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Abstract

Ensemble techniques such as bagging and DECORApBitihe
“instability” of learners, such as decision treescreate a diverse
set of models. However their application to stdbdners such as
naive Bayes, does not yield as much improvement eentl
sometimes degrade performance a claim we empirieaitify in
this paper. But stable learners are desirable Heir tsuperior
performance on some problems and algorithmic saitpli We
show that many learners commonly referred to ablesthave
Gaussian posterior distributions. Given such a wadfined
posterior distribution we can use both parametnw anon-
parametric bootstrapping to create a process tpptoaimates
taking draws from their posterior. By summing theint

should be tried for completeness, just in case drke:

Finally, how many models to build is not known aogr

leaving the number of bags, boosting rounds or data to

generate another unknown to be investigated enafiiric
Therefore, though they are useful, ensemble tedlesiq
require a large investment of time to verify how nya
models to build and which technique to apply.

In this paper we propose an ensemble techniqu&tdbte
learners we refer to as bootstrap model averadhe show
that learners typically thought of as stable hawmusSian
posteriors. Given this, we can use non-parametrid a
parametric bootstrapping to approximate taking drénem

distribution of the instance and the class we are approximatirije posterior distribution. For each draw we sum jint

posterior model averaging a.k.a. the optimal Bagtsssifier
(OBC) which is known to minimize the Bayes errore\Wefer to
our approach asootstrap model averagingince model averaging
removes the model uncertainty it works best whereths much
model uncertainty and does no harm when ther#lis, la claim we
empirically  verify. Since the Gaussian distributions
mathematically well understood we can bound theemme over
the OBC error using a Chebychev bound as a funabiothe
number of models built. We empirically illustrataroapproach’s
usefulness and verify our bound’s correctness.

1 Introduction and Motivation

probability of a class and instance given the dramodel.
We show that as the number of models built appresch
infinity our ensemble approach is equivalent to dpgimal
Bayes classifier (OBC) when using the same prior
distribution over the model space. The OBC is kndan
work well when there is much model uncertainity asd
known to minimize the Bayesian error/risk. For aegi
model space and prior probability distribution otlee space:
no classifier can perform better, hence its namécll,
1997). In this respect OBC is highly desirable ibuequires
integration over the model space making it extrgntighe
consuming. Our approach offers an approximatio®RC

Ensemble approaches are popular because they camibe performance bounds dependent on the number of
readily applied to many problems and decrease ¢tiedi models built or bootstrap samples taken. This alldhe
error. Bagging (Brieman 1996), boosting (Schapi®®2), quantification of the closeness of the approxinmatand
arcing (Brieman 1998) and DECORATE (Melville, Mogne specifying a trade-off between closeness to the @BGr
2003) have been empirically shown to have a betterd time (number of models to build).
generalization error than using a single model olarge

variety of data sets. 2 Paper Outline and Standards

Although ensemble techniques are popular, theyesuff N . o
from several problems. They are best suited to aibtest We. begin this paper by emp'”ca”y verifying thdesf made
learners such as decision trees that readily alh@acreation claim that ensembl_e techniques do not wgrk asfaeiitable
of a diverse set of classifiers (Melville, Moon@903) and learners. Next we |Ilustrat_e the two conditionslarners to
do not decrease predictive error as much for stialalaers. hgve a Gaussian _posterior holds for many stablendes
Why an ensemble technique works is not often knawn Given the posterior of stable learners is known b

cannot be easily tested meaning when they are caiybdi is Gaussian we show that var'iogs. type; of boo'gstrgopiin
difficult to predict. Therefore, each ensemble téghe create a process that in the limit is equivalentling draws
from the posterior. Our ensemble approach is to thenjoint

! This paper is an extended version of a paper tvitrsame title that appeared in the AAAI 2004 pediegs.



probability of the class and instance given the ehdor each Table 1. J48 bagging % error. Training set siz€666

model derived by applying the learner to the boapgied
data set. We empirically illustrate that bootstragpdel
averaging out performs bagging, boosting and DECDRA
for stable learners. Since our approach is an appetion to
posterior model averaging that is known to minimthe
Bayesian risk, we can bound the increase over tinémal
Bayes risk as a function of the number of modei.Hdeor
artificial data sets, we can measure the erroesme and we
verify the correctness of our bound. Finally we dade and
describe future work.

Throughout this paper we use ten standard UCI skt of
varying properties including those that contain gimg
values. We use the WEKA software for all experirgenill

results were for 100 trials with a random divisiarf
available data into training and test set.

