
Under Review

Scaling Down EM Using Graph Based
Models

Ian Davidson

Department of Computer Science, University of California, Davis, CA, USA.

Abstract.

The EM algorithm is used extensively in data mining problems that involve uncer-
tainty in the form of missing values or latent variables. It was recently reported in KAIS
as being one of the top 10 data mining algorithms. Typical applications include indoor
map building, mixture models and image mining. However, as data mining applications
extend to deployment beyond traditional desk top machines using typical probabilistic
parametric models is infeasible. Resource constrained computational platforms such
as hand-held GPS systems, small WiFi devices, and Sony Aibo robots have slow pro-
cessors and no or limited floating point routines and hence are difficult to implement
probabilistic formulations of EM on. In this paper we investigate the EM algorithm
with undirected graphs as models. Constraints on the graph topology lead to different
model classes and we explore several we believe have practical applications. We prove
that the E-step reduces to the st-mincut problem which can be solved in polynomial
time. For two of our model classes, we derive a non-heuristic M-step that can be carried
out in polynomial time. These algorithms do not require floating point hardware and
we demonstrate their performance on several classic problems.

1. Introduction and Motivation

Many important data mining problems can be cast as missing value or latent
variable problems. Examples include constructing indoor maps from partially
observed robot sensor data [3], learning first-order rules [14] and mixture models
[17]. In map construction a robot sweeping its sensors left to right while walking
down a corridor misses some location readings and must fill in these missing
readings with values corresponding to say ”wall” or ”opening”. Similarly with
mixture models, the observed data variables are given to the algorithm and a
latent variable (the cluster id) is said to be missing (unobserved). In both cases
an algorithm is needed to use the observed data to fill in the missing values using
some reasonable model. For example, EM could be used to repair the missing
pixel values (shown as black) in Figure 1 or find the latent variables (clusters)
in Figure 2.

Addressing problems containing missing values involves maximizing the com-

2 I. Davidson

Fig. 1. A Problem With Missing Pixel Values That EM Can Address.

Fig. 2. A Problem with Latent Variables (the cluster id) That EM Can Address.

plete (missing and observed) likelihood which is typically intractable [9]. How-
ever, an algorithm, expectation maximization (EM) [16], is widely used and has
produced useful results in many applications while being more efficient than
other approaches, such as Gibbs sampling, at inferring missing vales [12]. Re-
cently [22] the EM algorithm has been profiled by KAIS as one of the top ten
data mining algorithms along with other classical algorithms such as Apriori and
Support Vector Machines.

Since EM is rooted in the statistical literature it has been extensively applied
using a variety of parametric models of the data. In this context, parametric
model means a probabilistic model formulation characterized by the parameters
of the probability distribution. For example, in the above applications [3, 17] a

Scaling Down EM Using Graph Based Models 3

Gaussian distribution is used with the parameters of course being the mean and
variance. Before we introduce our graph-based models, it is worth noting that
model classes provide the general form/structure of the relationship amongst
the data with the EM algorithm finding the most probable parameters. Consider
using EM for mixture models where the latent variable is the unobserved cluster
label/id. A model space of a mixture of k multi-variate Gaussians enforces the
data be modeled/divided as k sub-populations of Gaussians and EM finds the
most probable parameters for such a division.

Unfortunately, many developing computationally limited platforms cannot
readily run parametric versions of EM due to hardware limitations. There has
been much discussion of scaling down algorithms to run on large sensor networks
such inexpensive Berkeley motes [1] which even lack floating point hardware and
not enough memory to implement the appropriate floating point routines. Fur-
thermore, the inexpensive and noisy sensors return values that are best treated
as binary (e.g. a temperature value > 25 Degrees Celsius is TRUE), and often
return many missing or absurd values [11]. Similarly many computational de-
vices are hand-held and portable and do not have the computational resources
to run the EM algorithms. A recent innovation has been the move to hand-held
devices running Windows CE such as global position systems (GPS) and hand-
held computers which can access Wi-Fi connections (i.e. IPhones without the
phone part) such as the Chumbys (www.chumby.com).

If mining applications built around EM are to be deployed on these computa-
tionally limited platforms, they must operate more efficiently both for real-time
usage and battery life conservation. Approaches for speeding up EM do exist
[17] but they typically involve pre-processing the data into some data structure
which in itself would be time consuming and battery draining. An alternative
approach is to transmit all observations back to a powerful server to perform
the computations. However, this is also a significant power-draining activity and
does not make use of the devices as a computational platform. In this paper we
explore the approach of using graph based models so that mining applications
based on EM can be implemented directly on the resource limited platforms.

Though there does exist some work on non-parametric EM, it is limited to
1) EM-style algorithms [5] that contain only an E-step and 2) model classes
that are not useful for mining applications [20]. We explore using undirected
graphs as non-parametric models and find that there exists a variety of con-
straints/topologies that can be imposed on the graphs to construct various model
classes. Each graph/model has a vertex for each missing and observed value, with
the edges being the model parameters. This simple approach can yield a variety
of useful models.

Our work makes several pragmatic contributions:

– We show how to perform EM using graphs as models without the need for
floating point hardware or routines. This allows efficient implementations of
EM on resource limited hardware as floating point operations are not always
available, take more memory and typically take significantly more time/power
than integer operations1 .

1 Typically the Drystone benchmark (for integer and string operations) is three times as fast
as the Whetstone benchmark (for floating point operations) for the same desktop CPU with
large caches

4 I. Davidson

– We illustrate that placing constraints on the graph topology is analogous to
creating different model classes/spaces and identify several model classes.

– We present polynomial time E- and M-steps that maximize the likelihood.
Hence, our techniques are not generalized EM (such as the Baum-Welch al-
gorithm that have heuristic M-steps) and should have good convergence prop-
erties.

