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Introduction 

Non-hierarchical clustering has a long history in numerical taxonomy [13] and machine 
learning [1] with many applications in fields such as data mining [2], statistical analysis 
[3] and information retrieval [17]. Clustering involves finding a specific number of sub-
groups (k) within a set of s observations (data points/objects); each described by d 
attributes. A clustering algorithm generates cluster descriptions and assigns each 
observation to one cluster (exclusive assignment) or in part to many clusters (partial 
assignment). Throughout this paper, we shall refer to the output of a clustering algorithm 
as the clustering results, solution, or model. 
 The information in a clustering solution is extensive, a mixture model or K-Means 
model produces k.s conditional probabiliti es or distances. Visualizing the clustering 
results can help to quickly assimilate this information and provide insights that support 
and complement textual descriptions or statistical summaries. For example, we quickly 
wish to know how well defined are the clusters, how different are they from each other, 
what is their size, and do the observations belong strongly to the cluster or only 
marginall y? Visualizing a clustering solution has many potential uses. The analyst user 
during the highly iterative model building process can quickly obtain insights from the 
visualization that suggest the adequacy of the solution and what further experiments to 
conduct. Alternatively, the business user can examine and query the final clustering 
solution using the visualization. 
 The interesting parts of a clustering solution will depend on the application. Database 
segmentation applications such as target marketing focus on the clusters and investigate 
which clusters are similar, which are autonomous and which have, for example, a high 
propensity to cross-sell . Anomaly detection applications attempt to identify those 
observations that do not “belong” , are interesting and require further investigation. The 
focus is the observations and we wish to know if they belong strongly or only marginall y 
to their most likely cluster. Typical uses of anomaly detection are detecting money 
laundering, identifying network intrusion, and data cleaning [5].  
 In this paper, we describe a general particle framework to display the information in a 
clustering solution. Changes to the parameters of the framework can emphasize 
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information useful for a particular clustering application. Our three-dimensional 
information visualization represents the previously clustered observations as particles 
affected by gravitational forces. We map the cluster centers into a three-dimensional cube 
so that similar clusters are adjacent and dissimilar clusters are far apart. We subsequently 
place the particles amongst the centers according to the gravitational force exerted on the 
particles by the cluster centers. A particle's degree of membership to a cluster provides 
the magnitude of the gravitational force exerted. 
 The output of most clustering algorithms can be the input into our visualization 
framework. The inputs to the visualization are a k by k distance matrix containing the 
distance between the k cluster descriptions and for each observation, k columns 
containing the observation's degree of membership to every cluster that must sum to one. 
For instance, the distance matrix may contain the Kullback Leibler or Euclidean distances 
between the cluster descriptions. For a mixture model, the observation’s degree of 
membership to a cluster could be the normalized li kelihood, while for K-Means 
clustering it could be the observation’s distance to the cluster normalized by the sum of 
its distance to all clusters. We focus on applications of clustering in data mining but 
believe our visualization approach is useful for other clustering applications. 
 Our approach to visualize clustering results is computationally very eff icient. The 
calculations to visualize a clustering result of thousands of records take only a few 
seconds on desktop machines. The computational eff iciency of the two steps in the 
approach is of order O(k2)+O(ks) where k is the number of clusters and s is the number 
of observations with s >> k. The time to generate the visualization is linear with respect 
to the number of observations making it suitable to visualize large data sets.  
 We begin the paper by describing the particle visualization framework in detail . We 
define how to place the cluster centers in a three-dimensional space and how to place the 
observations amongst the cluster centers according to an attractive gravitational law. 
Next, we visualize the UCI [12] churn data set for the purpose of segmentation, 
discussing and verifying the insights and properties that the visualization provides. We 
then construct a special law suitable for anomaly detection applications whose usefulness 
we ill ustrate on the UCI cars data set. We conclude by describing related work, 
summarizing our approach and describing potential extensions to our framework. 
 Throughout this paper, our clustering results are from an EM [4] mixture modeler. An 
observation's degree of membership to a cluster is its normalized li kelihood for that 
cluster. This paper builds upon our earlier work [5] by amongst other things: refining the 
basic framework, introducing the idea of density visualizations of the output and 
verification of the visualization. 

