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Abstract 
Ensemble techniques such as bagging and DECORATE exploit the 
“instability” of learners, such as decision trees, to create a diverse 
set of models. However their application to stable learners such as 
naïve Bayes, does not yield as much improvement and can 
sometimes degrade performance a claim we empirically verify in 
this paper. But stable learners are desirable for their superior 
performance on some problems and algorithmic simplicity. We 
show that many learners commonly referred to as stable have 
Gaussian posterior distributions. Given such a well defined 
posterior distribution we can use both parametric and non-
parametric bootstrapping to create a process that approximates 
taking draws from their posterior. By summing the joint 
distribution of the instance and the class we are approximating 
posterior model averaging a.k.a. the optimal Bayes classifier 
(OBC) which is known to minimize the Bayes error. We refer to 
our approach as bootstrap model averaging. Since model averaging 
removes the model uncertainty it works best when there is much 
model uncertainty and does no harm when there is little, a claim we 
empirically verify. Since the Gaussian distribution is 
mathematically well understood we can bound the increase over 
the OBC error using a Chebychev bound as a function of the 
number of models built. We empirically illustrate our approach’s 
usefulness and verify our bound’s correctness. 

1 Introduction and Motivation 

Ensemble approaches are popular because they can be 
readily applied to many problems and decrease predictive 
error. Bagging (Brieman 1996), boosting (Schapire 1992), 
arcing (Brieman 1998) and DECORATE (Melville, Mooney, 
2003) have been empirically shown to have a better 
generalization error than using a single model for a large 
variety of data sets. 

Although ensemble techniques are popular, they suffer 
from several problems. They are best suited to unstable 
learners such as decision trees that readily allow the creation 
of a diverse set of classifiers (Melville, Mooney, 2003) and 
do not decrease predictive error as much for stable learners. 
Why an ensemble technique works is not often known or 
cannot be easily tested meaning when they are applicable is 
difficult to predict. Therefore, each ensemble technique 

should be tried for completeness, just in case it works. 
Finally, how many models to build is not known a priori 
leaving the number of bags, boosting rounds or data sets to 
generate another unknown to be investigated empirically. 
Therefore, though they are useful, ensemble techniques 
require a large investment of time to verify how many 
models to build and which technique to apply. 

In this paper we propose an ensemble technique for stable 
learners we refer to as bootstrap model averaging. We show 
that learners typically thought of as stable have Gaussian 
posteriors. Given this, we can use non-parametric and 
parametric bootstrapping to approximate taking draws from 
the posterior distribution. For each draw we sum the joint 
probability of a class and instance given the drawn model. 
We show that as the number of models built approaches 
infinity our ensemble approach is equivalent to the optimal 
Bayes classifier (OBC) when using the same prior 
distribution over the model space. The OBC is known to 
work well when there is much model uncertainity and is 
known to minimize the Bayesian error/risk. For a given 
model space and prior probability distribution over the space: 
no classifier can perform better, hence its name (Mitchell, 
1997). In this respect OBC is highly desirable but it requires 
integration over the model space making it extremely time 
consuming. Our approach offers an approximation to OBC 
with performance bounds dependent on the number of 
models built or bootstrap samples taken. This allows the 
quantification of the closeness of the approximation and 
specifying a trade-off between closeness to the OBC error 
and time (number of models to build). 

2 Paper Outline and Standards 

We begin this paper by empirically verifying the often made 
claim that ensemble techniques do not work as well for stable 
learners. Next we illustrate the two conditions for learners to 
have a Gaussian posterior holds for many stable learners. 
Given the posterior of stable learners is known to be 
Gaussian we show that various types of bootstrapping can 
create a process that in the limit is equivalent to taking draws 
from the posterior. Our ensemble approach is to sum the joint 



probability of the class and instance given the model for each 
model derived by applying the learner to the bootstrapped 
data set. We empirically illustrate that bootstrap model 
averaging out performs bagging, boosting and DECORATE 
for stable learners. Since our approach is an approximation to 
posterior model averaging that is known to minimize the 
Bayesian risk, we can bound the increase over the minimal 
Bayes risk as a function of the number of models built. For 
artificial data sets, we can measure the error increase and we 
verify the correctness of our bound. Finally we conclude and 
describe future work.  

Throughout this paper we use ten standard UCI data sets of 
varying properties including those that contain missing 
values. We use the WEKA software for all experiments2. All 
results were for 100 trials with a random division of 
available data into training and test set.  

We denote the number of models with T and the independent 
variables as x and the dependent variable as y. 