The remainder of this paper is organized as follows. In Section 2, we describe
how the Hamiltonian energy function provides a probability function for undi-
rected graphs. In Section 3, we describe four model classes that effectively impose
constraints on the graph topology. Next (Section 4), we show how the general
E-step for binary node values is facilitated by a polynomial time algorithm for
the st-mincut problem. Then (Section 5), we derive efficient algorithms for the
M-step of some model classes. Finally, we sketch an extension for multi-valued
data and conclude our work.

Our earlier work [10] used a heuristic E-step which we improve upon in this
paper (Section 4) and also used a simple nearest-neighbor model space and a
different non-optimal heuristic M-step, thus leading to a generalized EM al-
gorithm. Furthermore, the algorithm in our earlier work used an M-step that
deleted nodes not edges as we do in this work. The deletion of nodes was very
specific to sensor networks since it allows the turning off sensor nodes to conserve
power and is not generalizable to other platforms.

2. A Graph-Based Model for Non-Parametric EM

In this section we discuss the general form of our non-parametric models and
indicate how to measure the likelihood of a model. Given a set of observed
(X) and missing (Y) values, our aim is to calculate the complete (missing and
observed) maximum likelihood estimate P (X, Y |θ). We use classification EM
(CEM) [2, 7, 19, 15] which maximizes the classification complete likelihood [7]
and will allow computations free of floating point calculations. For instances
with a single latent variable (Y) with k = {1, . . . , K} values, the classification
complete likelihood [2] is given by:

P (X, Y |θ) = Πxi∈XP (xi|θ) ×

Πyj∈Y Πk[P (yj |θ)]
tj,k (1)

where tj,k is the binary indicator classification variable, such that for each j,
only one of the variables is set to 1 otherwise 0.

No tractable solution for maximizing the classification complete likelihood
typically exists [9]. Intuitively, we can see why the problem is difficult. There
are two sets of unknowns, the model parameters θ and the missing values (Y)
that must be solved for. But both depend on one other: we use θ to predict
the missing values and infer θ from the observed and missing values. How-
ever, the two steps of the CEM algorithm can be used iteratively to attempt
to maximize the expectation of the log likelihood of the complete data given
by EP (Y |X,θ′)[log(P (Y, X |θ))] =

∑
y log(P (Y, X |θ)).P (Y |X, θ′), where θ′ is the

previous guess/estimate of the model. The first step (the E-step) calculates the
above expectation by setting the appropriate indicator variables to 1. This is

Scaling Down EM Using Graph Based Models 5

equivalent to setting the missing value to their most probable values. Given the
filled in missing values, the second step (the M-step) calculates the value for θ
that maximizes the expected complete data likelihood, i.e., argmaxθP (Y, X |θ).
Then, one sets θ′ = θ and the two steps are repeated. This process monotonically
increases the classification complete likelihood [7, 19], until a local maximum is
found. We can now see how EM side-steps in the intractability issue. When two
sets of dependent unknowns for a problem occur, the algorithm holds one set
fixed (the model θ) and fills in the expectation of the other (the missing values
Y) and then holds the missing values as fixed and estimates the most likely θ.

The use of EM requires the modeling of Y |X, θ and Y, X |θ which is typically
done using some parametric model of the data such as a Gaussian. The para-
metric model plays the role of determining the relationship between the data.
Instead of using a parametric model to determine the relationship between data,
we use an undirected graph G(V, E), where each value (observed, missing or la-
tent variable) is a vertex and the model parameters are the edges. We begin our
discussion by focusing on binary valued vertices for clarity and later discuss the
straight-forward extensions to multi-valued vertices. The lattice spin-glass liter-
ature provides a well defined notion of a probability mass function for discrete
physical systems using the Hamiltonian energy function [6]. To be consistent
with the Ising spin-glass literature, graph nodes have the value {−1, +1} when
known and are set to ’?’ if missing. The Hamiltonian energy function (H(G)) and
probability mass function (P (G)) of a particular configuration are given below.
We need not explicitly calculate the maximum probability values as minimizing
the Hamiltonian achieves the same goal.

Definition 2.1. Let G(V, E) be an undirected graph. Suppose each node vi ∈ V
is assigned a label ℓi ∈ {+1,−1}.

H(G) = −
∑

{vi,vj}∈E

ℓi ℓj (2)

P (G) =
eH(G)

∑
G′ eH(G′)

(3)

Typically the summation over G′ is over all configurations (possible values of
ℓi) for a fixed set of edges, but it can be expanded to be over many graph
topologies that comprise the model space. This sum is a normalizing constant
that is typically ignored unless the purpose of the study is the simulation of the
physical system. As can be seen, our probability measure is a function of the
edges (E) in the graph and the node labels (ℓ1, . . . , ℓn). As in the Ising spin-
glass model, we sometimes refer to H(G) as the energy associated with the
given configuration. Note that the smaller the value of energy, the larger is the
probability of the corresponding configuration. Also, as will be seen in Section 4,
the smaller the number of conflicts between a node’s value and its neighbors,
the lower the energy of the graph. Our model, namely the edges of the graph,
contains no continuous parameters, hence we use the term “non-parametric” to
describe the model.

For the current graph (G′), the E-step will fill in the missing node values to
minimize the Hamiltonian. The M-step must find the most probable model/graph
(G) given the filled in values. The M-step can remove or add edges to obtain G,
the most probable graph topology within a model class, given the vertex labels.

6 I. Davidson

In this way we see the E-step as filling in the missing values and the M-step as
changing the graph topology by adding or deleting edges. The M-step will also
maintain a set of constraints on the graph topology give by the model class.