Visualizing Cluster Solutions as Particles Affected by 
Gravitational Forces 

Clustering is inherently density estimation in an instance space. The general aim of 
clustering is to find sub-regions of the instance space where many observations occur. 
The description of these sub-regions can vary depending on the clustering technique. If 
we consider the cluster centers as having a large mass and each observation a small 
mass then a natural graphical view of a clustering solution is as cluster centers pulli ng 
on the observations/particles. We wish our visualization to be a snapshot of the particle 
positions, at some instant in time, after the application of gravitational forces.  



  

 In our particle visualization approach to clustering results, we first place the cluster 
(density) centers in a three-dimensional space trying to preserve their spacing in the 
original d dimensional space. We then place the observations (particles) amongst the 
centers to reflect the gravitational pull on the particles as represented by the degree of 
membership that a particle has for each cluster. Throughout this paper, we describe our 
approach in two dimensions for clarity but in practice use three dimensions. 

Placing the Cluster Centers 

We first map the concentrated areas of mass (the cluster centers) as points onto the 
canvas while attempting to preserve the distance spacing that occurs in the original d 
dimensional space. In our experiments, we use the average Kullback-Leibler (KL) 
distances between two cluster centers to produce the distance matrix between the cluster 
centers (DMatrix). We use Multi Dimensional Scaling (MDS) [6][9][7] to place the k 
cluster centers in a cube whose diagonal length is equal to one. Functionally MDS takes 
as input a k by k matrix (DMatrix) that contains normalized cluster distances that sum to 
one. MDS attempts to create a layout of the points in the cube so that the calculated 
distances between the points (DCube) are close to those in DMatrix. We initiall y randomly 
place the k points and move them while trying to minimize the objective function |DMatrix 
– DCube|

2. We use a simulated annealing [8] approach with multiple random restarts to 
find a good local optimum. MDS is a powerful general technique, the type of MDS we 
implement uses Kruskal-Shepard and Metric scaling according to the classification 
scheme described by Buja et’ al [9]. Our MDS algorithm follows in pseudo code, 
variables are in Itali cs:  
 
Place the k points randomly in the cube 
Let the current set of points placements be PCube 
Err Old = MAX_FLOAT (a very large positive real number) 
Epsilon= MIN_FLOAT (a very small positive real number) 
While(Err Old > Epsilon and Number_Of_Iterations < 100) 

Err Old  = CalcError(DMatrx , PCube) 
Copy PCube  to P’ Cube 
Perturb the k point positions in P’ Cube (see Figure 1)  
Err Candidate  = CalcError(DMatrx , P’ Cube) 
// Accept new position if new error <= old error  
If(Err Candidate  <= Err Old) then PCube = P’ Cube 

//Perform a Metropolis test if new error > old error  
If(Err Candidate >Err Old)&&(e^(-Err Candidate +Err Old)<rand(0,1)) 

PCube = P’ Cube  
Endif 

End While 
CalcError Function: CalcError(DistancesA , Points ) 
Calculate DistancesB From Points  
Error = 0 
For i  = 1 to k,  For j  = 1 to k 

Error += (DistancesA i,j - DistancesB i,j )^2  EndFor 
EndFor 
Return Error  
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Force = |DCube (A,B)-DMatrix(A,B)|

Force = |DCube (A,C)-DMatrix(A,C)|
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Figure 1: A perturbation of cluster center A where (DCube(A,B) - DMatrix(A,B))> (DCube(A,C) 
- DMatrix(A,C)) > 0.  

