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Abstract
Computational phenomena occurring whilst solving the binary quadratic

assignment problem using simulated annealing is investigated.  The presence of
phenomena such as self organisation and emergent computation are searched  for
in both the optimisation process and the solutions.  Implicit emergent computation
is shown to be facilitated by a simple perturbation operator.  The potential for the
application of the research is discussed

1. Introduction

Stochastic combinatorial optimisation techniques such as simulated annealing, have
been very successful at solving a variety of combinatorial optimisation problems.
They have a quality of robustness which enables them to produce good solutions to
many different problems.[1]  However, with large real world problems, the time
required for the simulated annealing technique to converge is great.[2] Simulated
annealing has been studied indepth as a Markov chain.[3]  Greater insight into what is
computationally occurring may perhaps offer an answer to improving the quality of
the solution, whilst reducing the convergence time. In this study, computational
phenomena occurring solving the binary quadratic assignment problem using
simulated annealing is investigated.

2. Why Should  Computational Phenomena Occur ?

It is well known that simulated annealing is a successful combinatorial optimisation
technique.  It is successful because if the simulated annealing process is kept at
thermal equilibrium, the distribution of configurations with respective to their energy
levels (costs) is given by the Boltzmann distribution.  If the system reaches
equilibrium at each and every temperature given by the annealing schedule then the
distribution of configurations will converge to the theoretical ground state(s).[3]  In
simulated annealing, these ground states correspond to the optimal configuration.

Simulated annealing is modelled on the annealing of solids.  The actual annealing
process can be explained from techniques in condensed matter physics. During the
annealing of solids, the material goes through a phase transition which has been



shown to occur in the simulated annealing process.  Kirkpatrick in his studies on
simulated annealing showed that the behaviour of specific heat of the system as a
function of temperature indicated the presence of a phase transition.[4]

Von Neumann proved that cellular automata’s (CA) were capable of universal
computation through his creation of a self-reproducing machine.[5]  Wolfram in [6]
divided the macroscopic behaviour of CA’s into four classes, analogies with dynamic
systems are provided in parentheses:

Class I: Converges to homogenous state (limit points)
Class II: Converges to separate periodic structures (limit cycles)
Class III: Chaotic aperiodic patterns (strange attractor)
Class IV: Complex patterns of localised structures (possess long transients)

Wolfram postulates that due to their localised structures and long transients CA’s
in class IV  are capable of supporting the mechanisms which can sustain universal
computation.

Langton in his studies of CA’s [7] suggested that CA’s in a class IV behaviour
undergo phase transitions, especially second order phase transitions.   He concludes
that the presence of these phase transitions and give rise to the  possibility of
emergent computation occurring.  Cellular automata and simulated annealing can be
both viewed as dynamical systems sharing the property of both being Markov
processes.  Their behaviour can be explained by the same field (statistical mechanics)
and they both share common phenomena (phase transitions).  Given this parallel, it is
investigated that if the simulated annealing system is at equilibrium, does emergent
computation occur.  If the system is indeed at thermodynamic equilibrium and phase
transitions occur, does this necessitate the emergence of computations that will give
rise to better solutions of the problem ?

3. The Binary Quadratic Assignment Problem

The binary quadratic assignment problem consists of placing N activities into M
zones.  The zones are spatially apart with a given distance between zones.  Activities
interact with each other and there is specified cost per unit distance.  The objective is
to minimise the total cost of interaction.  The problem and objective can be expressed
as:

Let N = the number of activities
M = the number of zones
fik = the interaction between activity i and k

djl = the distance between zone j and zone l

bijlk = the cost per unit of interaction from activity i in zone j to activity k 

   in  zone l

The objective function is:
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This type of problem occurs extensively in the real world in many forms.  The
problem is classified as a NP hard problem. In this paper we shall discuss the
facilities layout problem which has the additional constraints that:

N = M
The size of N equals the Size of M, that is an activity occupies one and only
one zone.

For the purpose of problem expression, activities are aggregated into activity
types.

4. Optimisation Technique

The fundamental optimisation technique used for this study is detailed below.

4.1 Fundamental Algorithm for Maximisation

1. Choose an initial configuration
2. Optimise: Choose a new configuration  which is a small perturbation from the old 

configuration
3. If quality of new configuration > quality of old configuration
4. old configuration := new configuration
5. Else with probability loge(∆Cost/CurrentTemperature) accept
6. old configuration := new configuration
7. If after a prescribed time no increase in quality of solution, reduce 

temperature according to annealing schedule
8. If after a long time no increase in quality is found or too many iterations have

occurred Stop
9. Goto Optimise

The initial configuration is randomly generated, given the lack of constraints in
this type of problem an initial configuration is easily generated.  Stochastic
optimisation techniques such as simulated annealing start with an initial configuration
and iteratively slightly perturbate the previous configuration.  The problem
representation specifies the dimensionality of the space to explore.  The perturbation
operator and the optimisation technique determines the manner it will be explored in.



