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Abstract

Recent work has looked at extending clustering algorithms with instance level must-link
(ML) and cannot-link (CL) background information. Our work introduces δ and ǫ cluster level
constraints that influence inter-cluster distances and cluster composition. The addition of back-
ground information, though useful at providing better clustering results, raises the important
feasibility question: Given a collection of constraints and a set of data, does there exist at least
one partition of the data set satisfying all the constraints? We study the complexity of the
feasibility problem for each of the above constraints separately and also for combinations of
constraints. Our results clearly delineate combinations of constraints for which the feasibility
problem is computationally intractable (i.e., NP-complete) from those for which the problem is
efficiently solvable (i.e., in the computational class P).

We also consider the ML and CL constraints in conjunctive and disjunctive normal forms
(CNF and DNF respectively). We show that for ML constraints, the feasibility problem is
intractable for CNF but efficiently solvable for DNF. Unfortunately, for CL constraints, the
feasibility problem is intractable for both CNF and DNF. This effectively means that CL-
constraints in a non-trivial form cannot be efficiently incorporated into clustering algorithms.
To overcome this, we introduce the notion of a choice-set of constraints and prove that the
feasibility problem for choice-sets is efficiently solvable for both ML and CL constraints. We
also present empirical results which indicate that the feasibility problem occurs extensively in
real world problems.
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1 Introduction and Summary of Contributions

1.1 Motivation

Clustering is a ubiquitous technique in data mining and is viewed as a fundamental mining task

[Bradley and Fayyad 1998, Pelleg and Moore 1999] along with classification, association rule min-

ing and anomaly detection. However, non-hierarchical clustering algorithms such as k-Means are

greedy algorithms that can converge to solutions that offer little insight; hence, in practice such

algorithms are restarted many times with the hope that some execution will find a meaningful
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solution. This is a computationally expensive task when dealing with the large data sets typically

found in data mining problems.

Recent work has focused on the use of instance level must-link and cannot-link background

information to enable clustering algorithms to converge to good clusterings that also have desirable

characteristics. A must-link (ML) constraint enforces that two instances should be placed in the

same cluster while a cannot-link (CL) constraint enforces that two instances should not be placed

in the same cluster. We can divide previous work on clustering with instance level background

information into two types:

(1) In the first type, the background information is used to learn a distortion/distance/objective

function [Basu et al. 2004a, Klein et al. 2002].

(2) In the second type, the information is strictly enforced as constraints to guide the algorithm

to a useful solution [Wagstaff and Cardie 2000, Wagstaff et al. 2001].

Philosophically, the first type of work makes the assumption that points surrounding a pair of points

involved in an ML (CL) constraint should be close to (far from) each other [Klein et al. 2002], while

the second type just requires that the two points involved in an ML (CL) constraint must be in

the same cluster (different clusters). The work of Bilenko and collaborators [Bilenko et al. 2004a]

tries to both learn a distance function and satisfy as many constraints as possible.

Recent examples of the second type of work include ensuring that constraints are satisfied at

each iteration of an algorithm such as k-Means [Wagstaff et al. 2001] and initializing algorithms

using the constraints [Basu et al. 2002]. The results of both types of work are quite encouraging;

in particular, it is shown in [Wagstaff and Cardie 2000, Wagstaff et al. 2001] that k-Means with

constraints obtains clusters with a significantly better purity (when measured on an extrinsic class

label) than when not using constraints.

However, with the addition of background information comes the possibility of over-constraining

and poorly specifying constraints to the point where there are no feasible solutions. Thus, the

following feasibility problem must be addressed.

Definition 1.1 (Feasibility Problem) Given a data set S, collection of constraints C, a lower

bound Kℓ and an upper bound Ku on the number of clusters, does there exist a partition of S into

k blocks such that Kℓ ≤ k ≤ Ku and all the constraints in C are satisfied?

Considering a collection of just three constraints, namely CL(x, y), CL(x, z) and CL(y, z), it

is easy to see that there is no feasible clustering when Ku < 3. However, for a large number of

constraints is the feasibility problem solvable in polynomial time? Is the feasibility problem under

some types of constraints easy (i.e., in the computational class P) and for others intractable (i.e.,

NP-complete)? We believe that answers to these questions will play an important role in the

design of algorithms for clustering under constraints, as have similar complexity analyses for belief

networks inference [Cooper 1990] and association rule mining [Wijsen and Meersman 1998]. If the

feasibility problem for a particular class of constraints is intractable, then clustering algorithms such
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as k-Means should not attempt to find a feasible solution at each iteration because doing so would

be computationally expensive. In the absence of feasibility testing, each iteration of the k-Means

algorithm has a time complexity that is linear with respect to the number of points, attributes and

clusters. However, if the feasibility problem is NP-complete, then the feasibility checking step will

not run in polynomial time, unless P = NP. Similarly, learning a distance function for partitioning

into k clusters under the assumption that the points involved in an ML-constraint are close together

and that points involved in a CL-constraint are far apart is undesirable when no feasible partition

satisfying the assumption exists.

In “correlation clustering” [Bansal et al. 2002, Charikar et al. 2002], ‘+’ or ‘−’ labels are speci-

fied for each pair of points to indicate whether the pair is similar or dissimilar; the goal is to obtain

a partition which agrees with the given labels to the maximum possible extent. A key difference

between our work and correlation clustering is that in the latter, feasibility is not an issue; every

partition of the given set is feasible. Also, the correlation clustering problem does not specify

spatial coordinates for the points.

1.2 Summary of Contributions

In this paper we carry out a formal analysis of clustering under constraints. Our work makes several

pragmatic contributions.

1. We introduce two new constraint types which act upon groups of points. Roughly speaking,

the ǫ-constraint enforces that each point x in a cluster must have another point y in the same

cluster such that the distance between x and y is at most ǫ. This constraint can be used to en-

force prior information with respect to how the data was collected [Davidson and Ravi 2005a].

The δ-constraint enforces that points in two different clusters are separated by a distance of

at least δ. This constraint can be used to specify background information on the mini-

mum distance between the clusters/objects we hope to discover. We refer the reader to

[Davidson and Ravi 2005a] for an application of the combination of ǫ and δ constraints in the

context of Sony Aibo robots.

2. We show that the ǫ and δ constraints can be easily represented using disjunctions and a single

conjunction of ML constraints respectively, thus making their implementation easy.

3. We present complexity results for the feasibility problem for conjunctions of ML and CL

constraints and for all combinations of ML, CL, δ and ǫ constraints. Our results show that

in several situations, the feasibility problem is NP-complete. When a feasibility problem is

in P, the corresponding algorithm can be used for initializing clustering algorithms.

4. We also consider more general forms of ML and CL constraints, namely constraints in conjunc-

tive and disjunctive normal forms1 (respectively CNF and DNF) and establish the complexity

of the corresponding feasibility problem. In particular, we observe that the feasibility problem

for CL constraints remains NP-complete for both forms.

1Definitions of these forms appear in Section 7.
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Constraint Conjunction CNF version DNF version Choice Set

Must-Link P NP-complete P P

Cannot-Link NP-Complete NP-complete NP-Complete P

Table 1: Complexity of Feasibility Problem for Instance-Level Constraints

Constraint Complexity

δ-constraint P

ǫ-constraint P

Must-Link and δ P

Must-Link and ǫ NP-complete

δ and ǫ P

Cannot-Link and NP-complete
any other constraint

Table 2: Complexity of Feasibility Problems for Cluster-Level and Combinations of Constraints

5. The above results indicate that one cannot efficiently utilize CL constraints even though

they have many potential uses. We identify a useful restricted CNF version of ML and

CL constraints for which the feasibility problems can be solved efficiently. We call this the

choice-set form of constraints.

6. We empirically illustrate that the feasibility problem is not a rare phenomenon and occurs

extensively. This has been noted before [Wagstaff 2002], but not published in the literature.

Since the feasibility problems occur extensively for simple constraints, they are also likely

to arise for combinations of constraints. While our analytical results indicate the worst-case

behavior of the feasibility problem, we provide and experimentally verify an explanation of

which instances of the feasibility problem are difficult using results from graph coloring.

In the above list of results, Items 1, 2 and parts of 3 were presented in the conference version

of this paper [Davidson and Ravi 2005a]. Here, we present detailed proofs of the results in Item 3.

The results in Items 4, 5 and 6 are new.

The remainder of this paper is organized as follows. The next subsection is a short primer on

complexity results and their interpretation. Those familiar with the area can skip this subsection.

Next, we consider the complexity of the feasibility problem for conjunctions of instance level con-

straints and then empirically illustrate the issues arising in the context of algorithms that attempt

to find feasible solutions at each iteration. Subsequent sections examine the feasibility problem for

δ and ǫ constraints and combinations of the four types of constraints. A summary of our results

for the feasibility problem can be found in Tables 1 and 2.

Our work in this paper is limited to the feasibility problem for non-hierarchical clustering. The

reader is directed to [Davidson and Ravi 2005b] for results on hierarchical clustering.
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1.3 A Short Primer on Complexity Results

A combinatorial problem is efficiently solvable if there is an algorithm for the problem with a

running time that is polynomial in the size of the input. Examples of efficiently solvable problems

include finding minimum spanning trees, finding shortest paths, etc. [Cormen et al. 2001]. Such

problems are said to be in the computational class P, and their membership in P is proven by

presenting an appropriate polynomial time algorithm. For some problems such as the Satisfiability

problem (SAT) or the minimum vertex coloring problem, no efficient algorithms are known, and it

is widely believed that no such algorithms exist [Garey and Johnson 1979]. These problems, which

belong to the class of NP-complete problems, have the property that either all of them can be

solved efficiently or none of them can be solved efficiently. All known algorithms for these problems

have a worst-case running time which is exponential in the size of the input. Such problems are

commonly referred to as “computationally intractable” problems.

The theory of NP-completeness applies to decision problems, where the answer is either “Yes”

or “No”. (For example, the feasibility problem for clustering is a decision problem.) The major

step in proving that a problem Π is NP-complete involves the development of a polynomial time

reduction from a known NP-complete problem Π′ to Π. Such a reduction shows how each instance

I ′ of Π′ can be efficiently transformed into an instance I of Π such that the answer to I ′ is “Yes”

if and only if the answer to I is “Yes”. Thus, such a reduction shows that the computationally

intractable problem Π′ is embedded in Π.

By their very nature, NP-completeness results are for the “worst-case”; they point out that

among all instances of such a problem, there is a subset that is “hard”. Thus, showing that a

problem is NP-complete does not mean that all instances of the problem are hard to solve; rather,

the result points out that one should not expect an efficient algorithm to correctly solve all instances

of the problem. By imposing some restrictions on the problem, one can usually identify groups of

instances that can be solved efficiently. We will illustrate this in the context of the graph coloring

problem in Section 3.3.2.

2 Preliminary Definitions and Terminology

In the remainder of this paper, we use the term “points” to refer to the items2 that must be

grouped into clusters. In the geometric versions of clustering problems, the set S consists of

points from Euclidean space and the distance between a pair of points is their Euclidean distance.