The MDS algorithm attempts to minimize the overall stress (|DMatrix – DCube|
2) by 

asynchronously moving each cluster center. Figure 1 ill ustrates the 
perturbation/movement of cluster center A. As the actual distance of A to B and C 
(DCube(A,B)  and DCube(A,C)) is greater than as expected (DMatrix(A,B), DMatrix(A,C)) then A will be 
moved closer to B and C. Both B and C exert a force whose direction is given by a line 
connecting their centers to A, the size of the force is given by the difference between the 
expected (DMatrix) versus actual (DCube) distances, therefore the force exerted by B is 
stronger. The resultant vector, which is the sum of the individual vectors, gives the 
direction of movement for A. The size of movement is a random number that can be as 
large as the magnitude of the resultant vector. The computational eff iciency of this entire 
step is of order O(k2) as it is for most MDS algorithms [10]. However, k is typicall y less 
than 10. 

Placing the Observations (Particles) Amongst the Cluster Centers 

We need to place the observations to reflect the gravitational pull on the observations by 
the cluster centers. Each observation belongs to every cluster with some degree of 
membership. We now describe the observation placement shown in Figure 2. Firstly, we 
place the observation near its most likely cluster, cluster A, at a distance proportional to 
(1 – Pr(x | θA) ). Pr(x | θA) is observation x’s degree of membership in cluster A. This 
provides a circle on which to place the observation. Then every cluster other than A 
exerts a force on an observation equal to how li kely the observation belongs to that 
cluster. The direction of the force is a straight line between the center of cluster A and 
the center of the other cluster. The intersection of the resultant vector (sum of all 
individual forces) and the circle gives the final observation placement. We repeat this 
procedure for each observation. 
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Figure 2: Placement of observation, x, where Pr(x | θA) > Pr(x | θB) > Pr(x | θC). The 
direction of the resultant vector is the sum of the component vectors.  
 The computational eff iciency of this step is of order O(ks) where k is the number of 
clusters and s is the number of observations with s >> k. The cost of this step scales 
linearly with the number of observations. 

Properties of the Visualization 

Our method of placing the cluster centers and particles produces a visualization with 
these properties: 

a) The distance between clusters is an indication of their similarity. 
b) The distance from an observation to a cluster reflects its degree of membership. 
c) A cluster’s shape and opaqueness reflects the observation's degrees of 

membership to the cluster. 
d) The cluster center placement is stochastic, particle placements is deterministic. 
e) Adjacent observations have similar combinations of degrees of membership. 

 The last two points are worth further discussion. Point d) means that different seeds of 
the random number generator can produce different cluster center placements for the 
same clustering solution. However, for a given clustering solution and set of cluster 
center placements the positions of the particles amongst the cluster centers will always be 
the same. Point e) means that adjacent observations have very similar combinations of 
degrees of membership to the clusters. Strictly speaking, it does not mean that those 
observations’ attribute values will be similar, but they usually are. We did not use the 
simpler approach of summing all component vectors to place the observations, as it 
would result in a visualization with different properties. In such an approach the position 
of particle x would be: 

Σj=1...k Pr(x | θj) Cj,,      Where Cj is the location of the center of cluster j.  ( 1 ) 

 Properties b), c) and e) would not hold if we used this approach and would result in 
the undesirable situation where adjacent observations have very littl e in common. 
Consider three cluster centers that are on a straight line of unit length. Their positions 
along the line are at 0, 0.5 and 1. Let the degree of membership to the three clusters be 
0.34, 0.33 and 0.33 respectively, then the position of the observation using this simpler 
approach would be at approximately 0.5. However, if the degrees of membership became 



  

0.5, 0, and 0.5 respectively, then the position of the observation would also be 0.5. This is 
a common problem/property with visualization techniques such as star-coordinates that 
use the sum of component vectors to position an observation [11]. By placing an 
observation always around its most likely cluster, we introduce a constraint that 
overcomes this problem. 