We denote the number of models wittand the independent
variables ag and the dependent variableyas

3 Ensembles and Learner Stability

The purpose of this section is to illustrate encpilty that
popular ensemble techniques do not waskwellfor stable
learners. Later, we shall show our approach doeease
predictive accuracy for these very same data Setating a
diverse set of models appears to be an importapmtspty for

Dataset Single T=100 Improve
Model (Stat. Sig.)
Iris 5.7 5.2 0.7 (Yes)
Breast 5.5 3.7 1.8 (Yes)
Soybean 10.9 8.0 2.9 (Yes)
Crx 15.2 13.8 1.4 (Yes)
Adult? 17.0 15.6 1.4 (Yes)
Labor 20.9 17.2 3.7 (Yes)
Glass 33.3 27.5 5.8 (Yes)
Vote 4.5 4.1 0.4 (No)
Audio. 22.6 18.8 3.8 (Yes)
Auto 26.5 20.9 5.6 (Yes)

Table 2. J48 DECORATE % error. Training set siz#6

successful ensemble techniques (Krough and Vedelspye 3. 348 Boosting % error. Training set sifi96

1995). However, creating a diverse set for stablarers
appears to be difficult. Techniques such as baggirmg
known to work best with unstable learners (comfakle 1
and Table 4) as they reduce variance. We illusttht
techniques such as DECORATE and boosting also do no
work as well with stable learners (compare Tablevith
Table 5 and Table 3 with Table 6). Our presentailte
show the following:

1)  The mean error reduction for bagging, DECORATE
and boosting for J48 is respectively 2.5%, 2.6% and
3.4%.while for naive Bayes the reduction is 0.48%,
0.23% and 0.46% respectively.

2) Bagging, DECORATE and Boosting naive BayeFable 4. Naive Bayes bagging. Training set siz&b 66

produced only four statistically significdndecreases
in error (out of thirty experiments) but twenty fou
significant decreases for J48. Furthermore, Bogstin
can significantly decrease error.

3) The ensemble techniques (particularly DECORATE
and boosting) can significantly increase predictive
error for naive Bayes.

2 WEKA's implementation of bagging sums conditionabbabilities
not votes, we changed this implementation to sutesvo

3 Pairwise t-Test for means at the 95% confidence! le

Dataset | Training T=100 Improve

Data (Stat. Sig.)
Iris 5.7 5.1 0.6 (Yes)
Breast 5.5 3.9 1.6 (Yes)
Soybean 10.9 6.7 4.2 (Yes)
Crx 15.2 145 0.7 (Yes)
Adult 17.0 17.8 -0.8 (Yes)
Labor 20.9 11.7 9.2 (Yes)
Glass 33.3 27.8 5.5(Yes)
Vote 4.5 5.3 -0.8 (Yes)
Audio. 22.6 20.4 2.2 (Yes)
Auto 26.5 22.8 3.7 (Yes)
Dataset | Training T=100 Improve

Data (Stat. Sig.)
Iris 5.7 5.8 -0.1 (No)
Breast | 5.5 3.3 2.2 (Yes)
Soybean| 10.9 7.6 3.3 (Yes)
Crx 15.2 14.5 0.7 (Yes)
Adult 17.0 17.8 -0.8 (No)
Labor 20.9 14.1 6.8 (Yes)
Glass 33.3 24.5 8.8 (Yes)
Vote 4.5 5.1 -0.6 (No)
Audio. 22.6 16.8 5.8 (Yes)
Auto 26.5 18.6 7.9 (Yes)
Dataset Single T=100 Improve

Model (Stat. Sig.)
Iris 4.0 4.1 -0.1 (No)
Breast | 3.7 3.7 0.0 (No)
Soybean| 7.9 8.1 0.2 (No)
Crx 15.2 14.8 0.4 (No)
Adult® |17.0 156 1.4 (Yes)
Labor 7.8 7.6 0.2 (No)
Glass 51.3 49.0 2.3 (Yes)
Vote 10.1 10.2 -0.1 (No)
Audio. 31.1 31.6 -0.5 (No)
Auto 44.0 43.0 1.0 (No)
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Table 5. Naive Bayes Decorate % error,100 trials. Note, the theorentdoes not statethat for models of

Dataset | Training T=100 Improve multivariate Gaussians that the posterior will teu€sian, it
Data (Stat. Sig.) states forany posterior density function that is twice
Iris 4.0 4.9 -0.9 (Yes) differentiable and models the data as IID that pbsterior
Breast 3.7 3.9 -0.2 (No) will be Gaussian. The smooth Gaussian distributienotes
Soybean 7.9 8.4 -0.5 (No) a well defined functional relationship between tfeta and
Crx 15.2 145 -0.7 (No) the model parameters. The Gaussian posterior falest
Adult 17.0 17.8 -0.8 (No) learners we shall denote as:
Labor 7.8 9.0 -1.2 (Yes) 6 ~ N(ppost = Epgip) (6): Opost. = Varpgp) (0)) (1)
Glass 51.3 50.4 0.9 (No)
Vote 10.1 105 -0.4 (No) The mean of this Gaussian is the expected model
Audio. 31.1 31.1 0.0 (No) parameters over the posterior distribution Xie(4D).6) and
Auto 44.0 425 1.5 (No) the variance is calculated over model parametedsiptied

by their posterior probability. As an illustrativexample,
consider perhaps the simplest stable learner: thprity
guesser. The majority guesser predicts the mostilpop

