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Abstract

Inexpensive sensor networks, such as those constructed
using Berkeley motes, record many missing or absurd
values due to low battery levels, transmission errors,
sensor device errors and node failures. However, many
mining algorithms do not easily handle data with miss-
ing values and the mining literature illustrates that re-
moving records with missing values yields worse results
than if missing values are intelligently filled in. A pow-
erful method of filling in missing values is the expecta-
tion maximization (EM) algorithm which maximizes the
complete (both observed and missing) likelihood. How-
ever, typical implementations of EM require a paramet-
ric model which is prohibitive for sensor networks as
the M-step typically requires collecting and transmit-
ting the expected values for missing values to a central
base station. Furthermore, distributing either the E-
step or the M-step onto the network is infeasible for
parametric models as Berkeley motes have neither a
hardware floating point unit (FPU) nor sufficient mem-
ory to implement them. In this paper, we develop a
non-parametric version of EM specifically for sensor net-
works. We formally show that the E-step can be solved
in polynomial time. Though, the problem associate with
the M-step is NP-complete, a straightforward heuris-
tic is possible. Therefore, our example is an example of
generalized EM. Our preliminary empirical results indi-
cate that our algorithm can restore many of the missing
values. Future work will change the likelihood function
that EM maximizes to include the mining task.

Keywords: Sensor Networks, Missing Values, Mining,
Non-parametric, Expectation Maximization.

1 Introduction and Motivation

A sensor network consists of nodes, each of which
is equipped with a set of sensors for collecting data
from the environment and additional hardware that
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allows the nodes to communicate with each other in
a wireless fashion [1, 16]. In our work, each node
is a Berkeley mote that consists of a Mica2 radio
board and a MTS300 sensor board which can be used
to sense temperature, light intensity and the sound
level. The transmission range of each node is not more
than 100 feet in ideal situations (open area, no walls
or other forms of interference). We treat the sensed
values as binary with 0 (false) representing typical
indoor readings and 1 (true) representing above typical
values. Typical values for the sensed parameters are
as follows: light intensity < 500 lumens, temperature
< 25.0 degrees Celsius and sound level < 20 decibels.
Collecting binary values is quite common for simple
sensor networks that are designed to be deployed over
areas that in excess of a square mile [3].

In practice, the sensor network can report many
missing or absurd values for some of the quantities mea-
sured by the sensors. This may be due to tranmission
failures, faulty sensor readings, obstructions of the sen-
sor devices and low battery levels. For example, with
our Berkeley mote network in an indoor environment,
we found that even when the motes are only about ten
feet from the base station, over the course of three hours,
approximately three percent of packets were lost. When
there are walls or other structures between a mote and
the base station, the packet loss is even greater. Fur-
thermore, when polling light and temperature readings
every five seconds over the course of three hours, five
percent of temperature readings and four percent of
light readings were absurd (i.e., represented values that
are physically impossible). When the same experiments
were conducted with the nodes in a room different from
the base-station, the packet loss increases to 23%, and
26% of temperature readings and 21% of light readings
were absurd or missing. Therefore, even though Berke-
ley motes offer great potential for wide-scale deploy-
ment, techniques to deal with missing and/or absurd
values generated by such networks need to be developed
before the sensor network data can be mined.

We could ignore records that contain missing values.
However, many mining algorithms do not easily handle
missing values. Throwing away records containing



missing values removes legitimate values as well. For
example, in our experiments mentioned above, with the
motes and the base-station being in different rooms,
we would have thrown away on average 23% of all
records per five second snap-shot of the network. Filling
in missing values using even basic schemes leads to
improved results [6]. An approach that is used in
many commercial data mining tools is to fill in each
missing value with the most likely value [E99]. This
is equivalent to calculating the likelihood probability
distribution over the i*" column’s values (6;) from only
the observed data. Then, the most probable value is
chosen to fill in the missing value. Formally, if y;;
denotes the missing value of the I** record’s i*" column,
then y;; = argmaz ; P(y1; = j|0:).

Better estimates of what the missing values should
be are attainable if: 1) More complex models beyond
marginal probabilities are used and 2) The missing data
influence the model selection. Formally, this involves
calculating the complete likelihood (i.e., the likelihood
of both the observed and missing data). However, when
the missing data is part of the likelihood calculation, no
tractable solution for maximum likelihood estimation
exists. Instead, a common approach is to use the
expectation maximization (EM) algorithm to converge
to a local maxima of the complete data likelihood.