3 Ensembles and Learner Stability 

The purpose of this section is to illustrate empirically that 
popular ensemble techniques do not work as well for stable 
learners. Later, we shall show our approach does increase 
predictive accuracy for these very same data sets. Creating a 
diverse set of models appears to be an important property for 
successful ensemble techniques (Krough and Vedelsby, 
1995). However, creating a diverse set for stable learners 
appears to be difficult. Techniques such as bagging are 
known to work best with unstable learners (compare Table 1 
and Table 4) as they reduce variance. We illustrate that 
techniques such as DECORATE and boosting also do not 
work as well with stable learners (compare Table 2 with 
Table 5 and Table 3 with Table 6). Our presented results 
show the following: 

1) The mean error reduction for bagging, DECORATE 
and boosting for J48 is respectively 2.5%, 2.6% and 
3.4%.while for naïve Bayes the reduction is 0.48%, -
0.23% and  0.46% respectively. 

2) Bagging, DECORATE and Boosting naïve Bayes 
produced only four statistically significant3 decreases 
in error (out of thirty experiments) but twenty four 
significant decreases for J48. Furthermore, Boosting 
can significantly decrease error. 

3) The ensemble techniques (particularly DECORATE 
and boosting) can significantly increase predictive 
error for naïve Bayes. 

 

 

 

                                                           
2 WEKA’s implementation of bagging sums conditional probabilities 

not votes, we changed this implementation to sum votes 
3 Pairwise t-Test for means at the 95% confidence level 

Table 1. J48 bagging % error. Training set size: 66%. 
Dataset Single 

Model 
T=100 Improve 

(Stat. Sig.) 
Iris 5.7 5.2 0.7 (Yes) 
Breast  5.5 3.7 1.8 (Yes) 
Soybean 10.9 8.0 2.9 (Yes) 
Crx 15.2 13.8 1.4 (Yes) 
Adult 4 17.0 15.6 1.4 (Yes) 
Labor 20.9 17.2 3.7 (Yes) 
Glass 33.3 27.5 5.8 (Yes) 
Vote 4.5 4.1 0.4 (No) 
Audio. 22.6 18.8 3.8 (Yes) 
Auto 26.5 20.9 5.6 (Yes) 

Table 2. J48 DECORATE % error. Training set size: 66%. 
Dataset Training 

Data 
T=100 Improve 

(Stat. Sig.) 
 Iris 5.7 5.1 0.6 (Yes) 
Breast  5.5 3.9 1.6 (Yes) 
Soybean 10.9 6.7 4.2 (Yes) 
Crx 15.2 14.5 0.7 (Yes) 
Adult 17.0 17.8 -0.8 (Yes) 
Labor 20.9 11.7 9.2 (Yes) 
Glass 33.3 27. 8 5.5 (Yes) 
Vote 4.5 5.3 -0.8 (Yes) 
Audio. 22.6 20.4 2.2 (Yes) 
Auto 26.5 22.8 3.7 (Yes) 

Table 3. J48 Boosting % error. Training set size: 66% 
Dataset Training 

Data 
T=100 Improve 

(Stat. Sig.) 
Iris 5.7 5.8 -0.1 (No) 
Breast  5.5 3.3 2.2 (Yes) 
Soybean 10.9 7.6 3.3 (Yes) 
Crx 15.2 14.5 0.7 (Yes) 
Adult 17.0 17.8 -0.8 (No) 
Labor 20.9 14.1 6.8 (Yes) 
Glass 33.3 24.5 8.8 (Yes) 
Vote 4.5 5.1 -0.6 (No) 
Audio. 22.6 16.8 5.8 (Yes) 
Auto 26.5 18.6 7.9 (Yes) 

Table 4. Naïve Bayes bagging. Training set size: 66% 
Dataset Single 

Model 
T=100 Improve 

(Stat. Sig.) 
Iris 4.0 4.1 -0.1 (No) 
Breast  3.7 3.7 0.0 (No) 
Soybean 7.9 8.1 0.2 (No) 
Crx 15.2 14.8 0.4 (No) 
Adult 5 17.0 15.6 1.4 (Yes) 
Labor 7.8 7.6 0.2 (No) 
Glass 51.3 49.0 2.3 (Yes) 
Vote 10.1 10.2 -0.1 (No) 
Audio. 31.1 31.6 -0.5 (No) 
Auto 44.0 43.0 1.0 (No) 
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Table 5. Naïve Bayes Decorate % error,100 trials. 
Dataset Training 