Table 6. Naive Bayes Boosting % error 100 trials
Dataset | Training T=100 Improve

- Data (Stat. Sig.) class in the training set and for a two class mobl
BIrls 3(7) jj 8? (Ho) effectively has one parametes, the probability of class +.
reast : ’ -7 (No) We encode a positive label (dependent variable)tteri"
Socy:/lroxean 175'92 112105 '20'17((\,(\?05)) instance ay; = 1 and negative label gs= 0. The posterior
Adult 17.0 178 -0.8 (No) ]((joe”r:let;/_ function over the one independent columnig as

Labor 7.8 10.1  -2.3(Yes) ' N
Glass 51.3 50.9 0.4 (No) P(p|D)0O P(p)_|‘| P(x; | o), assumea uniform prior (2)
Vote 10.1 6.8 2.3 (Yes) . .
Audio. 31.1 257 5.4 (Yes) one” 1-p)*"
Auto 44.0 429 1.1 (No) =

The mean of the posterior330P(g|D) = 0.5 for all data

4 Stable Learners Have Gaussian sets wherei indexes all possible parameter values. The
Distributions posterior standard deviation for a model spaceiz# Is is

measured over the observatiogsR(0:|D) ... oP(a|D)}.

The Bayesian central limit theorem tells us prdgise We now show that as expected, that naive Bayeslides
what properties a learner must have to produce @w$kn and decision trees unstable according to our difini

posterior. They are: Consider a two class naive Bayes classifier withingle
1) The training data must be independently ar@Polean attribute (true=1, false=0) without lossgeferality
identically distributed given the model. as the attributes are independent of each othenaifre

. . . . Bayes. This classifier effectively builds a model feach
2) The posterior probab|l|ty density function must b@lass and we focus on the model to predict ones ¢tes the
twice differentiable everywhere for all of th%ther class (-) model will be identical in form. &h

training data. parameters for the model are {P(p).g=(1- p)}. We use the

An additional property inherently implied in the rkas: termn, to indicate the number of instances with a pasitiv
3) The leamer is a deterministic function of thkabel and n, r,n. ¢ the number of positive labeled instances
training data. with a TRUE and FALSE attribute respectively. Whiithe

. ) posterior distribution and ignoring the consta®D) for
Property 1) means that the training set observatame .,qs + yields equation ( 3 ). Taking the secondewor

modeled as being independent of each other andramn ey ative with respect tp yields equation ( 4 ), a standard
from the same distribution (pool of data). PropeZ}ymay | oquit for binomial distributions.

seem prohibitive but holds for many learners in rirechine o
learning literature. Consider a learner as a fondti(.) that P(6, |D) 0O P(+)[]1P(x [+)
places a probability distribution over the modeasp and "

N+ . —X:
returns the most probable model. The property stthtat if . F’(”)i[llpyw a-p“ (3)
we write the density function associated with tsarher, the 0[n, /n]p"™ 5" @- p)™*=F
second order derivative is defined. Most probabitiensity Forauniform andhenceconstantprior
functions used in learning are from the expoterfiahily p'(6, D) On,, . (pe+ @~ p) ™= pe
and meet the above properties. A few distributisash as p (5 |py Nyt (N o7 ~D(pet (L= p) T2 4 (4)

the Cauchy distribution do not meet the requiresehut " (e o)) T
they appear not to be in common use. +x= (Pe+ (1= p)) pe



Most learners that involve counting (with no indegent optimality overcomes a common misunderstanding, eiam
attributes having missing values) will have a poste that one should sum the joint probability of instanand
density function that contain a binomial distrilouti and classnot the conditional probability of class given instance
hence have posteriors that are twice differentiadBl@mples The later summation inherently assumes that easthrine is
include k-nearest neighbok>2), belief networks and evenequally likely to be encountered which is rarelg tase.

assogiation rules.. These are all considered bynthehine Without loss of generality consider a two classbpem,
learning community to be more stable compared aonkers y; andys, and a single test instance, training dataD and

such as decision trees. Figure 1 illustrates ferubte data model spac®. For a particular instance the minimal risk is

set the posterior distribution for the naive Baygtassifier. : : :
As each column is modeled independent of each ctt‘rertolerg(dlft the most probable class according t@eopi (6).
y*1x.60) (6)

model space is effectively sixteen real values betwO and

1. Wherey* is the most probable class
Posterior Distribution Generalizing this to minimize the risk for all iastes
involves an integration and factoring in the charafe
Py encountering the instance as shown below.
0.14 [ @-P(y*|x,6 ))P(x)dx
2 %2 P(x)dx— [ P(y* | x,6 )P(x)d (7)
2 o1 [POQdx=]P(y*|x,6 )P(x)dx

P(y*, x,0 YP(X)
1-[———— T
P(X)P(@)
asthetestinstanceandthemodelareindependen
1-[P(y*, x]0 )dx
Generalizing for all models to the remove model

uncertainty involves integration and multiplying pgsterior
probability of the model.