Unfortunately, the parametric form of the EM algo-
rithm is not amenable to sensor networks as the second
step (the M-step) involves transmitting the expectation
of the missing values to a central location (i.e. the base
station) for aggregation. Since the EM algorithm may
take many iterations to converge, this approach may
require many rounds of data transmission, leading to
quick depletion of the battery power at the nodes. Fur-
thermore, since motes lack FPU hardware, neither the
FE-step nor the M-step can be distributed onto the net-
work with parametric models.

In this paper we propose a non-parametric version
of EM specifically for sensor networks. Our approach is
designed to minimize power consumption and the neces-
sary computations can be distributed over the network.
To our knowledge, only two other papers have outlined
non-parametric version of EM [2, 17]. The paper by
Caruna [2] presents an EM style algorithm which only
involves one step while the paper by Schumitzky [17]
allows only a very restricted model space. Furthermore,
both approaches are not readily applicable to sensor net-
work. We shall focus on how to fill in the missing values
so that the resulting sensor network data can be mined
using a variety of techniques.

The remainder of the paper is organized as fol-
lows. We begin by overviewing parametric and non-
parametric EM specifically for sensor networks and then

discuss our particular non-parametric model. We for-
mally show that in this model, the computational prob-
lem associated with the E-step can be solved in polyno-
mial time and that the corresponding problem for the
M-step is NP-complete but a simple heuristic for the
M-step exists, thus our algorithm is an example of gen-
eralized EM. Other examples of generalized EM include
the Baum Welch algorithm commonly used to learn hid-
den Markov models [4]. We then illustrate approxima-
tions that allow distribution of the ¥ and M steps onto
the sensor network. Our empirical results presented
next, illustrate the usefulness of our algorithm. Finally,
we discuss and conclude our work.

2 Parametric and Non-Parametric EM for
Sensor Networks

When the sensor network reports a combination of ob-
served (X) and missing (V') values, our aim is to calcu-
late the complete (missing and observed) maximum like-
lihood estimate P(X,Y’|¢). This involves finding both
the most probable model and actual values for the miss-
ing data. No tractable solution for this problem exists;
instead, we attempt to calculate the expectation of the
complete data likelihood Ep(y|x,¢)[Y; X[0]. To do this,
we use the two step EM algorithm. The first step (the
E-step) calculates the expectation of the missing nodes
values (P(Y|X, 6)). Given the expectations for the miss-
ing values, the second step (the M-step) calculates the
value for # that maximizes the expected complete data
likelihood.

Instead of using a parametric model, we use a non-
parametric model, namely the Ising spin-glass model,
that is commonly used in image processing [5]. The
model consists of a set V = {v1, ..., v,} of nodes,
one for each sensor node. To be consistent with the
Ising spin-glass model, we assume that the nodes whose
values are known take on one of the discrete values from
{—1,+41}, instead of 0 and 1. Nodes whose values are
missing are assumed to have the value ’?7’. Extensions
so that the nodes can take many discrete values are
possible and will be left for future work, though as
mentioned earlier, it is typical to report binary values
from Berkeley motes. Each node v; has a set N(v;)
of neighboring nodes. Therefore, the non-parametric
model of the sensor network can be considered as the
graph G(V, E) which represents the nodes and their
neighbors. Some nodes will have legitimate filled in
values while others will have missing values or absurd
values that can be treated as missing. In contrast to
our non-parametric model, a parametric model could
identify a subset of key nodes, with the sensor values at
other nodes being modeled according to their distance
to these key nodes and by a parametric probability



distribution (e.g. a Gaussian with parameters {p.., o4,
py and oy). We now derive the probability density
(mass) function for a sensor network using our non-
parametric model. The the probability mass function
(P(G)) of a particular configuration of sensor values is
a function of the Hamiltonian (H(G)) of the underlying
graph. Equations defining H(G) and P(G) are given
below.

DEFINITION 2.1. Let G(V,E) be an undirected graph.
Suppose each node v; € V 1is assigned a label £; €

{+1,-1}.

(2.1) HG) = - Y bt
{vi,v; }€E
2H(G)

As can be seen, our probability density function is a
function of the edges (E) in the graph and the node
labels (¢1,...,¢,). As in the Ising spin-glass model,
we sometimes refer to H(G) as the energy associated
with the given configuration. Note that the smaller
the value of energy, the larger is the probability of
the corresponding configuration and that the smaller
the number of conflicts between a node’s value and its
neighbors, the lower the energy. Our model, namely
the graph structure, contains no continuous parameters.
Hence we use the term non-parametric to describe the
model.

