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Abstract. Bayesian model averaging also known as the Bayes optimal
classifier (BOC) is an ensemble technique used extensively in the statistics
literature. However, compared to other ensemble techniques such as bag-
ging and boosting, BOC is less known and rarely used in data mining. This
is partly due to model averaging being perceived as being inefficient and be-
cause bagging and boosting consistently outperforms a single model, which
raises the question: “Do we even need BOC in datamining?”. We show that
the answer to this question is “yes” by illustrating that several recent ef-

ficient model averaging approaches can significantly outperform bagging
and boosting in realistic difficult situations such as extensive class label
noise, sample selection bias and many-class problems. To our knowledge
the insights that model averaging can outperform bagging and boosting in
these situations has not been published in the machine learning, mining or
statistical communities.

1 Introduction and Motivation

The typical aim of classification data mining is to build the most accurate model.
Research activity in the machine learning and data mining fields has produced
a large number of ensemble techniques such as boosting and bagging that can
combine multiple base models to increase accuracy beyond the single best model.
However, the use of the classic Bayesian statistical approach to multiple models,
Bayesian model averaging, is rarely reported in data mining and even when it is,
yields indifferent results [2, 6]. The Bayesian approach of using multiple models is
to weight each model’s belief in a prediction (P (yi|x, θ)) by the model’s posterior
probability (P (θ|D)) and is known as Bayesian model averaging in the statistical
literature [16] and the Bayes optimal classifier (BOC) in the machine learning and
data mining literature [19]. Given a test set instance, x, to be classified into one
of k classes (y1...yk), a training dataset D and model space Θ the BOC chooses
the class that maximizes equation (1).

argmaxyi
: P (yi) =

∫
θ∈Θ

P (yi|x, θ)P (θ|D)dθ (1)

The BOC is claimed to be optimal for a number of reasons: Kohavi claims it
reduces bias and variance [17] while Buntine claims it prevents overfitting [2] and



Domingos [6] states “no other method can consistently achieve lower error rates“.
In addition there is significant experimental evidence supporting its effectiveness in
the statistical literature [16]. For example, a reply comment in [16] is: “In problems
where model uncertainty is present, I have found model averaging to consistently
yield predictive performance improvements over single selected models. I have also
found this phenomenon to persist under a wide variety of prior choices. Many
colleagues have also reported similar experiences.”.

Yet there seems to be little interest in using model averaging in data mining.
Instead the two most common ensemble model techniques are bagging [1] and
boosting [14]. These techniques are rightfully extensively used as they are relatively
easy to implement, have been shown to work for a variety of learners and a variety
of data sets. In contrast model averaging is typically more difficult to implement,
particularly since BOC in its rudimentary form requires performing an integration
over the entire model space which is computationally prohibitive for the complex
model spaces such as trees and large datasets used in the data mining.

Compared to model averaging, ensemble techniques such as bagging and boost-
ing combine not average and the base unit is a vote not a probability. Minka
[20] succinctly notes the difference that BOC is a method of “soft model selection”
using multiple models when there is uncertainty to which model is the best model.
For example, if all posterior probabilities are the same then model uncertainty
is maximum. In contrast techniques such as bagging and boosting are methods
to combine multiple models to create a new (and potentially more appropriate)
model space than the base model space [20].

Which type of technique (averaging or combining) will work best depends on
the properties of the target concept and the data set available to find it. Consider
the circles example in the Minka paper reproduced in Figure 1. The base model
class consists of just these three circles (inside the circle predicts ’o’, outside ’x’).
The top most circle has the greatest single model accuracy misclassifying only a
small number of class ’x’ as ’o’ compared to the other two models. However, given
only a small number of data points a model averaging approach would weight
each model approximately equally (which is the strategy that maximizes accuracy)
because equation 1 integrates over all models. Since model combination strategies
have no such requirement they may choose only a subset of the three available
models and hence not uniformly vote amongst all models leading to a sub-optimal
result. We shall show that model averaging can outperform the model combination
approaches of bagging and boosting when there is significant model uncertainty
and averaging out model uncertainty is desirable. In later sections we shall discuss
and experimentally explore realistic difficult situations where this occurs such as
many-class problems and extensive class label noise. These results may seem to
contradict the results of earlier work such as [6], but we note that we purposefully
choose data sets and conditions when model uncertainty is great and this is not
the case for other studies.