Figure 1. Posterior distribution for naive Bayes
parameters for attributes 1 — 8 only.

Now consider the posterior distribution for a damistree

love ] @=P(y*, x|6 ))P(@| D)dxd&
lono ] P(81D) = Jore | P(Y*, |6 )P(€] D)dxd&
1- [, P(Y*, x| 0 )P(6| D)dxd&

(8)

learner with m attributes. If any of the attributes were

continuous, the model parameters contain inegeslitind

Consequently, choosing the class that minimizegitte

hence the posterior density function cannot beetfitiated. is equivalent to choosing the class that maximites
For Boolean or multistate attributes, the modelsisis of a summation of the joint probability of the class atest
disjunction ofnLeafsconjunctions. Let the parameters for thiistance given the model over all models. Formalhe
i" conjunction be X1 O... X} and the number of training calculation that model averaging is performing h@wn in
instances following this path b@s.. . Then the posterior €quation (9).

density function is: argmax: ¢ = [, P(y;, x| 6 )P(6| D) d@ (9)

nLeafs
P(@|D) O P(6) [] P(Path)™ (5)
e For a given data set, model space and prior digtdb
over the model space, no other approach can yisldaler
risk (Mitchell, 1997). However, OBC is a time consng

Colloquially, the first order derivative measureset nrqcess as it involves performing an integratiorerothe
change in posterior density when the parameterst@®eged epnire model space which could be high dimensional.

slightly. However, one cannot change the parameierd g,mming the conditional probabilitiesis equivalent to
conjunction slightly and the derivative of a corgtine considering that each instance is equally likely.
expression is undefined. Therefore, decision tfesither

(or both) discrete or continuous attributes are si@ble 51 Bootstrap Model Averaging Approximates
according to our definition. Bayesian Model Averaging

nLeafs Npath
U P(6) _ﬂl P(Xip 0. X )
i=

We now discuss the optimal Bayes classifier andpaom

it to our ensemble approach bootstrap model avegagi In this section we show that creating multiple Istraip

samples B, ... Br) of the data, building a model from each
5 Optimal Bayesian Classifier and Minimal (6, ... &) using a stable learner and summing the joint
Risk probability &i-;. 1 P(y;,x|8) ) for a particular class estimates
the degree of belief that clagss the true class fox. We

We begin this section by describing the OBC and Whyneed to show that the posterior distribution overdels is
is optimal. We find that deriving the conditionsrfoequ'valent_ to the distribution over the models that
bootstrapping creates.



Consider the typical view of learning where a singlvell the posterior distribution as shown in Figute A
training set of sizen is available from the underlyingcomplete analysis of the differences is presentedhie

distribution that generated the d&as shown in Figure 2.
D={ Xy, X,... X}~ F

6= L(D")

Figure 2. A typical view of learning

However, this view masks the underlying uncertainty
the data, namely that the training data we haveynis of
many that could have been generated (is availaBt&)sider
T such data sets as indicated in Figure 3. If we weetzuild

a model for each possible data set we would have a

probability distribution over the model space.
Dnl, Dn2 'R D]T~ F

}

6,= L(D")
6,=L({D",)
8=L0")

Figure 3. A view of learning that considers trainirg
set uncertainty.

appendix.

0.18
0.16
0.14
0.12

Bootstrapping Distribution

P(DIp)

0.08
0.06
0.04
0.02

Figure 4. Distribution for naive Bayes parameters
from 100 bootstrap samples for all attributes in VOE
data set. attributes 1 — 8. Compare with Figure 1.

We can now outline our bootstrap model averaging
algorithms and empirically verify their performander
improving the performance of the naive Bayes digssi

6 Two Algorithms for
Averaging

Bootstrap Model

6.1 Non-Parametric Bootstrap Model Averaging

Consider the underlying distributiof, that created the
training dataD. If nothing is known of the structure Bfwe
can empirically approximate it by sampling without

However, typically we do not have many differentadareplacement frond. This is the formulation of bootstrapping

sets so we can not compute the uncertainty ovembeel
space from them. To consider the error or uncestéeior
estimators/models using a single data set Efroro(EfL979)
created the non-parametric and parametric bootstrgp
approaches. In the training data set suppose thateBn

commonly known to the machine learning communityr O
algorithm is therefore:

/I Build the models
Fori=1ltot

attributei was TRUEp percent of the time and continuous Bag, = SampleWithReplacement(D)

attribute j was on average). Then across the bootstrap

samples the average values of attributaxsdj will also bep

M = StableLearner(Bag )

andq respectively. Therefore, when we average over tsodend For

learnt from B;... Br we find that Averagé(B,)...

