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Abstract. Clustering has many uses such as the generation of taxonomies and
concept formation. It is essentially a search through a model space to maximise
a given criterion. The criterion aims to guide the search to find models that are
suitable for a purpose. The search’s aim is to efficiently and consistently find
the model that gives the optimal criterion value. Considerable research has
occurred into the criteria to use but minimal research has studied how to best
search the model space. We describe how we have used simulated annealing to
search the model space to optimise the minimum message length criterion.
Simulated annealing can escape local minima and by changing some of its
parameters we can tradeoff solution quality against computation time.

1. Introduction

Clustering often referred to as unsupervised classification or intrinsic classification
has a long history in numerical taxonomy [1] and machine learning [2]. It has many
applications such as the generation of taxonomies for flora and fauna, concept
formation and data mining. Clustering systems work on a collection of objects each
described by a set of n attributes. Clustering attempts to create classes and their
descriptions and then assign the objects to one or more of these classes. As no training
set of pre-classified objects exists, and the number of classes is unknown, clustering is
unsupervised. The class descriptions form a model or hypothesis about the objects.

Clustering systems consist of three major parts. The knowledge representation
scheme (KRS) defines the model space to search. The criterion provides a “goodness“
value for each model and the search mechanism explores the model space attempting
to find the optimal criterion value. The system attempts to find the best model for the
given objects.

The KRS determines the type of classes and their possible interrelationships. The
KRS can be amongst other things, probabilistic or deterministic, hierarchical or non-
hierarchical and exclusive or non-exclusive. A dichotomy for clustering options which
impact on the KRS has been defined elsewhere [3]. The choice of KRS determines the
searchable model space.

The criterion evaluates the “goodness” for each of the models. It is usually a real
value function that takes as parameters the objects and/or class descriptions and is the
objective function of the search. The instance pair (H,C), can formally describe a
clustering problem. H is the finite set of all models in the searchable space and C is
the objective, cost or goodness function such that C:H → ℜ. That is the objective
function assigns a real number to each model. Considerable research has occurred into
finding criterion to use leading to many different types such as Euclidean, Manhattan,
probabilistic, information theoretic and domain specific heuristics [3].



The search mechanism explores the model space attempting to find the best model
by finding the optimal (either minimum or maximum) value of the objective function.
For all but the most restrictive model spaces the number of possible models to evaluate
is combinatorially large. Exhaustively evaluating each possible one is not even
considered as a search mechanism. The search mechanism must consistently find the
global optima or at least good local optima in a number of different application
domains computational inexpensively. Fisher describes several search strategies
currently used in clustering [4].

We believe that making use of the search techniques from combinatorial
optimisation to search the model space has benefits. The simulated annealing (SA)
algorithm has solved a large variety of NP hard problems in different domains such as
the traveling salesman problem, circuit board layout and scheduling [12]. If used to
search the model space the annealing algorithm’s problem independence nature
should allow application of the clustering system into different application domains
with minimal changing. Furthermore by changing parameters of the annealing
algorithm (namely the annealing schedule) we can tradeoff the quality of solution
against convergence time. If implemented correctly without violation of requirements
[11] SA is statistically guarantees to find the global optima. However this is
computationally very expensive. To use simulated annealing to search the model space
in finite time would require a different implementation.

In this paper we describe a clustering system that uses a non-hierarchical,
probabilistic, exclusive knowledge representation scheme. That is, no relationship
exists between classes, the properties of each class are probabilistic and assignments of
an object is only to one class. We use the minimum message length criterion first
described in [5] and search the model space using simulated annealing. Our results
indicate the clustering system finds good local optima. We describe our application of
the clusterer on Michalski’s soybean collection.

2. The Minimum Message Length Approach to Induction

Most clustering systems are inductive in principle. Induction involves reasoning from
few examples to a generalisation. The objects to cluster are a sample of objects from
some population. A class description generated from the sample objects can make
predictions about objects not in the sample but in the population.

Chaitin [6], Kolmogorov [7] and Solmonoff [8] in varying forms independently
proposed algorithmic information theory (AIT). AIT intuitively allows us to quantify
the notion of complexity and compressibility of objects. Learning by induction is
inherently about compressing observations (the objects) into a theory (the model).
Boyle’s law on ideal gases relates the number of molecules (N) in a measurable closed
volume (V) to pressure (P), that is P = k.N/V. A table could store every possible
combination of N and V and the resultant pressure. However, Boyle's law compresses
this table into a much shorter description, the above equation.