Data 
T=100 Improve 

(Stat. Sig.) 
Iris 4.0 4.9 -0.9 (Yes) 

Breast 3.7 3.9 -0.2 (No) 
Soybean 7.9 8.4 -0.5 (No) 

Crx 15.2 14.5 -0.7 (No) 
Adult 17.0 17.8 -0.8 (No) 
Labor 7.8 9.0 -1.2 (Yes) 
Glass 51.3 50.4 0.9 (No) 
Vote 10.1 10.5 -0.4 (No) 

Audio. 31.1 31.1 0.0 (No) 
Auto 44.0 42.5 1.5 (No) 

Table 6. Naïve Bayes Boosting % error 100 trials 
Dataset Training 

Data 
T=100 Improve 

(Stat. Sig.) 
Iris 4.0 4.4 -0.4 (No) 

Breast 3.7 4.4 -0.7 (No) 
Soybean 7.9 10.0 -2.1 (Yes) 

Crx 15.2 14.5 0.7 (No) 
Adult 17.0 17.8 -0.8 (No) 
Labor 7.8 10.1 -2.3 (Yes) 
Glass 51.3 50.9 0.4 (No) 
Vote 10.1 6.8 2.3 (Yes) 

Audio. 31.1 25.7 5.4 (Yes) 
Auto 44.0 42.9 1.1 (No) 

4 Stable Learners Have Gaussian 
Distributions 

The Bayesian central limit theorem tells us precisely 
what properties a learner must have to produce a Gaussian 
posterior. They are: 

1) The training data must be independently and 
identically distributed given the model. 

2) The posterior probability density function must be 
twice differentiable everywhere for all of the 
training data. 

An additional property inherently implied in the work is: 

3) The learner is a deterministic function of the 
training data. 

Property 1) means that the training set observations are 
modeled as being independent of each other and are drawn 
from the same distribution (pool of data). Property 2) may 
seem prohibitive but holds for many learners in the machine 
learning literature. Consider a learner as a function L(.) that 
places a probability distribution over the model space and 
returns the most probable model. The property states that if 
we write the density function associated with the learner, the 
second order derivative is defined. Most probability density 
functions used in learning are from the expotential family 
and meet the above properties. A few distributions such as 
the Cauchy distribution do not meet the requirements, but 
they appear not to be in common use. 

Note, the theorem does not state that for models of 
multivariate Gaussians that the posterior will be Gaussian, it 
states for any posterior density function that is twice 
differentiable and models the data as IID that the posterior 
will be Gaussian. The smooth Gaussian distribution denotes 
a well defined functional relationship between the data and 
the model parameters. The Gaussian posterior for stable 
learners we shall denote as: 
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The mean of this Gaussian is the expected model 
parameters over the posterior distribution (ie. ΣP(θ|D).θ) and 
the variance is calculated over model parameters multiplied 
by their posterior probability. As an illustrative example, 
consider perhaps the simplest stable learner: the majority 
guesser. The majority guesser predicts the most populous 
class in the training set and for a two class problem 
effectively has one parameter, ρ, the probability of class +. 
We encode a positive label (dependent variable) for the i th 
instance as yi = 1 and negative label as yi = 0. The posterior 
density function over the one independent column (x) is as 
follows: 
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The mean of the posterior is ΣiρiP(ρi|D) = 0.5 for all data 
sets where i indexes all possible parameter values. The 
posterior standard deviation for a model space of size k is 
measured over the observations {ρ1P(ρ1|D) … ρkP(ρk|D)}.  

We now show that as expected, that naïve Bayes is stable 
and decision trees unstable according to our definition. 
Consider a two class naïve Bayes classifier with a single 
Boolean attribute (true=1, false=0) without loss of generality 
as the attributes are independent of each other in naïve 
Bayes. This classifier effectively builds a model for each 
class and we focus on the model to predict one class (+), the 
other class (-) model will be identical in form. The 
parameters for the model are {P(+), p, q=(1- p)}.  We use the 
term n+ to indicate the number of instances with a positive 
label and  n+,T , n+,F  the number of positive labeled instances 
with a TRUE and FALSE attribute respectively. Writing the 
posterior distribution and ignoring the constant P(D) for 
class + yields equation ( 3 ). Taking the second order 
derivative with respect to p yields equation ( 4 ), a standard 
result for binomial distributions. 
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Most learners that involve counting (with no independent 
attributes having missing values) will have a posterior 
density function that contain a binomial distribution and 
hence have posteriors that are twice differentiable. Examples 
include k-nearest neighbor (k>2), belief networks and even 
association rules. These are all considered by the machine 
learning community to be more stable compared to learners 
such as decision trees. Figure 1 illustrates for the vote data 
set the posterior distribution for the naïve Bayes classifier. 
As each column is modeled independent of each other the 
model space is effectively sixteen real values between 0 and 
1. 

