
Clustering With Constraints: Feasibility Issues and the k-Means Algorithm

Ian Davidson∗ S. S. Ravi†

Abstract

Recent work has looked at extending the k-Means al-
gorithm to incorporate background information in the
form of instance level must-link and cannot-link con-
straints. We introduce two ways of specifying additional
background information in the form of δ and ε con-
straints that operate on all instances but which can be
interpreted as conjunctions or disjunctions of instance
level constraints and hence are easy to implement. We
present complexity results for the feasibility of cluster-
ing under each type of constraint individually and sev-
eral types together. A key finding is that determining
whether there is a feasible solution satisfying all con-
straints is, in general, NP-complete. Thus, an iterative
algorithm such as k-Means should not try to find a fea-
sible partitioning at each iteration. This motivates our
derivation of a new version of the k-Means algorithm
that minimizes the constrained vector quantization er-
ror but at each iteration does not attempt to satisfy
all constraints. Using standard UCI datasets, we find
that using constraints improves accuracy as others have
reported, but we also show that our algorithm reduces
the number of iterations until convergence. Finally, we
illustrate these benefits and our new constraint types
on a complex real world object identification problem
using the infra-red detector on an Aibo robot.

Keywords: k-Means clustering, constraints.

1 Introduction and Motivation

The k-Means clustering algorithm is a ubiquitous tech-
nique in data mining due to its simplicity and ease of
use (see for example, [6, 10, 16]). It is well known that
k-Means converges to a local minimum of the vector
quantization error and hence must be restarted many
times, a computationally very expensive task when deal-
ing with the large data sets typically found in data min-
ing problems.

Recent work has focused on the use of background

∗Department of Computer Science, University at Al-

bany - State University of New York, Albany, NY 12222.
Email: davidson@cs.albany.edu.

†Department of Computer Science, University at Al-

bany - State University of New York, Albany, NY 12222.
Email: ravi@cs.albany.edu.

information in the form of instance level must-link and
cannot-link constraints. A must-link constraint enforces
that two instances must be placed in the same clus-
ter while a cannot-link constraint enforces that two in-
stances must not be placed in the same cluster. We
can divide previous work on clustering under constraints
into two types: 1) Where the constraints help the
algorithm learn a distortion/distance/objective func-
tion [4, 15] and 2) Where the constraints are used
as “hints” to guide the algorithm to a useful solution
[18, 19]. Philosophically, the first type of work makes
the assumption that points surrounding a pair of must-
link/cannot-link points should be close to/far from each
other [15], while the second type just requires that the
two points be in the same/different clusters. Our work
falls into the second category. Recent examples of the
second type of work include ensuring that constraints
are satisfied at each iteration [19] and initializing algo-
rithms so that constraints are satisfied [3]. The results
of this type of work are quite encouraging; in particular,
Wagstaff et al. [18, 19] illustrate that for simple classifi-
cation tasks, k-Means with constraints obtains clusters
with a significantly better purity (when measured on an
extrinsic class label) than when not using constraints.
Furthermore, Basu et al. [5] investigate determining the
most informative set of constraints when the algorithm
has access to an Oracle.

In this paper we carry out a formal analysis of
clustering under constraints. Our work makes several
pragmatic contributions.

• We introduce two new constraint types which act
upon groups of instances. Roughly speaking, the ε-
constraint enforces that each instance x in a cluster
must have another instance y in the same cluster
such that the distance between x and y is at most
ε. We shall see that this can be used to enforce
prior information with respect to how the data
was collected. The δ-constraint enforces that every
instance in a cluster must be at a distance of at least
δ from every instance in every other cluster. We can
use this type of constraint to specify background
information on the minimum distance between the
clusters/objects we hope to discover.

• We show that these two new constraints can be eas-

ily represented as a disjunction and conjunction of
must-link constraints, thus making their implemen-
tation easy.

• We present complexity results for the feasibility
problem under each of the constraints individually
and in combination. The polynomial algorithms
developed in this context can be used for initializing
the k-Means algorithm. We show that in many
situations, the feasibility problem (i.e., determining
whether there there is a solution that satisfies all
the constraints) is NP-complete. Therefore, it is
not advisable to attempt to find a solution that
satisfies all the constraints at each iteration of a
clustering algorithm.

• To overcome this difficulty, we illustrate that the
k-Means clustering algorithm can be viewed as a
two step algorithm with one step being to take the
derivative of its error function and solving for the
new centroid positions. With that in mind, we pro-
pose a new differentiable objective function that in-
corporates constraint violations and rederive a new
constrained k-Means algorithm. This algorithm,
like the original k-Means algorithm, is designed to
monotonically decrease its error function.

We empirically illustrate our algorithm’s perfor-
mance on several standard UCI data sets and show that
adding must-link and cannot-link constraints not only
helps accuracy but can help improve convergence. Fi-
nally, we illustrate the use of δ and ε constraints in clus-
tering distances obtained by an Aibo robot’s infra-red
detector for the purpose of object detection for path
planning. For example, we can specify the width of the
Aibo robot as δ; that is, we are only interested in clus-
ters/objects that are more than δ apart, since the robot
can only physically move between such objects.

The outline of the paper is as follows. We begin
by considering the feasibility of clustering under all
four types constraints individually. The next section
builds upon the feasibility analysis for combinations of
constraints. A summary of the results for feasibility can
be found in Table 1. We then discuss the derivation of
our constrained k-Means algorithm. Finally, we present
our empirical results.

2 Definitions of Constraints and the Feasibility
Problem

Throughout this paper, we use the terms “instances”
and “points” interchangeably. Let S = {s1, s2, . . . , sn}
denote the given set of points which must be partitioned
into K clusters, denoted by S1, . . ., SK . For any pair
of points si and sj in S, the distance between them is

denoted by d(si , sj). The distance function is assumed
to be symmetric so that d(si , sj) = d(sj , si). We
consider the problem of clustering the set S under the
following types of constraints.