Experimental Methodology and Results 

How users will act upon and interpret the visualization will vary making verification of 
the usefulness of this approach both important and diff icult. We begin our experiments 
by visualizing the churn data set using the previously described framework for the 
purpose of segmentation. We claim that the visualization can easil y convey much of the 
information contained in a clustering solution. We verify this by showing that insights 
from the visualization reflect the quantitative properties of the clustering solution. We 
also hope that the visualization will be able to convey information that is not evident 
from the standard textual description or statistical summaries of the clustering results.  
 Next, we use the cars data set (with the origin variable removed) to ill ustrate how a 
small variation of the basic framework emphasizes outlier observations which is useful 
for anomaly detection. We show that although there are many anomalies, there are 
clearly different classes/types of anomalies some that are more interesting than others. 
 Our basic method produces a placement of particles amongst the cluster centers in a 
unit cube. We can display the results in a number of ways. We choose two popular 
methods to display the results: density visualization and scatter visualization. In the 
former, we visualize the density of the particles, in the later we represent each 
observation as a sphere. The density visualization breaks the unit cube into a series of 
very small regions. The number of observations located within a region determines its 
opaqueness. Which type of visualization is used depends on the purpose of the 
clustering exercise. For segmentation, where the major focus is the clusters, a density 
plot is more applicable. For anomaly detection, where the individual observations are of 
interest, a scatter visualization is more useful.  
 We demonstrate our general-purpose framework using the UCI churn data set [12] 
with the state, churned and telephone area code variables removed. Figure 3 and Figure 
4 shows the density plot for the churn data set.  



  

 
Figure 3: Density based visualization of churn data set with five clusters using the 
general framework. The Cluster IDs are next to the clusters.  

 
Figure 4: Zoom-in of clusters 1 and 2 centers 
.  
Interpretation, Verification and Uses 

We can attempt to verify the visualization accurately represents the clustering solution 
by comparing important statistical metrics against insights derived from the 
visualization. From the visualization we can derive the following insights: 

a) Cluster 2 and Cluster 1 are more similar than Clusters 0 and 3 because they 
are closer together. 

b) Clusters 0, 3, and 4 are well -defined autonomous clusters due to their 
compact representation. 



  

c) Cluster 2 is the largest cluster as it occupies a large part of the canvas and is 
the most opaque. 

d) Clusters 0 and 4 are similar but do not share many observations. 
e) Clusters 1 and 2 are similar and share many observations that mesh together. 
f) Cluster 2 is more densely packed that cluster 1 as it is more opaque. 

 We calculate the KL distances in the higher dimensional instance/data space and the 
Euclidean distances between cluster centers in the three-dimensional space. We expect 
that the spacing between the cluster centers in the three-dimensional space should reflect 
the spacing in the higher dimensional space. We find:  

EucldiDistance(0, 3)=0.69, MeanKLDistance(0, 3)=0.59  
EuclidDistance(1, 2)=0.62, MeanKLDistance (1, 2)=0.54.  

 In both the higher and lower dimensional spaces, D(Cluster 0, Cluster 3) > D(Cluster 
1, Cluster 2) this ill ustrates that insight a) is correct. 
 From Table 1 we see observations whose most likely cluster is 0, 3 or 4 have degrees 
of membership to their most likely cluster that are on average very high with low 
standard deviations. These observations belong very strongly to their most likely cluster 
and hence insight b) is correct. Cluster 2 (2608 observations) contains the most 
observations, is the most “opaque” cluster and takes up a relatively large space in the 
visualization showing that insight c) is correct. Though cluster 1 occupies a large part of 
the canvas, it is not as densely packed. The textual descriptions of what differentiates 
clusters 0 and 4 ill ustrate that cluster 4 is a speciali zation of cluster 0 and hence they 
should be placed adjacent to each other showing that insight d) is correct. 