3. Definitions of Model Classes

In this section, we define some graph model classes that can be used with our
EM algorithm. We note that the models are constraints on the graph topology
but any arbitrary graph can be used to model the data within the limitations of
the constraints. In all our graph model classes, the graphs are undirected without
multi-edges or self-loops. The E-step discussed in the next section can be used
for all these model classes. We derive polynomial time algorithms for the M-steps
of two of the model classes; the remaining model classes are left for future work.
It is worth noting that we focus on M-steps that find a model which maximizes
the probability. This is desirable for fast convergence.

Model Class I – Lower Bound on Node Degree: This model class is char-
acterized by a non-negative integer ∆. The requirement is that for each graph
G in this model class and for each node v of G, the degree of v (i.e., the num-
ber of edges incident on v) is at least ∆. This model space is useful for spatial
applications such as sensor networks.

Model Class II – Upper Bound on the Number of Connected Compo-
nents: This model class is characterized by a positive integer r. The requirement
is that each graph in this model class consists of at most r connected compo-
nents. A connected component is a sub-graph on a subset of vertices such that
there exists a path between each pair of vertices in that subset. The connected
components are pairwise node disjoint. Using this model class for spatial data is
equivalent to introducing a latent variable for each instance and maximizing the
number of disjoint clusters (groups) to be at most r.

Model Class III – Upper Bound on Component Diameters: To define this
model class, we need some graph theoretic definitions. Suppose Gi is a connected
undirected graph. For any pair of nodes x and y in Gi, let δi(x, y) denote the
number of edges in a shortest path between x and y in Gi. The diameter of Gi

is given by max{δi(x, y) : x, y ∈ Gi}. If Gi consists of just a single node, then
the diameter of Gi is defined to be zero. Model class III is characterized by a
non-negative integer Γ. The requirement is that for every graph G in this model
class and for every connected component Gi of G, the diameter of Gi is at most
Γ. There is no constraint on the number of connected components. This model
class could be useful for applications where prior some prior knowledge on the
patterns are known. For example, nodes corresponded to pixels in an image, the
value Γ would be the maximum width of an object.

Model Class IV – Lower Bound on Component Edge Density: Sup-
pose Gi(Vi, Ei) is a connected undirected graph. When Gi has no self-loops
or multi-edges, the maximum number mi of possible edges in Gi is given by
mi = |Vi|(|Vi| − 1)/2. The density of Gi is the ratio |Ei|/mi. For convenience,
when Gi consists of just a single node, we define the density of Gi to be 1.
The density of Gi provides an indication of how close Gi is to the complete
graph on |Vi| vertices. Model class IV is characterized by the minimum density
ρ, 0 < ρ ≤ 1. The requirement is the following. Suppose a graph G in this model

Scaling Down EM Using Graph Based Models 7

s

+

? t

a

b c

d

e f
−

+

Fig. 3. A Simple Illustration Why the MinCut of G1 Minimizes the Hamiltonian. Edges a, b
and f are anchor edges.

class consists of connected components G1, G2, . . ., Gt, for some t ≥ 1. For each
i, 1 ≤ i ≤ t, the density of Gi is at least ρ.

Later, we present efficient algorithms for the M-step for Model Classes I and
II defined above. Efficient M-steps for the remaining model classes are left for
future work. Since a graph with minimum energy corresponds to a configuration
of maximum probability, the focus of the M-step is to obtain a graph with the
smallest amount of energy subject to the condition that the resulting graph
satisfies the constraints imposed by the model class.

4. The E-Step

4.1. The E-Step - A Sketch

Given a graph G(V, E) and a subset X of nodes that are the observed values,
the goal of the E-step is to fill in the values for the nodes in V − X .

Calculating the most probable values for the missing value nodes is equivalent
to minimizing the Hamiltonian H(G) shown in Equation (2). Minimizing H(G) is
achieved by filling in the missing values so as to minimize the number of conflicts
(differences) between neighbors. Since missing value nodes can be neighbors of
other missing value nodes, filling in the missing values is not straightforward.
Fortunately, this computation is tractable using the following approach. (For
simplicity, we leave out several technical details in the following discussion. These
details are provided in Section 4.4.)

To the graph G, we add two nodes (s and t), where s has the value +1 and t
the value −1. All of the nodes in X whose value are +1 are connected to s and
those whose value are −1 are connected to t. These new additional edges we shall
call anchor edges. Note, the nodes with missing values V −X are not connected
to any anchors. This new graph is called G1. All edges have unit weights, except
that the anchor edges involving either s or t that have their weight as ∞. Then,
a minimum weight edge cutset of G1 is the minimum number of edges whose
removal will create node-disjoint subgraphs: at least one positive subgraph where
each node has the value +1 or ’?’ and at least one negative subgraph where each
node has the value −1 or ’?’. Determining the minimum weight edge cutset of a
graph can be done in polynomial time (see for example, [21]). The subgraph (+1
or −1) that a missing value node is part of determines the value to be assigned
to the node. Figure 3 shows the intuition behind why a minimum cut of the
graph is needed. Clearly, in that figure, the missing value should be filled in as
‘+’. Removing edges marked c and d creates two appropriate subgraphs but it
produces the wrong missing value; removing just the edge marked e corresponds

8 I. Davidson

+ +- - - -

s

t

+ ++ +- - - -. . .

Fig. 4. A Illustration Of a MinCut of G1 Which Will Produce Many Connected Components
in G When Minimizing the Hamiltonian.

Input: An undirected graph G(V, E); a subset P of nodes such that each node

in P has been assigned a label from {+1,−1}. (These labels cannot be changed.)

Output: A label from {+1,−1} for each node of V − P such that H(G) is
minimized.

