limitations of a linear transformation, whe
argmina’ X(D — W)X a—A(@ XDX"a-1) (5  the X points are surrounded by the *’ and “+' points. To ob-
. tain the ideal solution where all three point types are meppe
— T T T T
=argmina X(D -W)X a-Aa XDX a+A (6)  {gthe same region would require a non-linear transformatio
taking the first order derivative with respectagields of It—t;e space given the syrr]ngmtryhof th? df?tlt?; I the riaht
. T T owever, our approach does have limitations. In the rig
arg ménX(D -W)X7a-AXDX"a+0 (7) image of Figure 2 we explicitly add Dissimilar(o,*) to Sim-
argmin X (D — W)XTa=AXDxTa (8) ilar(4_-,x) and_ find that an undesirab!e results is obtaineg. B
a looking at Figure 1 we see that no linear and global transfor-

We note that equation 8 is precisely in the form of a generalMation could satisfy both of these constraints.
ized eigenvalue problem withbeing the eigen-vector of the A valid question is how the transformation progresses as
corresponding smallest eigenvalue which can be efficientljh® number of edges increases. Figure 3 captures the pro-
solved for in closed form. The smallest eigenvalues’ eigengréssive transformation as more edges are z?\dde‘d., We see that
vectors that are the solutions to this problem aresthe . «,  initially only the points around the single pair of x and"+
discussed earlier and describe the lower dimensional spa&@nstrained points overlap but as the number of constraints
the points are mapped to and since they are eigen-vectop3crease so does the amount of overlap until the two sub-
form an orthonormal basis. Since we require all entrieBin POPulations overlap completely after the introductionet t
to be positive (see definition 1) then with appropriate ndfma €dges.
ization of X the expressioik DX is symmetrical and also . .
diagonally dominant and hence is positive definite. There3 Creating the Constraint Graph
fore our generalized eigenvalue problem will only have real\when creating the constraint graph, it helps if the weighes a
eigenvalues. , , envisioned as penalties that are charged if the constraiats

A valid question (raised by one of the reviewers) that wenot well satisfied. Any manner of methods of creating con-
shall leave for future work is the relationship (if any) be&m  straint graphs could be used so long as the following holds:

our objective function given in equation 1 and the objective . .
) g d ) 1. A positive penalty means the points should be close to-

function shown below in equation 9. In this modified objec- i
tive functionA is ar x s matrix solved for all at once. gether, a negative penalty far apart and no penalty mean-
ing the points are unconstrained.

2. To help ensure real solutions to our generalized eigen-

: T T 2
afglr};nz 1A 2 — A 5] [Pwi ©) value problem, the sum of penalties on a single point
B must be greater than zero.
2.1 Some Simple lllustrative Examples 3. The constraints should be consistent and give rise to a
To illustrate and verify the approach consider the example i feasible clusteringDavidson and Ravi 20Q7otherwise

Figure 1 which consists of four clusters of points each at a  the results may be meaningless. In situations where con-
different corner of the cube. Throughout this section we use ~ St@ints are generated solely from the ground truth (such
the basic constraint graph in definition 1 with ; = 1 for as labels) the constraints generated will be consistent.
similar instances andh; ; = —1 for dissimilar instances. It The simplest way of creating the constraint graph is by
should be noted that just like PCA it is left up to the user toinitializing the matrix W to the identity matrix (i.e. ev-
determine how many dimensions to reduce the data to. ery point is most similar to itself) and then adding in a
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Figure 2: The transformed data in 2D space with constrairgsililar(+,0) & Similar(x,*) (left), Similar(x,+) & Simiar(x,*)

(middle) and Similar(+,x) & Dissimilar(o,*) (right).
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Figure 3: The transformed data in 2D space with constraimd&(x,+) for 1,3,5 and 10 constraints going left to rightote

the more constraints the more ‘+” and ‘X’ overlap and align.

w;; = +1if ¢ andj are similar and -1 if they are dis- possible pairwise constraints). If two points have the same

similar.