 

Clust. 
Id 

Mean Stdev What Differentiates  the 
Cluster From the Population 

Churned 
Percentage 

Size 

0 0.99 0.001 voice_mail_plan:Different, 
#vmail_messages:Very High, 

5% 996 

1 0.90 0.14 total_intl_minutes:Low, 
total_intl_charge:Low 

18% 1070 

2 0.95 0.110 No Significant Difference 17% 2608 
3 0.94 0.109 Voice_mail_plan:Different, 

number_vmail_messages:High, 
4% 186 

4 0.95 0.102 Voice_mail_plan:Different, 
#vmail_messages:Very High, 

total_eve_minutes:Low,  

7% 140 

Table 1: Summary statistics of the clusters. The mean and standard deviation are of the 
degree of membership to the observations’ most likely cluster, 14.1% of the entire 
population churned. 
 We can see from Table 2 that for observations whose most likely cluster is 1 or 2, 
the second most likely cluster is overwhelmingly cluster 2 and cluster 1 respectively, 
thereby showing that insight e) is correct. Observations whose most likely cluster is 
cluster 2 have a higher mean degree of membership and lower standard deviation than 
cluster 1 showing that insight f) is correct. 

 
 Mean 

DOM 
Cluster 0 

Mean 
DOM 

Cluster 1 

Mean 
DOM 

Cluster 2 

Mean 
DOM 

Cluster 3 

Mean 
DOM 

Cluster 4 
Cluster 1 0.0001 0.8989 0.1010 0.0000 0.0000 
Cluster 2 0.0000 0.0544 0.9456 0.0000 0.0000 

Table 2: The mean degree of membership (DOM) to a cluster by observations whose 
most likely cluster is 1 or 2. 



  

Using the Visualization to Go Beyond Verification 
Cluster 2 and 4 look fundamentall y different in the visualization, yet their summary 
statistics (mean and standard deviation) are very similar (see Table 1). If we only had 
these typical statistical summaries of the clusters, we would think the two clusters' 
distributions of degrees of membership are not different, but the visualization ill ustrates 
they are. This adds the following insight to investigate: 

g) Cluster 2 and Cluster 4 have very similar statistical summaries, yet are 
different, how? 

 Table 3 shows that observations whose most likely cluster is cluster 2 have a mean 
entropy amongst their degrees of membership that is less than those observations whose 
most likely cluster is cluster 4. The degree of belonging to clusters other than the most 
li kely cluster is more uniformly distributed for cluster 4 than cluster 2. This means the 
shape of cluster 4 is more circular than the elongated cluster 2 as the forces on the 
particles is more uniform. We could infer this from the visualization, but at the very least 
the visualization tell s us that the two clusters are somehow different and to perhaps 
investigate these differences. 

Cluster Id 0 1 2 3 4 
Mean Entropy 0.00 0.14 0.08 0.11 0.11 

Table 3: Entropy of the degrees of membership by the observation’s most likely cluster 
using base 10 logarithms  

Uses of the Visualization 
The visualization has potential uses in the different phases of a data mining project. In 
this example we ill ustrate how the model builder can use the visualization, in our next 
example we ill ustrate its use as a presentation tool to the end-user. Data mining is a 
highly iterative and time-consuming process that tries to produce a final useful model by 
conducting a series of experiments with slightly different parameters and/or variables. 
We can use the visualization as a first contact point to the experiment results to quickly 
and easil y see interesting insights and phenomenon to investigate. We believe this will 
speed up the model building process. In this example, we see from Table 1 that over 630 
of the 707 customers who churned are in clusters 1 and 2. From the visualization we note 
that these two clusters share many observations whilst the remaining clusters are quite 
autonomous. A valid next step is to create a filter expression that isolates the observations 
in clusters 1 and 2 and then perform more clustering experiments on these observations to 
determine if this sub-population can justify more than two clusters. After we divide this 
sub-population into autonomous clusters, we could then build predictive models for each 
segment. 