In the nongeometric version, S consists of items (i.e., points without coordinates), and an explicit

distance function specifies the distance between each pair of items. Let S = {s1, s2, . . . , sn} denote

the given set of points which must be partitioned into clusters. For any pair of points si and sj

in S, the distance between them is denoted by d(si , sj). The distance function is assumed to be

2In the clustering literature, the term “instances” is also used to refer to the items which must be grouped into
clusters. In this paper, we use the term “instance” in the sense that is used in the literature on computational
complexity. For example, an instance of the Graph K-Colorability problem consists of an undirected graph
G(V, E) and an integer K ≤ |V |.
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symmetric so that d(si , sj) = d(sj , si).

Although the ML and CL constraints mentioned earlier provide a useful way to specify back-

ground information to a clustering algorithm, it is natural to ask whether there is a feasible clus-

tering that satisfies all the given constraints. The complexity of satisfying the constraints will

determine how to incorporate them into existing clustering algorithms.

The feasibility problem has been studied for other types of constraints or measures of quality

[Hansen and Jaumard 1997]. For example, the clustering problem where the quality is measured by

the maximum cluster diameter can be transformed in an obvious way into a constrained clustering

problem. Feasibility problems for such constraints have received a lot of attention in the literature

(see for example [Garey and Johnson 1979, Gonzalez 1985, Hansen and Jaumard 1997]).

Typical specifications of clustering problems include an integer parameter k that gives the

number of required clusters. We will consider a slightly more general version, where the problem

specification includes a lower bound Kℓ and an upper bound Ku on the number of clusters rather

than the exact number k. Without upper and lower bounds, some feasibility problems admit trivial

solutions. For example, without a lower bound on the number of clusters, having all the points

in a single cluster is a trivial solution to the feasibility problem for a collection of ML-constraints.

Likewise, when there is no upper bound on the number of clusters, the feasibility problem under

CL-constraints can be solved trivially by having each point in a separate cluster.

Obviously, the lower bound Kℓ and the upper bound Ku must satisfy the condition 1 ≤ Kℓ ≤

Ku ≤ n, where n denotes the number of points. We will assume this condition throughout this

paper. For the remainder of this paper, we use the following definition of a feasible clustering.

Definition 2.1 (Feasible Clustering) A feasible clustering is one that satisfies all the given

constraints and the upper and lower bounds on the number of clusters.

For problems involving ML or CL constraints, it is assumed that the collection of constraints

C = {C1, C2, . . . , Cm} containing the m constraints is given, where each constraint Cj = (sj1, sj2)

specifies a pair of points. For convenience, the feasibility problems for ML and CL constraints will

be referred to as ML-feasibility and CL-feasibility respectively.

3 Complexity of Feasibility for Instance Level Constraints

3.1 Overview

In this section, we investigate the complexity of the ML- and CL-feasibility problems. We show that

the ML-feasibility problem can be solved efficiently while the CL-feasibility problem is NP-complete

in general. Our algorithm for the ML-feasibility problem does not use distance information. So,

the algorithm is applicable to inputs where distances do not satisfy the triangle inequality. Further,

the NP-completeness result for CL-feasibility also does not rely on the coordinates of points or on

distances. So, the CL-feasibility problem remains computationally intractable even when the set

to be clustered consists of points in R
2.
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The goal of the feasibility algorithms presented here and in later sections is to determine whether

there is a partition that satisfies all the given constraints; they do not attempt to optimize any ob-

jective. Thus, these algorithms may produce solutions with singleton clusters when the constraints

under consideration permit such clusters. Whenever the answer to a feasibility question is “Yes”,

the corresponding algorithm also outputs a feasible solution.

3.2 Feasibility Under Must-Link Constraints

Klein et al. in [Klein et al. 2002], discuss a polynomial time algorithm for a geometric version of

the ML-feasibility problem. They considered a more general version of the problem, where the goal

is to obtain a new distance function that satisfies the triangle inequality when there is a feasible

solution. In our definition of the ML-feasibility problem, no distances are involved. Therefore, a

straightforward algorithm whose running time is linear in the number of points and constraints can

be developed as discussed below.

As is well known, ML-constraints are transitive. For example, the constraints ML(x, y) and

ML(y, z) together imply that the points x, y and z must all be the same cluster. In the formal

definition of transitivity given below, we use the notation ML(A), where A is a set of two or more

points, to represent the constraint that all the points in A must be in the same cluster.

Definition 3.1 (Transitive Property of Must-Link constraints) If S1 and S2 are subsets of

points such that S1 ∩ S2 6= ∅ and the constraints ML(S1) and ML(S2) hold, then the constraint

ML(S1 ∪ S2) must also hold.

Using the transitivity property, a given collection C of ML constraints can be transformed into

an equivalent collection M = {M1,M2, . . . ,Mr} of constraints, by computing the transitive closure

of C. The sets in M are pairwise disjoint and have the following interpretation: for each set Mi

(1 ≤ i ≤ r), the points in Mi must all be in the same cluster in any feasible solution. For feasibility

purposes, points which are not involved in any ML-constraint can be partitioned into clusters in an

arbitrary manner. These facts allow us to obtain a straightforward algorithm for the ML-feasibility

problem. The steps of the algorithm are shown in Figure 1. Whenever a feasible solution exists,

the algorithm outputs a collection of Kℓ clusters. The only situation in which the algorithm reports

infeasibility is when the lower bound on the number of clusters is too high.

The transitive closure computation (Step 1 in Figure 1) in the algorithm can be carried out

as follows. Construct an undirected graph G, with one node for each point appearing in the

constraint set C, and an edge between two nodes if the corresponding points appear together in a

ML-constraint. Then, the connected components of G give the sets in the transitive closure. It can

be seen that the graph G has n nodes and m edges. Therefore, its connected components can be

found in O(n+m) time [Cormen et al. 2001]. The remaining steps of the algorithm can be carried

out in O(n) time. The following theorem summarizes the above discussion.

Theorem 3.1 Given a set of n points and m ML-constraints, the ML-feasibility problem can be

solved in O(n + m) time.
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Note: Whenever a feasible solution exists, the following algorithm outputs a collection of Kℓ

clusters satisfying all the ML-constraints.

1. Compute the transitive closure of the constraints in C. Let this computation result in r sets
of points, denoted by M1, M2, . . ., Mr.

2. Let S′ = S −
⋃r

i=1
Mi. (S′ denotes the subset of points that are not involved in any ML-

constraint.)

3. if Kℓ > |S′| + r then Output “No solution” and stop.

else

if r ≥ Kℓ then

(a) Let A = (
⋃r

i=Kℓ
Mi) ∪ S′.

(b) Output M1, . . ., MKℓ−1, A.

else /* Here, r < Kℓ ≤ r + |S′|. */

(a) Let t = Kℓ − r. (Note that t ≥ 1.) Partition S′ into t clusters
A1, . . ., At arbitrarily.

(b) Output M1, . . ., Mr, A1, . . ., At.

Figure 1: Algorithm for the ML-Feasibility Problem

3.3 Feasibility Under Cannot-Link Constraints

3.3.1 NP-Completeness of CL-Feasibility

In general, the CL-feasibility problem is NP-complete. Our proof uses a straightforward reduction

from the Graph K-Colorability problem (K-Color) defined below. This problem is known

to be NP-complete [Garey and Johnson 1979].

Graph K-Colorability (K-Color)

Instance: Undirected graph G(V,E), integer K ≤ |V |.

Question: Can a color be assigned to each node of G such that the number of colors used is at

most K, and for every pair of nodes u and v for which {u, v} is in E, the colors assigned to u and

v are different?

Theorem 3.2 The CL-feasibility problem is NP-complete.

Proof: It is easy to see that the CL-feasibility problem is in NP, since one can guess a partition of

the set S into at most K clusters and verify in polynomial time that the partition satisfies each of

the given CL constraints. To prove NP-hardness, we use a reduction from the K-Color problem.

Let the given instance I of K-Color problem consist of the undirected graph G(V,E) and integer

K. Let n = |V | and m = |E|. We construct an instance I ′ of the CL-feasibility problem as follows.

For each node vi in V , we create a point si , 1 ≤ i ≤ n. (The coordinates of the points are not
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specified as they play no role in the proof.) The set S of points is given by S = {s1, s2, . . . , sn}.

For each edge {vi , vj} in E, we create the CL-constraint (si , sj). Thus, we create a total of m

constraints. We set the lower and upper bound on the number clusters to 1 and K respectively.

This completes the construction of the instance I ′. It is obvious that the construction can be

carried out in polynomial time. It is straightforward to verify that the CL-feasibility instance I ′

has a solution if and only if the K-Color instance I has a solution.

The K-Color problem is known to be NP-complete for every fixed value of K ≥ 3. From this

fact, it follows that the CL-feasibility problem is also NP-complete when the lower bound on the

number of clusters is 1 and the upper bound is fixed at any value ≥ 3.

Since the CL-feasibility problem is NP-complete, it follows that in general, the feasibility prob-

lem remains NP-complete even when the constraint set includes both ML and CL constraints.

3.3.2 Efficiently Solvable Special Cases of CL-Feasibility

Theorem 3.2 shows that the CL-feasibility problem is, in general, NP-complete. To identify some

restricted versions of the CL-feasibility problem which can be solved efficiently, we now observe

that the CL-feasibility problem can be reduced to the K-Color problem. Note that our previous

reduction from the K-Color problem established the NP-completeness result for CL-feasibility.

Let I denote the given instance of the CL-feasibility problem consisting of the set S of points, a

collection C of CL constraints and integers Kℓ and Ku. Construct an instance I ′ of the K-Color

problem consisting of the graph G(V,E) and integer K as follows. For each point si in S, create

a node vi in V , and for each CL-constraint (si, sj) in C, create the undirected edge {vi, vj} in E.

Let the number of colors K be set to Ku. It is easy to verify that the resulting K-Color instance

I ′ has a solution iff there is a solution to the CL-feasibility instance I.

This reduction to the coloring problem is useful for several reasons. First, it points out that

in practice, one can use known heuristics for graph coloring in choosing the number of clus-

ters. Although the coloring problem is known to be hard to approximate in the worst-case

[Feige and Kilian 1998], heuristics that work well in practice are known ([Hertz and de Werra 1987,

Campers et al 1987]). In addition, the reduction also points out that the following two special cases

of the CL-feasibility problem can be solved efficiently.

(a) When the upper bound on the number of clusters is two, the CL-feasibility problem corresponds

to the problem of determining whether a graph is 2-colorable. Efficient algorithms are known

for this problem [Cormen et al. 2001].