Algorithm:

1. Construct the auxiliary graph G1(V1, E1) from G.

2. Find an s-t edge cutset C∗ of minimum weight in G1.

3. Construct graph G2(V2, E2), where V2 = V1 and E2 = E1 − C∗, from G1 by
deleting the edges in C∗.

4. for each node v ∈ V − P do

if there is a path from s to v in G2

then Assign the label +1 to v

else Assign the label −1 to v.

Fig. 5. Algorithm for the E-step

to a minimum cut and hence produces the correct result. This simple example
masks a potentially complex behavior. The resultant edge removal could produce
many connected components (disjoint sub-graphs) (if the edges to s and t are
not considered). For example, consider Figure 4 where the min-cut will create
many connected components.

Our algorithm shown in Figure 5 formalizes the above discussion. (Some
details in the figure rely on definitions presented in Section 4.4.) The remainder
of this section proves that this algorithm is indeed optimal and can be skipped
on first reading without loss of continuity.

4.2. Derivation of the E-Step

Filling in the missing values with their most probable values is equivalent to
calculating the ground state of the spin-glass model. The ground state involves

Scaling Down EM Using Graph Based Models 9

setting the missing values in such a way that the probability of the configuration
(given by Equation (3)) is maximized. This, in turn, is equivalent to minimizing
the energy value given by Equation (2). We now explain how this minimization
problem can be solved in polynomial time.

4.3. Graph Theoretic Preliminaries

The model space considered in this paper consists of undirected graphs that are
simple in the sense that they have no multi-edges or self-loops. Let G(V, E) be
an undirected graph. When each node vi ∈ V is assigned a value ℓi ∈ {+1,−1},
the Hamiltonian function (or the energy function) H(G) (Equation (3)) can
be rewritten using the following definitions.

(a) Each edge {vi, vj} such that ℓi 6= ℓj is called a conflict edge.

(b) Each edge {vi, vj} such that ℓi = ℓj is called an agreement edge.

Lemma 4.1. Let Nc and Na denote respectively the number of conflict and
agreement edges in G. Then, H(G) = Nc−Na. Alternatively, H(G) = 2 Nc−|E|.

Proof: From the expression for H(G) (Equation (2)), it is easy to see that each
conflict edge contributes +1 to H(G) and that each agreement edge contributes
−1 to H(G). Therefore, H(G) = Nc − Na. Since each edge is either a conflict
edge or an agreement edge, we have |E| = Nc + Na. Therefore, H(G) is also
equal to 2 Nc − |E|.

The following is an easy observation which will be used later.

Observation 4.1. Suppose G(V, E) is an undirected graph where each node is
labeled +1 or −1. If there is a path in G between a node labeled +1 and a node
labeled −1, then the path has at least one conflict edge.

4.4. An Efficient Algorithm for the E-Step

The E-step of the EM algorithm for filling in missing sensor node values solves
the following combinatorial problem.

Minimum Energy Label Assignment (Mela)

Instance: An undirected graph G(V, E) and a subset P ⊆ V of “preassigned”
nodes; that is, each node in P has been assigned a label from {+1,−1}.

Requirement: Assign a label from {+1,−1} to each node in V − P such that

H(G) is minimized.

It is assumed that in G, there is a path from each node in V − P (i.e., each
node with a missing value) to a node in P (i.e., a node which has a preassigned
value from {+1,−1}). This assumption enables the E-step to assign values to
missing nodes in an unambiguous fashion.

Our algorithm for the Mela problem relies on a transformation to the prob-
lem of finding a minimum weight s− t edge cut in an undirected graph. The
definition of such an edge cut is given below.

Definition 4.1. Let G(V, E) be an undirected graph with a non-negative weight
w(e) for each edge e ∈ E. Let s and t be two distinct vertices in V . An s-t edge

10 I. Davidson

cutset for G is a subset E′ ⊆ E such that in the graph G′(V, E − E′), there
is no path between s and t. A minimum weight s-t edge cutset for G is an
edge cutset whose total weight is minimum.

The following well known result shows that minimum weight edge cutsets can
be found efficiently (see for example [21]).

Theorem 4.1. Given an undirected graph G(V, E) with a non-negative weight
w(e) for each edge e ∈ E and two distinct vertices s and t in V , a minimum
weight s-t edge cutset for G can be computed in O(|E| + |V | log |V |) time.

Recall that in the Mela problem, the nodes in the set P ⊆ V have pre-
assigned labels which cannot be changed. Throughout this section, we will use
EP denote the set of edges where each edge has both of its endpoints in P . Let
NP

c and NP
a denote the number of conflict and agreement edges in EP . (Thus,

|EP | = NP
c +NP

a .) The contribution HP of the edges in EP to the Hamiltonian
of the graph G is therefore given by HP = NP

c −NP
a . Note that no matter how

labels are assigned to the nodes in V −P , the edges in EP will always contribute
HP to the value of H(G).

We now discuss how the Mela problem can be solved efficiently. Let G(V, E)
and P ⊆ V denote the given instance of the Mela problem. Consider the aux-
iliary edge weighted graph G1(V1, E1) constructed from G as follows.

(a) V1 = V ∪ {s, t}, where s and t are two new nodes (i.e., s 6∈ V and t 6∈ V).

(b) E1 = (E − EP) ∪ Es ∪ Et, where Es = {{s, vi} : vi ∈ P and ℓi = +1}, and
Et = {{t, vi} : vi ∈ P and ℓi = −1}.

(c) For each edge e ∈ E1, the weight of e, denoted by w(e) is chosen as follows:
if e ∈ E, then w(e) = 1; otherwise, w(e) = ∞.

We note that the auxiliary graph G1 has a trivial s-t edge cutset of weight
|E − EP |. Thus, no minimum weight s-t edge cutset of G1 can use any of the
edges incident on the nodes s and t. In other words, any minimum weight s-t
edge cutset of G1 is a subset of E − EP . The following lemma shows the role
played by auxiliary graph in solving the Mela problem.