(a) Must-Link Constraints: Each must-link con-
straint involves a pair of points si and sj (i 6= j). In
any feasible clustering, points si and sj must be in the
same cluster.

(b) Cannot-Link Constraints: Each cannot-link
constraint also involves a pair of distinct points si and
sj . In any feasible clustering, points si and sj must
not be in the same cluster.

(c) δ-Constraint (or Minimum Separation Con-
straint): This constraint specifies a value δ > 0. In any
solution satisfying this constraint, the distance between
any pair of points which are in two different clusters
must be at least δ. More formally, for any pair of clus-
ters Si and Sj (i 6= j), and any pair of points sp and
sq such that sp ∈ Si and sq ∈ Sj , d(sp, sq) ≥ δ. Infor-
mally, this constraint requires that each pair of clusters
must be well separated. As will be seen in Section 3.4,
a δ-constraint can be represented by a conjunction of
instance level must-link constraints.

(d) ε-Constraint: This constraint specifies a value
ε > 0 and the feasibility requirement is the following:
for any cluster Si containing two or more points and
for any point sp ∈ Si , there must be another point
sq ∈ Si such that d(sp, sq) ≤ ε. Informally, this
constraint requires that in any cluster Sj containing
two more more points, each point in Sj must have
another point within a distance of at most ε. As
will be seen in Section 3.5, an ε-constraint can be
represented by a disjunction of instance level must-
link constraints, with the proviso that when none of
the must-link constraints is satisfied, the point is in a
singleton cluster by itself. The ε-constraint is similar
in principle to the ε+minpts criterion used in the DB-
SCAN algorithm [11]. However, in our work, the aim
is to minimize the constrained vector quantization error
subject to the ε-constraint, while in DB-SCAN, their
criterion is central to defining a cluster and an outlier.

Although the constraints discussed above provide a
useful way to specify background information to a clus-
tering algorithm, it is natural to ask whether there is a
feasible clustering that satisfies all the given constraints.
The complexity of satisfying the constraints will deter-
mine how to incorporate them into existing clustering
algorithms.

The feasibility problem has been studied for other
types of constraints or measures of quality [14]. For ex-
ample, the clustering problem where the quality is mea-
sured by the maximum cluster diameter can be trans-

formed in an obvious way into a constrained clustering
problem. Feasibility problems for such constraints have
received a lot of attention in the literature (see for ex-
ample [12, 13, 14]).

Typical specifications of clustering problems include
an integer parameter K that gives the number of re-
quired clusters. We will consider a slightly more gen-
eral version, where the problem specification includes a
lower bound K` and an upper bound Ku on the num-
ber of clusters rather than the exact number K. With-
out upper and lower bounds, some feasibility problems
may admit trivial solutions. For instance, if we con-
sider the feasibility problem for a collection of must-
link constraints (or for a δ-constraint) and there is no
lower bound on the number of clusters, a trivial feasi-
ble solution is obtained by having all the points in a
single cluster. Likewise, when there is no upper bound
on the number of clusters for the feasibility problem un-
der cannot-link constraints (or an ε-constraint), a trivial
feasible solution is to make each point into a separate
cluster. Obviously, K` and Ku must satisfy the con-
dition 1 ≤ K` ≤ Ku ≤ n, where n denotes the total
number of points.

For the remainder of this paper, a feasible clustering
is one that satisfies all the given constraints and the
upper and lower bounds on the number of clusters. For
problems involving must-link or cannot-link constraints,
it is assumed that the collection of constraints C =
{C1, C2, . . . , Cm} containing the m constraints is given,
where each constraint Cj = {sj1 , sj2} specifies a pair of
points. For problems involving ε and δ constraints, it
is assumed that the values of ε and δ are given. For
convenience, the feasibility problems under constraints
(a) through (d) defined above will be referred to as
ML-feasibility, CL-feasibility, δ-feasibility and ε-
feasibility respectively.

3 Complexity of Feasibility Problems

3.1 Overview In this section, we investigate the
complexity of the feasibility problems by considering
each type of constraint separately. In Section 4, we
examine the complexity of feasibility problems for com-
binations of constraints. Our polynomial algorithms for
feasibility problems do not require distances to satisfy
the triangle inequality. Thus, they can also be used
with nonmetric distances. On the other hand, the NP-
completeness results show that the corresponding feasi-
bility problems remain computationally intractable even
when the set to be clustered consists of points in <2.

The feasibility algorithms presented in Sections 3
and 4 focus on determining whether there is a partition
that satisfies all the given constraints; they do not at-
tempt to optimize any objective. Thus, these algorithms

may produce solutions with singleton clusters when the
constraints under consideration permit such clusters.

3.2 Feasibility Under Must-Link Constraints
Klein et al. [15] showed that the ML-feasibility problem
can be solved in polynomial time. They considered a
more general version of the problem, where the goal is to
obtain a new distance function that satisfies the triangle
inequality when there is a feasible solution. In our
definition of the ML-feasibility problem, no distances
are involved. Therefore, a straightforward algorithm
whose running time is linear in the number of points
and constraints can be developed as discussed below.

As is well known, must-link constraints are transi-
tive; that is, must-link constraints {si , sj} and {sj , sk}
imply the must-link constraint {si , sk}. Thus, the two
constraints can be combined into a single must-link con-
straint, namely {si , sj , sk}. Thus, a given collection
C of must-link constraints can be transformed into an
equivalent collection M = {M1,M2, . . . ,Mr} of con-
straints, by computing the transitive closure of C. The
sets in M are pairwise disjoint and have the following
interpretation: for each set Mi (1 ≤ i ≤ r), the points
in Mi must all be in the same cluster in any feasible
solution. For feasibility purposes, points which are not
involved in any must-link constraint can be partitioned
into clusters in an arbitrary manner. These facts al-
low us to obtain a straightforward algorithm for the
ML-feasibility problem. The steps of the algorithm are
shown in Figure 1. Whenever a feasible solution exists,
the algorithm outputs a collection of K` clusters. The
only situation in which the algorithm reports infeasibil-
ity is when the lower bound on the number of clusters
is too high.