/I The models M 1 ... My can now be treated

L(B1))=L(D) =Ep(p) () as by definition the learner choosef as being drawn from the posterior.

the most probable model and the posterior distvbuts
unimodal for stable learners. Theref@rgs;= Lot Where the
subscriptootindicates the bootstrapping distribution.

Furthermore, Variance(B{)...L(By)) = Variancegp)(8).
That is, Opost = 0Ooot Where as before the subscrippot
indicates the bootstrapping distribution. An asstiomp of
the above is that it holds in the limit as the nemiof
samples approaches infinity, that is, Jim. Later we shall
derive bounds for how close this approximatioroisd finite
number of models. In the mean time we can visuaiyfy
that by creating just 100 samples, that the prdipabi
distribution created by bootstrapping approximatasly

/I Sum the joint probability
y* =argmax: §; :iP(yi X M)
i i=1

Algorithm  #1):
model averaging.

Non-parametric version of bootstrap

This algorithm approximates the calculation in)( 9

6.2 Parametric Bootstrap Model Averaging

If some knowledge of the structurefofs known then we
can make use of this to perform a parametric bagst
Where as the non-parametric bootstrapping algorithm



previously described was independent of the uniteylgtata Table 7. Naive Bayes bootstrap model averaginggusin
set, parametric bootstrapping depends on the d@ataNsn- 66% training set size. The last column indicates ribsults
parametric bootstrapping used the actual instamcethe for summing conditional probabilities.

training data to empirically approximatE hence each Dataset Single BMA Improve Boot
bootstrap consisted of instances that were patteofraining Model (Stat. Sig.) Cond. Probs
data. With non-parametric bootstrapping a parametriris 4.0 4.0 0.0 (No) 41
distribution is fitted to the training data to apgpimateF and Breast 37 ' 0.0 (No) '
virtual instances that are not necessarily part of theitrgi ' 3.7 ' 3.7
data are generated. For simplicity consider a titobate Soybean| 7.9 75 0.4 (Yes) 8.1
problem one Boolean and one continuous. We can intiogle ¢y 15.2 143 0.9 (Yes) 15.6
first attribute as a binomial distribution and thecond as a Adult® 17.0 ) 1.1 (Yes) )
Gaussian (for instance) as we have in this papee T ' 159 ' 17.0
parametric bootstrap model averaging algorithm & d.abor 78 6.6 L12(Yes) 75
follows. Glass 51.3 510 O03(MNo) g9

Z,\Iju(ljldltheMapdprlogmanon to F Vote 101 101 0.0(No) 10.2

odel = Mode i

1 Create the b ( 2 e rodel Audio. 311 280 31(Yes) 316
reate the bags from the mode

1101 9 Auto 440 407 33(Yes) 439

ori=1to
B ) We note that all of these data sets contain missahges

Bag; = ParametricBootstrap(FModel) (with the exception of IRIS) so the naive Bayesssiféer
M = StableLearner(Bag i) may not be returning the most probable model, airement

of our approach. This indicates our approach isulisven

End For . . . .
in less than ideal situations.
/I The models M 1 ... M; can now be treated
I 'as being drawn from the posterior. 7.1 When Bootstrap Model Averaging Works
// Sum the joint probability Best

One of the benefits of our approach is that it &&n
explained as an approximation to posterior modelaying.
Algorithm #1): Parametric version of bootstrap moddf 1S Well known that posterior model averaging omes
averaging model uncertainty (Ne_al 1992) (DaV|dsoq, 2000). refare,
. . when there is no or little model uncertainty, sashwhen
We now empirically verify the performance of thé8® here is one sharply peaked posterior mode, thedemo
algorithms for the stable naive Bayes learner. averaging offers little benefit over just using thedel at the
. . posterior mode. This can be used to explain whgdme
7 Bootstrap Model Averaging Naive Bayes gata sets (Iris, Breast Cancer, Glass and VoteTabte 7)
Classifiers that our approach did not produce significant rtssbéyond
using a single model. For data sets which give tise
For a variety of data sets we empirically comparaultiple explanations/models (posterior modes) bese the
bootstrap model averaging against building a simgt&lel. posterior mode is not well defined (ie. it is wided flat)
Where as boosting and DECORATE quite often incr@éas@en model averaging will help.

the predictive error we find that this does noturcfor our Since model certainty increases with the dataizet we
approach. We find for six of the ten data sets that y

significant decrease in error occurs. The averageedse is Co. create model uncertainty by using less of Ulable
9 ' age ta. To this end we repeat our previous experisnbot

3-e.2r::niwglecsh \I/\S/etvr\::\?e ?r?clT(;jg(I; tﬁz ;ﬁ;g?ﬁv'%ﬂscem@"m ly using 10% of the training data. Therefore, ghedictive
ques. . - ing . errors of the single models decrease, and our apbro
probabilities to illustrate empirically that it sub-optimal. .. "~ o .
X significantly decreases predictive error in all e of the
Our results are shown in Table 7.
data sets. Furthermore, our approach out perforthero
ensemble approaches. Achieving an average erropatr
of 1.6% where as other ensemble approaches ave@atféd
or less.