Lemma 4.2. Let G(V, E) and P ⊆ V constitute a given instance of the Mela

problem. Let H∗(G) denote the minimum value of the Hamiltonian function
over all assignments of labels to the nodes in V − P . Let G1(V1, E1) denote
the auxiliary graph of G constructed as discussed above and let W ∗

1 denote the
minimum weight of an s-t edge cutset in G1. Then, H∗(G) = HP + 2 W ∗

1 − |E −
EP |, where HP is the contribution due to the edges in EP .

Proof: We prove that result in two parts.

Part 1: Here, we prove that H∗(G) ≥ HP + 2 W ∗
1 −|E − EP |. Consider an

assignment of labels from {+1,−1} to the nodes in V −P such that the value of
H(G) is equal to H∗(G). Let C denote the set of all the conflict edges from E−EP

in the resulting assignment. As mentioned earlier, the edges in EP contribute
HP to H(G), regardless of the label assignment to the nodes in V − P . From
Lemma 4.1, the contribution to the Hamiltonian due to the edges in E − EP is
2|C| − |E −EP |. Therefore, H∗(G) = HP + 2|C| − |E − EP |. Now, we have the
following claim.

Claim: C is an s-t edge cutset for G1.

Scaling Down EM Using Graph Based Models 11

Proof of Claim: Suppose C is not an s-t edge cutset for G1. Then, there is a
path from s to t in the graph G2(V1, E1 − C). In this path, let x be the node
that is adjacent to s and let y be the node that is adjacent to t. Thus, the label
of x is +1 and that of y is −1. Hence, by Observation 4.1, there is a conflict
edge in this path. By our construction of graph G1, this conflict edge is from
the edge set E − EP . This contradicts the assumption that C contains all the
conflict edges from E − EP , and the claim follows.

In view of the claim, G1 has an s-t edge cutset of weight at most |C|. Since
W ∗

1 is the minimum weight of an s-t edge cutset of G1, we have |C| ≥ W ∗
1 .

Therefore, H∗(G) = HP + 2 |C| − |E − EP | ≥ HP + 2 W ∗
1 − |E − EP |. This

completes the proof of Part 1.

Part 2: Here, we prove that H∗(G) ≤ HP + 2 W ∗
1 − |E − EP |. This is done by

finding an assignment of labels to the nodes in V −P such that the value of the
Hamiltonian for the resulting assignment is at most HP + 2 W ∗

1 − |E − EP |.

Consider algorithm in Figure 5. Using the assumption that there is a path
in G from each node in V − P to a node in P , it is easy to see that Step 4 of
the algorithm assigns a label from {+1,−1} to each node of V −P . Further, the
assignment ensures that the only conflict edges from E −EP in the resulting as-
signment are those in C∗. Therefore, by Lemma 4.1, the value of the Hamiltonian
function H(G) for this assignment of labels to the nodes in V − P is given by
H(G) = HP + 2 |C∗| − |E −EP |. Since C∗ is a minimum weight s-t edge cutset,
we have |C∗| = W ∗

1 . Therefore, H(G) = HP +2 W ∗
1 −|E−EP |. Since there is an

assignment of labels to the nodes in V −P such that the Hamiltonian function of
G has a value of HP +2 W ∗

1 −|E−EP |, it follows that H∗(G) ≤ 2 W ∗
1 −|E−EP |.

This completes the proof of Part 2 as well as that of the lemma.
A direct consequence of the above lemma is that the algorithm in Figure 5

computes an optimal solution to the Mela problem. The running time of the
algorithm is dominated by Step 2, where a minimum weight s-t edge cutset
of G1 is constructed. As mentioned in Theorem 4.1, this step can be carried
out in O(|E| + |V | log |V |) time. The following theorem summarizes the above
discussion.

Theorem 4.2. The E-step of the EM algorithm for filling in the missing sensor
values can be solved in O(|E| + |V | log |V |) time, where |V | is the number of
nodes and |E| is the number of edges in the given sensor network.

5. The M-Step

Unlike the E-step where one algorithm sufficed, the M-step that is required to
maximize the likelihood varies from model space to model space. As can be seen
from the discussion in Section 4, the energy of a graph can be reduced by deleting
conflict edges. Therefore, the algorithms for the M-step considered in this section
focus on deleting a maximum number of conflict edges. Thus, the edge set of the
graph that is output by the M-step is a subset of the edge set of the input graph.
Formally, the output of each M-step is an edge subgraph of the input graph.

12 I. Davidson

+ + +

- -

v1

v2
v3

v4 v5

+ + +

- -

v1

v2 v3

v4 v5

(a) (b)

Fig. 6. Example of M-step for Model Class I

5.1. M-Step Algorithm for Model Class I

Here, we consider Model Class I, where there is a lower bound ∆ on the degree
of each node of the graph that is produced by the M-step. A formal statement
of the problem solved by the M-step for this model class is as follows.

Graph with Lower Bound on Node Degree (Glbnd)

Instance: An undirected graph G(V, E), an integer ∆ ≤ |V | − 1 such that each
node has a degree of at least ∆, a label ℓi ∈ {+1,−1} for each node vi ∈ V .

Requirement: Find an edge subgraph G′(V, E′) of G such that each node in G′ has
degree at least ∆ and the energy of G′ is a minimum among all edge subgraphs
satisfying the degree constraint.

An example to illustrate the M-step for Model Class I is shown in Figure 6.
The graph in Figure 6(a) has 6 conflict edges and 4 agreement edges for an
energy value of +2. This graph represents the input to the M-step. Suppose the
value of ∆ is 2. The graph in Figure 6(b) is the output of the M-step. This graph
has 2 conflict edges and 4 agreement edges for an energy value of −2. Note that
each node in the output graph has a degree of at least 2.