The transitive closure computation (Step 1 in Fig-
ure 1) in the algorithm can be carried out as follows.
Construct an undirected graph G, with one node for
each point appearing in the constraint sets C, and an
edge between two nodes if the corresponding points ap-
pear together in a must-link constraint. Then, the con-
nected components of G give the sets in the transitive
closure. It can be seen that the graph G has n nodes
and O(m) edges. Therefore, its connected components
can be found in O(n+m) time [8]. The remaining steps
of the algorithm can be carried out in O(n) time. The
following theorem summarizes the above discussion.

Theorem 3.1. Given a set of n points and m must-link
constraints, the ML-feasibility problem can be solved in
O(n + m) time.

3.3 Feasibility Under Cannot-Link Constraints
Klein et al. [15] mention that the CL-feasibility prob-
lem is NP-complete but omit the proof. Since we

Note: Whenever a feasible solution exists, the following
algorithm outputs a collection of K` clusters satisfying
all the must-link constraints.

1. Compute the transitive closure of the constraints in
C. Let this computation result in r sets of points,
denoted by M1, M2, . . ., Mr.

2. Let S′ = S −
⋃r

i=1 Mi. (S′ denotes the subset
of points that are not involved in any must-link
constraint.)

3. if r ≥ K` then

(a) Let A = (
⋃r

i=K`
Mi) ∪ S′.

(b) Output M1, . . ., MK`−1, A.

else

if |S′| < K` − r then

Output “There is no solution.”

else

(a) Let t = K` − r. Partition S′ into t
clusters A1, . . ., At arbitrarily.

(b) Output M1, . . ., Mr, A1, . . ., At.

Figure 1: Algorithm for the ML-Feasibility Problem

wish to draw some additional conclusions from the
proof, we have included it in the appendix. The proof
uses a straightforward reduction from the Graph K-
Colorability problem (K-Color).

It is known that the K-Color problem is NP-
complete even for graphs in which the number of edges is
linear in the number of nodes [12]. This fact in conjunc-
tion with the proof in the appendix implies that the CL-
feasibility problem is computationally intractable even
when the number of constraints is linear in the number
of points. Further, the K-Color problem is known to
be NP-complete for every fixed value of K ≥ 3. From
this fact, it follows that the CL-feasibility problem is
also NP-complete when the lower bound on the num-
ber of clusters is 1 and the upper bound is fixed at any
value ≥ 3.

While NP-completeness result indicates that the
CL-feasibility problem is at least as hard as the K-
Color problem, it can also be shown that the feasibility
problem is no harder than the K-Color problem as
follows. For each point si , create a graph node vi ,
and for each cannot-link constraint {si , sj}, create the
undirected edge {vi , vj}. It is easy to verify that the

1. for each point si do

(a) Determine the set Xi ⊆ S − {si} of points
such that for each point xj ∈ Xi , d(si , xj) <
δ.

(b) For each point xj ∈ Xi , create the must-link
constraint {si , xj}.

2. Let C denote the set of all the must-link constraints
created in Step 1. Use the algorithm for the ML-
feasibility problem (Figure 1) with point set S,
constraint set C and the values K` and Ku.

Figure 2: Algorithm for the δ-Feasibility Problem

resulting graph is K-colorable iff there is a solution to
the feasibility problem with at least 1 and at most K
clusters. This reduction to the coloring problem points
out that in practice, one can use known heuristics for
graph coloring in choosing the number of clusters.

Although the coloring problem is known to be hard
to approximate in the worst-case, heuristics that work
well in practice are known (see for example [1, 7]). The
reduction also shows that when the upper bound on the
number of clusters is two, the CL-feasibility problem
can be solved in polynomial time. This is because the
problem of determining whether an undirected graph
can be colored using at most two colors can be solved
efficiently [8].

3.4 Feasibility Under δ-Constraint In this sec-
tion, we show that the δ-feasibility problem can be
solved in polynomial time. The basic idea is simple:
in any feasible solution, every pair of points si and sj

for which d(si , sj) < δ, must be in the same cluster.
Thus, given the value of δ, we can create a collection
of appropriate must-link constraints and use the algo-
rithm for the ML-feasibility problem. This shows that a
δ-constraint can be replaced by a conjunction of must-
link constraints. The steps of the resulting algorithm
are shown in Figure 2.

The running time of the algorithm for δ-feasibility is
dominated by the time needed to complete Step 1, that
is, the time to compute the set of must-link constraints.
Clearly, this step can be carried out in O(n2) time, and
the number of must-link constraints generated is also
O(n2). Thus, the overall running time of the algorithm
is O(n2). The following theorem summarizes the above
discussion.

Theorem 3.2. For any δ > 0, the feasibility problem

under the δ-constraint can be solved in O(n2) time,
where n is the number of points to be clustered.

3.5 Feasibility Under ε-Constraint Let the set S
of points and the value ε > 0 be given. For any point
sp ∈ S, the set Γp of ε-neighbors is given by

Γp = {sq : sq ∈ S − {sp} and d(sp, sq) ≤ ε}.