Wallace and Boulton [5], extend this compressibility notion into their minimum
message length (MML) approach to induction. They define a criterion which can be
used to select the most probable model from a given set of mutually exclusive and
exhaustive models, H*, for the objects, D. The MML approach specifies that the
minimal (in terms of length) encoding of the model and the objects given the model is



the best. For each different model we can calculate the total encoding length. In terms
of Bayes theorem, we wish to maximise the posterior distribution, P(Hi | D,c) where c
is the background context :
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Our interest is in comparing relative probabilities so we can ignore const. Information
theory [Shannon] tells us that -log (P(occurrence)) is the minimum length in bits to
encode the occurrence. Hence by minimising the equation described in (2) we
inherently maximise the posterior distribution and find the most probable model. The
expression to minimise has two parts, the first being the encoding of the model and
the second the encoding of the objects given the model. The object collection is
random if the size of encoding the model and the objects given the model is
approximately equal to the size of directly encoding the objects. That is there is no
way to compress the objects into a shorter description/theory. The two part message is
precisely described for intrinsic non-hierarchical classification in [5] and [9].

The MML criterion only defines a goodness measure for a model with an inherent
bias towards simple models. It does not indicate how to search the model space. To do
that we use simulated annealing.

3. The Simulated Annealing Algorithm

The Metropolis criterion was first used as a Monte Carlo method for the evaluation of
state equations in statistical mechanics by Metropolis et al. [10]. Kirkpatrick et al.
[11] demonstrated how using the Metropolis criterion as a test in iterative
optimisation can solve large combinatorial optimisation problems. They called their
approach the simulated annealing technique as it mimics the annealing of a piece of
metal to minimise the energy state of the molecules within the metal. SA is an
iterative local optimisation technique. At any time there is only one current solution
(unlike genetic algorithms where there are many) which is slightly changed at each
iteration. As SA is a Markov process the current solution at time, n, Sn, is a result of
the perturbation of Sn-1. The algorithm continually perturbs the current solution to
generate new candidate solutions. SA unconditionally accepts candidates of better
quality than the previous solution and conditionally accepts those of a worse quality
with a probability p, where:
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Allowing worse quality solutions to be accepted allows escaping from local
minima which are common in most complex search problems [11]. We set the initial
temperature T0, so there is a 50% probability of accepting an increase in cost. This
probability decreases as the temperature decreases. The cooling constant, R reduces
the temperature such that, Tk = Tk-1.R.
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C0 is the goodness evaluation of the initial solution. The algorithm in its simplest
form follows:

Choose an initial solution and set the initial temperature
Optimise: Generate a new solution by perturbing the old solution

If quality of new solution is better than of the old solution
  old solution := new solution

Else with probability, p (from equation 3)
old solution := new solution

If no increase in quality is found after a long time(equilibrium
is found at this temperature) reduce temperature.
If temperature equals 0 Stop

Goto Optimise

Simulated annealing statistically guarantees to find the global optimum, if the
thermodynamic equilibrium is found at every temperature and the cooling schedule is
slow enough [12]. However, this is an infinitely long process. We do not maintain
these two requirements due to the need to find a solution in finite time. Instead after a
fixed number of iterations at a temperature the temperature is reduced and the cooling
constant provides discrete changes in the temperature. However non-ideal SA
approaches such as ours still results in good solutions, though there is no guarantee of
optimality [12].

4. Searching the Model Space Using SA

We discuss our model space and how the SA algorithm searches it. We define a
taxonomy as a set of class description and the placement of objects into a class as
assignment. For simplicity we only describe the situation where multi-state/nominal
attributes represent objects. We can calculate the message length from a solution to the
clustering problem. A solution consists of a proposed taxonomy and the assignment of
objects to this taxonomy. The taxonomy consists of a number of classes. Each class
provides probabilistic measures of attribute values if an object were to belong to that
class. We assign the objects based on their probability of belonging to the classes.
Suppose an object b has a 25% and 75% probability of belonging to classes C and D
respectively. We generate a random number between 0 and 1 and assign b to C if the
number is less than or equal to 0.25 otherwise to D. The probabilistic representation
used assumes that each attribute is independent of each other. An example solution for
a simple taxonomy follows.