The aim of this paper is two fold. Firstly, we intend to explore if when model
uncertainty occurs model averaging outperform bagging and boosting. Secondly,
we will compare the computational efficiency of several recent efficient model av-
eraging techniques against other ensemble techniques. We begin this paper by



Fig. 1. A simple classification problem where the target concept is: ’o’ if the instance
falls inside at least two circles, otherwise ’x’. A uniform vote amongst all three models is
an optimal prediction strategy.

discussing when model uncertainty is most likely to exist for various properties of
data sets in section 2. We then describe two recent efficient approaches to model
averaging the authors have created Random Decision Trees [10] and Parametric
Bootstrap Model Averaging [3]. We then conduct extensive experiments to test if
model averaging can outperform boosting and bagging in the situations outlined
in section 2.

2 Why and When Averaging Will Outperform Combining

In this section we compare and contrast model averaging and model combination
and conclude the section by describing data set conditions where model averaging
should perform better than model combination. In later sections we empirically
test these claims.

Target Concept Single DT Solution Bagging Solution

Fig. 2. A problem where bagging multiple trees better approximates the target concept
than a single tree. Target concept is inside and on the ellipse is one class and outside
another. Reproduced from Andrew Moore AUTONLAB tutorial site.

It may appear the model averaging and techniques such as boosting and bag-
ging are similar but how the multiple models are used are quite different. Many
ensemble techniques explicitly or implicitly combine multiple models. For example,
the serial nature of boosting to focus on misclassified instances effectively means



that the original tree built from the unweighted training set has subsequent addi-
tional trees grafted onto the leaf nodes containing many misclassified instances. In
that way the model space that boosting is searching is a combination of the base
model class (trees). Similarly, it has been noted that bagging models can create a
new model space which is more expressive than the base model space. Consider
the example given in Figure 2. The base model class of trees, can only find a deci-
sion surface such that one side is parallel to one of the dimensions. This does not
approximate well the true decision surface of an ellipse. However, bagging many
trees results in a significantly better approximation.

In contrast model averaging never explicitly combines models. Rather, each
model’s predictions are weighted by the belief (posterior) that it is the true model.
In this way, though the final predictions may be different than any single model
in the entire model class [19], the model class/space is no more complex than the
original. Furthermore, in the presence of excessive number of training instances
equation 1 will simply have most of the posterior mass on a single model and
perform no better than a single tree. As the statistical literature [16] and Minka
[20] note model averaging should perform well when there is substantial model
uncertainty where best-model uncertainty can be quantified as being one minus
the posterior probability of the most probable model. We note that there are
other general measures of model uncertainty such as the entropy in the posterior
[3]. Formally:

Definition 1. Best-Model Uncertainty is the degree of belief that the most
probable model (θ∗) is not the best model in the model class (Θ). That is:
ModelUncertainty(Θ, D) = argminθ∈Θ (1 − P (θ|D))

When there exists considerable model uncertainty in the original model space
it is not advisable to combine multiple base models to get an even more complex
model. When model uncertainty exists, it is because there is insufficient data to
conclusively state that one model is the best and hence building combinations of
models can be perceived as building an overly complex model given the amount
of data.

We see from definition 1 that model uncertainty is likely to exists if there is

no highly probable model. By a simple expansion of P (θ|D) = P (θ)P (D|θ)
P (D) using

Bayes theorem we see that this can occur if the numerator, particularly the like-
lihood is small. In decision tree learning this can occur for a number of reasons.
Since each tree path forms a distinct part of a model we can say that P (D|θ) =
Π1...nP (Di|Leaf(Di)) where Leaf(Di) is a function returning the leaf the ith in-

stance is assigned to. The term P (Di|Leaf(Di)) = Count(Class(Di),Leaf(Di))
Number(Leaf(Di))

where Count(Class(Di), Leaf(Di)) returns the number of training set instances
having the same label as Di and Number(Leaf(Di)) the total number of instances
at the leaf node. The leaf nodes of the tree may be poorly or incorrectly populated
for any number of reasons. The (non-exhaustive) set of data set conditions we
believe where this will occur and shall explore in this paper are:

– Training sets with excessive class label errors (i.e. security/fraud applications
where labeling is difficult)



– High dimensional data but a relatively few number of instances (i.e. bioinfor-
matics problems)

– Multi-class problems involving a large number of classes (i.e. fault diagnosis)

In addition, even if model uncertainty is not particularly great, it may be worth
removing model uncertainty by averaging. In this paper we shall explore a situation
discussed in our recent work, sample selection bias [8]. In this situation, since the
training and test data sets are drawn from different distributions, even a highly
probable model for the training set may produce poor predictions on the test set.

3 Efficient Model Averaging Techniques

In this section we shall describe our efficient model averaging techniques for com-
pleteness since they are not as well known as boosting and bagging. If the reader
understands that our techniques Random Decision Trees (RDT) and Parametric
Bootstrap Model Averaging (PBMA) are efficient approaches to model averaging
then this section can be skipped without loss of flow in the first reading of this
paper.

3.1 Random Decision Trees (RDT)

RDT were originally proposed in [10, 9]. The construction of RDT is significantly
different from the construction of regular decision trees as RDT constructs multiple
decision trees randomly. Rather than using purity functions (i.e. information gain)
like traditional decision tree algorithms, RDT chooses a feature/column to split
on randomly. A discrete feature is chosen only once in the decision path from the
root of the tree to the current node. A continuous feature can be chosen multiple
times in the same decision path with a different decision threshold each time. The
tree stops growing if either the current node becomes empty or the depth of the
tree exceeds some predefined limit. Since both feature and decision thresholds for
continuous features are chosen randomly, each RDT is likely to be different. In our
experiments, the depth of the tree is limited to be up to the number of features in
order to give each feature equal opportunity to be chosen in any decision path.

During classification, each random tree computes a posterior probability at the
leaf node. That is, if there are n examples at a leaf node and qi belong to class
label yi, the posterior probability P (yi|x, θ) = qi

n
. For a given test instance, the

posterior probability outputs from multiple decision trees are averaged to produce
a final probability estimate with the most probable class for an instance being the
prediction. As found in [10], typically 30 random trees give satisfactory results and
as little as 10 random trees produce results better than using a single traditionally
grown decision tree [9]. Although quite different from well-accepted methods that
employ purity split functions to construct decision trees, random trees have been
shown to have accuracy comparable to or higher than bagging and random forest
but at a fraction of the training cost for a variety of data sets including those with
many irrelevant attributes [10, 12]. RDT are grown to a fix depth (the number of
attributes in the training data set) and hence are not pruned. Though with RDT



each tree structure is created randomly the leaf probabilities are estimated from
the training data set. Therefore, in the limit as the number of trees approaches
infinity, RDT effectively computes the following:

P (yi|x, Θ) =
∑
θ∈Θ

P (θ|D).
qi,θ

nθ

(2)

RDT though superficially similar to random forest of trees (RFT) are different
in a number of ways (see [12] for details). Furthermore, RDT are different to the
random trees referred to by Dietterich [4] as in that work the splits are randomly
chosen from the twenty most informative splits and it is quite feasible that many
of these twenty choices are for the same continuous attribute.

3.2 Parametric Bootstrap Model Averaging

The bootstrap model averaging approach [3] is a frequentist approach to model
averaging. The philosophy of model averaging is to remove model uncertainty that
arises due to a single finite data set. Consider the typical view of mining where
a single training set of size n is available from the underlying distribution that
generated the data F . However, this view masks the underlying uncertainty in the
data, namely that the training data we have is one of many that could have been
chosen/generated. If we were to build a model for each possible data set we would
have a probability distribution over the model space. This probability distribution
is the frequentist analog to the posterior distribution and gives the model uncer-
tainty due to data set fluctuations. It differs from the Bayesian posterior since no
prior distribution over the model space is used in its calculations.