Note that a point is not an ε-neighbor of itself. Two
distinct points sp and sq are are ε-neighbors of each
other if d(sp, sq) ≤ ε. The ε-constraint requires that
in any cluster containing two or more points, each
point in the cluster must have an ε-neighbor within
the same cluster. This observation points out that an
ε-constraint corresponds to a disjunction of must-link
constraints. For example, if {si1 , . . . , sir} denote the ε-
neighbors of a point si, then satisfying the ε-constraint
for point si means that either one or more of the must-
link constraints {si, si1}, . . ., {si, sir

} are satisfied or the
point si is in a singleton cluster by itself. In particular,
any point in S which does not have an ε-neighbor must
form a singleton cluster.

So, to determine feasibility under an ε-constraint for
the set of points S, we first find the subset S1 containing
each point which does not have an ε-neighbor. Let
|S1| = t, and let C1, C2, . . ., Ct denote the singleton
clusters formed from S1. To cluster the points in
S2 = S−S1 (i.e., the set of points each of which has an ε-
neighbor), it is convenient to use an auxiliary undirected
graph defined below.

Definition 3.1. Let a set of points S and a value ε > 0
be given. Let Q ⊆ S be a set of points such that for each
point in Q, there is an ε-neighbor in Q. The auxiliary
graph G(V,E) corresponding to Q is constructed as
follows.

(a) The node set V has one node for each point in Q.

(b) For any two nodes vp and vq in V , the edge {vp, vq}
is in E if the points in Q corresponding to vp and
vq are ε-neighbors.

Let G(V,E) denote the auxiliary graph corresponding
to S2. Note that each connected component (CC) of G
has at least two nodes. Thus, the CCs of G provide a
way of clustering the points in S2. Let Xi , 1 ≤ i ≤ r,
denote the cluster formed from the ith CC of G. The t
singleton clusters together with these r clusters would
form a feasible solution, provided the upper and lower
bounds on the number of clusters are satisfied. So, we
focus on satisfying these bounds.

If S2 = ∅, then the minimum number of clusters is
t = |S1|, since each point in S1 must be in a separate

singleton cluster. Otherwise, we need at least one
additional cluster for the points in S2; that is, the
minimum number of clusters in that case is t+1. Thus,
the minimum number of clusters, denoted by N∗, is
given by N∗ = t + min{1, r}. If Ku < N∗, there is
no feasible solution. We may therefore assume that
Ku ≥ N∗.

As mentioned above, there is a solution with t + r
clusters. If t+r ≥ Ku , then we can get Ku clusters by
simply merging (if necessary) an appropriate number of
clusters from the collection X1, X2, . . ., Xr into a single
cluster. Since each CC of G has at least two points, this
merging step will not violate the ε-constraint.

The only remaining possibility is that the value t+r
is smaller than the lower bound K`. In this case, we can
increase the number of clusters to K` by splitting some
of the clusters X1, X2, . . ., Xr to form more clusters.
One simple way to increase the number of clusters by
one is to create a new singleton cluster by taking one
point away from some cluster Xi with two or more
points. To facilitate this, we construct a spanning tree
for each CC of G. The advantage of having trees is that
we can remove a leaf node from a tree and make the
point corresponding to that node into a new singleton
cluster. Since each tree has at least two leaves and
removing a leaf will not disconnect a tree, this method
will increase the number of clusters by exactly one at
each step. Thus, by repeating the step an appropriate
number of times, the number of clusters can be made
equal to K`.

The above discussion leads to the feasibility algo-
rithm shown in Figure 3. It can be seen that the running
time of the algorithm is dominated by the time needed
for Steps 1 and 2. Step 1 can be implemented to run in
O(n2) time by finding the ε-neighbor set for each point.
Since the number of ε-neighbors for each point in S2 is
at most n − 1, the construction of the auxiliary graph
and finding its CCs (Step 2) can also be done in O(n2)
time. So, the overall running time of the algorithm is
O(n2). The following theorem summarizes the above
discussion.

Theorem 3.3. For any ε > 0, the feasibility problem
under the ε-constraint can be solved in O(n2) time,
where n is the number of points to be clustered.

4 Feasibility Under Combinations of
Constraints

4.1 Overview In this section, we consider the feasi-
bility problem under combinations of constraints. Since
the CL-feasibility problem is NP-hard, the feasibility
problem for any combination of constraints involving
cannot-link constraints is, in general, computationally

1. Find the set S1 ⊆ S such that no point in S1 has
an ε-neighbor. Let t = |S1| and S2 = S − S1.

2. Construct the auxiliary graph G(V,E) for S2 (see
Definition 3.1). Let G have r connected compo-
nents (CCs) denoted by G1, G2, . . ., Gr.

3. Let N∗ = t + min {1, r}. (Note: To satisfy the
ε-constraint, at least N∗ clusters must be used.)

4. if N∗ > Ku then Output “No feasible solution”
and stop.

5. Let C1, C2, . . ., Ct denote the singleton clusters
corresponding to points in S1. Let X1, X2, . . ., Xr

denote the clusters corresponding to the CCs of G.

6. if t + r ≥ Ku

then /* We may have too many clusters. */

(a) Merge clusters XKu−t, XKu−t+1, . . ., Xr

into a single new cluster XKu−t.
(b) Output the Ku clusters C1, C2, . . ., Ct,

X1, X2, . . ., XKu−t.

else /* We have too few clusters. */

(a) Let N = t + r. Construct spanning trees
T1, T2, . . ., Tr corresponding to the CCs
of G.

(b) while (N < K`) do
(i) Find a tree Ti with at least two nodes.

If no such tree exists, output “No
feasible solution” and stop.

(ii) Let v be a leaf in tree Ti. Delete v
from Ti.

(iii) Delete the point corresponding to v
from cluster Xi and form a new sin-
gleton cluster XN+1 containing that
point.

(iv) N = N + 1.
(c) Output the K` clusters C1, C2, . . ., Ct,

X1, X2, . . ., XK`−t.

