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A Reconstruction Error Based Framework for
Multi-label and Multi-view Learning

Buyue Qian, Xiang Wang, Jieping Ye, and Ian Davidson

Abstract—A significant challenge to make learning techniques more suitable for general purpose use is to move beyond i) complete
supervision, ii) low dimensional data, iii) a single label and single view per instance. Solving these challenges allows working with
complex learning problems that are typically high dimensional with multiple (but possibly incomplete) labelings and views. While other
work has addressed each of these problems separately, in this paper we show how to address them together, namely semi-supervised
dimension reduction for multi-label and multi-view learning (SSDR-MML), which performs optimization for dimension reduction and
label inference in semi-supervised setting. The proposed framework is designed to handle both multi-label and multi-view learning
settings, and can be easily extended to many useful applications. Our formulation has a number of advantages. We explicitly model
the information combining mechanism as a data structure (a weight/nearest-neighbor matrix) which allows investigating fundamental
questions in multi-label and multi-view learning. We address one such question by presenting a general measure to quantify the
success of simultaneous learning of multiple labels or views. We empirically demonstrate the usefulness of our SSDR-MML approach,
and show that it can outperform many state-of-the-art baseline methods.

Index Terms—Semi-Supervised Learning; Multi-label Learning; Multi-view Learning; Dimension Reduction; Reconstruction Error.
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1 INTRODUCTION

Four core challenges to making data analysis better
suited to real world problems is learning from: i) par-
tially labeled data, ii) high dimensional data, iii) multi-
label, and iv) multi-view data. Whereas existing work
often tackles each of these problems separately, giving
rise to the fields of semi-supervised learning, dimension
reduction, multi-label and multi-view learning respec-
tively, we propose and show the benefits of addressing
the four challenges together. However, this requires a
problem formulation that is efficiently solvable and eas-
ily interpretable. We propose such a framework which
we refer to as semi-supervised dimension reduction for
multi-label and multi-view learning (SSDR-MML).

Consider this simple experiment to illustrate the weak-
ness of solving each problem independently. We collect
50 frontal well-aligned face images of five people in ten
different expressions, each of which are associated with
three labels (besides name): gender, bearded, glasses
(see Fig. 1). We shall project the face images into a
2D space using different techniques that perform un-
supervised dimension reduction, supervised dimension
reduction and finally our approach that simultaneously
performs semi-supervised learning and dimension re-
duction for multi-label data. Fig. 2 shows the result,
where each symbol denotes a different person and each
color indicates a combination of labels. “Red” stands
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for female, unbearded, and non-glasses; “green” denotes
male, unbearded, and non-glasses; and “blue” indicates
male, bearded, glasses. For Principal Component Anal-
ysis (PCA) [1], an unsupervised dimension reduction
technique, we see that it finds a mapping of the images
into a 2D space (Fig. 2(a)) where people with different
labels are not well separated. This result is not surprising
given PCA does not make use of the labeled data. Using
the labels for only 30% of images for supervision, we see
that PCA+LDA [2] performs only marginally better in
Fig. 2(b) because the missing labels can not be inferred.
Our approach simultaneously infers the missing labels
and performs dimension reduction for this multi-label
data and, as shown in Fig. 2(c) to 2(e), produces accurate
predictions and monotonic improvement. During the
iterative process, images sharing similar labels gradually
aggregate while dissimilar images move further apart.

Fig. 1. Sample face images

A subsequent risk in applying learning techniques to
these challenging environments is that it is difficult to
know if the learning approach was successful. Elegant
frameworks such as structural and empirical risk min-
imization, though useful, have not been well extended
and applied to multi-label and multi-view settings. More
empirical evaluation approaches such as cross-fold vali-
dation do not work well in sparse label settings. In this
work we explore explicitly modeling the mechanism to
combine multiple labels and views as a data structure
such that we can more clearly see how the labels are
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(d) SSDR-MML Iteration 2
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(e) SSDR-MML Iteration 3

Fig. 2. Project faces to 2D using different methods. Symbols denote different people, and colors denote attributes.

propagated and the relationship between labels and
views. By examining properties of this structure we can
determine the success of the learning approach.

Our proposed work makes several contributions. We
create a reconstruction error based framework that can
model and create classifiers for complex datasets that are
multi-label and multi-view, and contain missing labels.
Multi-view learning involves multiple feature sets for the
same set of objects. Previous work [3], [4] shows that
simply concatenating all feature sets into one single view
is suboptimal and raises difficult engineering issues if the
views are fundamentally different (such as binary in one
view and real values in another, or dimension and nor-
malization issues). Our reconstruction error framework
makes the following contributions to the field:
• Simultaneously performs dimension reduction,

multi-label propagation in a multi-view setting.
• Explicitly models and constructs a sparse graph

showing which data points are related.
• Allow a quantification of how successful the learn-

ing process was by examining the properties of the
graph mentioned above (see Section 7).

• Allow the domain experts to clearly understand
where/how the labels were propagated and how the
views are complimentary using the graph.

• Allow multi-view learning without assuming con-
ditional independence of views and that each view
(by itself) is sufficient to build a weak classifier. This
is achieved as we do not serialize the learning prob-
lem, instead learning from all views simultaneously.

We begin our paper with a brief review of related stud-
ies in Section 2, and then present the general framework
in Section 3. Sections 4 and 5 show specific formulations
for multi-label and multi-view learning along with the
optimization algorithm we use for each. Section 6 shows
how to perform dimension reduction using our ap-
proach, and Section 7 presents new work that describes
a method to determine how successful our approach
was in a multi-label/view problem. Section 8 discusses
implementation issues and the corresponding solutions.
Our experimental section (Section 9) shows the results
that compare our work against existing competing tech-
niques. The new experiments include comparing against
a larger set of competing algorithms and verifying the
usefulness of our success measure of how well the model
performs. We conclude our work in Section 10.

Differences to Conference Version. The additional
work that is in this paper and not the conference version
[5] is: (1) extension to handle both multi-label and multi-
view learning, (2) a node regularizer to facilitate the
learning with imbalanced labeling, (3) a measure to
quantify the success of multi-label and multi-view learn-
ing, and (4) extensive new discussions and experiments.

2 RELATED WORK

Our work is related to four machine learning and data
mining topics: multi-label learning, multi-view learning,
multi-label dimension reduction, and semi-supervised learn-
ing. Here we review some related work in the four areas.

Multi-label Learning. Multi-label learning (MLL) is
motivated by the fact that a real world object natu-
rally involves multiple related attributes, and thereby
investigating them together could improve the overall
learning performance. MLL learns a problem together
with other related problems at the same time [6], that
allows the learner to use the commonality amongst
the labels. The hope is that by learning multiple labels
simultaneously one can improve performance over the
“no transfer” case. MLL has been studied from many
different perspectives, such as neural networks among
similar tasks [7], kernel methods and regularization net-
works [8], modeling task relatedness [9], [10], label set
propagation [11], and probabilistic models in Gaussian
process [12], [13] and Dirichlet process [14]. Although
MLL techniques have been successfully applied to many
real world applications, their usefulness are significantly
weakened by the underlying relatedness assumption,
while in practice some labels are indeed unrelated and
could induce destructive information to the learner. In
this work, we propose a measure to quantify the success
of learning, as to benefit from related labels and reject
the combining of unrelated (detrimental) labels.