Let: n = 2, s = 2, m = 2, d = 3
where

n is the number of classes.
s is the number of objects to classify.
m is the number of attributes each object possesses.
d is the number of values that each attribute can take on.



The two objects to cluster, O1 and O2 are described by two attributes M1 and M2:

O1 O2

M1 3 3
M2 1 1

The two class taxonomy description follows:

Class 1 Class 2
Pr(M1 = 1) 0.8 0.1
Pr(M1 = 2) 0.1 0.1
Pr(M1 = 3) 0.1 0.8

Pr(M2 = 1) 0.3 0.8
Pr(M2 = 2) 0.6 0.1
Pr(M2 = 3) 0.1 0.1

We treat each attribute as being independent from every other. The probability of
object, Oi being in class Tj is the product of the probabilities for each attribute in the
class having that object’s values. For example the probability that O2 belongs to Class
1 and 2 is (0.1 * 0.3 = 0.03) and (0.8 * 0.8 = 0.64) respectively. We assign objects
exclusively to one class from these probabilities.

The initial solution is generated by selecting a random number of classes and
generating uniform distributions for each attribute in each class. The following
algorithm summarises our clustering system. Perturbation operators and application
strategies follow in the next section.

Choose an initial taxonomy of a randomly generated number of classes with
uniform distributions for each attribute.

Assign objects to classes.
OldLength := MessageLength(Initial Taxonomy and Object Assignment)
Temperature := - OldLength / loge(0.5)
Old taxonomy := initial taxonomy

While(Temperature > 0)
Repeat Markov_cycle_length times (default is 30)

New taxonomy = small perturbation of the old taxonomy
Assign objects to classes.
NewLength := MessageLength(New Taxonomy and Object
Assignment)
If NewLength < OldLength

old taxonomy := new taxonomy
Else with probability, p

old taxonomy := new taxonomy
     End Repeat



     Temperature := Temperature.CoolingConstant
EndWhile

5. Perturbation Operators and Application Strategies

The perturbation operators change an existing taxonomy to generate a new one. The
operators should fulfill the SA requirements [11] of being able to explore all models in
the model space and making only local changes. To fulfill the first requirement, our
perturbation operators can generate any taxonomy from any other over sufficient
iterations. The changes made to taxonomies effect only a small local aspect of the
taxonomy. This fulfills the second requirement.

Generating new class descriptions after assigning the objects into the current
taxonomy is a natural perturbation operator. New probability distributions on
attributes for each class can be derived from the objects currently within the class.
Assigning objects to classes at iteration n leads to a new taxonomy for use at iteration
n+1. This operator does not result in increasing the number of classes though they can
be decreased if no objects are assigned to a class. Only the probability distributions on
the attributes are changed and usually only slightly.

If probabilistic assignment were the only perturbation operator, the number of
classes would only decrease or stay constant and never increase as the search
continued. Hence, we require additional perturbation operators. These include:

Splitting a large class into two. A randomly selected class containing more than
25% of the objects is split into two classes. Half the attributes for the existing class are
randomly selected and copied into the new class along with their probability
distributions. Attributes not copied have their distributions randomly generated.

Imperfect Duplication of a class. A randomly selected class has its description
copied with a small fixed probability (5%) of changing the probability distributions for
an attribute within a range of 10%. A repairer algorithm maintains that the sum of the
distribution is 1.

We have three perturbation operators: probabilistic assignment, splitting and
imperfect duplication. The strategies of applying these perturbation operators follow:

Fixed Random. A constant probability of applying the perturbation operators
occurs during the optimisation process.

Adaptive Random. The probability of applying the perturbation operator changes
during the optimisation process. The changes occur from feedback on how successful
an operator has been at improving the quality of the solution.

Temperature matched. Perturbation operators are applied with probabilities
dependent on the current temperature.

Fixed Sequence. Predefined sequences of perturbation operators are randomly
applied during the optimisation process. For example one sequence could be: 30
iterations of assignment, 3 of split and 5 of duplication followed by 50 of iterations of
assignment.

6. Experiments

We have tried our clusterer on Michalski’s large soybean disease collection [13]. The
collection consists of 290 training examples each described by 35 attributes. We
remove twenty four examples containing unknown values. Each example belongs to



one of 15 classes of soybean disease. The reported best prediction results on the test set
are 97% for supervised classification. We conducted applications of the cluster for
varying annealing schedules. Reducing the cooling constant or the Markov cycle
length allows faster convergence to a reduced quality solution (known as quenching).
Higher cooling constants and Markov cycle length produces better quality solutions
but convergence is slower. Table 1 shows our results at a cooling constant of 0.90 and
a Markov cycle length of 30. The diseases were identified by experts and form the
extrinsic categories whilst the single letter named classes were found by the cluster.
The total number of instances (count column) for each disease and their distribution
into the classes found by the cluster are shown.