Figure 3: Algorithm for the ε-Feasibility Problem

intractable. So, we need to consider only the combina-
tions of must-link, δ and ε constraints. We show that
the feasibility problem remains efficiently solvable when
both a must-link constraint and a δ constraint are con-
sidered together as well as when δ and ε constraints
are considered together. When must-link constraints
are considered together with an ε constraint, we show
that the feasibility problem is NP-complete. This result
points out that when must-link, δ and ε constraints are
all considered together, the resulting feasibility problem
is also NP-complete in general.

4.2 Combination of Must-Link and δ Con-
straints We begin by considering the combination of
must-link constraints and a δ constraint. As mentioned
in Section 3.4, the effect of the δ-constraint is to con-
tribute a collection of must-link constraints. Thus, we
can merge these must-link constraints with the given
must-link constraints, and then ignore the δ-constraint.
The resulting feasibility problem involves only must-
link constraints. Hence, we can use the algorithm from
Section 3.2 to solve the feasibility problem in polyno-
mial time. For a set of n points, the δ constraint may
contribute at most O(n2) must-link constraints. Fur-
ther, since each given must-link constraint involves two
points, we may assume that the number of given must-
link constraints is also O(n2). Thus, the total number
of must-link constraints due to the combination is also
O(n2). Thus, the following result is a direct consequence
of Theorem 3.1.

Theorem 4.1. Given a set of n points, a value δ > 0
and a collection C of must-link constraints, the feasi-
bility problem for the combination of must-link and δ
constraints can be solved in O(n2) time.

4.3 Combination of Must-Link and ε Con-
straints Here, we show that the feasibility problem
for the combination of must-link and ε constraints is
NP-complete. To prove this result, we use a reduction
from the following problem which is known to be NP-
complete [9].
Planar Exact Cover by 3-Sets (PX3C)

Instance: A set X = {x1, x2, . . . , xn}, where n =
3q for some positive integer q and a collection T =
{T1, T2, . . . , Tm} of subsets of X such that |Ti| = 3, 1 ≤
i ≤ m. Each element xi ∈ X appears in at most three
sets in T . Further, the bipartite graph G(V1, V2, E),
where V1 and V2 are in one-to-one correspondence
with the elements of X and the 3-element sets in T
respectively, and an edge {u, v} ∈ E iff the element
corresponding to u appears in the set corresponding to
v, is planar.

Question: Does T contain a subcollection T ′ =
{Ti1 , Ti2 , . . . , Tiq

} with q sets such that the union of the
sets in T ′ is equal to X?

For reasons of space, we have included only a sketch
of this NP-completeness proof.

Theorem 4.2. The feasibility problem under the com-
bination of must-link and ε constraints is NP-complete.

Proof sketch: It is easy to verify the membership of
the problem in NP. To prove NP-hardness, we use a
reduction from PX3C. Consider the planar (bipartite)
graph G associated with the PX3C problem instance.
From the specification of the problem, it follows that
each node of G has a degree of at most three. Every
planar graph with N nodes and maximum node degree
three can be embedded on an orthogonal N × 2N grid
such that the nodes of the graph are grid points, each
edge of the graph is a path along the grid, and no
two edges share a grid point except for the grid points
corresponding to the graph vertices. Moreover, such an
embedding can be constructed in polynomial time [17].
The points and constraints for the feasibility problem
are created from this embedding.

Using suitable scaling, assume that the each grid
edge is of length 1. Note that each edge e of G joins a
set node to an element node. Consider the path along
the grid for each edge of G. Introduce a new point in
the middle of each grid edge in the path. Thus, for
each edge e of G, this provides the set Se of points
in the grid path corresponding to e, including the new
middle point for each grid edge. The set of points
in the feasibility instance is the union of the sets Se,
e ∈ E. Let S′

e be obtained from Se by deleting the
point corresponding to the element node of the edge
e. For each edge e, we introduce a must-link constraint
involving all the points in S′

e. We also introduce a must-
link constraint involving all the points corresponding to
the elements nodes of G. We choose the value of ε to
be 1/2. The lower bound on the number of clusters is
set to m − n/3 + 1 and the upper bound is set to m.
It can be shown that there is a solution to the PX3C
problem instance if and only if there is a solution to the
feasibility problem.

4.4 Combination of δ and ε Constraints In this
section, we show that the feasibility problem for the
combination of δ and ε constraints can be solved in
polynomial time. It is convenient to consider this
problem under two cases, namely δ ≤ ε and δ > ε.
For reasons of space, we will discuss the algorithm for
the first case and mention the main idea for the second
case.

For the case when δ ≤ ε, our algorithm is based

on the following simple observation: Any pair of points
which are separated by a distance less than δ are also
ε-neighbors of each other. This observation allows us
to reduce the feasibility problem for the combination
to one involving only the ε constraint. This is done
as follows. Construct the auxiliary undirected graph
G(V,E), where V is in one-to-one correspondence with
the set of points and an edge {x, y} ∈ E iff the
distance between the points corresponding to nodes
x and y is less than δ. Suppose C1, C2, . . ., Cr

denote the connected components (CCs) of G. Consider
any CC, say Ci, with two or more nodes. By the
above observation, the ε-constraint is satisfied for all the
points corresponding to the nodes in Ci. Thus, we can
“collapse” each such set of points into a single “super
point”. Let S′ = {P1, . . . , Pr} denote the new set of
points, where Pi is a super point if the corresponding
CC Ci has two or more nodes, and Pi is a single point
otherwise. Given the distance function d for the original
set of points S, we define a new distance function d′ for
S′ as follows:

d′(Pi, Pj) = min{d(sp, sq) : sp ∈ Pi, sq ∈ Pj}.

With this new distance function, we can ignore the
δ constraint. We need only check whether there is a
feasible clustering of the set S′ under the ε-constraint
using the new distance function d′. Thus, we obtain a
polynomial time algorithm for the combination of ε and
δ constraints when δ ≤ ε. It is not hard to see that the
resulting algorithm runs in O(n2) time.