(b) Suppose the upper bound Ku on the number of clusters is at least ∆ + 1, where ∆ is the

maximum node degree of the graph constructed (as described above) from the given instance

of the CL-feasibility problem. In this case, there is always a feasible solution. This follows

from a well known result, called Brooks’s Theorem, in graph theory [West 2001]. A statement

of this theorem and an efficient algorithm that colors a graph using at most k colors, for any

k ≥ ∆ + 1, is given in Appendix A. In practice, this special case arises when the number of

clusters exceeds the maximum number of CL-constraints involving the same point.
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4 Is Feasibility Really a Problem? Experimental Results and a

Theoretical Explanation

The NP-completeness of the CL-feasibility problem points out that when background knowledge

is specified in terms of CL constraints, one should not expect to get a feasible solution in each

iteration of an efficient algorithm such as k-Means. However, the NP-completeness result does

not imply that all instances of the CL-feasibility problem are difficult (Section 1.3). Thus, it is of

interest to investigate whether the intractability of the feasibility problem is an issue in practice. In

this section, we examine experimentally when clustering under CL constraints by themselves and

with ML constraints is difficult and when it is easy as a function of the number of constraints. (As

shown in Section 3.2, clustering under ML constraints only is efficiently solvable.)

We examine a common method of extending k-Means to ensure that all ML and CL constraints

are satisfied at each iteration. In the machine learning and data mining literature, the COP-k-

Means algorithm [Wagstaff et al. 2001] is considered the seminal work on incorporating instance

level constraints into the k-Means algorithm in a simple and elegant manner. The COP-k-Means

algorithm handles ML constraints by first computing the transitive closure and then replacing all

the points in each transitive closure set (connected component) with a single point which is the

centroid of all the points in that set [Wagstaff 2005]. Since k is typically small, infeasibility due to

ML constraints does not occur. The algorithm incorporates CL constraints by changing nearest-

centroid assignment to nearest-feasible-centroid assignment. This is easily programmed by creating

for each point a sorted list of centroids (in increasing order of distances) and progressing down the

list until a feasible centroid is found to assign the point [Wagstaff et al. 2001, Basu et al. 2002]. For

any point, if the algorithm reaches the bottom of this list and still cannot find a feasible assignment,

the algorithm halts with an indication that it cannot find a feasible solution.

We used the following common method for generating ML and CL constraints. Two points from

Sl (the set of labeled data points) are drawn randomly. If the labels of the two points agree, then

an ML constraint is generated; otherwise, a CL constraint is generated. This method of constraint

generation along with the COP-k-Means algorithm in its entirety are shown in Figure 2.

We implemented this algorithm and tried it on several UCI data sets. In our experiments, all

records with missing values were removed and k was set to the number of extrinsic classes. We

tried both intractable feasibility problem situations: clustering with ML and CL constraints and

clustering with only CL constraints. As with all our experiments, the results were averaged over

five hundred sets of randomly generated constraints. For each set of constraints, the clustering

algorithm was run after a random choice of initial centroids.

Definition 4.1 We say that a run of the COP-k-Means algorithm converges or succeeds if and

only if a feasible solution is found in each iteration of the run.

With ML and CL constraints, we note a quite unusual phenomenon as others have [Wagstaff 2002]

in Figure 3. This result is quite counterintuitive. Initially for a small number of constraints the

feasibility problem is “easy” and for the vast majority of the 500 trials, the algorithm converges.
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Input: Su: unlabeled data, Sl: labeled data, k: the number of clusters to find, q: number of
constraints to generate. Initially, the weight of each point is 1. (In the following description, ML
and CL represent respectively the set of must-link and cannot-link constraints generated as part
of the algorithm.)

Output: A partition of S = Su ∪ Sl into k clusters so that all the constraints in C = ML ∪ CL
are satisfied.

1. Initialize ML and CL to ∅.

2. loop q times do

(a) Randomly choose two distinct points x and y from Sl.

(b) if (Label(x) = Label(y)) then ML = ML ∪ {(x, y)} else CL = CL ∪ {(x, y)}.

3. Compute the transitive closure of the set ML to obtain the connected components
CC1, . . . , CCr.

4. For each i, 1 ≤ i ≤ r, replace all the data points in CCi by a single point with weight |CCi|;
the point’s coordinates are obtained by averaging the coordinates of the points in CCi.

5. Randomly generate cluster centroids C1, . . . , Ck.

6. loop until convergence do

(a) for i = 1 to |S| do

(a.1) Assign si to the nearest feasible cluster.

(a.2) If assignment of si to any cluster always violates a constraint, then exit with
failure.

(b) Recalculate centroids C1, . . . , Ck taking into account the weight of the points in S.

7. Return with success.

Figure 2: Generating Constraints and Clustering under Constraints Using COP-k-Means

However, finding feasible solutions becomes more difficult as the number of constraints increases;

but then the problem becomes easy again! We believe this is a legitimate phenomenon for the clus-

tering under constraints problems as both Wagstaff [Wagstaff 2002] and ourselves find the same

“dipping” graph even though we used different initialization/termination schemes etc.

The algorithm in Figure 2 (and for that matter, any algorithm that attempts to satisfy all

the constraints) may not converge for two reasons. Firstly, there may be no feasible solutions. For

example, if k = 2 and there are three CL-constraints, namely CL(x, y), CL(y, z) and CL(x, z), then

there is no feasible solution. Secondly, even when there are feasible solutions, finding these solutions

may be computationally intractable. Since we are generating constraints from a consistent source

and setting k to be the number of extrinsic labels, infeasibility results are due to the latter reason.

To explain the phenomenon observed in Figure 3, we will use Brooks’s theorem (Appendix A) and

the notion of entailed constraints. Brooks’s theorem points out that if the maximum node degree
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Figure 3: Plot of the proportion of times from 500 independent trials the algorithm in Figure 2
converges for various numbers of randomly chosen ML and CL constraints. Here, k = number of
intrinsic classes: Iris (3), Pima (2), Breast (2) and Vote (2).
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of a graph G is ∆ and k ≥ ∆+1, then the coloring problem is easy; that is, graph G can always be

colored using k colors and such a coloring can be obtained using a simple algorithm (Appendix A).

The issue of entailed constraints was first discussed in [Basu et al. 2002], and it refers to non-

explicitly provided constraints. For example, the transitive nature of ML constraints (Definition 3.1)

leads to entailed constraints. As another example, consider the collection of three constraints

ML(a, b), ML(c, d) and CL(a, c). The additional entailed constraints from this collection are

CL(a, d), CL(b, c) and CL(b, d). This example can be generalized as follows.

Definition 4.2 (Entailed Constraint Property) Let C be a collection of ML and CL con-

straints. Suppose the transitive closure of the ML constraints in C yields the sets CC1, . . . , CCr.

If there are points x ∈ CCi, y ∈ CCj, with i 6= j, such that the constraint CL(x, y) ∈ C, then

∀a ∈ CCj and ∀b ∈ CCj, the entailed constraint CL(a, b) exists.

The clustering problem involving given and entailed constraints can be represented by a graph

G(V,E), where each node represents a transitive closure set or a point which was not part of any

ML-constraint. (A node corresponding to a transitive closure set represents all the points in that

set.) Each constraint CL(x, y) is represented by an edge which joins the two nodes representing

points x and y. When the maximum node degree ∆ of this graph is at most k − 1, the COP-

k-Means algorithm often converges because the nearest-feasible-centroid assignment step can be

considered as a coloring algorithm similar to the one based on Brooks’s theorem (Appendix A). In
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difficult instances of the feasibility problem, the value of ∆ is larger than k − 1, and the coloring

algorithm based on Brooks’s theorem will fail in general. Informally, if the maximum number of

CL-constraints involving the same point is at most k − 1, then the feasibility problem is easy;

otherwise, the feasibility problem will be difficult (i.e., the nearest-feasible-centroid assignment will

fail in general). This insight can explain the results in Figure 3.

When the number of constraints is small, the chance of any node being part of more than k

CL constraints is small. Thus, the feasibility problem is easy. Conversely, when the number of

constraints is large, the number of connected components will be typically the number of extrinsic

labels (due to the transitive nature of ML-constraints; see Definition 3.1), and hence the maximum

degree of the graph is k − 1 (i.e., there is a CL-constraint between each pair of connected com-

ponents). Thus, the maximum node degree ∆ and k satisfy the condition k ≥ ∆ + 1, and again

the problem is easy. However, when the number of constraints is not too large many points with

the same extrinsic label have not had the opportunity to combine and form a single connected

component. Furthermore, the chance of a CL-constraint between two connected components is

large due to the entailed constraint property. Hence, the maximum degree of the graph is typically

larger than k. Figure 4 which shows the number of connected components provides an experimental

confirmation of this explanation. Comparing Figures 4 and 3 we see that greatest proportion of

times the algorithm could not find a feasible solution (and did not converge) corresponds approx-

imately to the situation when the number of connected components is a maximum. Furthermore,

we see that when the number of constraints is large, the number of connected components equals

the number of extrinsic labels. Since k is also equal to this value, the problem is easy.

The above discussion points out at least two ways of making the constrained clustering problem

easy. Firstly, we can make a point part of only one ML or CL constraint. This, is achieved by

sampling the points without replacement while generating constraints. Alternatively, we can make

k larger than the number of extrinsic classes. Performing the same experiments as before, except

with k = 5, produces the results shown in Figure 5 and feasibility problems become less pronounced.

Finally, we see that if there are no ML-constraints and only CL-constraints, since the maximum

graph degree can only increase, the problem gets progressively difficult as the number of constraints

increases; see Figure 6.

We can therefore conclude that when there are ML and CL constraints, feasibility issues can oc-

cur for intermediate amounts of constraints. When clustering under only CL-constraints, feasibility

problems occur for a large number of constraints.

5 Cluster Level Constraints and Feasibility Problems

5.1 Definitions of Constraints

Here, we formally define two new cluster level constraints, called δ- and ǫ-constraints. We also

consider an extension of the ǫ-constraint, called the ǫ-path-constraint. Subsequent sections will

examine the complexity of the feasibility problems under these constraints.

The δ-constraint (or minimum separation constraint) specifies a value δ > 0. In any solution

13



Figure 4: Graph of the average number of connected components from 500 independent trials for
various numbers of randomly chosen ML and CL constraints. Compare with Figure 3.
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satisfying this constraint, the distance between any pair of points which are in two different clusters

must be at least δ. More formally, the δ-constraint requires that for any pair of clusters Si and Sj

(i 6= j), and any pair of points sp and sq, where sp is in Si and sq is in Sj , the distance d(sp, sq) must

be at least δ. Informally, this constraint requires that each pair of clusters must be well separated.

The ǫ-constraint specifies a value ǫ > 0 and the feasibility requirement is the following: for

any cluster Si containing two or more points and for any point sp in Si , there must be another

point sq in Si such that d(sp, sq) ≤ ǫ. Informally, this constraint requires that in any cluster Si

containing two more points, each point in Si must have another point within a distance of at most ǫ.

The ǫ-constraint is similar in principle to the ǫ+minpts criterion used in the DB-SCAN algorithm

[Ester et al. 1996]. In their work, the ǫ+minpts criterion is central to the definition of a cluster

and an outlier. The focus of our work is on the feasibility problem for the ǫ-constraint.

The ǫ-path-constraint [Ding 2005] is an extension of the ǫ-constraint, and the requirement is

the following: for any cluster Si containing two or more points and for any pair of distinct points x

and y in Si, there is a sequence 〈x, a1, . . ., ar, y〉 of points such that each point in the sequence is

in Si and the distance between any adjacent pair of points in the sequence is at most ǫ. It is easier

to understand this constraint by considering an undirected graph, which we call the auxiliary

graph, defined as follows.