 

Figure 1. Posterior distribution for naïve Bayes 
parameters for attributes 1 – 8 only. 

Now consider the posterior distribution for a decision tree 
learner with m attributes. If any of the attributes were 
continuous, the model parameters contain inequalities and 
hence the posterior density function cannot be differentiated. 
For Boolean or multistate attributes, the model consists of a 
disjunction of nLeafs conjunctions. Let the parameters for the 
i th conjunction be {Xi,1 ∧… Xi,m} and the number of training 
instances following this path be nPath_i. Then the posterior 
density function is: 
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Colloquially, the first order derivative measures the 
change in posterior density when the parameters are changed 
slightly. However, one cannot change the parameters of a 
conjunction slightly and the derivative of a conjunctive 
expression is undefined. Therefore, decision trees of either 
(or both) discrete or continuous attributes are not stable 
according to our definition. 

We now discuss the optimal Bayes classifier and compare 
it to our ensemble approach bootstrap model averaging.  

5 Optimal Bayesian Classifier and Minimal 
Risk 

We begin this section by describing the OBC and why it 
is optimal. We find that deriving the conditions for 

optimality overcomes a common misunderstanding, namely 
that one should sum the joint probability of instance and 
class not the conditional probability of class given instance. 
The later summation inherently assumes that each instance is 
equally likely to be encountered which is rarely the case.  

Without loss of generality consider a two class problem, 
y1 and y2, and a single test instance, x, training data D and 
model space Θ. For a particular instance the minimal risk is 
to predict the most probable class according to equation ( 6 ). 

 

Where y* is the most probable class 
( 6 ) 

Generalizing this to minimize the risk for all instances 
involves an integration and factoring in the chance of 
encountering the instance as shown below. 

 ( 7 ) 

Generalizing for all models to the remove model 
uncertainty involves integration and multiplying by posterior 
probability of the model. 

 ( 8 ) 

Consequently, choosing the class that minimizes the risk 
is equivalent to choosing the class that maximizes the 
summation of the joint probability of the class and test 
instance given the model over all models. Formally, the 
calculation that model averaging is performing is shown in 
equation ( 9 ). 

θθθ dDP�xyPq ii
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For a given data set, model space and prior distribution 
over the model space, no other approach can yield a smaller 
risk (Mitchell, 1997). However, OBC is a time consuming 
process as it involves performing an integration over the 
entire model space which could be high dimensional.  
Summing the conditional probabilities is equivalent to 
considering that each instance is equally likely. 

5.1 Bootstrap Model Averaging Approximates 
Bayesian Model Averaging  

In this section we show that creating multiple bootstrap 
samples (B1 … BT) of the data, building a model from each 
(θ1 … θT) using a stable learner and summing the joint 
probability (Σi=1…T P(yj,x|θi) ) for a particular class estimates 
the degree of belief that class j is the true class for x. We 
need to show that the posterior distribution over models is 
equivalent to the distribution over the models that 
bootstrapping creates.  
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Consider the typical view of learning where a single 
training set of size n is available from the underlying 
distribution that generated the data F as shown in Figure 2. 

FDn={ x1, x2 … xn} ~

θ = L(Dn)  

Figure 2. A typical view of learning 

However, this view masks the underlying uncertainty in 
the data, namely that the training data we have, is one of 
many that could have been generated (is available). Consider 
T such data sets as indicated in Figure 3. If we were to build 
a model for each possible data set we would have a 
probability distribution over the model space. 

FDn
1, Dn

2 … Dn
T ~

θ1 = L(Dn
1)

θ2 = L(Dn
2)

.

.
θT = L(Dn

T)  

Figure 3. A view of learning that considers training 
set uncertainty. 

However, typically we do not have many different data 
sets so we can not compute the uncertainty over the model 
space from them. To consider the error or uncertainty for 
estimators/models using a single data set Efron (Efron, 1979) 
created the non-parametric and parametric bootstrapping 
approaches. In the training data set suppose that Boolean 
attribute i was TRUE p percent of the time and continuous 
attribute j was on average q. Then across the bootstrap 
samples the average values of attributes i and j will also be p 
and q respectively. Therefore, when we average over models 
learnt from B1… BT we find that Average(L(B1)… 
L(BT))≈L(D) ≈ )(E )|P( θθ D as by definition the learner chooses 

the most probable model and the posterior distribution is 
unimodal for stable learners. Therefore µPost = µBoot where the 
subscript boot indicates the bootstrapping distribution.  