3 Our Non-Parametric EM Algorithm

We present our non-parametric EM algorithm along
with a sketch of how the E and M steps were derived.
Later sections provide the formal details of these deriva-
tions.

A key problem with the EM algorithm is initializa-
tion. However, in our situation, we can choose an initial
model (graph) that is obtained by connecting each node
to every other node that is within its transmission dis-
tance (100 feet for Berkeley motes). Our EM algorithm
will then iteratively fill in the expected missing values
and change the model by removing nodes so as to in-
crease the probability.

3.1 The E-Step - A Sketch Given a graph G(V, E),
where V' is the set of nodes in the sensor network, and
a subset P of nodes that have fixed values, the goal of
the E-step is to fill in the values for the nodes in V' — P.

Calculating the expected values for the missing
value nodes is equivalent to minimizing the Hamiltonian
H(G) shown in Equation (2.1). Minimizing H(G)
is achieved by filling in the missing values so as to
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Figure 1: A Simple Illustration Why the MinCut of G,
Minimizes the Hamiltonian

minimize the number of conflicts (differences) between
neighbors. Since missing value nodes can be neighbors
of other missing value nodes, filling in the missing values
is not straightforward. Fortunately, this computation is
tractable using the following approach. (For simplicity,
we leave out several technical details in the following
discussion. These details are provided in Section 4.3.)

To the graph G, we add two nodes (s and t), where
s has the value +1 and ¢ the value —1. All of the
nodes in P whose value are +1 are connected to s and
those whose value are —1 are connected to t. This
new graph is called G;. All edges have unit weights,
except that the edges involving either s or t have their
weight as infinite (c0). Then, a minimum weight edge
cutset of G1 is the minimum number of edges whose
removal will create two node-disjoint subgraphs: a
positive subgraph where each node has the value +1
or ’?" and a negative subgraph where each node has the
value —1 or ’?’. Determining the minimum weight edge
cutset of a graph can be done in polynomial time (see
for example, [18]). The subgraph that a missing value
node is part of determines what value it is assigned.
Figure 1 shows the intuition behind why a minimum
cut of the graph is needed. Clearly, the missing value
should be filled in as “+”. Removing edges marked c
and d creates two appropriate subgraphs but it produces
the wrong missing value; removing just the edge marked
e corresponds to a minimum cut and hence produces
the correct result. The E-step can be approximated
and easily distributed onto the network by allowing a
node with a missing value to set its value to the most
commonly occurring value among its neighbors. This
approximation will return exactly the same solution as
the one based on minimum cut, unless two missing value
nodes are neighbors of each other. When there are
edges between two nodes with missing values, the two
approaches may return different results.

Our algorithm shown in Figure 2 formalizes the
above discussion. (Some details in the figure rely on
definitions presented in Section 4.3.)



Input: An undirected graph G(V,E); a subset P of

nodes such that each node in P has been assigned a
label from {+1,—1}. (These labels cannot be changed.)

Output: A label from {+1, —1} for each node of V— P
such that H(G) is minimized.

Algorithm:

1. Construct the auxiliary graph G1(V4, E7) from G.

2. Find an s-t edge cutset C* of minimum weight in
Gi.

3. Construct graph Go(Va, E3), where V5 = Vi and
Ey, = E; — C*, from G, by deleting the edges in
C*.

4. for eachnodev eV — P do

if there is a path from s to v in Go

then Assign the label +1 to v
else Assign the label —1 to v.

Figure 2: Algorithm for the E-step

3.2 The M-Step - A Sketch Here, we are given a
graph G(V, E) with all node values instantiated. (Recall
that all missing values were filled in by the E step.) We
must now compute the most probable model (G*) for
this data. Since our model space is the set of all possible
graphs with upto |V| = n nodes, we can change the
graph G by deleting edges or nodes. In this paper, we
have chosen to remove nodes as this approach is more
amenable to our aim of reducing power consumption.
The nodes removed from G to obtain G* are put to sleep
to conserve power. These nodes may be subsequently
awakened for other applications.