Definition 5.1 Let Q be a set of points and let a value ǫ > 0 be given. The auxiliary graph

G(VQ, EQ) corresponding to Q is constructed as follows.
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Figure 5: Graph of the proportion of times from 500 independent trials the algorithm in Figure 2
converges for various numbers of randomly chosen ML and CL constraints, with k = 5. Compare
with Figure 3.
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Vote - Algorithm Succeeds
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Breast - Algorithm Succeeds
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(a) The node set VQ has one node for each point in Q.

(b) For any two nodes vi and vj in V , the edge {vi, vj} is in EQ iff the distance between the points

in Q corresponding to nodes vi and vj is at most ǫ.

With the above definition, it can be seen that a given partition of S into clusters S1, S2, . . .,

Sk satisfies the ǫ-path constraint if and only if for each cluster Si with two or more points, the

auxiliary graph corresponding to Si is connected (i.e., consists of only one connected component).

The notion of auxiliary graph plays an important role in our algorithms for the feasibility problems

for both ǫ and ǫ-path constraints.

5.2 Feasibility Under the δ-Constraint

In this section, we show that the δ-feasibility problem can be solved in polynomial time. The basic

idea is simple: if points in different clusters must be at least δ apart, then in any feasible solution,

every pair of points si and sj for which d(si, sj) < δ, must be in the same cluster. Thus, given

the value of δ, we can create a collection of appropriate ML-constraints and use the algorithm for

the ML-feasibility problem. This approach points out that a δ-constraint can be replaced by a

conjunction of ML-constraints. The steps of the resulting algorithm are shown in Figure 7.

The running time of the algorithm is dominated by the time needed to complete Step 1, that

is, the time to compute the set of ML-constraints. Clearly, this step can be carried out in O(n2)
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Figure 6: Graph of the proportion of times from 500 independent trials the algorithm in Figure 2
converges for various numbers of randomly chosen CL only constraints.
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time, and the number of ML-constraints generated is also O(n2). Thus, the overall running time

of the algorithm is O(n2). The following theorem summarizes the above discussion.

Theorem 5.1 For any δ > 0, the feasibility problem under the δ-constraint can be solved in O(n2)

time, where n is the number of points to be clustered.

5.3 Feasibility Under the ǫ-Constraint

Let the set S of points and the value ǫ > 0 be given. For any point sp in S, the set Γp of ǫ-neighbors

is given by

Γp = {sq : sq in S − {sp} and d(sp, sq) ≤ ǫ}.

Note that a point is not an ǫ-neighbor of itself. Two distinct points sp and sq are ǫ-neighbors of

each other if d(sp, sq) ≤ ǫ. The ǫ-constraint requires that in any cluster containing two or more

points, each point in the cluster must have an ǫ-neighbor within the same cluster. This observation

points out that an ǫ-constraint corresponds to a disjunction of ML-constraints. For example, if

{si1 , . . . , sir} denote the ǫ-neighbors of a point si, then satisfying the ǫ-constraint for point si

means that either one or more of the ML-constraints ML(si, si1), . . ., ML(si, sir) are satisfied

or the point si forms a singleton cluster. In particular, any point in S which does not have an

ǫ-neighbor must form a singleton cluster.
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1. for each point si in S do

(a) Find the set Xi ⊆ S − {si} of points such that for each point xj in Xi, d(si, xj) < δ.

(b) For each point xj in Xi, create the ML-constraint (si, xj).

2. Let C denote the set of all the ML-constraints created in Step 1. Use the algorithm for the
ML-feasibility problem (Figure 1) with point set S, constraint set C and the values Kℓ and
Ku.

Figure 7: Algorithm for the δ-Feasibility Problem

The steps of our algorithm for the ǫ-feasibility problem are shown in Figure 8. The key steps are

finding the set S1 of points which don’t have any ǫ-neighbors and the construction of the auxiliary

graph for the set S2 = S − S1. The following lemma establishes the correctness of the algorithm.

Lemma 5.1 Let N∗ be as defined in Step 3 of the algorithm in Figure 8.

(a) If N∗ > Ku, then there is no solution to the ǫ-feasibility problem.

(b) If N∗ ≤ Ku, then there is a solution to the ǫ-feasibility problem with Ku clusters.

Proof:

Part (a): Note that N∗ = t+min{1, r}, where t is the number of points without ǫ-neighbors and

r is the number of connected components of the auxiliary graph for the set S2. By the definition of

ǫ-constraint, each point without any ǫ-neighbor must be in a singleton cluster. Thus, any feasible

solution must have at least t clusters. Further, if r ≥ 1, at least one additional cluster is needed

for the points in S2. Therefore, there is no solution to the ǫ-feasibility problem when N∗ > Ku.

Part (b): Suppose N∗ ≤ Ku. We will show that there is a solution with Ku clusters by

considering the following three cases.

Case 1: Suppose Ku = t + r.

In this case, there is a solution with t + r clusters consisting of the clusters C1, . . ., Ct, X1, . . .,

Xr. It is easy to verify that this solution satisfies the ǫ-constraint.

Case 2: Suppose Ku < r + t.

In this case, a solution with Ku clusters can be constructed by merging clusters XKu−t, . . ., Xr

into a new cluster (say, XKu−t). The solution then consists of clusters C1, . . ., Ct, X1, . . ., XKu−t.

Again, it is easy to verify that this solution satisfies the ǫ-constraint.

Case 3: Suppose Ku > r + t.

In this case, we can increase the number of clusters to Ku by splitting some of the clusters

X1, . . ., Xr to form Ku − t − r additional clusters. From each cluster Xi, we can create |Xi| − 1

additional (singleton) clusters. Thus, from clusters X1, . . ., Xr, we can create
∑r

i=1
(|Xi| − 1) =
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1. Find the set S1 = {x : x in S and x does not have any ǫ-neighbor in S}. Let t = |S1| and
S2 = S − S1.

2. Construct the auxiliary graph G(V,E) for S2 (see Definition 5.1). Let G have r connected
components (CCs), denoted by G1, G2, . . ., Gr.

3. Let C1, C2, . . ., Ct denote the singleton clusters corresponding to points in S1. Let X1, X2,
. . ., Xr denote the clusters corresponding to the CCs of G. Let N∗ = t + min {1, r}.

4. if N∗ > Ku then Output “No feasible solution” and stop.

5. Execute one of the following cases. (In each case, the output has Ku clusters.)

Case 1: Ku = t + r: Output the t + r clusters C1, . . . , Ct, X1, . . . , Xr.

Case 2: Ku < t + r: Generate and output a solution with Ku clusters as indicated below.

(a) Merge clusters XKu−t, XKu−t+1, . . ., Xr into a single new cluster XKu−t.

(b) Output the Ku clusters C1, C2, . . ., Ct, X1, X2, . . ., XKu−t.

Case 3: Ku > t + r: Generate Ku − t − r additional singleton clusters from X1, . . ., Xr and
output a solution with Ku clusters as indicated below.

(a) Let ni = |Xi|, 1 ≤ i ≤ r and let N = Ku − t − r.

(b) Find the smallest integer j, 1 ≤ j ≤ r such that
∑j

i=1
(ni − 1) ≥ N . (Note that ni − 1

represents the maximum number of additional clusters that can be generated from Xi.)

(c) Make each point in ∪j−1

i=1
Xi into a singleton cluster. Let q1 =

∑j−1

i=1
ni. Let Y1, . . ., Yq1

denote the singleton clusters created in this step.

(d) Let q2 = N −
∑j−1

i=1
(ni − 1). (The value q2 is the number of additional clusters to be

created from Xj .) If q2 = nj − 1, then choose q2 points (arbitrarily) from Xj and form a
singleton cluster from each point. Otherwise (i.e., q2 < nj − 1), create q2 new singleton
clusters from Xj as follows.

(i) Construct a spanning tree Tj for Gj .

(ii) for ℓ = 1 to q2 do

Delete a leaf node v from Tj and create a singleton cluster Zℓ from the point
corresponding to v.

Let Z1, . . ., Zq2
denote the new singleton clusters created in Step (d).

(e) Output the Ku clusters C1, . . ., Ct, Y1, . . ., Yq1
, Z1, . . ., Zq2

, Xj , . . ., Xr.

Figure 8: Algorithm for the ǫ-Feasibility Problem
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n − t − r additional clusters. Since Ku ≤ n, clusters X1, . . ., Xr have enough points to create

Ku − t − r additional singleton clusters. One simple way to achieve this is to split all the clusters

X1, . . . Xj−1, for an appropriate j, into singletons and then create the correct number of singleton

clusters from Xj . To facilitate the creation of singleton clusters from Xj , we construct a spanning

tree for the connected component Gj (corresponding to Xj). The advantage of a spanning tree

is that we can remove a leaf node v from the tree and create a new singleton cluster containing

the point corresponding to v. Since each tree has at least two leaves and removing a leaf will not

disconnect a tree, this method will increase the number of clusters by exactly one at each step.

Thus, by repeating the step an appropriate number of times, the number of clusters can be made

equal to Ku.

It can be seen that the running time of the algorithm in Figure 8 is dominated by the time

needed for Steps 1 and 2. Step 1 can be implemented to run in O(n2) time by finding the ǫ-

neighbor set for each point. Since the number of ǫ-neighbors for each point in S2 is at most n − 1,

the construction of the auxiliary graph and finding its CCs (Step 2) can also be done in O(n2)

time. So, the overall running time of the algorithm is O(n2). The following theorem summarizes

the above discussion.

Theorem 5.2 For any ǫ > 0, the feasibility problem under the ǫ-constraint can be solved in O(n2)

time, where n is the number of points to be clustered.

5.4 Feasibility Under the ǫ-Path-Constraint

A feasibility algorithm for the ǫ-path-constraint can be obtained by making the following minor

modifications to our feasibility algorithm for ǫ-constraint shown in Figure 8.

1. In Step 3, N∗, the minimum number of clusters needed to satisfy the ǫ-path-constraint is

given by N∗ = t + r. This is because every point in S1 must form a singleton cluster, and

merging any pair of clusters Xi and Xj violates the ǫ-path-constraint.

2. With N∗ = t + r, Step 4 correctly reports infeasibility when Ku < t + r. Thus, Case 2 of

Step 5 cannot arise. Hence, Step 6 of the algorithm has only two cases, namely Ku = t + r

and Ku > t + r. For each of these cases, the computational steps are identical to those

shown in Figure 8.

We thus conclude:

Theorem 5.3 For any ǫ > 0, the feasibility problem under the ǫ-path–constraint can be solved in

O(n2) time, where n is the number of points to be clustered.