y* =argmax: ¢, :ip(yiflei )
i iz

¢ Predicting SEX field



Table 8. Naive Bayes classifier using a single rhadd 8.1 Bounds for a Classifier

a variety of ensemble approaches usi§o training set
We now develop a bound that measures the closeness

size.
Dataset Sing. [BMA [Decoratd Boosting|Bagging| Boot | Petween bothsets of parameters Mo, Opost ) and
Mod. cond.| (Rgoo0soe)) USINg @ Chebychev inequality/bound. The
Iris 58 | 55 6.5 6.3 59 | 7.7 | Chebychev inequalityf¢r repeated experimentsllows the
definition of the number of sample3, (in our case the
Breast | 4.0 | 3.7 4.0 4.7 3.9 | 44 | number of bootstrap samples) required to obtaiesiimate

Soy. 14.8 | 13.0| 14.4 21.0 15.0 | 22.8| (p) (calculated from those samples) that is withinearor
Crx 21.6 | 20.7| 214 23.8 23.8| 22.2| (& 0<e<1) of the true value (). It is assumed that the

Adult | 27.01259| 26.8 278 28.9| 28.3| samples are drawn from a distribution with mearp aind
iati . Th ini | form is:
Labor | 18.2 | 15.6| 16.4 18.4 178| 256 standard deviation azﬁ‘ e bound in its genera or;nllg)
g

Glass | 502 | 47.3 50.6 | 46.7 | 47.6 |48.6 P[Iﬁ_p|>£]<-|-(£)2

Vote 99 | 97 10.7 6.1 99 1102 This expression can be interpreted as an uppercbonn
Audio. | 54.0 | 52.8] 54.7 54.8 53.4| 55.0| the chance that the error is larger tharin-turn we can
Auto 528 1|48.4| 53.0 495 50.8 | 54.8| upper bound the right-hand side 80 < < 1) which can
be considered the maximum chance/risk we are wiltm
take that our estimate and true value differ byenthrane.

We find that using our parametric bootstrap mod@le can use the posterior standard deviation estimat
averaging approach yields even better results, va@mage calculated from the bootstrap samples far Then

error improvement of 2.1% as shown in Table 9. rearranging these terms to solve for the errodgiel
Table 9. Parametric bootstrap model averaging Naive ¢>g /{TJ (11)
Bayes classifier using a single model and a variety . Opoet
ensemble approaches usit@ training set size. [Mpost ~ Reaot| > £ >
Dataset Singlel BRIA Decorate| Boosti B i . .
M]ﬁe] B = The question of how close the means are, is now
) answered with respect to the chandgthat their difference
Iris 38 50 8.3 6.3 3.2 threshold €) will be exceeded, fof models built. If we treat
Breast 4.0 33 4.0 4.7 3.9 the numerator as a constant for a given problenseeethat
Soybean | 143 127 14 4 10 150 as T (number of models built) and (chance of failure)
C 2§ 197 314 138 738 increases the parameter difference decreases astedp
Aduli 770 | 254 W 5 778 790 We now derive a bound for the standard deviatioe. W
use a Chebychev bound but need to know the standard
lialio; R P ot e HE deviation of the posterior standard deviation. W posterior
Glass 303 470 306 46.7 47 8 is Gaussian the standard deviation is drawn frorohia
Voie 0g 95 107 6.1 0g squared distribution, that is:
Audio. | 540 | 520 547 543 534 Stdev pog) =16 pos /(2(n-1)) .The probability the
Auto 528 478 330 49 5 3032 parameters differ by more tharns then:
P[I“Post _&Boot| > ‘E] < 6Post2 /[Z(I’l _1)0-52)] ( 12 )

8 g.ow.b .Close h IISD th? o Bootstrapping Again we can bound the right hand side by the ch&dc
Istribution to the Posterior that this error will be exceeded and solve foNote that

As shown in Figure 1 and Figure 4 the bootstrappi%ese constants can differ from those in equatitih X

distribution only approximates the Gaussian posteri 5>6P08t2/[2(n-1)(r52)]

However, since much is know of the well behaved SS&un 2 2 -
. . . £ >GPost /2(n l)(TJ)
we can create useful bounds on how close this appabion
. . : . . . E > 6pysi/ 4/2(N—1)(TO)
is which we can then substitute into our risk ckdttans to > (13)
determine the increase in risk beyond the OBC error Gpost ~ Oaoot| > £ > Gpost/ {2(N~1)(TO)