Multi-view Learning. Practical learning problems of-
ten involves datasets that are naturally comprised of
multiple views [15]. MVL learns a problem together
with multiple feature spaces at the same time [16], that
allows the learner to perceive different perspectives of
the data in order to enrich the total information about the
learning task at hand [17], [18]. [19] has shown that the
error rate on unseen test samples can be upper bounded
by the disagreement between the classification-decisions
obtained from the independent characterizations of the
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data. Therefore, as a branch of MVL, co-training [3],
[20] aims at minimizing the misclassification rate in-
directly by reducing the rate of disagreement among
the base classifiers. Multiple kernel learning was re-
cently introduced by [21], where the kernels are linearly
combined in a SVM framework and the optimization
is performed as an semidefinite program or quadrati-
cally constrained quadratic program. [22] reformed the
problems as a block l1 formulation in conjunction with
Moreau-Yosida regularization, so that efficient gradient
based optimization could be performed using sequential
minimal optimization techniques while still generating a
sparse solution. [23] preserved the block l1 regularization
but reformulated the problem as a semi-infinite linear
problem, which can be efficiently solved by recycling the
standard SVM implementations and made it applicable
to large scale problems. Although the successes of MVL,
many existing approaches suffer from their own limita-
tions: conditional independent assumption is important
for co-training both theoretically and empirically [24] but
it rarely holds in real-world applications; multi-kernel
machines are limited to combining multiple kernels in
linear manners, and such linear scheme sometimes in-
duces poor data representations. In contrast, our SSDR-
MML framework does not require the conditional inde-
pendence assumption, and the multiple views are fused
in a nonlinear fashion.

Multi-label Dimension Reduction. Various dimen-
sion reduction methods have been proposed to simplify
learning problems, which generally fall into three cate-
gories: unsupervised, supervised, and semi-supervised.
In contrast to traditional classification tasks where
classes are mutually exclusive, the classes in multi-
task/label learning are actually overlapped and corre-
lated. Thus, two specialized multi-label dimension re-
duction algorithms have been proposed in [25] and [26],
both of which try to capture the correlations between
multiple labels. However, the usefulness of such meth-
ods is dramatically limited by requiring complete label
knowledge, which is very expensive to obtain and even
impossible for those extremely large dataset, e.g. web
images annotation. In order to utilize unlabeled data,
there are many semi-supervised multi-label learning
algorithms have been proposed [27] [28], which solve
learning problem by optimizing the objective function
over graph or hypergraph. However, the performance of
such approach is weakened by the lack of the concate-
nation of dimension reduction and learning algorithm.
To the best of our knowledge, [29] is the first attempt
to connect dimension reduction and multi-task/label
learning, but it suffers from the inability of utilizing
unlabeled data.

Semi-supervised learning. The study of semi-
supervised learning is motivated by the fact that while
labeled data are often scarce and expensive to obtain,
unlabeled data are usually abundant and easy to obtain.
It mainly aims to address the problem where the labeled
data are too few to build a good classifier by using the

large amount of unlabeled data. Among various semi-
supervised learning approaches, graph propagation has
attracted an increasing amount of interest [30]. [31] in-
troduces an approach based on a random field model
defined on a weighted graph over both the unlabeled
and labeled data; [32] proposes a classifying function
which is sufficiently smooth with respect to the in-
trinsic structure collectively revealed by known labeled
and unlabeled points. [33] extend the formulation by
inducing spectral kernel learning to semi-supervised
learning, as to allow the graph adaptation during the
label diffusion process. Another interesting direction for
semi-supervised learning is proposed in [34], where the
learning with unlabeled data is performed in the context
of Gaussian process. The encouraging results of many
proposed algorithms demonstrate the effectiveness of
using unlabeled data. A comprehensive survey on semi-
supervised learning can be found in [35].

3 THE FORMULATION

Notation. Given a set of n instances containing both
labeled and unlabeled data points, we define a general
learning problem on multiple labels and multiple feature
spaces. In the learning problem, there are p related
labels T = {t1, t2, · · · , tp}, each of which can be a
multi-class learning task with a given finite label set.
For the k-th label tk, we define a binary classifying
function Fk ∈ Bn×ck on its corresponding label set
Ck = {1, 2, · · · , ck}. Note that each instance will have
p label vectors {f1 . . . fp}, containing the label sets for
each multi-class label. Then fkij = 1 iff for the k-th
label, the i-th instance belongs to the j-th class (the i-
th instance ∈ class Ckj ) and fkij = 0 otherwise. Without
loss of generality, we assume that the points have been
reordered so that for label k, the first lk points are labeled
and the remaining uk points being unlabeled (where
n = lk + uk and typically lk � n), and construct a
prior label matrix Yk ∈ Blk×ck using the given labels in
label tk. Similarly, for each instance, there are q feature
descriptions from different views {x1

i ,x
2
i , · · · ,x

q
i } with

xki being the k-th feature description/view of the i-
th instance. Our aim is to create an asymmetric graph
G(V,E) over the n instances represented by the weight
matrix W ∈ Rn×n, where we set wii = 0 to avoid
self-reinforcement. The diagonal node degree matrix is
denoted by D, where djj =

∑n
i=1 wij . To make this paper

more readable, the notations used in this paper obey
the following rule: the superscript is used to denote the
index of a label or view, and the subscript is used to
denote the index of an instance, or an entry in a vector
or matrix. This article will often refer to row and column
vectors of matrices, for example, the i-th row and j-
th column vectors of W are denoted as wi• and w•j ,
respectively. The notations are summarized in Table 1.

The Framework. The key question in multi-label or
multi-view learning is how to incorporate the informa-
tion carried by related labels or feature spaces into the
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TABLE 1
Notation Table

Notation Description

ti The ith label
Fk, fki• Binary classifying matrix, vector (ith instance) for label k
Yk,yki• Prior label matrix, vector (ith instance) for label k

xki Feature vector of ith instance at kth view
W,wi• Graph weight matrix, and its ith row vector

D Graph degree matrix
Vk Node regularizer for label k
Ck The label set for label k
L(z) Local covariance matrix of a vector z
n, p, q Number of instances, labels, and views, respectively
lk, uk Number of labeled, unlabeled instances for label k
I Identity matrix

1, 0 Vector with all ones (zeros) entries
αk, βk, λ Tuning parameters for view, label, and regularizer

same learning problem. In graph transduction, such kind
of information encoding can be expressed in terms of
partially fitting the graph to all available labels or views
based on their importance or relatedness. As before,
we solve the label inference problem by following the
intuition that “nearby” points tend to have similar labels,
and adopt reconstruction error [5], [36]. These nearby
points are learnt using our algorithm and encoded in W,
and we can then use W to propagate the labels of labeled
points to their neighbors. To ensure that there is no given
label is overwritten, we constrain Fkl = Yk. Finally, to
ensure that the labels are not excessively propagated, we
add a regularization term ‖W‖2F . The general learning
framework can then be formulated as:

Q(W,F) =

q∑
k=1

αk
n∑
i=1

‖xki −
n∑
j=1

wijx
k
j ‖2F +

p∑
k=1

βk
n∑
i=1

‖fki• −
n∑
j=1

wijf
k
j•‖2F + λ‖W‖2F

s.t. ∀i, wi•1 = 1; Fkl = VkYk. (1)

where ‖ • ‖F denotes the Frobenius norm. The first term
in Eq. 1 is the reconstruction error over the multiple
feature descriptions of instances, the second term is the
reconstruction error over the classifying functions for the
multiple labels, and the third term is the L2 regulariza-
tion term. Note that the two reconstruction errors share
exactly the same weight matrix W, which enables the
multiple labels and views to help each other. The tuning
parameter 0 ≤ αk ≤ 1 is determined by the “importance”
of feature descriptions at the k-th view, and 0 ≤ βk ≤ 1
is decided by the “relatedness” between the label tk to
other labels. λ is a tuning parameter of the regularization
term. We will in Section 7 provide a success measure to
guide the selection of these parameters. The objective
function consists of the reconstruction errors of feature
spaces at different views and multiple related labels, as
it allows the graph weight partially fits to each of them.