A Specialization for Anomaly Detection 

Anomaly detection has uses in many different applications: credit card fraud, data 
cleaning, and identifying material flaws [5]. In most applications the basic steps remain 
the same: 

1) Identify normalit y by calculating some “signature” of the data. 
2) Determine some metric to calculate an observation’s degree of deviation from 

the signature. 
3) Set a criterion, which if exceeded by an observation’s degree of deviation 

makes the observation anomalous. 
 In clustering-based anomaly detection, the signature is the clusters found in the data. 
The measure of deviation from the signature is the degrees of membership of an 
observation to the clusters. A typical criterion is that if an observation does not belong to 



  

any one cluster with a degree of membership greater than the minimum degree of 
membership it is anomalous. 
 Anomaly detection applications are typicall y user intensive particularly in 
applications li ke insurance fraud where the cost of incorrectly labeling a case anomalous 
is great. Our aim is to convey information that aids the analyst user in exploring 
anomalous observations. We need to convey what observations are anomalous and why. 
We explain our variation of the general framework that achieves this. 
 The first step of placing the cluster centers in the three-dimensional space is identical 
to our general framework. However, for particle placement we adopt a speciali zation of 
the general framework. We introduce the idea of the radius of gravitational effect. The 
radius of gravitational effect places a sphere around the cluster centers. The other 
clusters' gravitational pull does not affect those observations falli ng within the sphere, 
but affect those that fall outside the sphere. This has the desirable effect of clearly 
identifying those observations that belong very strongly to a cluster. Usually the radius 
of gravitational effect is equal to (1- minimum degree of membership), so that 
gravitational forces only affect anomalous observations. We change the distance an 
observation is placed from its most likely cluster to be (1 - degree of membership)2. We 
randomly place particles that fall within the radius of gravitational effect on the surface 
of a sphere whose radius is proportional (1 - the degree of membership)2 we show this 
diagrammaticall y in  Figure 5. With these changes to our visualization, we effectively 
hide the non-anomalous observations, clearly show the anomalies, and over-emphasize 
the gravitational effect from clusters other than the most likely. 

Cluster
CenterObservation

(1-Pr(x | θ
A))2

L

A

B

CForce = Pr( x | θB) / (1-Pr(x | θA))

Force = Pr( x | θC) / (1-Pr(x | θA))

Radius of gravitational
effect  

Figure 5: Placement of observation x for anomaly detection variation where Pr(x | 
θA) > Pr(x | θB) > Pr(x | θC). If x had fallen within the radius of gravitational effect, 
we randomly place it on a circle of radius (1 -  Pr(x | θA))2. 

 Figure 6 shows our scatter visualization of anomalies for the UCI cars data set for 
four clusters that Table 4 describes. Note that the non-anomalous observations obscure 
each other due to the gravitational law in use. This is desirable in this application as our 
focus is the outliers. Observations that belong strongly to a cluster are near its central 
region. Anomalies do not belong strongly to any one cluster and tend to be between the 
cluster masses. The farther away an observation is from any of the cluster centers, the 
more anomalous it is. 
 We can see that there are many anomalies that lie between clusters 1 and 3 and 
clusters 0 and 3. There are two very interesting anomalies, one that lies in the center of 
the visualization and one anomaly that lies between clusters 2 and 3. We shall focus on 
these anomalies to see what makes them special. 



  

 

Figure 6: Visualization of anomalies generated from the UCI cars data. Anomalies are 
colored red (darker color). Cluster IDs are next to each cluster  

Cluster 
ID 

Cluster Description Size 

0 Larger, heavier and less fuel eff icient six cylinder cars  69 
1 Small four cylinder cars, contains many Japanese cars 144 
2 Eight cylinder cars that have large engines and are very heavy 102 
3 Larger four cylinder and smaller six cylinder cars, contains many 

European cars 
76 

Table 4: A description of the typical observations found in each cluster for the UCI 
Cars data set.  
 The selected observation in Figure 6 is the most anomalous as it occupies the center 
of the visualization, it is also the observation with the greatest entropy amongst its 
degrees of membership. From the visualization we see it belongs most strongly to 
clusters 0 (six cylinder cars), and 3, which contains many European cars. From Figure 7 
we can see that the anomaly is a Volvo that is different to all other Volvos as it has six 
cylinders and is quite fuel ineff icient. It is also unusual because it is a European six-
cylinder car but has many similar properties to the larger American six cylinder cars 
found in cluster 0. 