We now discuss how the Glbnd problem can be solved efficiently. We assume
that in the graph which is given as input to the M-step, the degree of each node
is at least ∆; if this condition is not satisfied, there is no solution to the problem
under the chosen model class. Our algorithm is based on an efficient reduction of
the Glbnd problem to the following problem, which can be solved in polynomial
time (see [13, 18]).

Minimum Cost Degree-Constrained Subgraph Problem (Mcdcs)

Instance: An undirected graph G(V, E), a cost α(e) for each edge e ∈ E, an
integer ∆ ≤ |V | − 1.

Requirement: Find an edge subgraph G′(V, E′) of G such that each node in G′

has degree at least ∆ and the cost of G′ (i.e., the sum of the costs of the edges
in E′) is a minimum among all edge subgraphs satisfying the degree constraint.

References [13, 18] consider a more general version of the Mcdcs problem,
where both lower and upper bounds on node degrees are permitted, and show
that the general version can also be solved in polynomial time. The simpler
version of the Mcdcs problem, as defined above, is adequate for our purposes.

An algorithm for the Glbnd problem is given in Figure 7. Since the algorithm

Scaling Down EM Using Graph Based Models 13

1. Let G(V, E) be the graph which forms a part of the Glbnd instance. Construct
an instance of the Mcdcs problem as follows.

(a) The undirected graph G1(V1, E1) for the Mcdcs instance is an isomorphic
copy of G.

(b) For each conflict edge e of G, the corresponding edge e1 in G1 is assigned
a cost of 1. For each agreement edge e of G, the corresponding edge e1 in
G1 is assigned a cost of 0.

(c) The lower bound on the degree of each node is set to ∆.

2. Find an optimal solution G′
1(V1, E

′
1) to the Mcdcs instance constructed in

Step 1.

3. Output the graph G′(V, E′), where E′ is the set of edges edges of G that
correspond to the edges of G′

1.

Fig. 7. An Efficient Algorithm for the M-step under Model Class I

for the Mcdcs problem (Step 2) runs in polynomial time, it is clear that the
algorithm in Figure 7 also runs in polynomial time. The following lemma proves
the correctness of the algorithm.

Lemma 5.1. In the subgraph G′(V, E′) output by the algorithm in Figure 7,
each node has a degree of at least ∆. Further, the energy of G′ is the smallest
among all subgraphs satisfying the degree constraint.

Proof: In the graph G(V, E) which was provided as input to the algorithm,
each node has a degree of at least ∆. Therefore, there is a feasible solution to
the Mcdcs problem. Hence, the graph G′ produced by the algorithm for the
Mcdcs problem also satisfies the degree constraint.

To see that G′ has the lowest energy value among all the edge graphs of G
satisfying the degree constraint, we note that Step 2 of the algorithm constructs
an optimal solution to the Mcdcs instance. Since the agreement edges have a
cost of zero and adding edges cannot violate the lower bound on the degrees of
nodes, we may assume that the algorithm for the Mcdcs problem obtained the
solution by deleting conflict edges only. Therefore, if there is an edge subgraph
of G that satisfies the degree constraint and has a lower energy value than G′,
then there would be a lower cost solution for the Mcdcs instance. This is a
contradiction, and the lemma follows.

The following theorem summarizes the main result of this subsection.

Theorem 5.1. For the model class consisting of graphs with a specified lower
bound on the degree of each node, the M-step can be carried out in polynomial
time.

5.2. M-Step Algorithm for Model Class II

Here, we consider Model Class II, where each graph consists of at most r con-
nected components (CCs), for a given integer r. The reader should bear in mind

14 I. Davidson

- -

--

+ +

+ +

-

-

+ +

+ +

-

-

v1 v2

v3
v4

v5 v6

v7v8

v5 v6

v1 v2

v7

v3
v4

v8

(a) (b)

Fig. 8. Example of M-step for Model Class II

that the connected components are pairwise node disjoint. A formal statement
of the problem solved by the M-step for this model class is as follows.

Graph with an Upper Bound on the Number of Connected Compo-
nents (Gubcc)

Instance: An integer r, an undirected graph G(V, E) consisting of at most r CCs,
where each node vi has a label ℓi ∈ {+1,−1}.

Requirement: Find an edge subgraph G′(V, E′) of G such that G′ also consists

of at most r CCs and the energy of G′ is a minimum among all edge subgraphs
with at most r CCs.

An example to illustrate the M-step for Model Class II is shown in Figure 8.
The graph in Figure 8(a) has 4 conflict edges and 6 agreement edges for an
energy value of −2. This graph represents the input to the M-step. Suppose the
value of r is 2. The graph in Figure 8(b), which has 2 connected components, is
the output of the M-step. This graph has 1 conflict edge and 6 agreement edges
for an energy value of −5.

We now discuss how the Gubcc problem can be solved efficiently. As in Sec-
tion 5.1, we assume that the graph which is given as input to the M-step consists
of at most r CCs. If this condition is not satisfied, there is no solution to the
problem under the chosen model class since the approach to minimize energy
involves deletion of edges. The idea behind our polynomial algorithm for the
M-step for this model class is quite simple. We start by deleting all the conflict
edges from the input graph. (This is done because deleting conflict edges reduces
energy.) Let t denote the number of connected components after this deletion
step. If t ≤ r, then we clearly we have a solution with minimum energy value
(which is equal to −Na, where Na is the number of agreement edges). Other-
wise, we must reinsert t − r of the conflict edges so as to reduce the number of
connected components to r. Adding conflict edges to reduce the number of con-
nected components to r can be done in a manner similar to Kruskal’s algorithm
for constructing a minimum spanning tree of a connected graph [8]. The result-
ing graph has the smallest energy value since to reduce the number of connected
components from t to r, at least t−r conflict edges must be reinserted. The steps
of the algorithm are shown in Figure 9. The correctness of the algorithm follows
from the above discussion. From an examination of Figure 9, it can be seen that
the algorithm runs in polynomial time. The following theorem summarizes the
main result of this subsection.