Overcoming Class Imbalance. If one class is more
popular than another, there is a chance that even though
the labels of the less frequent class are propagated, they
are ignored in favor of the popular class. To overcome

this, we introduce the matrix Vk which is a node regu-
larizer [37] to balance the influence of different classes
in label tk. The matrix Vk = diag(vk) is a function of Yk

(given labels for label k), and Dl is the degree matrix of
the labeled points calculated from W:

vk =

ck∑
i=1

yk•i �Dl1(
yk•i
)T

Dl1
(2)

where � denotes Hadamard product, and 1 =
[1, 1, · · · , 1]T . By definition, VkYk is a normalized ver-
sion of the label matrix Yk satisfying

∑
i(V

kYk)ij = 1
for ∀j. The normalized label matrix VkYk enables the
highly connected instances to contribute more during
the graph diffusion/label propagation process. Since the
total diffusion of each class is normalized to one, the
influence of different classes is balanced even if the given
labels are imbalanced. Equally balanced class generally
leads to more reliable solutions. In Section 4 and 5, we
will explicitly apply the general framework to multi-
label and multi-view learning problems, respectively.

We shall now describe specific solutions for the multi-
label and multi-view settings separately. The generalized
algorithm for both settings is shown in Table 2.

4 MULTI-LABEL LEARNING

4.1 Formulation
We start with multi-label learning, where there are mul-
tiple labels over the same set of feature descriptions of
instances. Our motivation is to improve the learning
performance on the multiple labels by making use of
the commonality among them. Intuitively, multi-label
learning could greatly improve the learning performance
if the multiple labels are highly correlated. On the con-
trary, if there is no relatedness between the multiple
labels, multi-label learning cannot be beneficial and even
could be detrimental. We can better understand this
premise by interpreting our work as label propagation.
For multi-label learning to be successful, points with
the first label being labeled, should have this label trans-
ferred/propagated to points with other labels being labeled
and vice-versa. If this propagation is extensive then the
approach will be successful. This is the idea behind
the math of identifying the success of multi-label/view
learning in section 7. Under multi-label setting, the
generic framework shown in Eq. (1) is reduced to:

Q(W,F) = α

n∑
i=1

‖xi −
n∑
j=1

wijxj‖2F

+

p∑
k=1

βk
n∑
i=1

‖fki• −
n∑
j=1

wijf
k
j•‖2F + λ‖W‖2F

s.t. ∀i, wi•1 = 1; Fkl = VkYk. (3)

4.2 Alternating Optimization
The formulation shown in Eq. (3) is a minimization
problem involving two variables to optimize. Since this
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objective is not convex it is difficult to simultaneously
recover both unknowns. However, if we hold one un-
known constant and solve the objective for the other,
we have two convex problems that can be optimally
solved in closed form. In the rest of this section, we
propose an alternating optimization for the SSDR-MML
framework, which iterates between the updates of W
and Fk until Fk stabilized. The experimental results
(see Table 4 and 6) indicate that converging to the local
optima still provides good results and is better than less
complex objective functions that are solved exactly.

4.2.1 Update for W
If the classifying function Fk is a constant, then the
weight matrix W can be recovered in closed form as
a constrained least square problem. Since the optimal
weights for reconstructing a particular point is only
dependent on other points, each row of the weight
matrix W can be obtained independently. The problem
reduces to minimize the following function:

min
wi•

Q(wi•) = α‖xi −wi•X
′
i‖2F

+

p∑
k=1

βk‖fki• −wi•F
k
i

′‖2F + λ‖wi•‖2F

s.t. wi•1 = 1 (4)

where X′i and Fki
′ denote the set difference {X\xi} and

{Fk \ fki•} respectively, i.e. the set of all instances and
their labels except the ith instance and its labels, and as
before ‖ • ‖F denotes Frobenius norm. The derivative of
the cost function with respect to wi• can be written as:

∇wi•Q(wi•) = wi•(α
(
1xi −X′i

) (
1xi −X′i

)T
+

p∑
k=1

βk
(
1fki• − Fk

i

′)(
1fki• − Fk

i

′)T
+ λI) (5)

To provide the solution for W, we first introduce
the local covariance matrix. Let L(xi) denote the local
covariance matrix of the feature description xi of the
ith instance. The term “local” refers to the fact that the
instance is used as the mean of the calculation.

L(xi) = (1xi −X′i) (1xi −X′i)
T (6)

where as before xi is a row vector, and 1 is a column
vector with all one entries. Using a Lagrange multiplier
to enforce the sum-to-one constraint, the update of wi•
(the weights for the ith instance) can be expressed in
terms of the inverse local covariance matrices.

wi• =
1T
(
αL(xi) +

∑p
k=1 β

kL(fki•) + λI
)−1

1T
(
αL(xi) +

∑p
k=1 β

kL(fki•) + λI
)−1

1
(7)

where L(fki•) is defined in the same manner as L(xi)
shown in Eq. (6), and I represents the identity matrix. As
previously defined, α and β are the tuning parameters
for the views and labels respectively, and λ controls
the penalty of the L2 norm. The optimal weight matrix

consists of all the row vectors wi• for i = 1, · · · , n. The
L2 norm slightly improves the sparsity of the recon-
struction weights, and further sparsity can be obtained
by discarding the neighbors with very small weights,
since they are barely effective in the graph diffusion.
Note that Eq. (7) can not guarantee the weights are non-
negative. We empirically found that the negative weights
are infrequent and generally have small values, and thus
only have little effect to the learning performance. In our
experiment, we keep both positive and negative weights,
as a positive weight indicates two points are similar, and
then a negative weight indicates the opposite.

4.2.2 Update for Fk

In this step, we assume the weight matrix W is constant,
then the goal is to fill in the missing labels in Fku. For a
label tk, we relax the binary classifying function Fk to
be real-valued, so that the optimal Fku can be recovered
in closed form. Since the feature reconstruction error
(first term of Eq. (3)) is a constant, we can rewrite the
formulation in matrix format:

min
Fk

Q(Fk) = 1

2
tr
{(

Fk
)T

(I −W)
T
(I −W)Fk

}
s.t. Fkl = VkYk (8)

where Yk carries the given labels of the kth label,
and Vk is the corresponding the node regularizer. To
express the solution in terms of matrix operations, we
assume the instances have been ordered so that the first
l are labeled and the remaining u are the unlabeled
instances. We can then split the weight matrix W and
classification function Fk after the lkth row and column,

i.e. W =

[
Wll Wlu

Wul Wuu

]
and Fk =

[
Fkl
Fku

]
. Note that we

do not attempt to overwrite the labeled instances. The
cost function is convex, thereby allowing us to recover
the optimal Fk by setting the derivative ∇FkQ(Fk) = 0.