However, typically we do not have the luxury of many different data sets drawn
independently of the same size so we can not compute the uncertainty over the
model space from them. To approximate this distribution using a single data set,
Efron [7] created the non-parametric and parametric bootstrapping approaches.
Non-parametric bootstrapping which has been used extensively by the machine
learning community is an example of attempting to simulate draws from F when no
knowledge of its form is known. Parametric bootstrapping which has received little
attention is used when some underlying knowledge on the form of F is known. In
this paper we make use of a simple generative parametric model of F which assumes
that the independent variables are conditionally independent given the dependent
variable value. The parameters for this model are estimated from the data and
virtual training examples are drawn/bootstrapped from it to build models. More
complex models of F could be used and remains an active research area. Formally
the bootstrap model averaging approach is shown in equation 3. In this paper, the
learner, L, used with PBMA is J48 (Weka’s equivalent to C4.5) to produce trees
built with the default parameters.

P(yi|x, Θ) =
∑

D′,θi=L(D′)

P (yi|x, θi)P (D′|D) (3)



4 Experiments

We now illustrate the performance of model averaging techniques and other en-
semble techniques when considering model uncertainty is beneficial (see section 2).
We find that bagging and boosting does not perform well in these circumstances.

4.1 Experiment Methodologies

Class Noise and Biased Sample Experiments We being by illustrating the
efficiency of PBMA and RDT by using only 30 models but use 100 models for
bagging and boosting. We use the Weka software to perform bagging and Ad-
aBoost using the J48 decision tree base learner (equivalent to C4.5). This requires
changing Weka slightly as the default implementation of bagging in Weka aggre-
gates conditional probabilities and not votes [13]. In all experiments, regardless
of the ensemble technique (PBMA, Boosting, Bagging), the default parameters
were used for J48. We randomly divide the data into 80% for training and the
remaining 20% for testing unless otherwise stated. We investigate the following
situations 1) where removing model uncertainty due to noise in the class labels is
beneficial and 2) when the training data set is biased and hence the most probable
model happens to be wrong. Experiments are repeated 100 times.

Large Number of Classes Experiments We tested bagging, boosting, RDT
and PBMA on four data sets that contain large number of classes. We tried build-
ing, 100, 250 and 500 trees and calculated the ten-fold cross-validated accuracy ten
times. A pair-wise student t-test using the same folds, shows that the poorer per-
forming model average technique, PBMA, outperforms both bagging and boosting
for all data stets at the 99% confidence interval.

4.2 Model Uncertainty Due to Class Label Noise

If there exists a deterministic relationship between the independent variables and
class label, and the model space is suitable, it is likely any reasonable learner will
find a highly probable model that can correctly map feature vectors of indepen-
dent variables to their correct class labels. Hence the model uncertainty would be
relatively small. However, the addition of class label noise, i.e., the correct class
label being flipped to another class, would almost certainly reduce the probability
of the “correct model” otherwise trained from dataset without label noise, hence
increasing model uncertainty. We took several UCI data sets and introduced 20%
class label noise in the training sets only by randomly flipping 20% of class la-
bels. We then try the model averaging approaches and compare them against the
other ensemble techniques. Table 1 shows that the model averaging techniques
outperform the other ensemble techniques and single models in each situation. A
pair-wise student t-test using the same training and test divisions, shows that the
poorer performing model average technique, PBMA, outperforms both bagging
and boosting at the 99% confidence interval for all data sets.

As expected [14] boosting performs quite poorly as it apparently continues to
build models to fit the added noise while bagging can only occasionally significantly
outperform a single model.