Furthermore, Variance(L(B1)…L(BT)) ≈ VarianceP(θ|D)(θ). 
That is, σPost =  σBoot where as before the subscript boot 
indicates the bootstrapping distribution. An assumption of 
the above is that it holds in the limit as the number of 
samples approaches infinity, that is, limT→∞. Later we shall 
derive bounds for how close this approximation is for a finite 
number of models. In the mean time we can visually verify 
that by creating just 100 samples, that the probability 
distribution created by bootstrapping approximates fairly 

well the posterior distribution as shown in Figure 4. A 
complete analysis of the differences is presented in the 
appendix. 

Bootstrapping Distribution
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Figure 4. Distribution for naïve Bayes parameters 
from 100 bootstrap samples for all attributes in VOTE 
data set. attributes 1 – 8. Compare with Figure 1. 

We can now outline our bootstrap model averaging 
algorithms and empirically verify their performance for 
improving the performance of the naïve Bayes classifier. 

6 Two Algorithms for Bootstrap Model 
Averaging 

6.1 Non-Parametric Bootstrap Model Averaging 

Consider the underlying distribution, F, that created the 
training data D. If nothing is known of the structure of F we 
can empirically approximate it by sampling without 
replacement from D. This is the formulation of bootstrapping 
commonly known to the machine learning community. Our 
algorithm is therefore: 

// Build the models 

For i = 1 to t 

Bagi  = SampleWithReplacement(D) 

Mi  = StableLearner(Bag i ) 

End For 

// The models M 1 … Mt  can now be treated 
// as being drawn from the posterior. 

// Sum the joint probability  
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Algorithm #1): Non-parametric version of bootstrap 
model averaging. 

This algorithm approximates the calculation in ( 9 ). 

6.2 Parametric Bootstrap Model Averaging 

If some knowledge of the structure of F is known then we 
can make use of this to perform a parametric bootstrap. 
Where as the non-parametric bootstrapping algorithm 



previously described was independent of the underlying data 
set, parametric bootstrapping depends on the data set. Non-
parametric bootstrapping used the actual instances in the 
training data to empirically approximate F hence each 
bootstrap consisted of instances that were part of the training 
data. With non-parametric bootstrapping a parametric 
distribution is fitted to the training data to approximate F and 
virtual instances that are not necessarily part of the training 
data are generated. For simplicity consider a two attribute 
problem one Boolean and one continuous. We can model the 
first attribute as a binomial distribution and the second as a 
Gaussian (for instance) as we have in this paper. The 
parametric bootstrap model averaging algorithm is as 
follows. 

// Build the approximation to F 

FModel = Model(D) 

// Create the bags from the model 

For i = 1 to t 

Bagi  = ParametricBootstrap(FModel) 

Mi  = StableLearner(Bag i ) 

End For 

// The models M 1 … Mt  can now be treated 
// as being drawn from the posterior. 

// Sum the joint probability  
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Algorithm #1): Parametric version of bootstrap model 
averaging 

We now empirically verify the performance of these two 
algorithms for the stable naïve Bayes learner. 

7 Bootstrap Model Averaging Naïve Bayes 
Classifiers 

For a variety of data sets we empirically compare 
bootstrap model averaging against building a single model. 
Where as boosting and DECORATE quite often increased 
the predictive error we find that this does not occur for our 
approach. We find for six of the ten data sets that a 
significant decrease in error occurs. The average decrease is 
1.01 which is twice as much as the previous ensemble 
techniques. We have included the summing of conditional 
probabilities to illustrate empirically that it is sub-optimal. 
Our results are shown in Table 7. 