In addition we modify the constraint graph in label a similar-edge is generated between them otherwise a

two ways to maintain local geometry and maintain consis-dissimilar-edge is generated. For these edges the conéspo
tency. In addition to the constraints embedded as weightsng must-link and cannot-link constraints are generateasso

we add to each entry; ; the amount% if j is one of
the k =

5 nearest neighbors of to preserve the local
geometry. We also propagate constraints due to translabels. We then try several approaches.

to compare results against constrained clustering algost
We cluster the data fok equaling the number of extrinsic
Firstly, we clus-

tivity and entailment in the graph. Transitivity is simply ter the data in the enlarged space using regtdareans and

Similar(z,y), Similar(y, z) — Similar(x, z) and entail-
ment Similar(a,b), Similar(x,y), Dissimilar(a,z) —
Dissimilar(a,y), Dissimilar(b, x), Dissimilar(b, y).

COP+-means algorithms. Next we perform metric learning
using Xing et al's approacpXing et. al. 2002 and clus-
ter with k-means. Finally, we perform a variety of dimen-

We use the above constraint graph creation approackion reduction techniques including our own: PGAmeans,
throughout this paper, but note that more complex appreaché®CA+COP%-means and SSDR (see related work in section

may be warranted if more domain knowledge exists.

4 Experimental Results - UCI

In this section we artificially create a situation that margg

6). Supervised dimension reduction approaches such as LDA
are not applicable as only twenty data points are labeled and
these approaches do not fair well in such problems. We apply
each algorithm to 100 generated constraint sets and ragdoml

restart each clustering algorithm 100 times, setking be the

titioners face: The data contains useful features that ean bhumber off extrinsic labels. We report in Table 1 the average
used for clustering but many additional superfluous columngccuracy (Rand index) each obtained when measured on the
are present and it is difficult to separate out apriori théulse instance labels but have scaled the results so that a value of
and superfluous columns. 0.5 is the performance of guessing the most popular class.

To recreate this problem we take UCI data sets which con- As expected the base-line-means algorithm performs
tain useful features and add many randomly generated fegoorly, often obtaining results only slightly better thaways
tures so that clustering in the enlarged space yields peor rgyuessing the most popular class. This is to be expected since
sults. To achieve this we take the following data sets withthe algorithm assumes all dimensions are important and does

number of extrinsic labelsk], instances ) and dimen-
sions (n) in parentheses, Iris(= 3, n = 150, m = 4),
Winek = 3, n = 178, m = 13), Pimag = 2, n = 768,
m = 8), lonspheref = 2, n = 351, m = 34), Glassk = 6,
n = 214, m = 10) and Protein-Yeast(= 6, n = 1484,

no implicit features selection. Similar results are obddiby
COP+-means which though having the benefits of the con-
straints mussatisfy them and simultaneously find a useful
clustering in the higher-dimensional space. The worst per-
forming approach is metric learnifiging et. al. 2002which

m = 8) and add in twenty columns of uniformly-distributed perform worse than reguld~means. This is to be expected
random numbers. We take twenty data points and use thegince the objective function of this and other metric learn-
labels to generate all possible entries in the graph (i.e. aing algorithms do not explicitly try to find lower dimensidna



spaces. Also, when learning a full metric their approach hasination of approaches seems reasonable. Eigen-faces finds
no closed form solution and maybe converging to a poor rethe most discriminating points and GCDR-LP finds the subset
sult. The performance of the PCA dimension reduction al-of those that are most useful for satisfying the constraints
gorithm with k-means is a mixture of hit and miss with re-

spect to performance improvement over regétaneans as

is the addition of PCA to constrained CQGPmeans clus- 6 Related and Future Work

tering. This is to be expected as the objective function ofThere have been several attempts to perform semi-supérvise
PCA attempts to find the projection that maximizes the vari-dimension reduction. Bar-Hillel and collaboratb@sr-Hillel

ance which is most likely associated with the columns withet. al. 200% add an intermediate step for Relevant Com-
random data. With the exception of the lonsphere data sgfonent Analysis but their work is only limited to must-
(which others have reported show no accuracy improvemenink/similar constraints. The work of Tang and ZholT@ng

with the addition of constraints) the GCDR-LP algorithm-out and Zhong 2006and Zhang et alZhang et. al. 2007use
performs all other algorithms. This is not only indicatiie 0 an objective function similar to that of Xing et’ &King et.