6 Feasibility Under Combinations of Constraints

6.1 Overview

In this section, we consider the feasibility problem under combinations of ML, CL, ǫ and δ con-

straints. Since the CL-feasibility problem is NP-hard, the feasibility problem for any combination
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of constraints involving CL-constraints is, in general, computationally intractable. So, our focus is

on combinations of ML, δ and ǫ constraints. We show that the feasibility problem remains efficiently

solvable when both ML-constraints and a δ constraint are considered together as well as when δ

and ǫ constraints are considered together. Interestingly, when ML-constraints are considered to-

gether with an ǫ constraint, we show that the feasibility problem is NP-complete even though for

each constraint type individually the feasibility problem is tractable. This result points out that

when ML, δ and ǫ constraints are all considered together, the resulting feasibility problem is also

NP-complete in general. Tables 1 and 2 and summarize our feasibility results.

6.2 Combination of Must-Link and δ Constraints

We begin by considering the combination of ML-constraints and a δ constraint. As mentioned in

Section 5.2, the effect of the δ-constraint is to contribute a collection of ML-constraints. Thus, we

can merge these ML-constraints with the given ML-constraints, and then ignore the δ-constraint.

The resulting feasibility problem involves only ML-constraints. Hence, we can use the algorithm

from Section 3.2 to solve the feasibility problem in polynomial time. For a set of n points, the δ

constraint may contribute at most O(n2) ML-constraints. Further, since each given ML-constraint

involves two points, the number of given ML-constraints is also O(n2). Thus, the total number of

ML-constraints due to the combination is O(n2). Now, the following result is a direct consequence

of Theorem 3.1.

Theorem 6.1 Given a set of n points, a value δ > 0 and a collection C of ML-constraints, the

feasibility problem for the combination of ML and δ constraints can be solved in O(n2) time.

6.3 Combination of Must-Link and ǫ Constraints

As shown in the previous sections, the ML-feasibility and ǫ-feasibility problems are efficiently

solvable. Here, we show that, in general, the combination of ML and ǫ constraints leads to a

computationally intractable feasibility problem. For convenience, we will refer to this as the ML-

ǫ-feasibility (MLEF) problem. The intractability of the MLEF problem is established by showing

that the combination of ML and ǫ constraints has the power to model a set cover problem, which

is known to be NP-complete.

We note that in the absence of the lower bound (Kℓ) on the number of required clusters, the

MLEF problem can be solved by the following simple algorithm.

1. Find the set S1 of points which have no ǫ-neighbors (Step 1 of Figure 8).

2. If some point in S1 is also involved in an ML constraint, then output “No solution” and stop.

3. Compute the quantity N∗ as defined in Step 3 of Figure 8.

4. If N∗ > Ku, then output “No solution”. Otherwise, output the solution with N∗ clusters.

(This solution consists of the t singleton clusters and one cluster containing all the points in

S − S1.)
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Thus, the computational intractability of the MLEF problem also relies on the specification of

a suitable lower bound on the number of clusters.

6.3.1 The Nongeometric Case

For expository reasons, we first prove the NP-completeness result for the nongeometric case. (How-

ever, the specified distances between pairs of points do satisfy the triangle inequality.) The proof

for the nongeometric case makes it easier to understand how a set cover problem can be modeled by

the MLEF problem. Subsequently, by starting from an appropriate version of the set cover problem

and using a more complicated construction, we will show that the intractability result holds even

when the set to be clustered consists of points from R
2 and the distance between each pair of points

is the Euclidean distance.

We use the following problem (called X3C) in our proofs. This problem is known to be NP-

complete [Garey and Johnson 1979].

Exact Cover by 3-Sets (X3C)

Instance: A set X = {x1, x2, . . . , xn}, where n = 3t for some positive integer t and a collection

T = {T1, T2, . . . , Tm} of subsets of X such that |Ti| = 3, 1 ≤ i ≤ m.

Question: Does T contain a subcollection T ′ = {Ti1 , Ti2 , . . . , Tit} with t sets such that the union of

the sets in T ′ is equal to X?

Note that t < m and that the sets in T are not necessarily pairwise disjoint. Since n = 3t and

each subset in T contains exactly three elements, any solution T ′ to the X3C problem consists of a

collection t sets that are pairwise disjoint. Thus, in such a solution, each element of X appears in

exactly one of the subsets in T ′. If element xi ∈ X appears in set Tj ∈ T ′, we say that Tj covers

xi.

Theorem 6.2 The nongeometric case of the ML-ǫ-feasibility (MLEF) problem is NP-complete.

Proof: It is easy to see that the MLEF problem is in NP since one can guess a partition of S

and verify that the partition satisfies the ML constraint, the ǫ-constraint and the bounds on the

number of clusters. The proof of NP-hardness is by a reduction from the X3C problem. Consider

an instance I of the X3C problem consisting of the set X and the collection T of 3-element subsets

of X. We construct an instance I ′ of the MLEF problem as follows. For each element xi in X,

construct a point pi, 1 ≤ i ≤ n. For each set Tj in T , construct a point qj, 1 ≤ j ≤ m. The set S to

be clustered has n + m points and is given by S = {p1, p2, . . ., pn, q1, q2, . . ., qm}. The distances

between pairs of points are chosen as follows.

d(pi, pj) = 2 for all i, j, i 6= j
d(qi, qj) = 2 for all i, j, i 6= j
d(pi, qj) = 1 for all i, j, if xi in Tj

= 2 for all i, j, if xi not in Tj.

Since each distance is either 1 or 2, the distances satisfy the triangle inequality.
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The MLEF instance I ′ has the following n − 1 ML constraints: ML(p1, p2), ML(p2, p3), . . .,

ML(pn−1, pn). Thus, to satisfy all of these ML constraints, the n points p1, p2, . . ., pn must be in

the same cluster. The value of ǫ is chosen as 1. The lower bound Kℓ and the upper bound Ku on

the number of clusters are both chosen as m− t + 1. This completes the construction of the MLEF

instance I ′. Clearly, this construction can be done in polynomial time. We now show that there is

a solution to the MLEF instance I ′ iff there is a solution to the X3C instance I.

Part 1: Suppose there is a solution T ′ to the X3C instance I given by T ′ = {Ti1 , Ti2 , . . ., Tit}.

We construct a solution consisting of m − t + 1 clusters to the MLEF instance I ′ as follows.

(a) Cluster C1, which consists of n + t points, is given by C1 = {p1, p2, pn, qi1, qi2 , . . ., qit}.

(b) For each set Tj in T − T ′, there is a singleton cluster consisting of the point qj. There are

m − t such clusters, and they are denoted by C2, C3, . . ., Cm−t+1.

Obviously, this solution to instance I ′ satisfies the bounds on the number of clusters. It also

satisfies the ML constraints since all the points pi, 1 ≤ i ≤ n, are in the same cluster, namely

C1. We need to check the ǫ-constraint only for C1, since all others are singleton clusters. To see

that the ǫ-constraint holds for C1, note that T ′ is a set cover for the X3C instance I. Thus, for

each point pi in C1, there is some point qj such that d(pi, qj) = ǫ = 1. Likewise, since each set Tj

covers some elements of the set X, for each point qj in C1, there is some point pi in C1 such that

d(pi, qj) = ǫ = 1. Therefore, the ǫ-constraint is satisfied for each of the points in C1. Thus, we have

a feasible solution to the MLEF instance I ′.

Part 2: Suppose there is a solution to the MLEF instance I ′. We have the following lemma.

Lemma 6.1 Every solution to MLEF instance I ′ has m− t singleton clusters and one cluster with

n + t points.

Proof of lemma: Consider any solution to I ′. Let P = {p1, p2, . . ., pn} and Q = {q1, p2, . . ., qm}.

Because of the ML constraints, the set P must be entirely in some cluster, say C1, in the solution.

Since d(pi, pj) = 2 for i 6= j and ǫ = 1, no two points in P are ǫ-neighbors of each other. Thus, to

satisfy the ǫ-constraint, C1 must also contain some nonempty subset of Q. Further, each set Tj in

T has only three elements; in other words, each point qj can serve as an ǫ-neighbor for only three

points of P . Therefore, at least t = n/3 points of Q must be in C1 to satisfy the ǫ-constraint for

the points in set P . Suppose there are more than t points of Q in C1. Then, at most m − t − 1

points of Q are not in C1. Thus, including C1, the maximum number of possible clusters is m − t.

This contradicts the assumption that the solution contains m− t+1 clusters. Thus, C1 contains all

the n points of P and exactly t points of Q, for a total of n + t points. To have m− t + 1 clusters,

each of the remaining m − t points of Q must form a singleton cluster.

To construct a solution to X3C instance I, consider the given solution to the MLEF instance I ′.

In that solution, let C1 be the cluster with n + t points. As argued above, C1 has exactly t = n/3

points from the set Q. Let Q′ = {qj1, qj2, . . ., qjt} denote the subset of Q that is contained in C1.
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We claim that the collection T ′ = {Tj1, Tj2 , . . ., Tjt} is a solution to the X3C instance I. This can

be seen from the fact that each point qjℓ
in Q′, 1 ≤ ℓ ≤ t, serves as the ǫ-neighbor to exactly three

points of P . Thus, by our construction, each set Tjℓ
, 1 ≤ ℓ ≤ t, covers exactly three elements of X.

We thus have a solution to the X3C instance I, and this completes the proof of Theorem 6.2.

6.3.2 Extension to the Euclidean Case

We now extend the above proof to show that the MLEF problem remains NP-complete even when

the points to be clustered are from R
2 and the distances are Euclidean distances. To prove this

result, we use a reduction from the following version of the X3C problem, which is also known to

be NP-complete [Dyer and Frieze 1986].

Planar Exact Cover by 3-Sets (PX3C)

Instance: A set X = {x1, x2, . . . , xn}, where n = 3t for some positive integer t and a collection

T = {T1, T2, . . . , Tm} of subsets of X such that |Ti| = 3, 1 ≤ i ≤ m. Each element xi in X appears

in at most three sets in T . Further, the bipartite graph G(V1, V2, E), where V1 and V2 are in

one-to-one correspondence with the elements of X and the 3-element sets in T respectively, and

an edge {u, v} is in E iff the element corresponding to u appears in the set corresponding to v, is

planar.

Question: Does T contain a subcollection T ′ = {Ti1 , Ti2 , . . . , Tit} with q sets such that the union of

the sets in T ′ is equal to X?

Theorem 6.3 The ML-ǫ-feasibility problem is NP-complete even when the points to be clustered

are from R
2 and the distance metric is Euclidean.

Proof: The membership in NP is obvious. To prove NP-hardness, we use a reduction from

PX3C. Consider the planar (bipartite) graph G associated with the PX3C problem instance.

From the specification of the problem, it follows that each node of G has a degree of at most

three. Every planar graph with N nodes and maximum node degree three can be embedded

on an orthogonal N × 2N grid such that the nodes of the graph are at grid points, each edge

of the graph is a path along the grid, and no two edges share a grid point except for the grid

points corresponding to the graph vertices. Moreover, such an embedding can be constructed in

polynomial time [Tamassia and Tollis 1989]. The points and constraints for the feasibility problem

are created from this embedding.