(
I −

[
Wll Wlu

Wul Wuu

])T (
I −

[
Wll Wlu

Wul Wuu

])[
Fkl
Fku

]k
= 0 (9)

s.t. Fkl = VkYk.

where 0 is a matrix with all zeros. The optimization
above yields a large sparse system of linear equations
that can be solved by a number of standard methods. The
most straightforward one is the closed-form solution via
matrix inversion. The predictions for unlabeled instances
are obtained in closed form via matrix inversion:

Fk
u =

(
WT

luWlu + (Iu −Wuu)
T (Iu −Wuu)

)−1

(
WT

lu (Il −Wll) + (Iu −Wuu)
T Wul

)
VkYk (10)

where Il and Iu denote identity matrices with dimension
l and u, respectively. The predictions for an unlabeled
instances Ii can be obtained by setting fkij = 1 where
j = argmaxj f

k
ij , and other elements in fki• to zeros.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2014.2339860

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

4.2.3 Progressive Update for Yk

Since there is no theoretical guarantee that our proposed
alternating optimization will converge, it is possible that
the prediction of the current iteration oscillates and
backtracks from the predicted labellings in previous
iterations. A straightforward solution to address this
problem is to set up a small tolerance, but it is difficult
for a practitioner to set the value of tolerance. Alterna-
tively, we propose a progressive method to update Yk

incrementally instead of updating Fk to remove such
unstable oscillations. In each iteration, we only make the
most confident prediction, and treat this as the ground
truth in future training. To do this, we consider the prior
label matrix Yk as an unknown in the cost function
Eq. (8). The Choosing of the most confident prediction
is guided by the direction with largest negative gradient
in the partial derivative ∂Q(Fk,Yk)

∂Fk
.

∂Q
∂Fk

=


(
∂Q
∂Fk

)
l(

∂Q
∂Fk

)
u

 = (I −W)
T
(I −W)

[
VkYk

0

]
(11)

For the label k, let (i∗, j∗)k denotes the position of the
most confident prediction, which can be decided by find-
ing the largest negative value in the partial derivative.

(i∗, j∗)k = argmini,j

(
∂Q
∂Fk

)
u

(12)

In each iteration, we locate the position (i∗, j∗)k in the
matrix Fku, and reset the entries in fk(lk+i∗)•. In particular,
we set the entry fk(lk+i∗),j∗ to 1 and other entries in the
(lk + i∗)-th row to 0, and then update Yk by:

Yk ⇐=
[

Yk

fk(lk+i∗)•

]
(13)

After each prediction, we update lk with lk ⇐ lk + 1,
recompute the weight matrix W using Eq. (7) based on
the newly obtained Y, and update the node regularizer
V. The whole procedure repeats until all the missing
labels in the p labels are inferred.

5 MULTI-VIEW LEARNING

5.1 Formulation
We now apply our framework to multi-view learning,
where there are multiple feature descriptions obtained
from different views for the same set of instances.
Our goal is to improve learning performance by taking
advantage of the complementary information carried
by the multiple views of data. Under this setting, the
general framework in Eq. (1) can be simplified to:

Q(W,F) =

q∑
k=1

αk
n∑
i=1

‖xki −
n∑
j=1

wijx
k
j ‖2F

+β

n∑
i=1

‖fi• −
n∑
j=1

wijfj•‖2F + λ‖W‖2F

s.t. ∀i, wi•1 = 1; Fl = VY. (14)

5.2 Alternating Optimization

The optimization problem can be solved using a similar
approach we proposed for multi-label learning.

Update for W. While assuming the classification func-
tion F is fixed, the weight matrix W can be recovered
as now a set of constrained least square problems. Given
the definition of local covariance matrix shown in Eq. (6),
the weights wi• for the ith instance can be solved inde-
pendently by applying a Lagrange multiplier.

wi• =
1T
(∑q

k=1 α
kL(xki ) + βL(fi•) + λI

)−1
1T
(∑q

k=1 α
kL(xki ) + βL(fi•) + λI

)−1
1

(15)

Update for F. The classifying function F can be
recovered using exactly the same method proposed in
Section 4.2.2 or 4.2.3. Specifically, the update for F can be
calculated using the closed form solution in Eq. (10), or
the progressive solution shown from Eq. (11) to Eq. (13).

6 SPECTRAL EMBEDDING FOR DIMENSION
REDUCTION STEP

In this section we describe an extension to our frame-
work which allows dimension reduction to easily be
performed. It can be used as an additional step in the
optimization or a post-processing step after the opti-
mization converged. It is useful as a method to more
easily visualize the results of our algorithm (as done in
Fig. 2(a)) or when working with high dimensional data
(as done for the results shown in Fig. 4(c)).

Since the weight matrix W captures the intrinsic geo-
metric relations between data points, dimension reduc-
tion can be performed using W. Again that the spectral
embedding step is unnecessary for learning purpose, it
is only used to dimension reduction. Let d denote the
desired dimension, the dimension reduced instance x̂i
minimizes the embedding cost function:

Q(X̂) =

n∑
i=1

‖x̂i −
n∑
j=1

Wijx̂j‖2 (16)

where X̂ ∈ Rn×d is the dimension reduced data matrix.
The embedding cost in Eq. (16) defines a quadratic form
in the vector x̂i. Since we want the problem well-posed
and also to avoid trivial solutions, the minimization can
be solved as a sparse eigen decomposition problem:

min Q(X̂) = tr
(
X̂TMX̂

)
(17)

where M = (I −W)T (I −W). The optimal embedding
can be recovered by computing the smallest d+1 eigen-
vectors of the matrix M, and then discard the smallest
eigenvector which is an unit vector. The remaining d
eigenvectors are the optimal embedding coordinates that
minimize equation (16).
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7 QUANTIFYING THE SUCCESS OF MULTI-
LABEL AND MULTI-VIEW LEARNING

Multi-label and Multi-view learning have been success-
fully applied to many real-world applications, however,
in many data sets the performance is no better than and
sometimes even worse than if each classification problem
were solved independently [38]. Consequently, avoiding
destructive fusing of information is an essential element
in multi-label and multi-view learning. However, very
few approaches produce a measure to determine if the
transfer of knowledge between labels or views was
successful. In this section we outline such a measure and
later in Section 9.4 empirically verify its usefulness.

Multi-label Learning. Our measure makes use of our
interpretation of the SSDR-MML framework as perform-
ing label propagation and the mechanism for informa-
tion combining W. Let F denote a binary label matrix
F ∈ Bn×p, where p is the number of labels defined on a
set of n instances. fij = 1 if instance i can be categorized
into class j, and fij = −1 otherwise. After the training
step we have a weight matrix W available built upon the
set of instances, where W carries the information learnt
from the multiple labels and views. Since W row-wise
sums to one, then W can be viewed as a random walk
transition matrix. To quantify the success of multi-label
learning, we define a measure of cross propagation (CP):

CP (W) = FT (W)
z
F (18)

where z is a positive integer, indicating how many steps
the labels have to propagate. The resulting CP (W) is a
p × p matrix where the entry at i, j can be interpreted
as how well label i is propagated to the instances labeled with
label j. Therefore, the values on the diagonal measure the
success of intra-label reconstruction, and the off-diagonal
values measure the success of inter-label reconstruction. It
has been widely reported [7], [8] that multi-label learning
performs better when labels are correlated, then the sum
of off-diagonal entries denotes how well the knowledge
transfer among multiple labels has occurred.