Breast Vote Pima Credit Wine

UP. Tree 10.6 5.2 31.8 36.5 37.6

P. Tree 4.5 12.6 31.8 37.4 37.0

RDT 0.5 3.7 30.0 30.6 26.4

PBMA 2.5 2.2 30.9 30.7 26.7

Bagging 4.0 4.2 33.9 34.3 34.3

Boosting 15.7 19.3 34.0 42.4 38.2

Table 1. Average error of various techniques on standard UCI data sets with class label
noise in training set only over one hundred repetitions. UP=Unpruned, P=Pruned

4.3 Biased Training Sets

Recent work by Zadrozny and ourselves [26, 8] has classified many learners in-
cluding decision trees and naive Bayes as global learners that can be effected by
sample bias. In particular the sample bias investigated is that the probability of
the instance being selected in the training data (denoted by the event, s = 1) is
conditionally independent of the instance label (y) given the instance’s description
(x), formally: P (s = 1|x, y) = P (s = 1|x). This type of sample bias is effectively
when instances are not chosen randomly but instead depend on their description
but not their label. It occurs prevalently in applications where the occurrence of
particular instances’ change but not the concept (i.e. relationship between x and
y). For the rest of this paper when we refer to sample bias, we refer to this type
of bias. Decision trees are known to be unstable, and is categorized as “global“
classifier in [26]. The structure of decision tree is sensitive to sample selection bias,
which makes it unlikely to find that most probable decision tree otherwise trained
from dataset without sample selection bias.

Artificial Sample Selection Bias We can artificially introduce sample bias into
the previously mentioned UCI data sets by first dividing the data into training and
test sets. We then sort only the training set on the attributes and remove the first
10% of all instances. Note this introduces a training sample bias but does not
change the relationship between the independent and class-labels as our previous
experiments did. Table 2 shows that model averaging performs better than other
ensemble techniques even though only 30 models are used and 100 models are used
for bagging and boosting. Unlike the previous situation, boosting performs better
than bagging on average but both perform worse than a single tree.

Sample Selection Bias in Newsgroup Classification We now focus on the
newsgroup data where the training and test data sets are drawn from similar but
not identical distributions. We perform experiments on the 20 Newsgroups [22]
datasets using the standard bydate version division into training (60%) and test
(40%) based on posting date. The division creates a temporal bias. For example,
in the GUNS newsgroup the word “Waco” occurs extensively in news articles in
the training set but not in the test set as interest in the topic fades.



Breast Vote Pima Credit Wine

UP. Tree 1.5 3.7 26.5 3.1 35.3

P. Tree 2.1 3.7 27.6 12.2 35.3

RDT 0.5 2.7 26.1 1.0 27.8

PBMA 1.0 3.1 25.7 1.3 28.0

Bagging 4.04 3.7 28.0 5.61 38.2

Boosting 2.5 4.4 28.4 5.02 38.1

Table 2. Error of various techniques on UCI data sets with biased training sets over ten
repetitions. UP=Unpruned, P=Pruned

However, since the proportion of each class label is the same in the training
and test data sets there is no class label bias. We used the tool Rainbow [18] to
extract features from these news articles. The feature vector for a document con-
sists of the frequencies of top ten words by selecting words with highest average
mutual information with the class variable. To better understand the performance
of model averaging we treat the problem as binary classification between a va-
riety of newsgroups. Table 3 illustrates the improvement that model averaging
provides. Again, the better performance is obtained using only 30 models for the
model averaging approaches as opposed to 100 models for bagging and boosting.
In this situation boosting performs better than bagging but the model averaging
approaches outperform both and the single best model.

BaseBall Christian M.Cycle MidEast MidEast Mac.

Hockey Sale Guns Guns Electrical Religion

Unpruned Tree 15.7 7.9 10.5 20.3 14.4 18.4

Pruned Tree 15.7 7.4 10.2 20.3 14.4 18.7

RDT 11.9 6.6 8.5 10.5 7.2 12.7

PBMA 12.0 6.0 8.6 9.8 7.4 11.9

Bagging 14.8 7.9 10.5 20.3 14.4 18.4

Boosting 12.6 7.7 9.2 10.7 11.7 13.2

Table 3. Error of various techniques on newsgroup data. Training set is first 60% of the
year’s postings and the test set the last 40%.