Assume that using suitable scaling, each grid edge is of length 1. Choose the bottom left corner

of the grid as the origin (0, 0). Thus, each grid point can be assigned x and y coordinates. Note

that each edge e of G joins a set node to an element node. Consider the path along the grid for

each edge of G. Introduce a new point in the middle of each grid edge in the path. (The x and y

coordinates of such points will be multiples of 1/2.) For each edge e of G, this scheme yields the set

Se of points in the grid path corresponding to e, including the new middle point for each grid edge.

The set of points in the feasibility instance is the union of the sets Se, e in E. Let S′
e be obtained

from Se by deleting the point corresponding to the element node of the edge e. For each edge e,
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we introduce an ML-constraint involving all the points in S′
e. We also introduce an ML-constraint

involving all the points corresponding to the elements nodes of G. We choose the value of ǫ to be

1/2. The lower and upper bound on the number of clusters are both set to m − t + 1.

By the above construction, each set Tj in the PX3C instance is represented by a set of points

which is the union of the sets of points representing the three edges that join the node corresponding

to Tj to the three nodes corresponding to the elements in Tj . Since ǫ = 1/2, all the points in the

set corresponding to each set Tj have ǫ-neighbors. The only points for which ǫ-neighbors need to

be chosen are the points corresponding to the elements of the set X.

With the above correspondence between set Tj and the set of grid points representing Tj (1 ≤

j ≤ m), the proof that there is a solution to the PX3C instance I iff there is a solution to the

MLEF instance I ′ is similar to that presented in the proof of Theorem 6.2. In particular, if T ′

= {Tj1, . . . , Tjt} is a solution to the PX3C instance I, then the solution to the MLEF instance

consists of the following m − t + 1 clusters: one cluster contains all the points corresponding to

the elements x1, . . ., xn and all the points corresponding to the sets {Tj1 , . . . , Tjt} and each of

the remaining m − t clusters contains the points corresponding to a set Tj in T − T ′. Likewise, if

there is a solution to the MLEF instance I ′, the chosen ML and ǫ constraints force such a solution

to contain one cluster containing all the points corresponding to the elements and all the points

corresponding to t of the subsets in T ; those subsets together form a cover for the set X.

6.4 Combination of δ and ǫ Constraints

We abbreviate the feasibility problem for the combination of δ and ǫ constraints as DEF. In this

section, we show that the DEF problem can be solved in polynomial time. It is convenient to

consider this problem under two cases, namely δ ≤ ǫ and δ > ǫ.

6.4.1 Algorithm for the case where δ ≤ ǫ

When δ ≤ ǫ, our algorithm is based on the following simple observation: any pair of points which

are separated by a distance less than δ are also ǫ-neighbors of each other. This observation allows

us to reduce the feasibility problem for the combination to one involving only the ǫ constraint as

indicated below.

1. Using the δ-constraint, create a collection C of ML constraints as explained in Section 5.2.

2. Construct the transitive closure sets C1, . . ., Cr corresponding to the constraint set C.

3. For each set Ci, create a new point xi, 1 ≤ i ≤ r. (We don’t need coordinates for the new

points; a new distance function will be specified in Step 5.) Let X = {x1, . . . , xr}.

4. Let Y = {y1, . . . , yt} denote the set of points of S which are not involved in any of the ML

constraints in C.

5. Let S′ = X ∪ Y . Define a distance function d′ for S′ as follows. (Note that d represents the

distance function for the original point set S.)
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d′(xi, xj) = ǫ, 1 ≤ i < j ≤ r
d′(yi, yj) = d(yi, yj), 1 ≤ i < j ≤ r
d′(xi, yj) = min{d(sp, yj) : sp in Ci}.

6. Solve the ǫ-feasibility problem for the point set S′ under the distance function d′.

The justification for Step 3 is the following. Since |Ci| ≥ 2 and δ ≤ ǫ, the ǫ-constraint is satisfied

for all the points in Ci, 1 ≤ i ≤ r. In other words, we may treat each Ci as a single point. After

Step 3, we need to focus only on satisfying the ǫ-constraint for points which were not involved in

any of the constraints in C.

In Step 5, the reason for setting d′(xi, xj) = ǫ for all i and j is that any pair of clusters Ci and

Cj can be merged without violating the ǫ-constraint. Further, we set d′(xi, yj) to be the minimum

of the distances between yj and the points in Ci because as long as one of the points in Ci is within

a distance of ǫ from yj , we can merge yj with Ci without violating the ǫ-constraint.

Thus, with the new distance function d′, we can ignore the δ constraint, and the DEF problem

reduces to the ǫ-feasibility problem for the set S′ under the distance function d′.

We can estimate the running time of the above algorithm as follows. Steps 1, 2 and 3 run in

O(n2) time since the dominant part is due to the creation of the constraint set C and the transitive

closure computation. Step 4 needs only O(n) time. Step 5 runs in time O(n2) since the number of

distances to be created is O(n2). As explained earlier, the ǫ-feasibility test in Step 6 can be done in

O(n2) time. Therefore, when δ ≤ ǫ, the above algorithm for the DEF problem runs in O(n2) time.

6.4.2 Algorithm for the case where δ > ǫ

Now consider the DEF problem for the case when δ > ǫ. Suppose we create a collection C of ML

constraints corresponding to the δ-constraint and construct the transitive closure sets C1, . . ., Cr

for the constraint set C. When δ > ǫ, we have the following observation.

Observation 6.1 For any instance of the DEF problem, where δ > ǫ, the following statements

hold.

(a) For any point sx in Ci, each ǫ-neighbor of sx (if any) must also be in the same set Ci.

(b) Any point sj of S which is not involved in any of the constraints in C has no ǫ-neighbor; thus,

each such point must form a singleton cluster in any feasible solution.

Using the above observation, the steps of our DEF algorithm for the case when δ > ǫ are as follows.

1. Create a collection C of ML constraints corresponding to the δ-constraint and construct the

transitive closure sets C1, . . ., Cr.

2. If for some cluster Ci (1 ≤ i ≤ r), there is a point sx in Ci and sx does not have an ǫ-neighbor

in Ci, then output “No solution” and stop.
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3. Let Y = {y1, . . . , yt} denote the set of points of S which are not involved in any of the ML

constraints in C.

4. Nmin = t + min{1, r} and Nmax = t + r. If Kℓ > Nmax or Ku < Nmin then output “No

solution” and stop.

5. Construct a solution with Ku clusters as follows. If Ku ≥ t + r, output the t + r clusters

consisting of {y1}, . . ., {yt}, C1, . . ., Cr. If Ku < t + r, then combine sets CKu−t−r−1, . . . Cr

into a single set CKu−t and output the Ku clusters {y1}, . . ., {yt}, C1, . . ., CKu−t.

In the above algorithm, the justification for Step 2 is Part (a) of Observation 6.1. In Step 3, the

values Nmin and Nmax represent the largest and the smallest number of clusters in any feasible

solution. The expressions for Nmin and Nmax rely on Part (b) of Observation 6.1 and the fact that

splitting any of the sets Ci, 1 ≤ i ≤ r, into two or more clusters would violate the δ-constraint.

However, any pair of sets Ci and Cj can be merged into a single cluster. The other steps of the

algorithm carry out straightforward checks to make sure that the number of clusters satisfies the

bounds Kℓ and Ku.

The running time of the above algorithm is dominated by the time to complete Steps 1 and

2. It is easy to verify that these steps can be implemented to run in O(n2) time. Therefore, the

running time of the algorithm for the DEF problem for the case when δ > ǫ is also O(n2). The

following theorem summarizes the above discussion.

Theorem 6.4 Given a set of n points and values δ > 0 and ǫ > 0, the feasibility problem for the

combination of δ and ǫ constraints can be solved in O(n2) time.

7 More General Forms of Instance-Level Constraints

7.1 Definitions, Motivation and Overview

An ML or CL constraint set C can also be viewed as specifying a single constraint which is the

conjunction of all the individual ML or CL constraints in C. This view suggests more general forms

for ML and CL constraints. In particular, analogs of conjunctive and disjunctive normal forms

(respectively CNF and DNF) for Boolean expressions (see for example [Garey and Johnson 1979])

can be defined for ML and CL constraints.

Definition 7.1 The definitions of CNF and DNF versions of ML constraints are as follows.

(a) A clause Ci is a disjunction of one or more ML-constraints; that is,

Ci = ML(x1, y1) ∨ ML(x2, y2) ∨ . . . ∨ ML(xr, yr).

A conjunctive normal form (CNF) of ML constraints is a conjunction of clauses: C1 ∧ . . . ∧ Ct.

(b) A product term Pi is a conjunction of one or more ML-constraints; that is,
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Pi = ML(x1, y1) ∧ ML(x2, y2) ∧ . . . ∧ ML(xr, yr).

A disjunctive normal form (DNF) of ML constraints is a disjunction of one or more

product terms: P1 ∨ . . . ∨ Pt.

CNF and DNF versions of CL constraints are defined in a similar manner.

In this section, we consider the feasibility problems for CNF and DNF versions of ML and CL

constraints. These problems will be referred to as CNF-ML, DNF-ML, CNF-CL and DNF-CL

feasibility problems respectively.

The NP-completeness of the CL-feasibility problem (Section 3.3) showed that the problem

is intractable even for a single conjunction of CL constraints. Since a single conjunction of CL

constraints is in CNF as well as in DNF, it immediately follows that the CNF-CL and DNF-CL

feasibility problems are both intractable.

In Section 3.2, it was shown that the feasibility problem for a single conjunction of ML con-

straints can be solved in polynomial time. This result can be used to derive an efficient algorithm

for the DNF-ML feasibility problem as follows. Suppose the given DNF has p product terms. We

execute the ML-feasibility algorithm in Figure 1 for each of the p product terms, treating each term

as a collection of ML constraints. There is a solution to the DNF-ML feasibility problem if and

only if at least one of these executions produces a feasible solution. Thus, the complexity of this

algorithm is O(p(m + n)), where n is the number of points and m is the maximum number of ML

constraints in a product term.

We will show in Section 7.2 that, in general, the feasibility problem for CNF-ML constraints is

NP-complete. Moreover, this intractability holds even when each disjunction involves at most two

ML-constraints. This should be contrasted with the result that the ML-feasibility problem (where

each clause has only one ML-constraint) is efficiently solvable.

Special forms of CNF-ML and CNF-CL constraints arise when the constraints are specified

through choice-sets for some of the points. In this scheme, for a point x, a choice-set Sx =

{y1, . . . , yr} is given. In the context of ML-constraints, the choice-set Sx indicates that the cluster

containing x must contain at least one of the points in Sx. In the context of CL-constraints, the

choice-set Sx indicates that the cluster containing x must not contain at least one of the points in

Sx. With this interpretation, the choice-set based ML constraint for the point x can be expressed

as the following clause

ML(x, y1) ∨ ML(x, y2) ∨ . . . ∨ ML(x, yr),

where each ML constraint includes the common point x. Similarly, the choice-set based CL con-

straint for the point x can be expressed as the following clause

CL(x, y1) ∨ CL(x, y2) ∨ . . . ∨ CL(x, yr).