Multi-vew Learning. In multi-view learning, CP (W)
measures how well the class labels are reconstructed using
the knowledge carried by multiple views. For multi-view
learning, a relatively large value in CP (W) (compared to
the “single” case) implies that the joint learning of views
was successful, while a smaller value indicates that
detrimental view combining has occurred. The proposed
success measure not only offers a way to quantify the
performance of joint learning of multiple labels/views,
but also can be used to guide the selection of parameters
in many existing multi-labels/view learning algorithms.

8 IMPLEMENTATION AND PRAGMATIC ISSUES

In this section, we outline issues that we believe make
implementation and using of our work easier.

8.1 Uses for Multi-label and Multi-view Learning
The proposed framework is motivated by the fact that
multi-label and multi-view learning may improve the
learning performance over the “single” case by exploit-
ing the complementary knowledge contained in the
multiple labels or views. In multi-label learning, higher
learning performance could be obtained if the multiple
labels are highly correlated, while worse performance
could happen if the multiple labels are irrelevant. In
multi-view learning, intuitively, the multiple views are
supposed to be neither too different nor too similar to
each other. There would not be much gain if the multiple
views are too similar. On the other hand, if the multiple
views are too different, multi-view learning could even
be harmful. Since we do not want to over-constrain
the graph to any label or view while still absorbing
knowledge from each of them, the proposed approach is
in fact a moderate solution that partially fits the graph
to each label or view in a weighted fashion.

In some practical cases, we may want to regard one of
the multiple labels or views as the target label or view,
and consider the others as the source label or view to
help it. In that case, we set the βk or αk of the target label
or view to 1, and set the weights of source labels or views
to lie between 0 and 1. Then, the weights of these sources
labels and views can be used to encode the relative
“relatedness” and “importance” to the main label and
view, respectively. For a source label or view, a weight of
value 0 indicates that it is “irrelevant” or “contradictory”
to the main label or view, while a weight of value 1
implies that it is “highly correlated” or “complementary”
to the target label or view, respectively.

8.2 Parameter Selection

TABLE 2
SSDR-MML Algorithm (progressive)

Input:
feature descriptions xki , for i ∈ {1, · · · , n} and k ∈ {1, · · · , q}
prior labels matrix Yk, for labeled instances and k ∈ {1, · · · , p}
regularization parameters αk, βk and λ.

Training Stage:

initialize: count m = 0, (Yk)
0

= Yk, Fkl = (Yk)
0
.

do{

compute wmi• =
1T

(∑q
k=1

αkL(xki ) +
∑p
k=1

βkL(fki•) + λI
)−1

1T
(∑q

k=1
αkL(xk

i
) +

∑p
k=1

βkL(fk
i•) + λI

)−1
1
;

update Dm, dmjj =
∑n
i=1 w

m
ij ;

update (vk)
m

=
∑ck
i=1

(
yk•i

)m �Dm1((
yk•i

)m)T
Dm1

;

locate (i∗, j∗)k = arg mini,j

(
∂Q

∂Fk

)
u

;

set fk
(lk+i∗)j∗

= 1, and fk
(lk+i∗)j

= 0 for j 6= j∗ ;

update
(
Yk

)m+1
=


(
Yk

)m
fk
(lk+i∗)•

;
update Fkl =

(
Yk

)m+1
, and remove the (lk + i∗)th instance from Fku;

update m = m + 1, lk = lk + 1;

}while(Fku! = φ)

Output:
weight matrix W, label predictions Yku for k ∈ {1, · · · , p}.

The general solution for the proposed algorithm can
be implemented as shown in Table 2. There are three
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parameters in our proposed framework αi (the weight
of view i), βj (the weight of label j), and λ (the regu-
larization parameter). The regularization term has two
advantages, one is to simplify the learning model, and
the other one is to avoid excessive label propagation.
Empirically, we found that the learning performance of
our approach is not sensitive to λ, which also implies
that the excessive label propagation can be avoided if
λ is not too small. For the parameters αk and βk, we
wish to show that the performance of the algorithm
does not fluctuate greatly with respect to minor changes
in the parameter values. We shall empirically show the
stability of the performance of our framework with
respect to the parameters (αk and βk) in Section 9.3.
Though the algorithm’s performance is stable, how to
set the parameters is still an open question as is the
case for most learning algorithms. Two alternatives are
to use the knowledge from domain experts to guide
or constrain the selection of parameters, e.g. it is well
known that the color feature should be more emphasized
in the image classification problem “tomato v.s. washing
machine”. Alternatively, our previously defined measure
for success of learning CP(W) in section 7 could also be
used to guide the selection of parameters which is the
approach we use in our experimental section.

8.3 Computational Complexity

The standard implementation of the algorithm shown
in Table 2 takes O(mn3) time, where m denotes the
number of missing labels, and n denotes the number
of instances. Since the fact m < n , the computation
complexity of our algorithm is dominated by the matrix
inversion, where standard methods require O(n3) time.
Fig. 3 reports the empirical runtime of our method on
SIAM TMC 2007 dataset. The reported time is calculated
on a laptop equipped with Intel i7 2.60 GHz CPU, and 16
GB memory. The details of the dataset and experimental
settings can be found in Section 9. We see from the result
that the runtime decreases significantly along with the
decrease of the number of missing labels.
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Fig. 3. Runtime w.r.t. varying number of missing labels.

To speed up the computation, the weight matrix W
can be recovered by solving a linear system of equations
as it is much more efficient. In Eq. (7) or Eq. (15)
we see that the denominator of the fraction is simply

a constant which rescales the sum of i-th row of W
to 1. Therefore, in practice, a more efficient way to
recover the optimal wi• is to solve a linear system
of equations, and then rescale the sum of weights to
one. Let Li denote the mixed local covariance matrix(∑q

k=1 α
kL(xki ) +

∑p
k=1 β

kL(fki•) + λI
)
, wi• can be re-

covered by solving Liwi• = 1, and then rescale the sum
of wi• to 1. When a local covariance matrix is singular,
the linear system of equations can be conditioned by
adding a small multiple of the identity matrix Li ←
Li +

ξtr(Li)
k I , where k denotes the number of neighbors

for each instance, and ξ is a small value (ξ � 0.1).