In Section 5, we show that the problem of deter-
mining which nodes to remove so as to minimize the
Hamiltonian is NP-complete. Therefore, obtaining an
exact solution to this problem (i.e. finding G* that max-
imizes Equation (2.2)) is computationally intractable.
However, we can easily find a graph structure G’ that is
more probable than G using the algorithm shown in Fig-
ure 3. (The definition of the g function used in Step 2(a)
of the algorithm is given in Section 5.) If the variable k
used in that figure is chosen to be 1, then the compu-
tation can be distributed onto the network, since each
node needs to check only its immediate neighbors to de-
termine whether it should go to sleep. Our M-step is
an example of generalized EM [15], since the calcula-
tion yields a more probable model, but not necessarily

Input: An undirected graph G(V, E) where each node

in V has been assigned a label from {+1,—1}; a subset
P C V of nodes such that there is a path in G from
from each node in V' — P to some node in P.

Output: Graph G’ obtained from G by deleting a
subset P’ of P. (In G’ also, there is a path from from
each node in V — P to some node in P — P’.) The
procedure tries to obtain a graph G’ whose energy is as
low as possible.

Note: The g function used in Step 2(a) below is defined
in Section 5.

Procedure:

1. Choose a positive integer k.
increases with k.)

(The running time

2. loop

(a) By trying all subsets of P up to size k, find a
subset P’ such that g(P’) > 0 and deleting P’
does not violate the path property mentioned
above. If there is no such subset, go to Step 3.

(b) Delete the nodes in P’ from P. (The graph
also needs to be modified accordingly.)

3. Output the resulting graph G'.

Figure 3: Heuristic Procedure for the M-step

the most probable model. Nodes which are put to sleep
can be considered as outliers since removing them from
the network increases the probability of the entire net-
work/graph.

4 Derivation of the E-Step

4.1 Viewing E-Step as Energy Minimization In
this step, we need to calculate the expected values of
the nodes with missing values. Using a non-parametric
model, this is simply determined by the neighbors of the
node. Formally:

Plo;=j) = >

zEN (v;)

1-46(j,z)
[N (v3)]

where N(v;) denotes the neighbors of node v; and § is
the Kronecker delta function (6(p,q) =1if p=gand 0
otherwise).

A common simplification [14] of the E step is to
use a “winner take all” approach. This leads to the
following E step.

(4.3)

1if argmaz ;P(v; = j) =1

v, = j



= 0 otherwise

Filling in the missing values with their most proba-
ble values is equivalent to calculating the ground state of
the spin-glass model. The ground state involves setting
the missing values in such a way that the probability
of the configuration (given by Equation (2.2)) is max-
imized. This, in turn, is equivalent to minimizing the
energy value given by Equation (2.1). We now explain
how this minimization problem can be solved in poly-
nomial time.

4.2 Graph Theoretic Preliminaries The model
space considered in this paper consists of undirected
graphs that are simple in the sense that they have no
multiedges or self-loops. Let G(V, E) be an undirected
graph. When each node v; € V is assigned a value
l; € {+1,—1}, the Hamiltonian function (or the energy
function) H(G) (Equation (2.2)) can be rewritten
using the following definitions.

(a) Each edge {v;,v;} such that ¢; # ¢; is called a
conflict edge.

(b) Each edge {v;,v;} such that ¢; = ¢; is called an
agreement edge.

LEMMA 4.1. Let N. and N, denote respectively the
number of conflict and agreement edges in G. Then,
H(G) = N.— N,. Alternatively, H(G) = 2 N, — |E|.

Proof: From the expression for H(G) (Equation (2.1)),
it is easy to see that each conflict edge contributes +1
to H(G) and that each agreement edge contributes —1
to H(G). Therefore, H(G) = N, — N,. Since each
edge is either a conflict edge or an agreement edge, we
have |E| = N; + N,. Therefore, H(G) is also equal to
2N, — |E|. |

The following is an easy observation which will be
used later.

OBSERVATION 4.1. Suppose G(V,E) is an undirected
graph where each mode is labeled +1 or —1. If there
is a path in G between a node labeled +1 and a node
labeled —1, then the path has at least one conflict edge.
|

4.3 An Efficient Algorithm for the E-Step The
E-step of the EM algorithm for filling in missing sensor
node values solves the following combinatorial problem.
Minimum Energy Label Assignment (MELA)
Instance: An undirected graph G(V,E) and a subset
P C V of “preassigned” nodes; that is, each node in
P has been assigned a label from {+1, —1}.