For the case when δ > ε, any pair of ε-neighbors
must be in the same cluster. Using this idea, it is pos-
sible to construct a collection of must-link constraints
corresponding to the given δ and ε constraints, and solve
the feasibility problem in O(n2) time.

The following theorem summarizes the above dis-
cussion.

Theorem 4.3. Given a set of n points and values δ > 0
and ε > 0, the feasibility problem for the combination of
δ and ε constraints can be solved in O(n2) time.

The complexity results for various feasibility prob-
lems are summarized in Table 1. For each type of con-
straint, the table indicates whether the feasibility prob-
lem is in P (i.e., efficiently solvable) or NP-complete.
Results for which no references are cited are from this
paper.

5 A Derivation of a Constrained k-Means
Algorithm

In this section we derive the k-Means algorithm and
then derive a new constrained version of the algorithm

Constraint Complexity
Must-Link P [15]

Cannot-Link NP-Complete [15]
δ-constraint P
ε-constraint P

Must-Link and δ P
Must-Link and ε NP-complete

δ and ε P

Table 1: Results for Feasibility Problems

from first principles. Let Cj be the centroid of the jth

cluster and Qj be the set of instances that are closest
to the jth cluster.

It is well known that the error function of the k-
Means problem is the vector quantization error (also
referred to as the distortion) given by the following
equations.

VQE =
k∑

j=1

VQE j(5.1)

VQE j =
1
2

∑
si∈Qj

(Cj − si)2(5.2)

The k-Means algorithm is an iterative algorithm
which in every step attempts to further minimize the
distortion. Given a set of cluster centroids, the algo-
rithm assigns instances to their nearest centroid which
of course minimizes the distortion. This is step 1 of the
algorithm. Step 2 is to recalculate the cluster centroids
so as to minimize the distortion. This can be achieved
by taking the first order derivative of the error (Equa-
tion (5.2)) with respect to the jth centroid and setting
it to zero. A solution to the resulting equation gives
us the k-Means centroid update rule as shown in Equa-
tion (5.3).

d(VQE j)
d(Cj)

=
∑

si∈Qj

(Cj − si) = 0(5.3)

Cj =
∑

si∈Qj

si/|Qj |(5.4)

Recall that Qj is the set of points closest to the centroid
of the jth cluster.

Iterating through these two steps therefore mono-
tonically decreases the distortion. However, the algo-
rithm is prone to getting stuck in local minima. Never-
theless, good pragmatic results can be obtained, hence

the algorithm’s popularity. We acknowledge that a more
complicated analysis of the algorithm exists, namely
an interpretation of the algorithm as analogous to the
Newton-Raphson algorithm [2]. Our derivation of a new
constrained version of k-Means is not inconsistent with
these other explanations.

The key step in deriving a constrained version of
k-Means is to create a new differentiable error function
which we call the constrained vector quantization error.
Consider a a collection of r must-link constraints and s
cannot-link constraints. We can represent the instances
affected by these constraints by two functions g(i)
and g′(i). These functions return the cluster index
(i.e., a value in the range 1 through k) of the closest
cluster to the 1st and 2nd instances governed by the ith

constraint. For clarity of notation, we assume that the
instance associated with the function g′(i) violates the
constraint if at all. The new error function is shown in
Equation (5.5).

CVQE j =
1
2

∑
si∈Qj

Tj,1 +(5.5)

1
2

s+r∑
l=1,g(l)=j

(Tj,2 × Tj,3)

where

Tj,1 = (Cj − si)2

Tj,2 =
[
(Cj − Cg′(l))2 ¬∆(g′(l), g(l))

]ml

Tj,3 =
[
(Cj − Ch(g′(l)))2 ∆(g(l), g′(l))

]1−ml
.

Here h(i) returns the index of the cluster (other than i)
whose centroid is closest to cluster i’s centroid and ∆
is the Kronecker Delta Function defined by ∆(x, y) = 1
if x = y and 0 otherwise. We use ¬∆ to denote the
negation of the Delta function.

The first part of the new error function is the
regular distortion. The remaining terms are the errors
associated with the must-link (ml=1) and cannot-link
(ml=0) constraints. In future work we intend to allow
the parameter ml to take any value in [0, 1] so that
we can allow for a continuum between must-link and
cannot-link constraints. We see that if a must-link
constraint is violated then the cost is equal to the
distance between the cluster centroids containing the
two instances that should have been in the same cluster.
Similarly, if a cannot-link constraint is violated the
cost is the distance between the cluster centroid both
instances are in and the nearest cluster centroid to one
of the instances. Note that both violation costs are in
units of distance, as is the regular distortion.

The first step of the constrained k-Means algorithm
must minimize the new constrained vector quantization
error. This is achieved by assigning instances so as to
minimize the new error term. For instances that are not
part of constraints, this involves as before, performing
a nearest cluster centroid calculation. For pairs of
instances in a constraint, for each possible combination
of cluster assignments, the CVQE is calculated and the
instances are assigned to the clusters that minimally
increases the CVQE .