8.4 Extensions for Noisy Prior Labels
We propose an extension to our method that allows some
incorrect labels to be ignored. Since we previously as-
sumed that all the initial labels are accurate, the solution
of Fk provided in Eq. (10) or Eq. (11) suffers from the
problem that there may be considerable noise scattered
in labeled data. A reasonable solution to address this
is to relax the inference objective function by replacing
the constraint on the given labels with an inconsistent
penalty term, namely local fitting penalty [32] allowing
partial neglect of the given labels. We now expand the
prior label matrix Yk to be a n×ck matrix, and fill in the
missing label locations with zeros. To relax the inference
problem shown in Eq. (8), we add in the inconsistent
penalty term and rewrite the cost function as

min
Fk

Q(F
k
,Y

k
) =

1

2
tr{
(
F
k
)T

(I −W)
T
(I −W)F

k

+γ
(
F
k −V

k
Y
k
)T (

F
k −V

k
Y
k
)
} (19)

where γ (> 0) is a tuning parameter to balance the
influence of label reconstruction error and local fitting
penalty. If we set γ =∞, the cost function will reduce to
Eq. (8). The cost function is convex and unconstrained,
then the update for Fk (Eq. (10)) can be rewritten as

∂Q
∂Fk

= (I −W)T (I −W)Fk + γ
(
Fk −Yk

)
= 0 =⇒

Fk =
(

1
γ (I −W)T (I −W) + I

)−1
VkYk (20)

Accordingly, in this relaxed version of label infer-
ence, the progressive update for Yk will also change.
Since the prior label matrix Yk is included in the
cost function Eq. (19), the optimization problem is now
over both the classifying function Fk and the prior
label matrix Yk, mathematically minFk,Yk Q(Fk,Yk).
Therefore, we replace Fk in the cost function Eq. (19)
with its optimal solution shown in Eq. (20), let A =(

1
γ (I −W)

T
(I −W) + I

)−1
, the optimization problem

over Yk can be formulated as

Q(Y
k
) =

1

2
tr{
(
AV

k
Y
k
)T

(I −W)
T
(I −W)

(
AV

k
Y
k
)

+γ
(
AV

k
Y
k −V

k
Y
k
)T (

AV
k
Y
k −V

k
Y
k
)
}

=
1

2
tr{
(
V
k
Y
k
)T

[A
T
(I −W)

T
(I −W)A

+γ(A− I)T (A− I)]
(
V
k
Y
k
)
} (21)
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Let B = AT (I −W)
T
(I −W)A+ γ(A− I)T (A− I),

we write the gradient ofQwith respect to VkYk as show
in Eq. (22), which substitutes Eq. (11).

∂Q
∂VkYk

=
(
BTB

)
VkYk (22)

Base on ∂Q
∂Yk = ∂VkYk

∂Yk
∂Q

∂VkYk and basics in algebra,
we know that the optimization of Q with respect to
Yk is equivalent to the optimization over VkYk. Conse-
quently, the most confident prediction is located at the
position shown in Eq. (23), which substitutes Eq. (12).

(i∗, j∗)k = argmini,j

(
∂Q

∂VkYk

)
u

(23)

9 EMPIRICAL STUDY

In this section, we empirically evaluate our framework
SSDR-MML and its success measure on several real-
world applications under multi-label/view settings.

9.1 Multi-label Learning

9.1.1 Experimental Settings
We compare the performance of our SSDR-MML ap-
proach against five baseline methods: (1) RankSVM
[39], a state-of-the-art supervised multi-label classifica-
tion algorithm based on ranking the results of support
vector machine (SVM); (2) ML-GFHF, the multi-label
version (two-dimensional optimization) of the harmonic
function [27]; (3) Regularized MTL [8], a regularized
multi-task learning method, which assumes all predict-
ing functions come from a Gaussian distribution; (4)
AdaBoost-MH [40], which is an extension of AdaBoost
for multi-label data that tries to minimize hamming
loss; (5) BR-RDT [41], Binary Relevance based Ran-
dom Decision Tree, which is an ensemble method. In
RankSVM, we choose RBF kernel function (σ is selected
using cross validation), and fix the penalty coefficient
C = 1000. For ML-GFHF, we construct a k-NN (k = 15)
graph similarity via RBF kernel function with length
scale σ selected using cross validation. For AdaBoost-
MH, the number of boosting rounds parameter is set
to 100. For BR-RDT, there are 100 trees constructed in
total, the maximum depth allowed to be the half of
the number of features, and the minimal instances on
a leaf node is 10. In our SSDR-MML approach, we set
the regularization parameter λ = 1 and determine the
importance of each label by maximizing the learning
success measure, βi = argmaxβi CP(W). For fairness,
the parameters (λi) in Regularized MTL are set to the
values that are equivalent to the parameter setting of
SSDR-MML. We adopt micro-averaged F1 measure (F1

Micro) [42] to evaluate the relative performance, which
is a standard evaluation method for multi-label learning.
Dataset. We evaluate the performance of our multi-label
method on three different types of real world datasets.

• Yeast [43]: consists of 2, 417 gene samples, each of
which belongs to one or several of 14 distinct func-
tional categories, such as transcription, cell com-
munication, protein synthesis, Ionic Homeostasis,
and etc. The feature descriptions of Yeast dataset
are extracted by different sequence recognition al-
gorithms, and each gene sample is represented in a
103 dimensional space. The tasks on Yeast dataset are
to predict the localization site of protein, where each
sample is associated with 4.24 labels on average.

• Scene: image dataset consists of 2, 407 natural scene
images, each of which is represented as a 294-
dimensional feature vector and belongs to one or
more (1.07 in average) of 6 categories (beach, sunset,
fall foliage, field, mountain, and urban).

• SIAM TMC 2007: text dataset for SIAM Text Mining
Competition 2007 consisting of 28, 596 text samples,
each of which belongs to one or more (2.21 in aver-
age) of 22 categories. To simplify the problem, in our
experiments we randomly select a subset containing
3, 000 samples from the original dataset, then use
binary term frequencies and normalize each instance
to unit length (30, 438-dimensional vector).

We chose these three multi-label datasets because that
represent a range of situations, most instances in Yeast
have more than one label, while most instances in Scene
have only one label, and SIAM TMC 2007 data is in a
very high dimensional space.

9.1.2 Empirical Result
To comprehensively compare our proposed algorithm
with the five baseline methods, we train the algorithms
on data with varying numbers of labeled instances. In
each trial, for each label we randomly select a portion
of instances from the dataset as the training data, while
the remaining unlabeled ones are used for testing. The
portion of labeled data gradually increases from 2.5%
to 50% with a step size of 2.5%. In Fig. 4, we report
the average F1 Micro scores and standard deviations, all
of which are based on the average over 50 trials. For
the three real-world datasets that we explored in the
experiments, when all experimental results (regardless of
step size) are pooled together, we see that the proposed
approach SSDR-MML performs significantly better than
the competing algorithms in terms of both lower error
rate and standard deviation. Compared to the result in
Fig. 4(a) and 4(b), we observe from Fig. 4(c) that the
performance of our method is especially good on the
high-dimensional data SIAM TMC 2007. This implies
that on high-dimensional data typical multi-label meth-
ods would fail, due to the lack of the connection between
dimension reduction and learning algorithm. By the
promising performance of the proposed method shown
in Fig. 4(c), where we iteratively perform learning and
spectral embedding on the SIAM TMC 2007 dataset, we
demonstrate the effectiveness of connecting dimension
reduction and learning. This is especially useful when
the data are in the high-dimensional space.
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Fig. 4. Learning performance measured by F1 Micro score w.r.t. different numbers of labeled instances