Therefore, if we usel samples with our ensemble
approach, then we know the difference in the catedl
mean will be no more (with chance no more thdn



inequality as we have usegper boundso perform a worse

than% and the error in the standard deviation no L CI analysis

than epoq/y2(N-1(T9) - 8.2 Experiments with a Majority Guesser with
We can now rewrite the distribution obtained via Uniform Prior

bootstrap model averaging from samples with respect to

the posterior distribution in the worst case to bSb We provide this illustrate example to indicate howr

unds are used. Again, consider a majority guefsea
N{uPostivaPosticPost/ 2(n_1)(‘|'5)] This is so as our two-class problem, where each class is equiprobabtae
VT training set of size 50 (ie,0=0.5). Then Lps=0.5,
just presented error calculations are only foreddhces and gp.s=.0.057. FoiT=250 andd=0.05 we find from equations (
we do not know if the approach will exceed or besléhan 11 ) that the differences in means should be noentioan
the true value. We can now substitute these eimosour 0.057/sqrt(250x0.05) = 0.00456 five percent of thme.
risk calculations (equation ( 9 )) to determine tHempirically we find that repeating the bootstrap delo
approximation to the risk which we denote with thaveraging approach 1000 times yields 33 (3.3%) menaes

estimation symbol (hat). where the means differ by more than the calculaedr
o (14) (0.00456). This is to be expected, as the equapioméde an
R ~ PO 1= ppog £ —=L, upper bound on the chance of failure. Equation ( 13 )
Rioo =17 [sP(yi.x16) JTo specifies that the variances should differ by noremihan
T =6 post £ 6 post [ 2(N~1)(TI) 0.057/,/(98]125 =0.0016, no more than 5% of the time. Over

1000 experiments, we find that 38 times (3.8%) #ior
Performing this integration is equivalent to dragvian was exceeded.

infinite number of models according to the bootstraodel Given these bounds hold. how can we use them in
averaging distribution over the model space. Nb& & is practice? We know the OBC gives us the optimalltesund
the i model drawn from the bootstrapping distributionve have an approximation to this approach whichknew

Formally: the error of. This allows us to quantify the difface
R - R betweenq; and its estimate using equation ( 15 ). We can
Rioo :1—le(yi,><|9i) then produce an error range foy to produce a joint
= - :
. O post probability region for each 'class. So long as thesg do not
where & ~ N(ppog iﬁ’ O post £ G pogt / 4/ 2(N=1)(TI)) overlap, then our results will be the same as BBCQvith a

chance of failure no greater thah We can use as many

zi f{l\fi(iﬁi}‘ ) bootstrap samples as required to prevent the rediam
i ""(;’S"GPOS“ overlapping. In this way we are only drawing as wan
B~ N(i%,icposI/JZ(n—l)(Td)) models as required given our tolerance to risk.
dueto theadditivenatureof theNormaldistribution. 8.3 Experiments with Belief Networks

Rion =1_i§1[P(y“X|0i)iP(yi’Xl'gi )] We now focus on differences in predictive error fioe
=1-[5[P(Y;, X | O)P(E| 1 = Ppost) T = G post) £ standard Boolean belief network shown in Figure 5.

P(yi,x|0>P(0|u=%,a=cpost/\/Z(n—l)cramde @

:1_J‘9 P(y; , X|0)P(O| 14 = Mpostr T = Gpost)

P(y;, x| 6) %

+ P(8 :6Post’ - O post da @ @
@lu JTo 7 J2(n-1)(To)
P(yi. x| 6)x

“Rop* fep(ew:%,FGPOWan—lande @

(¢
.[gP(Yivxlg)xP(gl,U:%,U:(fpost/ 2(n-1)(T9))d0 (15)

Figure 5. The Cancer Belief Network

. . As we know the parameters of the generating meshani
As the number of models in the ensemble incredbes, e can determine the difference between the tradigtive

distribution in equation ( 15 ) becomes more peaked itS jistriputions (equation ( 9 ) and our approachdsnese of
contribution is reduced as expected. This equaisoran



it. We used our ensemble approach to build a diodkemf improvements where bagging, boosting and DECORATE
models T=500) so that the decision regions do not overlapuld not. Importantly, our approach did not resdltn an
using the chance of failure 59650.05). We found that for increase in predictive error while all other enstmb
1000 random test queries (ie. Of the form P(Tumo? ¥ techniques for at least one data set did. We ifitesti that
Gender=M, Smoking=T)) that OBC and our approachenaeur approach works best when there is model uringrta
differing predictions 2% of the time over one hulr We empirically simulated this by using fewer datanps in

experiment repetitions. the training data and found our approach provided a
statistically significant benefit in all but onetdaset.
9 Related Work Our future work will involve generalization to late

i . variable models and creating a more complete fidtable
Previous work has explored the idea of aggregatiggy ynstable learners. We are particularly intecesn
probabilities rather than votes when creating Modeé& yeyeloping a more constructive form of the bourescdbed
bootstrapping. The work by Bauer and Kohavi (Baard iy, this paper. For example the PAC learning literatshows
Kohavi, ~1998) = mentions aggregating ~ conditionghat for a PAC learning drawing a single model freme

probabilities (not joint probabilities) and findahthis does ,,gterior will yield a predictive error no worsathtwice the
not significantly improve the classification erfor the naive Bayes error (Mitchell 1997).