 

 

 

 

 

 

Table 7. Naïve Bayes bootstrap model averaging using 
66% training set size. The last column indicates the results 
for summing conditional probabilities. 
Dataset Single 

Model 
BMA Improve  

(Stat. Sig.) 
Boot 

Cond. Probs 
Iris 4.0 4.0 0.0 (No) 4.1 
Breast  3.7 3.7 0.0 (No) 3.7 
Soybean 7.9 7.5 0.4 (Yes) 8.1 
Crx 15.2 14.3 0.9 (Yes) 15.6 
Adult 6 17.0 15.9 1.1 (Yes) 17.0 
Labor 7.8 6.6 1.2 (Yes) 7.5 
Glass 51.3 51.0 0.3 (No) 52.0 
Vote 10.1 10.1 0.0 (No) 10.2 
Audio. 31.1 28.0 3.1 (Yes) 31.6 
Auto 44.0 40.7 3.3 (Yes) 43.0 

We note that all of these data sets contain missing values 
(with the exception of IRIS) so the naïve Bayes classifier 
may not be returning the most probable model, a requirement 
of our approach. This indicates our approach is useful even 
in less than ideal situations. 

7.1 When Bootstrap Model Averaging Works 
Best 

One of the benefits of our approach is that it can be 
explained as an approximation to posterior model averaging. 
It is well known that posterior model averaging removes 
model uncertainty (Neal 1992) (Davidson, 2000). Therefore, 
when there is no or little model uncertainty, such as when 
there is one sharply peaked posterior mode, then model 
averaging offers little benefit over just using the model at the 
posterior mode. This can be used to explain why in some 
data sets (Iris, Breast Cancer, Glass and Vote see Table 7) 
that our approach did not produce significant results beyond 
using a single model. For data sets which give rise to 
multiple explanations/models (posterior modes) or where the 
posterior mode is not well defined (ie. it is wide and flat) 
then model averaging will help. 

Since model certainty increases with the data set size, we 
can create model uncertainty by using less of the available 
data. To this end we repeat our previous experiments but 
only using 10% of the training data. Therefore, the predictive 
errors of the single models decrease, and our approach 
significantly decreases predictive error in all but one of the 
data sets. Furthermore, our approach out performs other 
ensemble approaches. Achieving an average error decrease 
of 1.6% where as other ensemble approaches averaged 0.1% 
or less. 

                                                           
6 Predicting SEX field 



Table 8. Naïve Bayes classifier using a single model and 
a variety of ensemble approaches using 10% training set 
size. 
Dataset Sing. 

Mod. 
BMA  Decorate Boosting Bagging Boot 

Cond. 

Iris 5.8 5.5 6.5 6.3 5.9 7.7 

Breast  4.0 3.7 4.0 4.7 3.9 4.4 

Soy. 14.8 13.0 14.4 21.0 15.0 22.8 

Crx 21.6 20.7 21.4 23.8 23.8 22.2 

Adult 27.0 25.9 26.8 27.8 28.9 28.3 

Labor 18.2 15.6 16.4 18.4 17.8 25.6 

Glass 50.2 47.3 50.6 46.7 47.6 48.6 

Vote 9.9 9.7 10.7 6.1 9.9 10.2 

Audio. 54.0 52.8 54.7 54.8 53.4 55.0 

Auto 52.8 48.4 53.0 49.5 50.8 54.8 

 

We find that using our parametric bootstrap model 
averaging approach yields even better results, an average 
error improvement of 2.1% as shown in Table 9. 

Table 9. Parametric bootstrap model averaging Naïve 
Bayes classifier using a single model and a variety of 
ensemble approaches using 10% training set size. 

 

8 How Close is the Bootstrapping 
Distribution to the Posterior? 

As shown in Figure 1 and Figure 4 the bootstrapping 
distribution only approximates the Gaussian posterior. 
However, since much is know of the well behaved Gaussian 
we can create useful bounds on how close this approximation 
is which we can then substitute into our risk calculations to 
determine the increase in risk beyond the OBC error. 

8.1 Bounds for a Classifier 

We now develop a bound that measures the closeness 
between both sets of parameters ((µµµµPost, σσσσPost ) and 
( BootBoot �� ˆ,ˆ )) using a Chebychev inequality/bound. The 

Chebychev inequality (for repeated experiments) allows the 
definition of the number of samples, T, (in our case the 
number of bootstrap samples) required to obtain an estimate 
( p̂ ) (calculated from those samples) that is within an error 

(ε,  0<ε <1) of the true value (p ). It is assumed that the 

samples are drawn from a distribution with mean of p and 
standard deviation of σ. The bound in its general form is: 

  [ ]
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This expression can be interpreted as an upper bound on 
the chance that the error is larger than ε. In-turn we can 
upper bound the right-hand side by δ (0 < δ < 1) which can 
be considered the maximum chance/risk we are willing to 
take that our estimate and true value differ by more than ε. 
We can use the posterior standard deviation estimate 
calculated from the bootstrap samples for σ. Then 
rearranging these terms to solve for the error yields: 
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The question of how close the means are, is now 
answered with respect to the chance (δ) that their difference 
threshold (ε) will be exceeded, for T models built. If we treat 
the numerator as a constant for a given problem we see that 
as T (number of models built) and δ (chance of failure) 
increases the parameter difference decreases as expected.  