The second step is to update the cluster centroids
so as to minimize the constrained vector quantization
error. To achieve this we take the first order derivative
of the error, set to zero, and solve. By setting the
appropriate values of ml we can derive the update
rules (Equation (5.6)) for the must-link and cannot-link
constraint violations. The resulting equations are shown
below.

d(CV QEj)
d(Cj)

=
∑

si∈Qj

(Cj − si) +

s∑
l=1,g(l)=j,∆(g(l),g′(l))=0

(Cj − Cg′(l)) +

s+r∑
l=s+1,g(l)=j,∆(g(l),g′(l))=1

(Cj − Ch(g′(l)))

= 0

Solving for Cj , we get

Cj = Yj/Zj(5.6)

where

Yj =
∑

si∈Qj

si +
s∑

l=1,g(l)=j,∆(g(l),g′(l))=0

Cg′(l) +

s+r∑
l=s+1,g(l)=j,∆(g(l),g′(l))=1

Ch(g′(l))

and

Zj = |Qj |+
s∑

g(l)=j,l=1

(1−∆(g(l), g′(l))) +

s+r∑
g(l)=j,l=s+1

∆(g(l), g′(l)))

The intuitive interpretation of the centroid update
rule is that if a must-link constraint is violated, the
cluster centroid is moved towards the other cluster con-
taining the other point. Similarly, the interpretation of

the update rule for a cannot-link constraint violation
is that cluster centroid containing both constrained in-
stances should be moved to the nearest cluster centroid
so that one of the instances eventually gets assigned to
it, thereby satisfying the constraint.

6 Experiments with Minimization of the
Constrained Vector Quantization Error

In this section we compare the usefulness of our algo-
rithm on three standard UCI data sets. We report the
average over 100 random restarts (initial assignments of
instances). As others have reported [19] for k=2 the ad-
dition of constraints improves the purity of the clusters
with respect to an extrinsic binary class not given to
the clustering algorithm. We observed similar behavior
in our experiments. We are particularly interested in
using our algorithm for more traditional unsupervised
learning where k > 2. To this end we compare regular k-
Means against constrained k-Means with respect to the
number of iterations until convergence and the number
of constraints violated. For the PIMA data set (Fig-
ure 4) which contains two extrinsic classes, we created
a random combination of 100 must-link and 100 cannot-
link constraints between the same and different classes
respectively. Our results show that our algorithm con-
verged on average in 25% fewer iterations while satisfy-
ing the vast majority of constraints.

Similar results were obtained for the BreastCancer
data sets (Figure 6) where 25 must-link and 25 cannot-
link constraints were used and Iris (Figure 8) where 13
must-link and 12 cannot-link constraints were used.

7 Experiments with the Sony Aibo Robot

In this section we describe an example with the Sony
Aibo robot to illustrate the use of our newly proposed
δ and ε constraints.

The Sony Aibo robot is effectively a walking com-
puter with sensing devices such as a camera, microphone
and an infra-red distance detector. The on-board pro-
cessor has limited processing capability. The infra-red
distance detector is connected to the end of the head
and can be moved around to build a distance map of a
scene. Consider the scene (taken from a position further
back than the Aibo was for clarity) shown in Figure 5.
We wish to cluster the distance information from the
infra-red sensor to form objects/clusters (spatially ad-
jacent points at a similar distance) which represent solid
objects that must be navigated around.

Unconstrained clustering of this data with k=9
yields the set of significant (large) objects shown in
Figure 7.

However, this result does not make use of important
background information. Firstly, groups of clusters

Figure 4: Performance of regular and constrained k-
Means on the UCI PIMA dataset

Figure 5: An image of the scene to navigate

Figure 6: Performance of regular and constrained k-
Means on the UCI Breast Cancer dataset

Figure 7: Unconstrained clustering of the distance map
using k=9. The approximate locations of significant
(large) clusters are shown by the ellipses.

Figure 8: Performance of regular and constrained k-
Means on the UCI Iris dataset

(such as the people) that are separated by a distance
less than one foot can effectively be treated as one
big cluster since the Aibo robot cannot easily walk
through a gap smaller than one foot. Secondly, often
one contiguous region is split into multiple objects due
to errors in the infra-red sensor. These errors are due to
poor reception of the incoming signal or the inability to
reflect the outgoing signal which occurs in the wooden
floor region of the scene. These errors are common in
the inexpensive sensor on the Aibo robot.

Since we know the accuracy of the Aibo head
movement we can determine the distance between the
furthest (about three feet) adjacent readings which
determines a lower bound for ε (namely, 3 × tan 1◦) so
as to ensure a feasible solution. However, if we believe
that it is likely that one but unlikely that two incorrect
adjacent mis-readings occur, then we can set ε to be
twice this lower bound to overcome noisy observations.

Using these values for our constraints we can cluster
the data under our background information and obtain
the clustering results shown in Figure 9. We see
that the clustering result is now more useful for our
intended purpose. The Aibo can now move towards the
area/cluster that represents an open area.

Figure 9: Constrained clustering of the distance map
using k=9. The approximate locations of significant
(large) clusters are shown by the ellipses.

8 Conclusion and Future Work

Clustering with background prior knowledge offers
much promise with contributions using must-link and
cannot-link instance level constraints having already
been published. We introduced two additional con-
straints: ε and δ. We studied the computational com-
plexity of finding a feasible solution for these four con-
straint types individually and together. Our results
show that in many situations, finding a feasible solu-
tion under a combination of constraints is NP-complete.
Thus, an iterative algorithm should not try to find a fea-
sible solution in each iteration.

We derived from first principles a constrained ver-
sion of the k-Means algorithm that attempts to mini-
mize the proposed constrained vector quantization er-
ror. We find that the use of constraints with our algo-
rithm results in faster convergence and the satisfaction
of a vast majority of constraints. When constraints are
not satisfied it is because it is less costly to violate the
constraint than to satisfy it by assigning two quite dif-
ferent (i.e. far apart in Euclidean space) instances to the
same cluster in the case of must-link constraints. Fu-
ture work will explore modifying hierarchical clustering
algorithms to efficiently incorporate constraints.

Finally, we showed the benefit of our two newly pro-
posed constraints in a simple infra-red distance cluster-
ing problem. The δ constraint allows us to specify the
minimum distance between clusters and hence can en-
code prior knowledge regarding the spatial domain. The
ε constraint allows us to specify background information
with regard to sensor error and data collection.