the algorithm’s performance but the general method of usingl. 2004. Their objective function sums (in the lower di-
hints/constraints for dimension reduction and then perfor mensional space) the distances between each pair of cannot-

ing clustering for this type of problem. linked points less the sum of the distances between each pair
of must-linked points and attempt to ma}ximiz_e this fL_mcIion
5 Experimental Results - Images However, there approach has several limitations. Firbily,

not modeling the constraint graph, all constraints aretecta
In a second type of problem typically faced by practitioners as equally important which may be undesirable. Similarly, i
the available data is very high dimensional, but there are nthe work of[Zhang et. al. 200/7all unconstrained points are
nuisance columns. Instead the clusters are more easilii-identreated equally meaning that the algorithm will attemptrie p
fiable in a lower dimensional space. This problem is commorserve the mapping between the distances between all pairwis
when dealing with data such as images, video and audio. Weombinations of unconstrained points. In our formulatios t
take the CMU faces data silitchell 1997 which consists  introduction of the constraint graph allows us the flextpild
of controlled portrait images and cluster the datakfce 2. model constraints of different importance and clearly eaaph
We measure performance and obtain edges/constraints usisize what local geometry is important. We saw that in Table 1
avariety of labels including gend¢female,malg, facial ori-  that this additional flexibility translated into a signifitam-
entation{up,dowr} and facial featureg§glasses,no-glasses provementin performance over the SSDR approach of Zhang

We compare our approach against the eigen-faces approaehal[Zhang et. al. 2007that extends the work of Tang and
which is a standard method of performing dimension reducZhong[Tang and Zhong 2006
tion on facial images. The eigen-face approach calculates a Our work has the benefit of being a linear transformation
hugem x m covariance matrix where: is the number of and a logical next step is to explore non-linear transforma-
pixels in the image and then finds the eigen-vectors of thigion that make use of constraints for dimension reduction.
matrix and in doing so projects the data along the dimensioifhough there exists well understood and mature work for
of most variance as per PCA. Note that both approaches ra@on-linear dimension reductidiRoweis and Saul 200Qit
quire the calculation of eigen-vectors, however, the PCé anis not straight-forward to extend this work for constraint-
eigen-face approaches require the additional step ofle&lcu graphs. In particular, in these approaches the reducea spac
ing the covariance matrix. only defines distances between poiirtsthe training set,

The experimental results are shown in Table 2. Thewhich poses problems since typically the number of con-
data sets were sampled so that there were equal number gifained points is very small and a subset of all points avail
each class. For each problem 100 similar-edges and 10&ble. Furthermore, these approaches rarely have closed for
dissimilar-edge constraints were generated. As we can se®lutions as ours does and hence will not scale well for the
with no dimension reduction themeans algorithm performs  large amounts of data found in mining tasks. Finally, it vebul
no better than random guessing. The eigen-faces approaelso be interesting to determine if our form of dimension re-
performed significantly better as has been reported previduction is useful for classification algorithms.
ously, this is so since the images are controlled for light
and Qistance and hence th.e eigen—vecto_r approqch choos?s Conclusion
the pixels that are most variable/different/informaticecss
the different images. Conversely, our approach uses orly thWe propose the graph-driven constrained dimension reduc-
constraint-graph to perform the dimension reduction by-maption by linear projection (GCDR-LP) approach that given a
ping similar images close together and dis-similar images f weighted graph attempts to find a series of dimensions that
apart and given these hints are obtained from the grourtd trutare linear combinations of the old dimensions. The objectiv
are useful for improving clustering accuracy. Given thesaim function of our approach essentially tries to find a low dimen
of both approaches are orthogonal, a valid question is: “Casional space that makes the points/nodes in the graph with a
the two approaches be combined?” To explore this questiopositive edge-weight closer together and those with a hegat
we first performed eigen-faces on the data and then GCDRedge-weight further apart. The constraint graph can be cre-
LP on the already reduced data sets. Performance results ated in any humber of ways and we explored also having ad-
promising as the last column in Table 2 indicates and the comditional entries for each instancesearest neighbors so as to