9.2 Multi-view Learning
9.2.1 Experimental Settings
We evaluate our framework for multi-view learning on
two applications: (1) image classification on Caltech [44]
dataset; and (2) a set of UCI benchmarks. We compare
the performance of our SSDR-MML approach against
three baseline models: (1) SVM, standard support vector
machine [45] on each view of the data separately. (2)
SKMsmo, multiple kernel learning [22] solved by sequen-
tial minimal optimization; (3) Bayesian Co-Training (BCT)
[20], a Gaussian process consensus learner. To further un-
derstand our framework, we also compare SSDR-MML
against two of its variates, i.e. (i) SSDR-MML Simple:
SSDR-MML on single-viewed data which is obtained by
simply joining the two view features into a single view;
and (ii) SSDR-MML nonsparse, our SSDR-MML imple-
mentation without sparsity enforcement, which means
excessive label propagation could happen. For both SVM
and SKMsmo, the kernel is constructed using RBF with
length scale σ = 1

n(n−1)
∑n
i=1

∑
j 6=i ‖ xi − xj ‖, and the

penalty coefficient C0 is fixed to 100. For Bayesian Co-
Training (BCT), we choose a standard Gaussian process
(GP) setting: zeros mean function, Gaussian likelihood
function, and isotropic squared exponential covariance
function without latent scale. The hyperparameters in
GP models can be adapted to the training data, thus
the predictions of Bayesian Co-Training can be read-
ily obtained by consenting the predictions of GP from
different views using the learned noise variances. To
avoid overfitting, the number of function evaluations in
gradient-based optimization is limited to a maximum of
100. In our SSDR-MML approach, we set λ = 1, and
the importance of each view is decided by finding the
maximal success measure, αi = argmaxαi CP(W).

9.2.2 Color-aided SIFT Matching
Caltech-256 image dataset [44] consists of 30, 608 images
in 256 categories, where each category contains around
100 images on average. We conduct the experiments
on ten binary labels that are randomly selected from
Caltech-256, as summarized in Table 3. Since images are

difficult to describe, there are several standard meth-
ods to extract features from an image, such as edge
direction, and color or visual word histogram. However,
there is no straightforward answer to tell what kind
of features can outperform others, as the performance
of each type of features highly depends on the specific
applications. Thus, it could be desirable if we can make
use of multiple image descriptors to help the learner.
In the experiment, we exploit two image descriptions
for each image: (1) color histogram, a representation of
the distribution of colors in an image; and (2) visual
word histogram, which is based on the successful image
descriptor SIFT [46]. Although SIFT can accurately detect
and describe interesting points in an image, it suffers
from the limitation that information carried by color is
ignored. Consequently, higher learning accuracy can be
expected if we are able to perform learning on both SIFT
and color simultaneously. In the preprocessing of the
data, we construct the color histogram (80 bins in HSV
color space) by counting the number of pixels that have
colors in each of a fixed list of color ranges that span
the color space. To produce the visual word histogram,
we first build a visual vocabulary (800 visual words) by
clustering all the SIFT descriptions collected from the
image dataset, and then the histograms can be obtained
by mapping images to the visual codebook, which is
often called bag-of-word.

TABLE 3
Ten binary labels selected from Caltech-256

Label Binary Label Data Size
1 binocular vs killer-whale 216 vs 91
2 breadmaker vs telephone-box 141 vs 84
3 eyeglasses vs skyscraper 82 vs 95
4 fireworks vs self-propelled lawnmower 100 vs 120
5 mars vs saturn 155 vs 92
6 pci-card vs sunflower 105 vs 80
7 swiss-army-knife vs telephone-box 109 vs 84
8 tennis-ball vs zebra 98 vs 96
9 tomato vs washing machine 103 vs 84
10 video-projector vs watermelon 97 vs 93

We compare the performance of our approach against
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TABLE 4
Mean error rates and standard deviations (in percentage)
of the ten binary labels from Caltech-256. The best result

is shown in bold.
Methods Label 1 Label 2 Label 3

SVM-SIFT 14.05±3.75 13.77±3.97 23.80±8.00
SVM-color 11.45±3.16 15.44±3.86 19.81±3.76
SKMsmo 11.26±3.20 15.20±3.89 19.84±3.58

BCT 11.63±3.32 14.78±3.88 19.85±3.28
SSDR-MML Simple 11.73±3.63 13.95±3.91 21.27±5.21

SSDR-MML nonsparse 15.09±5.37 16.31±4.07 23.83±8.22
SSDR-MML 9.14±2.55 12.08±3.15 19.87±3.26

Methods Label 4 Label 5 Label 6
SVM-SIFT 7.11±2.47 24.54±6.02 11.77±4.77
SVM-color 5.55±1.91 29.72±4.96 15.04±3.98
SKMsmo 5.52±1.89 25.17±3.13 14.55±3.93

BCT 4.88±1.93 24.26±4.20 13.43±4.48
SSDR-MML Simple 5.21±2.01 27.58±4.79 13.92±4.38

SSDR-MML nonsparse 5.39±3.84 31.75±6.45 16.08±5.03
SSDR-MML 4.99±2.14 21.80±3.13 11.33±3.93

Methods Label 7 Label 8 Label 9
SVM-SIFT 16.39±2.72 8.91±1.81 25.27±6.70
SVM-color 13.45±3.48 23.50±5.22 17.80±4.54
SKMsmo 13.40±3.50 22.56±5.06 17.76±4.72

BCT 14.36±4.45 21.29±4.98 17.42±4.74
SSDR-MML Simple 15.14±3.36 20.25±4.07 19.61±5.13

SSDR-MML nonsparse 16.77±4.89 14.43±5.21 17.98±6.36
SSDR-MML 13.48±3.03 10.10±2.13 14.56±4.66

Methods Label 10
SVM-SIFT 18.95±6.68
SVM-color 12.94±4.38
SKMsmo 12.57±4.17

BCT 15.24±6.14
SSDR-MML Simple 16.43±5.02

SSDR-MML nonsparse 16.27±6.18
SSDR-MML 12.14±4.90

the three baseline techniques on the ten predefined
binary labels. In each trial, we randomly select 10% of
the images as the training set, and the rest of the images
are used as the test set. The experiment are repeated 50
times, and the mean error rates and standard deviations
are reported in Table 4. It can be seen that in general
the proposed SSDR-MML approach outperforms all the
competing techniques. Moreover, it performs statistically
significantly better than baseline models with both lower
mean error rate and standard deviation. In addition, as
we can observe from the result, the multi-view learning
algorithms generally perform better than any of the
single-view learners. This confirms the motivation of
multi-view transfer that using the knowledge carried by
all available feature descriptions to improve the perfor-
mance of the learner. As expected, SIFT is more discrimi-
native on some labels, while color is more discriminative
on the other labels. Sometimes, the performances of SIFT
and color feature are dramatically different. For example,
in the binary label “tennis-ball vs zebra” color feature
is much reliable than SIFT, while in the binary label
“video-projector vs watermelon” SIFT performs signif-
icantly better than color. This demonstrate the necessity

of multi-view transfer, as it is generally difficult for the
users to tell which kind of features can outperform oth-
ers. By comparing the performance of SSDR-MML with
its two variates, we see that (1) simply placing features
from multiple views into a single view does not work
well due to the increased dimension and normalization
issues and (2) Sparsity need to be enforced in semi-
supervised settings since excessive label propagation is
generally detrimental and unreliable.