We now derive a bound for the standard deviation. We 
use a Chebychev bound but need to know the standard 
deviation of the posterior standard deviation. As the posterior 
is Gaussian the standard deviation is drawn from a chi-
squared distribution, that is: 

))1(2/() 2 −= nPostPost �Stdev(� .The probability the 

parameters differ by more than ε is then:  

[ ] [ ]))(1(2/ˆ 22 εε TnP −<>− PostBootPost ���  ( 12 ) 

Again we can bound the right hand side by the chance (δ) 
that this error will be exceeded and solve for ε. Note that 
these constants can differ from those in equation ( 11 ). 
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( 13 ) 

Therefore, if we use T samples with our ensemble 
approach, then we know the difference in the calculated 
mean will be no more (with chance no more than δ) 



than
δT

Post�
 and the error in the standard deviation no more 

than ))(1(2/ δTn −Post� .  

We can now rewrite the distribution obtained via 
bootstrap model averaging from T samples with respect to 
the posterior distribution in the worst case to be: 
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just presented error calculations are only for differences and 
we do not know if the approach will exceed or be less than 
the true value. We can now substitute these errors into our 
risk calculations (equation ( 9 )) to determine the 
approximation to the risk which we denote with the 
estimation symbol (hat). 
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Performing this integration is equivalent to drawing an 
infinite number of models according to the bootstrap model 

averaging distribution over the model space. Note that iθ̂  is 

the i th model drawn from the bootstrapping distribution. 
Formally: 
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( 15 ) 

As the number of models in the ensemble increases, the 
distribution in equation ( 15 ) becomes more peaked and its 
contribution is reduced as expected. This equation is an 

inequality as we  have used upper bounds to perform a worse 
case analysis. 

8.2 Experiments with a Majority Guesser with 
Uniform Prior 

We provide this illustrate example to indicate how our 
bounds are used. Again, consider a majority guesser for a 
two-class problem, where each class is equiprobable in the 
training set of size 50 (ie. ρ=0.5). Then µPost=0.5, 
σPost=.0.057. For T=250 and δ=0.05 we find from equations ( 
11 ) that the differences in means should be no more than 
0.057/sqrt(250x0.05) = 0.00456 five percent of the time. 
Empirically we find that repeating the bootstrap model 
averaging approach 1000 times yields 33 (3.3%) occurrences 
where the means differ by more than the calculated error 
(0.00456). This is to be expected, as the equations provide an 
upper bound on the chance of failure. Equation ( 13 ) 
specifies that the variances should differ by no more than 

( ) 5.1298/057.0 ≈0.0016, no more than 5% of the time. Over 

1000 experiments, we find that 38 times (3.8%) this error 
was exceeded.  

Given these bounds hold, how can we use them in 
practice? We know the OBC gives us the optimal results and 
we have an approximation to this approach which we know 
the error of. This allows us to quantify the difference 
between qi and its estimate using equation ( 15 ). We can 
then produce an error range for qi to produce a joint 
probability region for each class. So long as these do not 
overlap, then our results will be the same as for OBC with a 
chance of failure no greater than δ. We can use as many 
bootstrap samples as required to prevent the regions from 
overlapping. In this way we are only drawing as many 
models as required given our tolerance to risk. 

8.3 Experiments with Belief Networks 

We now focus on differences in predictive error for the 
standard Boolean belief network shown in Figure 5.  

Age Gender

Exposure Smoking

Cancer

TumorS. Calcium
 

Figure 5. The Cancer Belief Network 

As we know the parameters of the generating mechanism 
we can determine the difference between the true predictive 
distributions (equation ( 9 ) and our approaches estimate of 



it. We used our ensemble approach to build a collection of 
models (T=500) so that the decision regions do not overlap 
using the chance of failure 5% (δ=0.05). We found that for 
1000 random test queries (ie. Of the form P(Tumor = ? | 
Gender=M, Smoking=T)) that OBC and our approach made 
differing predictions 2% of the time over one hundred 
experiment repetitions. 