Requirement: Assign a label from {41, —1} to each node
in V — P such that H(G) is minimized.

It is assumed that in GG, there is a path from each node in
V — P (i.e., each node with a missing value) to a node in
P. This assumption enables the E-step to assign values
to missing nodes in an unambiguous fashion.

Our algorithm for the MELA problem relies on a
transformation to the problem of finding a minimum
weight s — ¢ edge cut in an undirected graph. The
definition of such an edge cut is given below.

DEFINITION 4.1. Let G(V,E) be an undirected graph
with a nonnegative weight w(e) for each edge e € E.
Let s and t be two distinct vertices in V. An s-t edge
cutset for G is a subset E' C E such that in the graph
G'(V,E — E'), there is no path between s and t. A
minimum weight s-t edge cutset for G is an edge
cutset whose total weight is minimum.

The following well known result shows that mini-
mum weight edge cutsets can be found efficiently (see
for example [18]).

THEOREM 4.1. Given an undirected graph G(V, E) with
a nonnegative weight w(e) for each edge e € E and two
distinct vertices s and t in V, a minimum weight s-t
edge cutset for G can be computed in O(|E|+|V|log|V])
time. |

Recall that in the MELA problem, the nodes in
the set P C V have preassigned labels which cannot
be changed. Throughout this section, we will use E¥
denote the set of edges where each edge has both of its
endpoints in P. Let NI and NP denote the number
of conflict and agreement edges in E¥. (Thus, |[E| =
NP + NFP.) The contribution HY of the edges in EF
to the Hamiltonian of the graph G is therefore given by
HP = NP — NP. Note that no matter how labels are
assigned to the nodes in V — P, the edges in E¥ will
always contribute H” to the value of H(G).

We now discuss how the MELA problem can be
solved efficiently. Let G(V,E) and P C V denote the
given instance of the MELA problem. Consider the
auxiliary edge weighted graph G1(V1, E1) constructed
from G as follows.

(a) V1 = V U {s,t}, where s and t are two new nodes
(ie, sgVandt ¢ V).

(b) By = (E — EP)U E; U By, where Es = {{s,v;} :
v; € P and ¢; = +1}, and Ey = {{t,v;} : v; € P
and ¢; = —1}.

(c) For each edge e € Ey, the weight of e, denoted by
w(e) is chosen as follows: if e € E, then w(e) = 1;
otherwise, w(e) = oo.



We note that the auxiliary graph G; has a trivial s-t
edge cutset of weight |E — ET|. Thus, no minimum
weight s-t edge cutset of G7 can use any of the edges
incident on the nodes s and ¢t. In other words, any
minimum weight s-t edge cutset of G; is a subset of
E — EF. The following lemma shows the role played by
auxiliary graph in solving the MELA problem.

LEMMA 4.2. Let G(V, E) and P CV constitute a given
instance of the MELA problem. Let H*(G) denote
the minimum value of the Hamiltonian function over
all assignments of labels to the nodes in V. — P. Let
G1(Vh, E71) denote the auziliary graph of G constructed
as discussed above and let Wi denote the minimum
weight of an s-t edge cutset in Gy. Then, H*(G) =
HY + 2Wy — |E — EP|, where HY is the contribution
due to the edges in ET.

Proof: We prove that result in two parts.

Part 1: Here, we prove that H*(G) > HF + 2W;
—|E — EP|. Consider an assignment of labels from
{+1, —1} to the nodes in V' — P such that the value of
H(G) is equal to H*(G). Let C denote the set of all the
conflict edges from F — E¥ in the resulting assignment.
As mentioned earlier, the edges in E¥ contribute H” to
H(QG), regardless of the label assignment to the nodes
in V — P. From Lemma 4.1, the contribution to the
Hamiltonian due to the edges in E — E¥ is 2|C| — |E —
EF|. Therefore, H*(G) = HF +2|C| - |E — Ef|. Now,
we have the following claim.

Claim: C'is an s-t edge cutset for Gy.

Proof of Claim: Suppose C is not an s-t edge cutset
for G1. Then, there is a path from s to ¢ in the graph
G2(Vh, E; — C). In this path, let « be the node that is
adjacent to s and let y be the node that is adjacent to t.
Thus, the label of x is +1 and that of y is —1. Hence, by
Observation 4.1, there is a conflict edge in this path. By
our construction of graph G, this conflict edge is from
the edge set E — E¥. This contradicts the assumption
that C' contains all the conflict edges from E — E¥, and
the claim follows.