2 

0 

3 

1 



  

 

Figure 7: Description of Volvos in cars dataset. The anomaly selected in Figure 6 is in 
row 274.  
 By zooming-in and spinning the visualization, we can identify different anomalies 
and obtain an understanding why they are anomalous. The observation highlighted in 
Figure 8 belongs most strongly to cluster 3 but also has properties similar to 
observations in cluster 2.  

Figure 8: Visualization of anomalies generated from the UCI cars data. Anomalies are 
colored red (darker color). Cluster IDs are next to each cluster. This is the same 
visualization shown in Figure 6, but with the diagram spun around the z-axis 90 degrees 
to the left. Cluster 1 obscures Cluster 0 

3 

2 

1 



  

 We can see  from Figure 9 that the selected observation is the only Oldsmobile that 
is anomalous. The newer, less than eight cylinders and more fuel-eff icient (higher mpg) 
Oldsmobiles typicall y belong to cluster 3. The Oldsmobiles assigned to cluster 2 have 8 
cylinders with a very low mpg. This outlier Oldsmobile fall s between the two types of 
Oldsmobile having the properties of both clusters. It is an eight-cylinder car (cluster 2), 
but is quite fuel eff icient/high mpg (cluster 3). It has a large cubic inch engine (cluster 2) 
but has a horsepower similar to those Oldsmobiles found in cluster 3. 

 
Figure 9: Description of Oldsmobiles in cars dataset. The anomaly selected in Figure 8 is 
in row 299. 

Related Work  

In this section we discuss relevant work in the field of visualizing clustering results. We 
begin by highlighting what differentiates our work and then summarize relevant 
previous work. We conclude the section by describing the unsuitabilit y, in their current 
form, of general-purpose approaches li ke force directed graphs and parallel coordinates 
to visualize large non-hierarchical clustering results. 
 Much of the work in the cluster visualization field has been for visualizing 
hierarchical (often-called agglomerative) clustering [13]. Hierarchical clustering is 
typicall y bottom-up clustering using exclusive assignment. Since our visualization is for 
non-hierarchical clustering with multiple degrees of membership, it is not directly 
comparable to previous hierarchical clustering visualizations using exclusive 
assignment. Our approach could visualize a set of hierarchicall y clustered observations 
if fractional assignments to each cluster were somehow calculated, which to our 
knowledge has not been achieved. 
 However, several pieces of prior work use the idea of placing observations around 
the cluster centers at a distance equal to the degree of membership to only one cluster. 
What differentiates our work is: 

1) We attempt to visualize an already establi shed clustering solution, rather than 
providing decision support to help in forming the clustering solution as others 
have [14]. 

2) Our visualization is specificall y for non-hierarchical clustering and we place 
our observations subject to the constraint of multiple degrees of membership, 
not just one. 



  

3) The placement of cluster centers so that similar clusters are adjacent and 
different clusters are far away 

4) Our principled use of attractive laws to place observations around the cluster 
centers. 