Classes
Disease Count A B C D E F G H I J K L M N

diaporthestem-
canker

10 0 0 0 0 0 0 0 0 10 0 0 0 0 0

charcoalrot 10 0 0 0 0 0 10 0 0 0 0 0 0 0 0
rhizoctoniarootrot 10 0 0 0 0 0 0 0 0 0 0 0 10 0 0
phytophthorarot 16 0 16 0 0 0 0 0 0 0 0 0 0 0 0
brownstemrot 20 0 0 0 0 0 0 0 0 0 0 0 0 20 0
powderymildew 10 0 0 0 0 0 0 0 0 0 0 10 0 0 0
downymildew 10 0 0 0 0 10 0 0 0 0 0 0 0 0 0
brownspot 40 37 0 0 0 3 0 0 0 0 0 0 0 0 0
bacterialblight 10 0 0 0 7 0 0 3 0 0 0 0 0 0 0
bacterialpustule 10 0 0 0 9 0 0 0 1 0 0 0 0 0 0
purpleseedstain 10 0 0 0 0 0 0 0 10 0 0 0 0 0 0
anthracnose 20 0 0 0 0 0 0 0 0 20 0 0 0 0 0
phyllostictaleaf-spot 10 0 0 0 0 0 0 0 0 0 9 0 0 0 1
alternarialeafspot 40 0 0 0 0 0 0 32 0 0 0 0 0 0 8
frogeyeleafspot 40 0 0 39 0 0 0 0 0 1 0 0 0 0 0
                         Total 266 37 16 39 16 13 10 35 11 31 9 10 10 20 9
Table 1: Results of Application of Clustering System to Soybean training set. Cooling

constant 0.90, Markov cycle length 30.

Our clustering system divided the examples into 14 classes instead of the 15
discovered by experts. It placed four diseases (charcoalrot, rhizoctoniarootrot,
phytophthorarot and brownstemrot) into four separate homogenous classes and placed
the majority of two other diseases (brownspot and frogeyeleafspot) into homogenous
classes but misclassifed some members into other classes. It merged all examples of
the diaporthestemcanker and anthracnose diseases into one class and the majority of
examples of the bacterialblight and bacterialpustule into one class. The remaining
diseases examples were mostly placed into separate classes but quite a few
misclassifications occurred. Slightly faster convergence times resulted in more
misclassifications. Extremely fast convergence (cooling rates of less than 0.5) resulted
in the merging of multiple diseases into a single class. This could have also been
achieved by weighting the first part of the message to be more greater than the second,
thus penalising complex models.



7. Discussion

Understanding the effect and order of application of the perturbation operators are
vital when searching the model space. For example, we found in our trials the lack of
frequently applying the imperfect duplicate or split operator meant the search became
trapped in a poor local minimum. The temperature matched strategy of applying
perturbation operators was the best performing for this domain. We match the
probability of applying the split and imperfect copy perturbation operators with the
annealing schedule. The probability of applying these operators at the initial
temperature was 10% and decreased in linear accordance with the temperature. Their
application caused cost increases when initially applied, however after several
iterations of probabilistic assignments the cost improved. Applying these operators at
higher temperatures allowed the changes made to have a greater chance of being
accepted.

There are many aspects of the classifier we would like to further study. The
annealing schedule heuristic is not ideal. The annealing principal relies on finding
equilibrium at each temperature in the annealing schedule. We do not check for this.
We assume we find equilibrium after a fixed number of iterations at a temperature.
We would like to follow a more adaptive approach that could stay at a temperature
longer or even increase the temperature to satisfy the equilibrium requirement.

8. Conclusion

We describe our implementation of a clustering system that uses the MML criterion to
evaluate the worth of taxonomies and simulated annealing to search the model space.
We feel SA is a good search mechanism to explore the model space. It can escape
local minima that exists in complex search spaces and is robust across a variety of
problems. This should allow the clustering system’s application in different domains
without significant refinement. By changing the cooling constant and Markov cycle
length we can tradeoff quality of solution against convergence time.
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