4.4 Model Uncertainty Due to Large Numbers of Classes

We examine four data sets where the number of classes is large: Digit (10), Glass
(6), Protein (6), Soybean (19). Furthermore, the number of columns is relatively
high and instances relatively small. For each data set the number of columns and
instances is: Digit (17, 469), Glass (10, 214), Protein (21, 116) and Soybean (36,
683) respectively. Assuming a uniform distribution of classes amongst the instances



there are as little as 19 instances per class (not leaf) and hence model uncertainty
is likely to be high. When comparing the model combination approaches bagging,
boosting to the model averaging approaches RDT and PBMA we find that the
averaging approaches work significantly better except for the Glass data set when
only PBMA outperform both combination techniques (see Figure 3).
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Fig. 3. Plots of Accuracy against number of trees for Bagging (-), Boosting (-x-), RDT
(-o-) and PBMA (-+-).

5 Discussion

It is often stated that bagging and boosting are approaches to model averaging, but
it is better to say that they are approaches to combine multiple models. Only BOC
of the three ensemble approaches is performing averaging in that equation 1 explic-
itly calculates the expectation (average) of the class label conditional probability
over the posterior distribution. Furthermore, considerable experimental evidence
suggests that bagging is not an approximation to the BOC [5]. We have already
discussed why model averaging should work in our situations earlier (see section
2) but not why model combining techniques should perform relatively poorly.

In our experiments boosting performed poorly when there existed class label
noise while bagging performed poorly when there was sample bias. Boosting can
be interpreted as performing various functions. In this paper we shall use the
popular view that boosting is a technique to maximize the margins [14]. In par-
ticular boosting, tends to increase the margins of training examples by focusing
on those with the smallest margin. However, with a noisy class labels some of the
instances with small margins may by incorrectly labeled and hence focusing on
them produces poor results.

It is interesting to consider that bagging which uses non-parametric bootstrap-
ping faired poorly on problems with sample bias but PBMA which uses parametric
bootstrapping did not. A viable explanation comes from the bootstrapping liter-
ature [7]. Non-parametric bootstrapping by continually resampling attempts to
create an empirical estimate of F , the distribution the training data is drawn
from, using the (biased) training data. Parametric bootstrapping instead draws
virtual instances, that could be quite different from the training data set, after
creating a parametric model of F . If this parametric model can at least partially
correct the sample bias then it should perform better than its non-parametric
counterpart.



6 Conclusion

Model averaging is a method of choice for statisticians to make use of multiple
models. However, model averaging is rarely used in data mining and instead other
ensemble techniques such as boosting and bagging are used extensively. We believe
this is for two primary reasons: a) Model averaging is perceived as being compu-
tationally inefficient and b) boosting and bagging have been shown to work for a
variety of problems. A valid question is then: “Does the data mining practioner
require model averaging as an ensemble technique?”.

The answer to this question is yes, there are situations where model averaging
can significantly outperform both bagging and boosting using two recent efficient
approaches to model averaging. This is because a) boosting and bagging are model
combination not averaging approaches and b) model averaging works best when
there is model uncertainty. The situations where averaging to remove model uncer-
tainty is beneficial we explored in this paper include when the number of classes is
large, excessive class label noise and training sample bias occurs.. We believe that
these are not academic situations but will occur in fields such as bioinformatics
and security and demonstrated that one of the situations (training sample bias)
occurs in the newsgroup data sets.

We illustrated that the Random Decision Tree [10, 9], and Parametric Boot-
strap Model Averaging approaches [3] are two efficient model averaging approaches
for complex model spaces since they average over only a fraction of available mod-
els and in most of our experiments used less than one third as many models as used
for bagging and boosting. We explored the situations of noisy class labels in the
training set, biased training sets and many class problems where both model aver-
aging techniques outperformed a single model, bagging and boosting. We believe
the demonstration of model averaging to address the presented situations is novel
and is not reported in the machine learning, data mining or even the statistical
literature [24].

We believe that one of the most important contributions of this paper is to
show that model averaging is the preferable ensemble technique when there is
model uncertainty and/or factoring model uncertainty is beneficial. Though we
focused on RDT and PBMA as they are two efficient model averaging approaches
other model averaging techniques such as averaging over the extended fanned set
of a best tree [21] should yield similar if not better results.
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