Since ML and CL constraints are inherently symmetric (i.e., ML(x, y) is the same as ML(y, x)

and CL(x, y) is the same as CL(y, x)), we will assume a corresponding symmetry condition for the

choice-sets: if y appears in the choice-set for x, then x appears in the choice-set for y.

27



We note that the ǫ-constraint considered in Section 5.3 leads to choice-set based ML constraints,

where the choice-set Sx for a point x is the set of all points within a distance of at most ǫ from

x. However, to satisfy the ǫ-constraint, a point x may form a singleton cluster even when it has

one or more ǫ-neighbors. To satisfy a choice-set based ML constraint, a point x with a nonempty

choice-set cannot be in a singleton cluster.

We refer to the feasibility problems for choice-set based ML and CL constraints as CSML-

feasibility and CSCL-feasibility respectively. We will show that both of these problems can be

solved efficiently.

We believe that choice-set based ML and CL constraints will have much practical use. For

example, in our empirical study section (Section 4) we saw that if we generate many ML-constraints

from labeled data, then the number of connected components in the transitive closure always

equaled the number of extrinsic labels (see Figure 4). Thus, we could not set k to be larger

than the number of extrinsic labels. With the choice-set form of ML-constraints, one can do the

following. Rather than overly constraining the problem by generating many ML constraints between

the similarly labeled points, we can create a choice-set form of ML constraints among points with

the same label. That is, each point with (say) label “+” must be linked with at least one other

point with label “+”, but not necessarily with all other points with label “+”. A similar line of

argument holds for using choice-set based CL-constraints. More importantly, this form allows us

to utilize CL-constraints without making the feasibility problem difficult.

7.2 Complexity of Feasibility for CNF-ML Constraints

Here, we prove that the feasibility problem for CNF-ML constraints (CNF-ML-feasibility) is NP-

complete, even when each clause has at most two ML constraints. Before presenting the proof,

we review a graph theoretic definition. Given an undirected graph G(V,E), a vertex cover for

G is a subset V ′ of V such that for each edge e = {u, v} in E, at least one of u and v is in

V ′. The definition allows us to state the following problem, which is known to be NP-complete

[Garey and Johnson 1979].

Minimum Vertex Cover (Mvc)

Instance: An undirected graph G(V,E) and an integer Γ ≤ |V |.

Question: Is there a vertex cover V ′ for G such that |V ′| ≤ Γ?

Suppose e = {u, v} is an edge in E and the chosen vertex cover V ′ includes u. We say that the

edge e is covered by the node u. Note that e can be covered by choosing either u or v. In the

NP-completeness proof below, this choice will be encoded as a disjunction of two ML-constraints.

Theorem 7.1 The CNF-ML-feasibility problem is NP-complete.

Proof: The membership in NP is obvious. To prove NP-hardness, we use a reduction from

Mvc. Consider an instance I of the Mvc problem consisting of the graph G(V,E), with |V | = n,

|E| = m, and the integer Γ ≤ n. We construct an instance I ′ of the CNF-ML-feasibility problem as
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follows. For each edge ei in E, construct a point pi, 1 ≤ i ≤ m. For each node vj in V , construct a

point qj, 1 ≤ j ≤ n. The set S to be clustered has m + n points and is given by S = {p1, p2, . . .,

pm, q1, q2, . . ., qn}.

The clauses in the constraint set C are chosen as follows. Consider any edge ei = {vx, vy}. The

clause Ai corresponding to ei, 1 ≤ i ≤ m, is given by

Ai = ML(pi, qx) ∨ ML(pi, qy)

We also add m − 1 other clauses, denoted by B1, . . ., Bm−1, where each Bi has just one ML-

constraint namely ML(pi, pi+1). Thus, each clause in Ai is the disjunction of two ML-constraints

while each clause in Bi has only one ML-constraint. In other words, each clause has at most two

ML-constraints.

As mentioned earlier, the intuition behind the construction of clause Ai is that when a particular

ML-constraint from Ai is satisfied, it corresponds to choosing a node to cover the edge ei. For this

reason, we will refer to the clauses A1, . . ., Am as covering constraints. The clauses B1, . . .,

Bm−1 ensure that in any solution to the instance I ′ of the CNF-ML-feasibility problem, the set of

points {p1, . . . , pm} is entirely in one cluster.

Thus, the constraint set C = {A1, . . ., Am, B1, . . ., Bm−1} has a total of 2m − 1 clauses. The

lower and upper bounds on the number of clusters are set to n − Γ + 1 and n respectively. This

completes the construction of the instance I ′. It can be seen that the construction can be carried

out in polynomial time. We now prove that the instance I ′ has a solution iff the instance I has a

solution.

Part 1: Suppose the Mvc instance I has a solution; that is, the graph G has a vertex cover of

size t ≤ Γ.

Let V ′ = {vj1 , . . . , vjt} denote the given vertex cover. Construct a solution to I ′ consisting of

m − t + 1 clusters as follows.

(a) Cluster C1 consisting of m + t points is given by C1 ={p1, . . . , pm, qj1, . . . , qjt}.

(b) For each node vx in V − V ′, there is a singleton cluster consisting of the point qx. There are

n − t such clusters, and they are denoted by C2, C3, . . ., Cn−t+1.

The number of clusters is n− t+1 ≥ n−Γ+1, since t ≤ Γ. Also, the number of clusters is less than

n. Thus, this solution to instance I ′ satisfies the bounds on the number of clusters. The solution

satisfies all the clauses B1, . . ., Bm−1, since the set of points {p1, . . . , pm} is entirely in cluster C1.

We now show that the solution also satisfies the clauses A1, . . ., Am.

Consider any clause Ai corresponding to edge ei = {vx, vy}. Thus, clause Ai is given by

ML(pi, qx) ∨ ML(pi, qy). Note that V ′ is a vertex cover for G(V,E). Thus, for the edge ei = {vx, vy}

in E, at least one of vx and vy is in V ′. Without loss of generality, suppose vx is in V ′. The

solution for I ′ constructed above includes the point qx in C1. Thus, the solution satisfies clause Ai.

Therefore, we have a feasible solution to the instance I ′.
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Part 2: Suppose the CNF-ML-feasibility problem instance I ′ has a solution. Let P = {p1, . . .,

pm} and Q = {q1, . . ., qn}. Because of clauses B1, . . ., Bm−1, the set P must be entirely in some

cluster, say C1. Note that the solution to I ′ has at least n − Γ + 1 clusters. We have the following

lemma.

Lemma 7.1 The cluster C1 contains at least one and at most Γ of the points q1, . . ., qn.

Proof of lemma: Note that the given solution also satisfies each of the clauses A1, . . ., Am.

Consider clause Ai = ML(pi, qx) ∨ ML(pi, qy) corresponding to point pi. To satisfy this clause,

at least one of qx and qy must be in C1. Thus, C1 has at least one point from Q.

Now, suppose C1 has more than Γ points from the set Q. Thus, |C1| ≥ m + Γ + 1. Since

|S| = m + n, at most n− Γ− 1 points of S are not in C1. Thus, the maximum number of clusters,

including C1, that can be formed is at most n − Γ. This contradicts the assumption that the

solution has at least n − Γ + 1 clusters. Therefore, C1 has at most Γ points from the set Q.

The above lemma enables us to construct a solution to the Mvc instance I from the given

solution to the CNF-ML-feasibility instance I ′. In that solution, let C1 be the cluster containing

the set P . From the above lemma, C1 has t ≤ Γ points from the set Q. Let Q′ = {qj1, . . ., qjt}

denote the subset of Q that is contained in C1. We claim that the collection V ′ = {vj1 , . . ., vjt} is

a vertex cover for G. This can be seen from the fact that the covering constraint for each point pi

is satisfied by an appropriate point from Q′. Since |V ′| = t ≤ Γ, we have a solution to the Mvc

instance I, and this completes the proof of Theorem 7.1.

7.3 Feasibility Problem for Choice-Set ML constraints

Here, we show that the feasibility problem for choice-set based ML constraints (the CSML-feasibility

problem) is efficiently solvable. Our algorithm relies on some graph theoretic concepts and results

which are reviewed below.

Let G(V,E) be an undirected graph. Each node v ∈ V whose degree is zero is called an isolated

node. A subset V ′ ⊆ V is an independent set if there is no edge between any pair of nodes in

V ′. A matching M in G is a subset of E such that no two edges in M share a node. Each node

that appears in an edge in M is referred to as a matched node with respect to M . Nodes of G

that do not appear in M are referred to as unmatched nodes with respect to M . A maximum

matching is a matching containing the largest number of edges. The following theorem lists some

known results about maximum matchings in graphs [Cormen et al. 2001, West 2001].

Theorem 7.2 Let G(V,E) be an undirected graph.

(a) A maximum matching of G can be found in O(|E|
√

|V |) time.

(b) Suppose M is maximum matching in G and U is the set of unmatched vertices with respect to

M . Then, U is an independent set.
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The steps of our algorithm for the CSML-feasibility problem are shown in Figure 9. It can be

seen that the running time of the algorithm is dominated by the maximum matching computation

in Step 3. By Part (b) of Theorem 7.2, Step 3 can be implemented to run in O(|E|
√

|V |) time.

Therefore, the algorithm runs in polynomial time. The correctness of the algorithm is established

through the following lemmas.

Lemma 7.2 Let G denote the graph constructed in Step 1 of the algorithm in Figure 9. Let r and

t denote respectively the size of a maximum matching and the number of isolated nodes in G. If Kℓ

> r + t, then there is no solution to the CSML-feasibility problem.

Proof: The proof is by contradiction. So, assume that Kℓ > r + t and that there is a feasible

solution. Thus, the solution has at least r + t + 1 clusters. Because of the symmetric nature of the

CSML-constraint and the construction of graph G in Step 1, the points for which the choice-set is

empty are precisely those that correspond to the isolated nodes of G. In any feasible solution, every

point x for which the choice-set Sx is nonempty must be in a cluster with at least one other point.

Since the number of isolated nodes is t, at most t of the clusters in the assumed feasible solution

may be singleton clusters. Thus, at least r + 1 clusters in the solution have points with nonempty

choice-sets. Let C ′ denote this collection of nonsingleton clusters. Again by our construction, the

subgraph of G corresponding to each of the clusters in C ′ contains at least one edge. Since these

subgraphs are vertex disjoint, we can get a matching for G with r + 1 or more edges from these

subgraphs. This contradicts the assumption that the size of the maximum matching in G is r, and

the lemma follows.

Lemma 7.3 Let the parameters r and t be as defined in Lemma 7.2. If Kℓ ≤ r + t, the algorithm

in Figure 9 produces a feasible solution with Kℓ clusters.

Proof: We show that at the end of Step 6 of the algorithm, the number of clusters is r + t and

that this partition of the point set S satisfies the CSML-constraint. The lemma would follow from

these results since Step 7 simply merges some clusters when Kℓ < r + t, and the CSML-constraint

cannot be violated by merging clusters.