Dataset | k-means| COP%-means| Xing+k-means| PKM | PCA+ PCA+ SSDR+ | GCDR-LP+

k-means| COP%-means| k-means| k-means
Iris 58% 54% 48% 49% 51% 59% 59% 68%
Wine 54% 49% 45% 46% 46% 57% 55% 61%
Pima 53% 52% 51% 53% 55% 52% 54% 59%
lonsphere| 61% 58% 53% 52% 62% 59% 58% 60%
Glass 63% 64% 59% 58% 59% 62% 61% 66%
Protein 59% 55% 53% 55% 60% 58% 59% 68%

Table 1: Results of applying a variety of algorithms to UCtadsets with 20 columns of random noise added and 20 similar
and dissimilar constraints/edges. The first four techréqulester in the higher dimensional space, the latter foduce the
dimensionality to the original number of dimensions anaitherform clustering. Results are averaged over 100 conssets

and randomly restarting the clustering algorithm 100 tifiee®ach. Results in bold show statistically significantéetesults
than next best technique using a student pair-wise t-t§%tCl.

Data- k-means| Eigen-faces| Eigen-faces | GCDR-LP Eigen-faces-
set k-means | COP%-means| +k-means| then-GCDR-LP%-means
Female/Male 51% 65% 62% 70% 73%
Up/Down 52% 66% 63% 73% 76%
Sunglasses/Not  54% 70% 66% 78% 83%

Table 2: Results of applying a variety of algorithms to CM&sdata sets of 128x128 pixels using 100 similar and dikesimi
constraints/edges. Results are averaged over 100 setasifaiots/edges and 100 random restarts of the clustelgogitam.
Results in bold show statistically significant better réstiian next best technique using a student pair-wise at&% CI.

maintain the underlying local geometry. Our problem formu- Equivalence ConstraintlyILR6:937-965, 2005

lation is easily solved as a generalized eigen-value pnoble ;

which is implementable in MATLAB and has a closed form [Basigtti.vzl. 25()6(?Tl4i—SS.UB[)%Sr3i,SiI\(;|I.’] B]clgnksaﬁcv?ss ' é.ows(;?ar:ﬁ)éa

solution. This has advantages over metric learning tectasiq Clustering 4™ SIAM DM Conference2004.

that do not perform dimension reduction or have closed fornt '

solutions and hence may converge to a poor solution. Coleman et. al. 2048T. Coleman, J. Saunderson and A.
After the transformation any number of algorithms could Wirth, Spectral Clustering with Inconsistent Advice, In-

be used to cluster the data and in this work we expldred ternational Conference on Machine Learning, 2008.

means and have also used agglomerative hierarchicalelustd Davidson and Ravi 20371. Davidson and S. S. Ravi, “The
ing (results not shown). We show that our approach is useful ~ Complexity of Non-Hierarchical Clustering with In-
for performing dimension reduction to help non-hierarehic stance and Cluster Level Constraint®3ta Mining and
clustering algorithms such @smeans which outperfornis Knowledge Discoverywol. 14, No. 1, Feb. 2007.
means, COR-means, PCAk-means, PCA+COR-means, : : : :

metric learning approach (Xing et’ BXing et. al. 2002)+k- [Mltcu?llll 11%%77] T- Mitchell, Machine Learning McGraw
means, PKMBasu et. al. 2004and SSDM[Zhang et. al. o ' _ _
2007. This result not only shows the utility of our algorithm [Roweis and Saul 2000S. Roweis, L. K. Saul, Nonlinear
but the general approach of separating the constrainfaatis Dimensionality Reduction by Locally Linear Embed-
tion and clustering problems. For the CMU faces databasewe  ding, Sciencevol 290, 22 December 2000.

show the approach of using constraints for dimension redud-Tang and Zhong 206W. Tang and S. Zhong, Pairwise
tion produces better results than eigen-faces and can be use  Constraints-Guided Dimensionality Reduction”, SIAM
in conjunction with eigen-faces to obtain even better tssul DM Workshop FSDM’06, 2006.
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