Bayes learner but does provide improvement for alolet
learners for jusT=15.

The work of Domingos (Domingos 2000) argues that
bagging (bootstrapping with uniform votes) is an
approximation to Bayesian model averaging by imgrose
sampling. He then provides extensive empirical ewie
showing that attempting to improve importance samgpl
does not yield better results than bagging. We tiwdie the
learners used in that work are not stable accortiingur
definition and our work makes no claims on its aaiility
to unstable learners.

10 Conclusion and Future Work

Ensemble approaches are popular but typically requi
creating a diverse set of models. This is diffidolt stable
learners. In addition ensemble approaches are nays
underpinned by a rigorous theory and determining th
number of models is difficult. We showed that tyistable
learners have Gaussian posteriors. The major &geint for
a learner to have a Gaussian posterior is thatebend order
derivative for the posterior density function isfided.
Learners with this property that model the datd@shave a
Gaussian posterior according to the Bayesian delitni
theorem. We created an ensemble technique for establ
learners known as bootstrap model averaging thedtes
bootstrap samples of the data and builds a modei fach.
The models created from this process approximatagbe
drawn from the posterior distribution. Rather than
aggregating votes amongst these models (like bgygihe
joint probability of the instance and class are m&d and
the most probable class is predicted. This is edeint to
OBC as the number of models reaches infinity anchish
faster than MCMC techniques at performing postemodel
averaging (Neal 1992, Davidson 2000). In the fisitaation
we developed bounds to determine how far aboveDtBE
error our approach was.

We empirically demonstrate our approach for belief
networks with artificial data sets. For the naivay8s
classifier we were able reliably obtain statisticaignificant



Appendix: Posterior Distribution and Approximation to Posterior Using Bootstrapping

In this section we provide a real world exampleveihg the approximation that bootstrapping provittasthe vote data
set using a naive Bayes classifier. The vote detamnsists of 16 Boolean attributes with a Booléependent variable, we
shall focus on the model for Democrats. The pararsetf the model to predict “democrat” are thencbétinuous values
that signify the probability that a democrat wilbte YES/SUCCESS on a particular bill. Figure 6 shdhe Gaussian

posterior distribution as expected.

Posterior Distribution Posterior Distribution
0.18 0.16
0.16 0.14
0.14 0.12
. 0.12 ~ 0.1
2 01 o
a g 0.08
& 008 T 0.06
0.06 .
0.04 0.04
0.02 0.02
O TP T T R T P A T 0
o © o~ 0 < (3] © o [ee] < © o N oo < o [{=] o ©O© N < (3] ©o o 0 < © © N 0 < o ©o
DHHNDmvﬁ:IQDQI\I\OODm OHHNOI")?#LOO&DI\V\Q)OO
o O ©o o o O o o o ©o o o o o O o o o O ©o o o O o o o
P(Probability of Success) P(Probability of Success)

Figure 6. Posterior distribution for naive Bayes psameters for all attributes in VOTE data set. Left figure
(attributes 1 — 8), right figure attributes (9-16).

We created 100 bootstrap samples and built a i@dyes model from each. We then create a relataguiEncy distribution
table for each of the sixteen parameter values thngr possible values. We see that the distrilutieated by bootstrapping
is approximately Gaussian.

Bootstrapping Distribution Bootstrapping Distribution
0.2 0.25
0.15 0.2
~ 5015
a 01 c
a a 0.1
0.0 I 0.05
O v e e T e T T 1 O T T e T T T A T T e T T T
o ©o N < ™ © o ®© < ©o ©o N o © o © N © < o™ © o © < © ©o N © o ©
© © o o © © o o o ©o o o o © © o o © © o o o © o o o
p: Probability of True p: Probability of True
KLDistance

Figure 7. Distribution for naive Bayes parametersrom 100 bootstrap samples for all attributes in VOE data set.
Left figure (attributes 1 — 8), right figure attrib utes (9-16).

We can better quantify the difference between the distributions by considering the KL distance atitference
between their means and standard deviations asnsimoWote these KL distances are over the actieddgbility distribution
of the models built from the bootstrap samplesafigr fitting a Gaussian distribution to the data.

Table 10. The KL distance and difference between raes and standard deviations of the posterior distbution and
distribution obtained via bootstrapping.

Attribute | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mean 0.04 0.01 0 0.08f 0.01 o0.0p o.0n 0 0.01 q 001 0030 0.01 0.01 0
Diff

Stdev 0.001| 0.001f 0.007 o0.00p 0 0 0.002 0.002 0.003 0j001001| 0.001] 0.001 o0.00L 0.001 0.0p2
Diff
KL Dist 0.24 0.08 0.03 2.05 0.1 0.2 0.1 0.1 0.06 0,07 10.3 0.1 0.07 0.1 0.05
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