In view of the claim, G; has an s-t edge cutset of

weight at most |C|. Since W7 is the minimum weight of
an s-t edge cutset of G, we have |C| > W;*. Therefore,
H*(G) = HY+2|C|-|E—-E?*| > HP +2W; —|E—EF|.
This completes the proof of Part 1.
Part 2: Here, we prove that H*(G) < HY + 2W; —
|E — EF|. This is done by finding an assignment of
labels to the nodes in V' — P such that the value of
the Hamiltonian for the resulting assignment is at most
HY +2W; — |E - EP|.

Consider algorithm in Figure 2. Using the assump-
tion that there is a path in G from each node in V — P

to a node in P, it is easy to see that Step 4 of the
algorithm assigns a label from {+1,—1} to each node
of V. — P. Further, the assignment ensures that the
only conflict edges from E — EF in the resulting as-
signment are those in C*. Therefore, by Lemma 4.1,
the value of the Hamiltonian function H(G) for this
assignment of labels to the nodes in V' — P is given by
H(G) = HP +2|C*|—|E—E?|. Since C* is a minimum
weight s-t edge cutset, we have |C*| = W7, Therefore,
H(G) = HP +2W; —|E—E?|. Since there is an assign-
ment of labels to the nodes in V — P such that the Hamil-
tonian function of G has a value of HY +2 Wy —|E—EF|,
it follows that H*(G) < 2W; — |E — ET|. This com-
pletes the proof of Part 2 as well as that of the lemma.
|

A direct consequence of the above lemma is that the
algorithm in Figure 2 computes an optimal solution to
the MELA problem. The running time of the algorithm
is dominated by Step 2, where a minimum weight s-t
edge cutset of G is constructed. As mentioned in
Theorem 4.1, this step can be carried out in O(|E| +
|[V|log|V]) time. The following theorem summarizes
the above discussion.

THEOREM 4.2. The E-step of the EM algorithm for
filling in the missing sensor wvalues can be solved in
O(|E| + |V]|log|V]) time, where |V| is the number of
nodes and |E| is the number of edges in the given sensor
network. ]

5 Derivation of the M-Step

The M-step requires finding the most probable model
given the observed and filled in missing values (from
the E-step). We model the M-step by a graph problem
where the goal is to delete a set of nodes so that the
energy of the resulting graph is as small as possible.
Since the goal of the EM algorithm is to fill in the
missing values, only nodes that had preassigned labels in
the E-step are candidates for deletion. (In other words,
nodes whose values are to be filled in cannot be deleted.)
When a node is deleted from a graph, all the edges
incident on that node are also deleted. Recall that in
the graph used in the E-step, there must be a path from
each node with a missing value to a node with a value
41 or —1. Therefore, the deletion process used in the
M-step must ensure that this path property continues
to hold in the resulting graph. A precise formulation of
the problem is as follows.

Minimum Energy Node Deletion (MEND)

Instance: An undirected graph G(V, E) where each node
in V has been assigned a label from {+1,—1}; a subset
P C V of nodes with preassigned values. (Note: The
E-step assigned values to the nodes in V — P.)



Requirement: Find a subset P’ C P so that in the graph
G’ obtained by deleting from G the nodes in P’, each
node in V — P has a path to some node in P — P’ and
H(G'") is a minimum over all such subsets.

As stated above, MEND is an optimization problem.
A decision version of the problem can be obtained in
an obvious manner by introducing a parameter B and
changing the requirement to the following question: Is
a set of nodes P’ whose deletion produces a graph G’
such that G’ has the path property mentioned above and
the energy of G’ is at most B? For convenience, we will
use MEND to denote both the decision and optimization
versions of the problem. (The usage will be clear from
the context.)

We now show that the MEND problem is computa-
tionally intractable. Our proof uses a reduction from the
following problem which is known to be NP-complete
[12].

Exact Cover by 3-Sets (X3C)

Instance: A set X = {x1,29,...,2,}, where n =
3q for some positive integer ¢g; a collection Y =
{¥1,Ys,...,Y,,} of subsets of X, where |Y;| = 3,1 <
Jj<m.

Question: Is there a subcollection Y’ =
{Y;,,Y},,...,Y;,} consisting of ¢ sets such that
the union of the sets in Y” is equal to X?

THEOREM 5.1. The MEND problem is NP-complete.