5) The scalabilit y of our approach to visualize large data sets. 
 We now survey related work. There are many examples of work that use 
visualization to provide decision support for creating clustering solutions. In [15] the 
authors use a scatterplot view of cluster centers that they obtain by hierarchical 
clustering, with interactive control of the splitti ng criteria to increase or decrease the 
number of visible clusters. There has been some work in visualizing non-hierarchical 
exclusive assignment clustering solutions in the text-processing field [16]. In this work 
each cluster occupies a fixed size region and the documents, represented as points, are 
placed at a distance proportional to their similarity to only a single cluster center. Leuski 
and Allan [17] propose value adding to the results of an information retrieval query by 
placing the documents, represented as spheres, in two or three-dimensional space 
according to their degree of similarity. This is in principle similar to the way we place 
cluster centers. The application of this idea to all observations in the data set would 
ignore the results found by the clustering algorithms and would be computationally very 
expensive (in the order of O(s2)) where s is the number of observations. 
We could visualize non-hierarchical clustering results using general-purpose 
visualization approaches such as parallel coordinates [18], force directed graphs [19] 
and MDS [9] (to position the observations, not just the cluster centers). In force directed 
graph techniques the nodes are physical objects that are subject to various forces. The 
aim is to re-position the nodes to represent best these forces. While we could use these 
three techniques, they suffer from three problems that make them (in their current form) 
unsuitable for large-scale data mining problems. 

1) Scaleable calculations for many observation positions. 
2) Scaleable visualization of many observations. 
3) Ignoring the model based nature of K-Means clustering and mixture modeling. 

 Most work in metric scaling MDS and force directed graphs are limited to at most 
one hundred objects of interest. Above this limit , the combinatorial nature of these 
techniques and the calculation of the “error” mean they become computationally very 
expensive. Calculating the position for an observation in parallel coordinates is 
computationally very eff icient, however visualizing thousands of observations becomes 
diff icult as the lines merge into a blob. Finall y and most importantly, our aim is to 
visualize the clustering model found. To use force directed graphs and MDS techniques 
to position all observations would mean ignoring the model, as we would need to 
translate an observation’s degree of membership to the cluster to a measure of similarity 
to all other observations. 

Conclusion and Further work 

We have presented a general framework to visualize clustering results where we 
represent the observations as particles affected by gravitational forces. To our 
knowledge, visualizing clustering results as particles affected by many gravitational 
forces is unique and naturall y fits well with the non-hierarchical clustering philosophy. 
In our framework, we place the cluster centers in a three-dimensional cube such that 
similar clusters are adjacent and dissimilar clusters are far apart. We then place the 
observations amongst these centers to reflect the degree of membership that each 
observation has for the clusters. Our approach is computationally eff icient; calculations 
for a 5000-observation data set took less than ten seconds on a desktop machine 



  

(Pentium II 500MHz). The computational eff iciency of the approach is of order 
O(k2)+O(ks) where k is the number of clusters and s is the number of observations with s 
>> k. The time to generate the visualization is linear with respect to the number of 
observations for a fixed number of clusters making it amenable to application to large 
data sets.  
 We verified that the insights found from visualization are consistent with statistical 
summaries of the clusters and that the visualization has desirable properties. Our 
information visualization can present a lot of information and we propose a 
speciali zation for anomaly detection that focuses on information useful for that purpose. 
We believe that speciali zations of our framework can be created for other data-mining 
uses of clustering and other uses of clustering such as information retrieval. 
 Our framework to place cluster centers and observations has many potential uses and 
we generall y describe two. Firstly, when displayed as a density visualization it aids the 
model builder to quickly form insights into a clustering result. Data mining is typicall y 
an iterative process of conducting experiments on a data set by applying a technique 
(li ke clustering) with different parameters and variables/columns. Interpreting the result 
of each experiment determines the next experiment to conduct. We believe use of our 
visualization may shorten the data mining process as the analyst can quickly interpret 
the clustering solution. The anomaly detection variation displayed as a scatter 
visualization presents the results to the end user and allows them to see the different 
types of anomalies and focus on those that are most interesting.  
 A natural extension to our ideas would be to incorporate brushing between other 
visualization tools such as parallel coordinates. We believe that linking our visualization 
and parallel coordinates holds particular promise in the field of anomaly detection. A 
further extension to our work would be to include the motion of the particles around the 
cluster centers into the visualization. This could better convey the information in a 
clustering solution. Our idea is to essentiall y model the particles as being affected by the 
gravitational laws of attraction, one could modify this idea to follow other 
attraction/repulsion laws such as those found in the fields of electricity and magnetism.  
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