9.2.3 UCI Benchmarks

The second evaluation of multi-view learning is carried
out on a set of UCI benchmarks [47], namely (1)Adult
(subset): extracted from the census bureau database; (2)
Diabetes: contains the distribution for 70 sets of data
recorded on diabetes patients; (3) Ionosphere: radar data
was collected by a system that consists of a phased
array of 16 high-frequency antennas with a total trans-
mitted power on the order of 6.4 kilowatts; (4) Liver
Disorders: attributes are collected from blood tests which
are thought to be sensitive to liver disorders; (5) Sonar:
contains signals obtained by bouncing sonar signals off
a metal cylinder at various angles and under various
conditions.; and (6) SPECT Heart: describes diagnosing of
cardiac Single Proton Emission Computed Tomography
(SPECT) images. We chose these six datasets since they
have been widely used in the evaluations of various
learning algorithms. To create two views for each of the
datasets, we equally divide the features of each dataset
into two disjoint subsets such that they are related but
different, and thus each subset can be considered as
one view. The details of the six UCI benchmarks are
summarized in Table 5.

TABLE 5
Statistics of UCI benchmarks

Dataset Name Instance No. View 1 Feature No. View 2 Feature No.

Adult (subset) 1, 605 60 59
Diabetes 768 4 4

Ionosphere 351 17 17
Liver Disorders 345 3 3

Sonar 208 30 30
SPECT Heart 270 7 6

We follow the previously stated methodology, where
10% of the samples are used for training and the re-
maining 90% for testing, to evaluate the performance of
our SSDR-MML framework on multi-view setting. The
resulting mean error rates and standard deviations on
the six UCI benchmarks, which are based on 50 random
trials, are reported in Table 6. It can be observed that
the multiple view learning techniques generally out-
perform the single view classifiers, which substantiates
the benefits of learning with multiple views. Among
all techniques evaluated in the experiment, our SSDR-
MML approach performs statistically significantly better
than all competitors with both lower misclassification
rates and standard deviations. The performance of the
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proposed framework on multi-view learning tasks not
only demonstrates the effectiveness of our approach, but
also validates the advantage of simultaneous learning of
multiple feature descriptions. On the two variates of our
approach, we also see that excessive label propagation
and simply joining the multiple views into one could be
harmful to the learning performance, which confirms the
conclusion made in Section 9.2.2.

TABLE 6
Mean error rates and standard deviations (in percentage)

on UCI benchmarks. The best result is shown in bold.
Methods Adult(subset) Diabetes Ionosphere

SVM-SIFT 22.37±1.50 35.22±2.04 10.70±4.73
SVM-color 24.23±1.55 35.84±3.14 19.57±5.33
SKMsmo 21.24±1.32 32.71±2.88 12.55±4.86

BCT 19.98±1.68 29.27±2.54 17.41±4.75
SSDR-MML Simple 21.98±1.61 31.57±2.93 13.76±4.97

SSDR-MML nonsparse 23.38±2.73 36.62±3.04 15.29±5.21
SSDR-MML 20.40±1.16 27.19±2.35 11.48±4.51

Methods Liver Disorders Sonar SPECT Heart
SVM-SIFT 45.87±3.43 32.91±4.97 36.47±6.66
SVM-color 45.05±3.83 34.91±3.64 26.77±4.75
SKMsmo 45.47±3.66 33.18±4.90 29.07±4.22

BCT 58.20±0.82 34.17±6.84 31.42±4.28
SSDR-MML Simple 46.01±3.41 33.35±4.26 29.69±4.52

SSDR-MML nonsparse 50.32±4.39 34.58±5.97 29.49±5.18
SSDR-MML 40.99±2.75 31.40±4.19 25.83±4.18

Based on the promising experiment results, we con-
clude that the proposed SSDR-MML framework is ad-
vantageous when (1) there are multiple feature descrip-
tions available for each instance that are neither too
different nor too similar; or (2) the multiple labels are
highly related; or (3) the data is sparsely labeled and in
high dimensional space.

9.3 Stability to Parameters

We empirically show the stability of the performance of
our framework with respect to the parameters (αk and
βk) in Fig. 5. We first pick two highly related labels,
Cell Growth, Cell Division, DNA synthesis v.s. Tran-
scription, from Yeast dataset (gene dataset with multiple
labels), on which we show the learning performance of
our framework in Fig. 5(a) using F1 Micro score w.r.t.
different settings of βk (0.1 ≤ βk ≤ 1), where β1 and β2

are two parameters used to balance the influence of the
two labels. We then choose a subset (swiss-army-knife
v.s. telephone-box) from Caltech-256 image dataset, and
construct two views from the images: (1) visual word his-
togram using SIFT visual feature where color is ignored
by definition; and (2) color histogram. Fig. 5(b) shows the
error rate of our framework on the binary label learning
w.r.t. different settings of αk (0.1 ≤ αk ≤ 1), where α1

and α2 are two parameters used to balance the influence
of the two views. In both Fig. 5(a) and 5(b), we see that
learning performance surface is relatively smooth.
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Fig. 5. Learning performance of SSDR-MML w.r.t. differ-
ent parameter settings

9.4 Empirical Evaluation of Our Success Measure

We shall now illustrate the use of the proposed suc-
cess measure. We apply our approach to two real-
world datasets: Yeast gene dataset and Caltech-256 im-
age dataset. Since our algorithms are deterministic, we
can obtain a variety of experiments by changing the pa-
rameters αk or βk. We collect a set of learning accuracies
and the corresponding values of CP (W) under these
different parameterizations, and normalize all of them
to lie between 0 and 1. In this experiment we adopt
two labels (DNA synthesis and transcription) for multi-
label learning on Yeast, and two views (visual word and
color) for multi-view learning on Caltech-256. Fig. 6(a)
shows the learning accuracy v.s. the value of FTWzF
(sum of off-diagonal values) under multi-label setting
on Yeast dataset with respect to different βk’s. Fig. 6(b)
shows the normalized learning accuracy v.s. the value
of FTWzF (naturally a single value) under multi-view
setting on Caltech-256 dataset with respect to different
parameterizations of αk. The results shown in the two
figures are quantified and averaged from 100 random
trials (per parameterization). The red solid curve shows
the results obtained using our SSDR-MML algorithm,
while the black dash line marks the perfect proportional
relation. Observing the results, in both settings we see
that the value of FTWzF is approximately linear to
the learning accuracy. Therefore, we conclude that a
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parameterization with relatively higher value of FTWzF
will generally lead to a better learning result, and thus
αk or βk should be set to the one which corresponds to
the highest value of FTWzF.
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Fig. 6. Two examples showing the approximately pro-
portional relation between the learning accuracy and the
value of CP (W).

10 CONCLUSION
As applications in machine learning and data mining
move towards demanding domains, they must move
beyond the restrictions of complete supervision, single-
label, single-view and low-dimensional data. In this
paper we present a joint learning framework based
on reconstruction error, which is designed to handle
both multi-label and multi-view learning settings. It
can be viewed as simultaneously solving for two sets
of unknowns: filling in missing labels and identifying
projection vectors that makes points with similar labels
close together and points with different labels far apart.
As to improve the learning performance, the underlying
objective is to enable the learner to combine knowl-
edge from multiple labels and views by partially fitting
the graph to each of them. Empirically, our proposed
approach was shown to give more reliable results on
real world applications with both lower error rate and
standard deviation compared to the baseline models, as
shown in Section 9. Perhaps the most useful part of
our approach is that since the mechanism for combining
knowledge is explicit it also offers the ability to measure
the success of learning.
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