Proof: It is easy to see that MEND is in NP. To
prove NP-hardness, we use a reduction from the X3C
problem defined above. Given an instance I of the X3C
problem, we create an instance I’ of the MEEND problem
as follows. For each element z; € X, we create a node
v, 1 < 4 < n. Similarly, for each subset Y; € Y, we
create a node wj, 1 < j < m. Let Vi = {v1,v2,..., 00}
and Vo = {wy,wa,...,w,}. The node set V for the
graph G(V, E) is given by V = V5 U VL. The edge set
E is constructed as follows. If Y; = {z;,,xj,, 2, }, then
we add the edges {w;,vj, }, {w;,v;,} and {w;,v;,} to
the graph. This completes the construction of the graph
G. Each node wj is assigned the label +1 (1 < j <m)
and each node v; is assigned the label —1 (1 < i < n).
The set P from which nodes can be deleted is V5. Note
that each edge in the graph is a conflict edge. Further,
the graph has exactly 3m edges. Therefore, the initial
energy value of G is 3m. The energy bound B for the
graph after node deletion is set to n. This completes
the construction of the MEND problem instance I’. It
is clear that the construction of I’ can be carried out in
polynomial time. We now argue that there is a solution
to the MEND instance I’ if and only if there is a solution
to the X3C instance I.

Suppose there is a solution to the X3C instance
I given by V' = {Y;,,Y},,..., Y, }. A solution to the
MEND instance is obtained by deleting from G all the
nodes from V5 except wj,, wj,, ..., w;,. Let G’ denote
the resulting graph. Note that each set in Y’ has exactly
three elements and Y is a solution to the X3C instance
I. Therefore, in G’, each node from V5 is of degree
three and each node from V; is of degree one. Hence,
G’ has the path property mentioned above. Further, the
number of edges in G’ is exactly n, and each edge is a
conflict edge. Therefore H(G') = n as required. Thus,
we have a solution to the MEND instance I’.

Now, suppose there is a solution consisting of the
node set P’ to the MEND instance I’. Let G’ denote
the graph after the nodes in P’ are deleted from G. We
have the following claim.

Claim: G’ contains exactly ¢ = n/3 nodes from V5.

Proof of Claim: Let VJ denote the set of nodes from
V2 in G'. We have two cases to consider.

Case 1: Suppose |V;] < ¢. Note that each node in Vj is
of degree three. Thus, the total number of edges from
the nodes in V5 is at most 3(¢ — 1) = 3¢ — 3 < n. These
3q — 3 edges are incident on the n nodes in V;. Thus,
at least one node in V; has degree zero. Such a node
does not have a path to a node in P — P’. This is a
contradiction since the solution to I’ must satisfy the
path property.

Case 2: Suppose |V5]| > ¢. Again, each node in VJ is
of degree three. Thus, the total number of edges from
the nodes in V4 is at least 3(¢ + 1) = 3¢+ 3 > n. Each
of these is a conflict edge and there are no agreement
edges in GG'. Thus, the energy of G’ is greater than n.
This is a contradiction since the solution to I’ has an
energy value of at most n. The claim follows.

From the above claim, it can be seen that each
node from V5 in G’ has a degree of three and that each
node in Vi has a degree of one. It follows that the
sets corresponding to the nodes from V5 in G’ form a
solution to the X3C instance I. This completes the
proof of Theorem 5.1. [ |

In view of Theorem 5.1, it is unlikely that the M-
step of the EM algorithm can obtain a global minimum
energy configuration in polynomial time. So, it is
reasonable to look for heuristic methods that reduce
the energy iteratively and reach a local minimum. We
discuss one such method below.

Suppose we are given an undirected graph G(V, E)
with a +1 or —1 label for each node and a subset P C V'
of candidate nodes that can be deleted. Consider any
nonempty subset P! of P. Of the edges incident on
the nodes in P!, let N} and N} denote respectively the
number of conflict edges and agreement edges. Define
the gain of P!, denoted by g(P!), to be the value



N! — Nl Let us call P! a candidate deletion set if
g(P1) is greater than zero and the graph G’ obtained by
deleting P! from G continues to have the path property
mentioned above. The reason why P! is useful is that
the graph G’ obtained by the deleting P! has a smaller
energy value than G. (In fact, H(G') = H(G)—g(P').)
It will be prohibitively expensive in terms of running
time to find a candidate deletion set by trying all
possible subsets of P. To make the process efficient,
we fiz an integer k and try only subsets of size at most
k. Thus, in each iteration, this method will examine
O(|P|*) subsets. This is reasonable for small values of k.
As mentioned earlier, for k£ = 1, the computation can be
distributed over the sensor network. When a candidate
deletion set is found, the deletion of the corresponding
nodes is guaranteed to decrease the energy. When no
candidate deletion set of size at most k is available, the
procedure stops with a local minimum solution. An
outline of the resulting heuristic algorithm is shown in
Figure 3.