Scaling Down EM Using Graph Based Models 15

1. Let G(V, E) be the graph which forms a part of the Gubcc instance. Delete
all conflict edges of G to form graph G1(V, E1). Let t denote the number of
connected components of G1.

2. if t ≤ r

then Output G1(V, E1) as the solution.

else

(a) Add t − r of the deleted conflict edges to form r components. Let
G′(V, E′) denote the resulting graph.

(b) Output G′ as the solution.

Fig. 9. An Efficient Algorithm for the M-step Under Model Class II

Theorem 5.2. For the model class consisting of graphs with at most r con-
nected components, the M-step can be carried out in polynomial time.

6. Extensions to Multi-valued Problems And Other

Variations

In this section, we begin by sketching how our work can be extended to the case
where node labels are chosen from a set with three or more values. Suppose the
label ℓi for node vi is chosen from the set {1, . . . , m} of m values. We can define
the Hamiltonian and the probability mass function by generalizing Equations (2)
and (3) as follows.

HM (G) = −
∑

{vi,vj}∈E

δ(ℓi, ℓj). (4)

PM (G) =
eHM (G)

∑
G′ eHM (G′)

(5)

where δ(ℓi, ℓj) = +1 if ℓi = ℓj and −1 otherwise. The probability of the graph
is still a function of the number of conflicts (Nc) and agreements (Na) between
edges.

With the above definition of HM (G), the optimization problem associated
with the E-step can be modeled by the multi-way cut problem [23]. Instead
of the two special nodes (s and t) in the binary case, there are m special nodes
s1, . . . , sm with the node si being connected to each node whose label is ℓi. The
goal of the multi-way cut problem is to remove a set of edges of minimum total
cost so that for every pair si and sj of special nodes, there is no path between
si and sj . The multi-way cut problem is NP-complete but there exist efficient
algorithms that produce provably near-optimal solutions. For example, reference
[23] presents an algorithm that produces a cut whose cost is at most twice the
optimal cut for all instances of the problem and reference [4] provide a heuristic
solution.

Previously, the nodes with missing values (V −X) were not connected to any

16 I. Davidson

anchor nodes (i.e. nodes with specific label values). The node’s value would be
determined by the other nodes values in its connected component. However, if we
prefer the node with a missing value to take only one of several values (not any
value) we would then connect it those anchor nodes with a small edge weight.

The M-step algorithms of Section 5 can also be used when the number of
different node labels is three or more since those algorithms rely only on whether
an edge is a conflict edge or an agreement edge.

7. Empirical Results

The EM algorithm has been shown to be useful in a wide variety of settings and
we shall simulate several in this section. Our previous theoretical results have
proven that the E-step and M-step are optimal. It is then left to empirically
validate that the approach works i.e our model classes are useful. Like all ap-
plications of EM determining the best modeling assumptions is a key question
and we do not claim all our model classes are useful for all problems. Instead we
shall use what we believe is the most useful.

We explore several core problems listed below in the context of a sensor
network simulator only since it allows us to simulate a limited hardware platform
with no floating point units. These results are generalizable to other resource
constrained platforms.

– Correcting noisy readings

– Clustering

We present results for our work using the TOSSIM sensor network simulator
and MATLAB.

We begin by creating an artificial sensor network on a uniformly spaced 50×50
grid, with a sensor node at each grid point. Larger grids produce similar results,
but visually presenting the results for these larger grids is difficult.

We shall use model class 1 with ∆ = 8 meaning that each instance should
have at least eight neighbors. Which eight neighbors are chosen is determined
by the algorithm and vary from node to node. This differentiates our work from
the image processing area where a fixed and repeated neighborhood is used (see
Related Work, section 8). for our first application to repair noisy values we use
a simple BOX example (see Figure 10 for the ideal values), we then randomly
removed 15% of all values and then applied our non-parametric EM algorithm
to restore them and find the clusters. The worst results are shown in Figures
11 and 12. We repeated this experiment twenty times and found that on average
only 6% of all missing values (about out 20 out of 375 missing entries) were
restored to their incorrect values for this simple problem.

We then use our model class 2 for the problem of finding clusters in the data
and repairing missing values. For our CIRCLES example (see Figure 13), we
randomly removed 15% of all values and then applied our algorithms to restore
them. As with all clustering problems, determining k is important. In our context
k is set by the model class parameter r which upper bounds k. For values of r to
approximately eight the correct results obtained as given by examples before and
after the restoration data sets in Figures 14 and 15. We found that on average
only 0.4% of all missing values were not restored to their correct values after
twenty experiments. However, if r is set incorrectly, just as if k is set incorrectly
we get less desirable results are shown in Figure 16.

Scaling Down EM Using Graph Based Models 17

0

10

20

30

40

50

0

10

20

30

40

50

01020

Fig. 10. Ideal Uncorrupted Box Data for a 50 × 50 uniformly spaced grid.

Finally, we use model class 1 for the missing value problem shown in Figure
1 with δ set to four. The results are shown in Figure 17.

8. Related Work

Our work is most related to work in computer vision that use Markov Random
Fields (MRF). In computer vision MRFs are used to correct noisy (not missing)
values by performing the inference P (f |O) where f are the true values and O are
the observed values. In reference [4] the authors use st-mincut to perform such an
inference for MAP estimation. Our work differs from theirs in several significant
ways. Firstly, we use a different energy function that does not use a floating
point computation. It turns out that both our objective function and theirs (see
equation 3 in [4]) can be effectively addressed using st-mincut. Secondly, their
algorithm only performs an inference (E-step) step with no M-step. To the best
of our knowledge our work is the first to use st-mincut in the context of an EM
algorithm. Finally, as is typically the case for computer vision, a fixed model
structure is used where each pixel is always connected to its eight neighbors
(when arranged in a grid). However, in our work the neighborhood of a pixel
dynamically changes depending on which model class is used and changes after
each M-step.