We first prove that the number of clusters at the end of Step 6 is equal to r + t. To see this,

note that Step 2 creates t singleton clusters and that Step 5 produces one cluster for each of the

r edges in the maximum matching M . Thus, there are r + t clusters at the end of Step 5. As

mentioned in the proof of Lemma 7.2, points which have nonempty choice-sets correspond to nodes

with degree at least one in G. Each node with a degree of at least one is either a matched node

or an unmatched node with respect to the maximum matching M . Step 6 adds each unmatched

node to one of the clusters C1, . . ., Cr. By Part (b) of Theorem 7.2, the unmatched nodes with

respect to M form an independent set. Therefore, the addition of unmatched nodes to clusters in

Step 6 does not change the number of clusters. In other words, the number of clusters at the end

of Step 6 is also r + t.

We now argue that at the end of Step 6, the CSML constraint is satisfied for each point in S.

For each point corresponding to a matched node, the CSML-constraint is satisfied at the end of
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Step 5 itself because each edge in M gives rise to one of the clusters C1, . . ., Cr. So, we need to

only show that the CSML-constraint is satisfied for unmatched nodes. Consider any such node vx

and let x denote the point corresponding to vx. Again, by Part (b) of Theorem 7.2, the unmatched

nodes with respect to M form an independent set. Therefore, all the nodes corresponding to the

elements of the choice-set Sx of x are matched nodes. In other words, each node corresponding to

a point in Sx appears in one of the clusters. Since Step 6 adds x to a cluster containing one of the

points in Sx, the CSML-constraint is satisfied for the point x at the end of Step 6. This completes

the proof of the lemma.

The correctness of the algorithm is a direct consequence of the above two lemmas. We also

observed that the algorithm runs in polynomial time. The following theorem summarizes the

above results.

Theorem 7.3 The CSML-feasibility problem can be solved in polynomial time.

7.4 Feasibility Problem for Choice-Set CL constraints

Here, we show that the feasibility problem for choice-set based CL constraints (CSCL-feasibility

problem) can also be solved efficiently. Thus, unlike the CL-feasibility problem, the CSCL-feasibility

problem is tractable. Assuming that the set S of points to be clustered has cardinality at least two

and that at least one point3 has a nonempty choice-set, it is obvious that there is no solution to

CSCL-feasibility problem if Ku= 1. We will show that as long as Ku ≥ 2, there is always a feasible

solution with max{2,Kℓ} clusters.

Our algorithm for the CSCL-feasibility problem also relies on some simple graph theoretic

concepts. Let G(V,E) be an undirected graph. A spanning forest for G contains a spanning tree

for each connected component of G. It is well known that any tree can be 2-colored in polynomial

time [West 2001].

The steps of our algorithm for the CSCL-feasibility problem are shown in Figure 10. Since

constructing a spanning forest and 2-coloring trees can all be done in polynomial time, the algorithm

runs in polynomial time. The correctness of the algorithm is established through the following

lemma.

Lemma 7.4 The clusters C1 and C2 constructed at the end of Step 6 of the algorithm in Figure 10

satisfy all the CSCL constraints.

Proof: The isolated nodes of G correspond to points with empty choice-sets. Therefore, they

play no role in satisfying the CSCL constraints. Thus, we need to consider only points with

nonempty choice-sets. Let x be any such point and let Sx denote its (nonempty) choice-set. By

our construction of G, the node vx corresponding to x has degree of at least 1. Therefore, in the

spanning forest F , vx is adjacent to at least one of the nodes corresponding to points in Sx. Let

vy be one such node and let y be the point corresponding to vy. Because of the edge {vx, vy} in F ,

3Because of the assumed symmetry condition, this condition implies that at least two points have nonempty
choice-sets.
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the 2-coloring step assigns different colors to vx and vy. In other words, x and y appear in different

clusters; that is, the CSCL constraint is satisfied for x.

Step 7 of the algorithm in Figure 10 creates new singleton clusters from C1 and C2 (if necessary).

Clearly, this step cannot violate any CSCL constraint. Thus, the correctness of our algorithm for

the CSCL-feasibility problem is a consequence of Lemma 7.4. The following theorem summarizes

the above results.

Theorem 7.4 The CSCL-feasibility problem can be solved in polynomial time.

8 Summary and Conclusions

A major limitation of clustering is that clustering algorithms that minimize an objective function

such as vector quantization error do not always produce meaningful solutions to the practitioner.

The area of clustering under constraints allows the practitioner to specify prior background infor-

mation that can influence a clustering algorithm to find clusterings with specific properties. In

effect, these constraints partition the space of all possible clusterings into feasible and infeasible

clusterings. However, overly constraining or poorly specified constraints can make the set of feasible

clusterings empty.

In this paper we formally studied the feasibility problem for clustering under constraints. We

first developed (worst-case) complexity results for clustering under conjunctions of CL and ML

constraints and our newly introduced ǫ and δ constraints individually. We also studied the problem

for all combinations of these constraints. Our results indicate that for CL constraints and for

several constraint combinations, the feasibility problem is NP-complete. We then studied CNF

and DNF versions of ML and CL constraints. There also we found that the feasibility problem for

CL constraints is NP-complete. Thus, one cannot hope to efficiently incorporate CL constraint

checking into a clustering algorithm.

To allow the use of some general versions of CL and ML constraints, we introduced the notion

of choice-sets, which lead to CNF versions of these constraints, with the restriction that each clause

has a common point. We then showed that the feasibility problem for choice-set forms of ML and

CL constraints is efficiently solvable, meaning that we can incorporate such forms of constraints

efficiently into existing clustering algorithms. Our worst-case feasibility results are summarized in

Tables 1 and 2.

Finally, we carried out an empirical study to determine whether the feasibility problem arises

in practice. We found that for the same data set and the same constraint source but with varying

number of constraints, the feasibility problem was sometimes easy and other times difficult. We

then presented an approach that considers the maximum node degree of the graph constructed

from the constraints to provide an explanation of which instances of the feasibility problem are

easy and which are difficult.

Acknowledgments: We thank Dr. Kiri Wagstaff (JPL) for her detailed comments on the con-

ference version of this paper.
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Note: Whenever a feasible solution exists, the following algorithm outputs a clustering with Kℓ

clusters.

1. Construct the following graph G(V,E): The node set V is in one-to-one correspondence with
the set of points S. For each point x with choice-set Sx, the set E contains edges that join
the node corresponding to x to the nodes corresponding to the points in Sx.

2. Let V1 = {vi1 , . . . , vit} denote the set of isolated nodes of G. (Thus, t = |V1|.) Create t
singleton clusters Y1, . . ., Yt, where Yj contains the point corresponding to node vij , 1 ≤ j ≤ t.

3. Find a maximum matching M in G. Let M = {e1, . . . , er}. (Thus, r = |M |.)

4. if Kℓ > t + r then Output “No solution” and stop.

Note: Here, Kℓ ≤ r + t. The following steps construct a solution with Kℓ clusters.

5. for each edge ei in M do

(a) Let ei = {u, v}.

(b) Create cluster Ci containing the two points corresponding to nodes u and v.

Note: Step 5 created clusters C1, C2, . . ., Cr.

6. for each point x whose choice-set Sx is not empty do

if x is not in C1 ∪ . . . ∪ Cr then

(a) Choose an arbitrary point y ∈ Sx. (Note: The point y must be in one of the
clusters C1, . . ., Cr.)

(b) Add x to the cluster Cj which contains y.

Note: At this point, there are r + t clusters namely, C1, . . ., Cr, Y1, . . ., Yt.

7. if Kℓ = r + t then Output C1, . . ., Cr, Y1, . . ., Yt.
else

(a) Combine the last r + t − Kℓ + 1 clusters in the list C1, . . ., Cr, Y1, . . ., Yt into a single
cluster X.

(b) Output the first Kℓ − 1 clusters in the list C1, . . ., Cr, Y1, . . ., Yt and the cluster X
(for a total of Kℓ clusters).

Figure 9: Algorithm for the CSML-Feasibility Problem
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Note: It is assumed that |S| ≥ 2 and that at least one point has a nonempty choice-set. Whenever
a feasible solution exists, the following algorithm outputs a clustering with max{2,Kℓ} clusters.

1. if Ku < 2 then Output “No solution” and stop.

2. Construct the following graph G(V,E): The node set V is in one-to-one correspondence with
the set of points S. For each point x with choice-set Sx, the set E contains edges that join
the node corresponding to x to the nodes corresponding to the points in Sx.

3. Let V1 = {vi1 , . . . , vit} denote the set of isolated nodes of G.

4. Let r denote the number of connected components of G. Construct a spanning forest F of G
consisting of trees T1, . . ., Tr.

5. Construct a 2-coloring of each tree in F using colors 1 and 2. Let n1 and n2 denote the
number of nodes colored 1 and 2 respectively.

6. Construct cluster C1 consisting of points corresponding to all the nodes in V1 and those
corresponding to nodes assigned color 1 in Step 5. Construct cluster C2 containing points
corresponding to nodes assigned color 2 in Step 5.

7. if Kℓ ≤ 2 then output the clusters C1 and C2.
else

if Kℓ ≤ |C1| then

(a) Remove Kℓ−2 points (arbitrarily) from C1 and make each of them into a singleton
cluster.

(b) Output the singleton clusters constructed in (a) above, the remaining points in
C1 as a single cluster and C2.

else

(a) Make each point in C1 into a singleton cluster.

(b) Remove Kℓ − |C1| − 1 points (arbitrarily) from C2 and make each of them into a
singleton cluster.

(c) Output the singleton clusters constructed in (a) and (b) above and the remaining
points in C2 as a single cluster.

Figure 10: Algorithm for the CSCL-Feasibility Problem
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Appendix A: A Coloring Algorithm Based on Brooks’s Theorem

Theorem 8.1 (Brooks’s Theorem) Let G(V,E) be a graph in which the maximum node degree

is ∆. Then G is (∆ + 1)-colorable.

Figure 11 gives an algorithm for coloring a graph using k colors, when k ≥ ∆+1. The following

lemma establishes the correctness of the algorithm. (This is the proof of Brooks’s theorem given

in [West 2001].)

Lemma 8.1 Algorithm Brooks-Coloring outputs a valid coloring of G with each node receiving a

color in the range [1 .. k].

Proof: Consider the outline of Algorithm Brooks-Coloring shown in Figure 11. We need only

show that for each node v, Step 2(b) of the algorithm always succeeds in finding a value for the

variable α. To see this, note that the degree of v is at most ∆. Thus, |Qv| ≤ ∆. Since k ≥ ∆ + 1,

it follows that there is at least one color that has not been used for any neighbor of v. In other

words, there is at least one available value for α in each iteration of Step 2(b).

Algorithm Brooks-Coloring (G, k)

Input: Undirected graph G(V,E) with maximum node degree ∆, an integer k ≥ ∆ + 1.

Output: A valid node coloring of G such that each node is given a color in [1 .. k].

1. Initially, no node has been assigned a color.

2. for each node v ∈ V do

(a) Let Qv denote the set of colors used for the neighbors of v in G. (Qv may be empty.)

(b) Find an integer α such that 1 ≤ α ≤ k and α 6∈ Qv.

(c) Set Color(v) = α.

Figure 11: Brooks-Coloring Algorithm
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