6 Empirical Results

We present preliminary results for our work. Using
the TOSSIM sensor network simulator and MATLAB,
we created an artifical sensor network on a uniformly
spaced 50 x 50 grid, with a sensor node at each grid
point. Each node has its eight immediate neighbors as
its initial neighborhood. It is helpful to remember the
our M step removes nodes from the network to increase
the probability of the entire network. These removed
nodes can be considered as anomalies/outliers.

For our simple BOX example (see Figure 4), we
randomly removed 10% of all values and then applied
our distributed non-parametric EM algorithm to restore
them. Examples of networks with missing and then
restored values are shown in Figures 5 and 6. Note that
a few nodes around the boundary of the simple pattern
are turned off. We repeated this experiment ten times.
As expected, we found that on average only 0.4% of all
missing values were restored to their incorrect values
for this simple problem.

For our CIRCLES example (see Figure 7), we
randomly removed 10% of all values and then applied
our algorithms to restore them. Examples before and
after the restoration data sets are shown in Figures 8
and 9. We found that on average only 1.0% of all missing
values were not restored to their correct values. We
also found that many of the nodes along the boundaries
of adjacent circles were turned off as they can be
considered anomalous.

As a test of our algorithms ability to turn off nodes
that are outliers, we constructed a RANDOM example
(see Figure 10) where each nodes value is generated

randomly. We then randomly removed 10% of all values
and applied our algorithms to restore them. Examples
before and after restoration data sets are shown in
Figures 11 and 12. We found that on average, 2.1%
of all missing values were restored to their incorrect
values. More importantly, our algorithm turned off the
vast majority of nodes indicating that most of the node
values were anomalies as would be expected for random
data.

7 Conclusion and Future Work

We have presented preliminary results from a line
of research for mining using the resource constrained
Berkeley mote sensor network platform. We believe
that this is an important area as Berkeley motes are an
inexpensive and popular sensor network platform that
is commercially available in kit form. The basic sensing
boards can record temperature, light and noise. Often
this information is converted to binary data according
to a user settable threshold. The information generated
from these motes regularly contains missing or absurd
values due to transmission errors, low battery levels,
sensor reading errors and node failures. However, many
mining algorithms do not easily handle missing data.

In this paper, we suggest using the EM algorithm
to fill in the missing values as is the standard practice
in statistics. However, parametric EM would quickly
consume the battery life of the motes as it requires
repeated transmission of the expected values to a central
base-station for aggregation. Instead, we propose a
novel non-parametric EM algorithm that is motivated
by the Lattice spin-glass literature. The F-step in
our approach leads to a problem that can be solved
efficiently. Even though the problem associated with the
M-step is is computationally intractable, we propose a
heuristic that finds a more probable (but not necessarily
the most probable) model. Therefore, our approach is
an example of generalized EM [15].

A significant benefit of using non-parametric models
is that the FF and M steps can be distributed onto
the sensor network. This would not be possible for
parametric EM since the motes lack floating point
hardware and the memory-space needed to execute the
corresponding algorithms.

Our distributed non-parametric EM algorithm,
functionally, fills in the values for nodes that do not re-
port a value or report an absurd value. In addition, since
our M step removes nodes from the network/graph to
increase the overall probability, we are effectively remov-
ing outliers. Future work will investigate more complex
likelihood functions that incorporate the mining task
as well data pre-processing. For example, clustering is
easily facilitated by the introduction of a latent vari-



able (@) which is the cluster ID, for each node. The
complete data likelihood to maximizes would then be
P(Q,X,Y10).

Our preliminary experiment results show that for

synthetic sensor network data, the algorithm is capable
of restoring the vast majority of missing values correctly.
However, additional empirical work must be done to
determine and overcome the pragmatic problems in the
approach.
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Figure 4: Original Box Data for a 50 x 50 uniformally
spaced sensor network.
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