References

[1] A. Hertz and D. de Werra, “Using Tabu Search Tech-

niques for Graph Coloring”, Computing, Vol. 39, 1987,
pp. 345–351.

[2] L. Bottou and Y. Bengio, “Convergence Properties
of the K-Means Algorithms”, Advances in Neural
Information Processing Systems, Vol. 7, Edited by G.
Tesauro and D. Touretzky and T. Leen, MIT Press,
Cambridge, MA, 1995, pp. 585–592.

[3] S. Basu, A. Banerjee and R. J. Mooney, “Semi-
supervised Learning by Seeding”, Proc. 19th Intl. Conf.
on Machine Learning (ICML-2002), Sydney, Australia,
July 2002, pp. 19–26.

[4] S. Basu, M. Bilenko and R. J. Mooney, “A Probabilis-
tic Framework for Semi-Supervised Clustering”, Proc.
10th ACM SIGKDD Intl. Conf. on Knowledge Discov-
ery and Data Mining (KDD-2004), Seattle, WA, Au-
gust 2004.

[5] S. Basu, M. Bilenko and R. J. Mooney, “Active
Semi-Supervision for Pairwise Constrained Cluster-
ing”, Proc. 4th SIAM Intl. Conf. on Data Mining
(SDM-2004).

[6] P. S. Bradley and U. M. Fayyad, “Refining initial
points for K-Means clustering”, Proc. 15th Intl. Conf.
on Machine Learning (ICML-1998), 1998, pp. 91–99.

[7] G. Campers, O. Henkes and J. P. Leclerq, “Graph
Coloring Heuristics: A Survey, Some New Proposi-
tions and Computational Experiences on Random and
Leighton’s Graphs”, in Proc. Operational Research ’87,
Buenos Aires, 1987, pp. 917–932.

[8] T. Cormen, C. Leiserson, R. Rivest and C. Stein,
Introduction to Algorithms, Second Edition, MIT Press
and McGraw-Hill, Cambridge, MA, 2001.

[9] M. E. Dyer and A. M. Frieze, “Planar 3DM is NP-
Complete”, J. Algorithms, Vol. 7, 1986, pp. 174–184.

[10] I. Davidson and A. Satyanarayana, “Speeding up K-
Means Clustering Using Bootstrap Averaging”, Proc.
IEEE ICDM 2003 Workshop on Clustering Large Data
Sets, Melbourne, FL, Nov. 2003, pp. 16–25.

[11] M. Ester, H. Kriegel, J. Sander and X. Xu, “A Density-
Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”, Proc. 2nd Intl. Conf.
on Knowledge Discovery and Data Mining (KDD-96),
Portland, OR, 1996, pp. 226–231.

[12] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman and Co., San Francisco,
CA, 1979.

[13] T. F. Gonzalez, “Clustering to Minimize the Maximum
Intercluster Distance”, Theoretical Computer Science,
Vol. 38, No. 2-3, June 1985, pp. 293–306.

[14] P. Hansen and B. Jaumard, “Cluster Analysis and
Mathematical Programming”, Mathematical Program-
ming, Vol. 79, Aug. 1997, pp. 191–215.

[15] D. Klein, S. D. Kamvar and C. D. Manning, “From
Instance-Level Constraints to Space-Level Constraints:
Making the Most of Prior Knowledge in Data Clus-
tering”, Proc. 19th Intl. Conf. on Machine Learning
(ICML 2002), Sydney, Australia, July 2002, pp. 307–
314.

[16] D. Pelleg and A. Moore, “Accelerating Exact k-means
Algorithms with Geometric Reasoning”, Proc. ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, San Diego, CA, Aug. 1999, pp. 277–281.

[17] R. Tamassia and I. Tollis, “Planar Grid Embedding
in Linear Time”, IEEE Trans. Circuits and Systems,
Vol. CAS-36, No. 9, Sept. 1989, pp. 1230–1234.

[18] K. Wagstaff and C. Cardie, “Clustering with Instance-
Level Constraints”, Proc. 17th Intl. Conf. on Machine
Learning (ICML 2000), Stanford, CA, June–July 2000,
pp. 1103–1110.

[19] K. Wagstaff, C. Cardie, S. Rogers and S. Schroedl,
“Constrained K-means Clustering with Background
Knowledge”, Proc. 18th Intl. Conf. on Machine Learn-
ing (ICML 2001), Williamstown, MA, June–July 2001,
pp. 577–584.

9 Appendix

Here, we show that the feasibility problem for cannot-
link constraints (CL-feasibility) is NP-complete using a
reduction from the Graph K-Colorability problem
(K-Color) [12].
Graph K-Colorability (K-Color)
Instance: Undirected graph G(V,E), integer K ≤ |V |.
Question: Can the nodes of G be colored using at
most K colors so that for every pair of adjacent nodes
u and v, the colors assigned to u and v are different?

Theorem 9.1. The CL-feasibility problem is NP-
complete.

Proof: It is easy to see that the CL-feasibility problem
is in NP. To prove NP-hardness, we use a reduction
from the K-Color problem. Let the given instance I of
K-Color problem consist of undirected graph G(V,E)
and integer K. Let n = |V | and m = |E|. We construct
an instance I ′ of the CL-feasibility problem as follows.
For each node vi ∈ V , we create a point si , 1 ≤ i ≤ n.
(The coordinates of the points are not specified as they
play no role in the proof.) The set S of points is given
by S = {s1, s2, . . . , sn}. For each edge {vi , vj} ∈ E,
we create the cannot-link constraint {si , sj}. Thus,
we create a total of m constraints. We set the lower
and upper bound on the number clusters to 1 and K
respectively. This completes the construction of the
instance I ′. It is obvious that the construction can be
carried out in polynomial time. It is straightforward to
verify that the CL-feasibility instance I ′ has a solution
if and only if the K-Color instance I has a solution.