18 I. Davidson

0

10

20

30

40

50

0

10

20

30

40

50

01020

Fig. 11. Box Data with Missing Values for a 50 × 50 uniformly spaced grid. The odd-colored
entries indicates a missing value.

9. Conclusions

The EM algorithm is used extensively in data mining to overcome problems with
inherent uncertainty due to missing values or latent variables. However, it cannot
be readily applied in its parametric form on many computing platforms that lack
floating point hardware, have slow processors or have limited battery life.

We explored non-parametric EM using graphs as model spaces. Model classes
correspond to various constraints on the graph topology and we discussed several
that we believe have practical benefits. We derived an E-step for all model classes
for binary data and discussed an extension for multi-valued data. We wish to
fully utilize resources such as time or battery consumption and hence our M-step
for model classes I and II maximized the complete likelihood.

Finally, we showed our algorithms and model classes performs well on several
classical (but simplified) tasks that EM is well known to address.

Scaling Down EM Using Graph Based Models 19

0

10

20

30

40

50

0

10

20

30

40

50

01020

Fig. 12. Recovered Box Data for a 50 × 50 uniformly spaced grid.

0

10

20

30

40

50

0

10

20

30

40

50

01020

Fig. 13. Original Multiple Circles Data for a 50 × 50 uniformly spaced grid.

20 I. Davidson

0

10

20

30

40

50

0

10

20

30

40

50

Fig. 14. Multiple Circles Data with Missing Values for a 50 × 50 uniformly spaced grid. The
odd-colored symbols indicate a missing value.

0

10

20

30

40

50

0

10

20

30

40

50

01020

Fig. 15. Recovered Multiple Circles Data for a 50 × 50 uniformly spaced grid. Clustered and
missing values restored for model class II using r = 6.

Scaling Down EM Using Graph Based Models 21

0

10

20

30

40

50

0

10

20

30

40

50

01020

Fig. 16. Recovered Multiple Circles Data for a 50 × 50 uniformly spaced grid. Clustered and
missing values restored for model class II using r = 20.

Fig. 17. Recovered Cake Image for a 1200x800 pixel image. Missing values restored for model
class I using δ = 4. Compare with Figure 1.

22 I. Davidson

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “Wireless Sensor Networks: A
Survey”, Computer Networks, Vol. 38, 2002.

[2] M. Amini, P. Gallinari, Semi-Supervised Learning with Explicit Misclassification Modeling,
IJCAI’03.

[3] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun, Sonar-Based Mapping with Mobile
Robots Using EM, Proceeding ICML’99.

[4] Y. Boykov, O. Veksler, R. Zabih, Markov Random Fields with Efficient Approximations,
Proceeding of IEEE Computer Vision and Pattern Recognition, 1998, , pp. 648-655

[5] R. Caruna, “A Non-Parametric EM-Style Algorithm for Imputing Missing Values”, AI-
Stats 2001.

[6] B. Cipra, An Introduction to the Ising Model, American Mathematical Monthly, Vol 94
No. 10. 1987.

[7] G. Celeux, G. Govaert, A Classification EM algorithm for Clustering and Two Stochastic
Versions, Computational Statistics and Data Analysis, Volume 14, Issue 3, 1992.

[8] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, Second Edi-
tion, MIT Press and McGraw-Hill, Cambridge, MA, 2001.

[9] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley, 2000.
[10]I. N. Davidson and S. S. Ravi, “Distributed Pre-Processing of Data on Networks of Berkeley

Motes Using Non-Parametric EM”, Workshop on Data Mining in Sensor Networks, co-
located with SIAM DM’05. (Available from: www.cs.albany.edu/~davidson/SIAMWS.pdf)

[11]E. Elnahrawy and B. Nath, “Cleaning and Querying Noisy Sensors”, WSNA’03.
[12]D. Heckerman, “A Tutorial on Learning with Bayesian Networks”, Technical Report MSR-

TR-95-06, Microsoft Research, 1995.
[13]P. Klein (Editor), “Combinatorial Optimization: Lecture Notes”, Computer Science De-

partment, Brown University, 1990.
[14]D. Koller and A. Pfeffer, Learning probabilities for noisy first-order rules, IJCAI97.
[15]M. Meila and D. Heckerman, An Experimental Comparison of Several Clustering and Ini-

tialization Methods. Machine Learning. 42:9-29, 2001
[16]T. Mitchell, Machine Learning, McGraw-Hill, 1997.
[17]A. Moore, Very fast EM-based mixture model clustering using multi-resolution kd-trees,

NIPS99.
[18]L. Lovasz and M. Plummer, Matching Theory, Annals of Discrete Mathematics, Vol 29,

1986.
[19]G. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. John Wiley and

Sons, Inc. New York, 1992.
[20]Schumitzky, A., Non-Parametric EM Algorithms for Estimating Prior Distributions, TR

90-2, Department of Mathematics, University of Southern CA.
[21]M. Stoer and F. Wagner, “A Simple Min-Cut Algorithm”, J. ACM, Vol. 44, No. 4, July

1997.
[22]X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. McLachlan, A. Ng, B.

Liu, P.Yu, Z. Zhou, M. Steinbach, D. Hand and D. Steinberg, Top 10 algorithms in data
mining, Knowledge and Information Systems, Volume 14, Number 1 / January, 2008, pp.
1-37.

[23]V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.