9 Related Work 

Previous work has explored the idea of aggregating 
probabilities rather than votes when creating models via 
bootstrapping. The work by Bauer and Kohavi (Bauer and 
Kohavi, 1998) mentions aggregating conditional 
probabilities (not joint probabilities) and find that this does 
not significantly improve the classification error for the naïve 
Bayes learner but does provide improvement for unstable 
learners for just T=15. 

The work of Domingos (Domingos 2000) argues that 
bagging (bootstrapping with uniform votes) is an 
approximation to Bayesian model averaging by importance 
sampling. He then provides extensive empirical evidence 
showing that attempting to improve importance sampling 
does not yield better results than bagging. We note that the 
learners used in that work are not stable according to our 
definition and our work makes no claims on its applicability 
to unstable learners. 

10 Conclusion and Future Work  

Ensemble approaches are popular but typically require 
creating a diverse set of models. This is difficult for stable 
learners. In addition ensemble approaches are not always 
underpinned by a rigorous theory and determining the 
number of models is difficult. We showed that typical stable 
learners have Gaussian posteriors. The major requirement for 
a learner to have a Gaussian posterior is that the second order 
derivative for the posterior density function is defined. 
Learners with this property that model the data as IID have a 
Gaussian posterior according to the Bayesian central limit 
theorem. We created an ensemble technique for stable 
learners known as bootstrap model averaging that creates 
bootstrap samples of the data and builds a model from each. 
The models created from this process approximate being 
drawn from the posterior distribution. Rather than 
aggregating votes amongst these models (like bagging), the 
joint probability of the instance and class are summed and 
the most probable class is predicted. This is equivalent to 
OBC as the number of models reaches infinity and is much 
faster than MCMC techniques at performing posterior model 
averaging (Neal 1992, Davidson 2000). In the finite situation 
we developed bounds to determine how far above the OBC 
error our approach was.  

We empirically demonstrate our approach for belief 
networks with artificial data sets. For the naïve Bayes 
classifier we were able reliably obtain statistically significant 

improvements where bagging, boosting and DECORATE 
could not. Importantly, our approach did not resulted in an 
increase in predictive error while all other ensemble 
techniques for at least one data set did. We illustrated that 
our approach works best when there is model uncertainty. 
We empirically simulated this by using fewer data points in 
the training data and found our approach provided a 
statistically significant benefit in all but one data set. 

Our future work will involve generalization to latent 
variable models and creating a more complete list of stable 
and unstable learners.  We are particularly interested in 
developing a more constructive form of the bounds described 
in this paper. For example the PAC learning literature shows 
that for a PAC learning drawing a single model from the 
posterior will yield a predictive error no worse than twice the 
Bayes error (Mitchell 1997). 



Appendix: Posterior Distribution and Approximation to Posterior Using Bootstrapping 

In this section we provide a real world example showing the approximation that bootstrapping provides for the vote data 
set using a naïve Bayes classifier. The vote data set consists of 16 Boolean attributes with a Boolean dependent variable, we 
shall focus on the model for Democrats. The parameters of the model to predict “democrat” are then 16 continuous values 
that signify the probability that a democrat will vote YES/SUCCESS on a particular bill. Figure 6 shows the Gaussian 
posterior distribution as expected. 
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Figure 6. Posterior distribution for naïve Bayes parameters for all attributes in VOTE data set. Left figure 
(attributes 1 – 8), right figure attributes (9-16). 

We created 100 bootstrap samples and built a naïve Bayes model from each. We then create a relative frequency distribution 
table for each of the sixteen parameter values over their possible values. We see that the distribution created by bootstrapping 
is approximately Gaussian.  
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 KLDistance  

Figure 7. Distribution for naïve Bayes parameters from 100 bootstrap samples for all attributes in VOTE data set. 
Left figure (attributes 1 – 8), right figure attrib utes (9-16). 

We can better quantify the difference between the two distributions by considering the KL distance and difference 
between their means and standard deviations as shown in. Note these KL distances are over the actual probability distribution 
of the models built from the bootstrap samples not after fitting a Gaussian distribution to the data. 

Table 10. The KL distance and difference between means and standard deviations of the posterior distribution and 
distribution obtained via bootstrapping. 
Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Mean 
Diff 

0.04 0.01 0 0.08 0.01 0.01 0.01 0 0.01 0 0.01 0.03 0 0.01 0.01 0 

Stdev 
Diff 

0.001 0.001 0.002 0.002 0 0 0.002 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.002 

KL Dist 0.24 0.08 0.03 2.05 0.1 0.12 0.1 0.1 0.06 0.07 0.1 0.3 0.1 0.07 0.1 0.05 
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