The perturbation operator used in this study is an exchange of activities contained
in two randomly selected zones.

5. Emergent Computation

Forrest in [8] states that emergent global behaviour can arise from many local
interactions.  However when the emergent behaviour is also a measurable
computation, we can view this behaviour as being an emergent computation.  Most
studies on emergent computation have been on CA’s, and in their context, emergent
computation is supported by exploiting primitive components.  There exists no
analogous primitive components in simulated annealing to the primitive components
in cellular automata.  Rather, the primitive component is a process, the perturbation
operator.  Therefore, generally we can state that exploiting explicit microscopic
behaviour gives rise to emergent macroscopic behaviour.

The constituents of emergent computation are given in [8].  In relation to this
study they can be redefined as:

• A collection of explicit process[es] (the perturbation operator(s)) applied to search
the configuration space.

• A series of explicit process[es] (the perturbation operator(s)) together form
implicit processes.

• A natural interpretation of the macroscopic behaviour of the processes as being a
computation not explicitly capable of being achieved by a single application of an
explicit process.

5.1 An Example of Emergent Computation

The perturbation operator in this study is a simple activity swap operator.

Figure 1:  Configuration at Iteration 1



Figure 2:  Configuration at Iteration 100

Figure 3: Configuration at Iteration 5000

Figure 4  Optimum Configuration

For a simple trial problem of:

N=16 (Four activity types of four activities each)
M=16

The interaction between the activity types is weak (inter activity forces) but
strong between activities of the same type (intra activity forces).  The initial
configuration is shown in figure 1.  The optimum configuration is shown in figure 4.
The optimum configuration is never reached, even after 1 million iterations using the



single activity perturbation operator.  Under this circumstance the most chosen
alternative is to continually restart the entire optimisation process with new initial
configurations.

As the figure 2 clearly shows at a very early stage of the run similar activity
types aggregate in pairs.  The remainder of the run in most cases only accepts a
sequence of swaps that result in an entire pair being moved to a new location.  That
is, once a pair is formed the intra activity forces are too great, hence it is never is
broken (figure 3).  Clearly whilst the explicit process is to swap two activities, after
iteration 100 the optimisation process implicitly is only accepting swaps that result in
paired activities being swapped.  If the annealing schedule was too quick and
“quenching” occurred the aggregation into pairs occurred only in approximately 25%
of the configuration.  The annealing schedule is primarily determined by the cooling
rate C where C is a real number between 0 and 1.  The temperature at time Tt  is given
by Tt-1.C.  If C is below 0.925 then the amount of pair aggregation reduces
considerably and the emergent perturbation operators cannot occur.

The outlined example is simple for clarity.  Real world size problem consists of
2000 zones and 45 activity types, each activity type contains between 1 to 15
individual activities.  Similar phenomena of clustering and problems moving clusters
are found in such problems, especially given the clusters are not limited to being
square but can be linear, “circles”, rectangular and even in extreme cases, hexagons.
However with the collection of perturbation operators discussed in the next section,
better quality solutions were reached.

6. Uses of Emergent Computation

Clearly a use of the illustrated emergent computation is to make the emergent
behaviour explicit.  That is, add another perturbation operator that allows the
exchange of two sets of two adjacent activities.  This technique was used to obtain the
optimum configuration (figure 4) by initially applying the original single activity
swap perturbation operator and later the new pair activity swap perturbation operator.

However the greater potential for emergent computation can be reached if a
series of perturbation operators can be used together in the same optimisation run.
Such a situation would facilitate a richer combination of emergent perturbation
operators that could reduce the optimisation time and improve the quality of the
solution.  This would be a powerful technique as it would provide the optimisation
technique with a flexible approach to handling different problem types.  Every
optimisation problem type (such as the BQAP) has its own specific configuration
space that the optimisation technique searches.  Configuration spaces are dependant
on the problem representation and may have unique qualities such as being highly
constrained that could make movement between feasible solutions difficult.  Often it
is a time consuming process to explicitly code the perturbation operator to efficiently
search the solution space.  By having a combination of available explicit perturbation
operators that this could give rise to additional emergent computation, this would
remove this task from the implementor.



The following perturbation operators have been trialed on optimisation runs of
binary quadratic assignment problems of various size. The perturbation operators are
designed to introduce a small perturbation to the existing configuration.

Horizontal Line Swap
Swaps a horizontal line of activities of length n where n is a random number

between 1 and N/(N/8)

Vertical Line Swap
Swaps a vertical line of activities of length n where n is a random number

between 1 and N/(N/8)

Diagonal Line Swap
Swaps a diagonal line of activities of length n where n is a random number

between 1 and N/(N/16)

Block Swap
Swaps a block of activities of length and width n where n is a random number

between 1 and N/(N/16)

Circular Swap
Selects a random activity and a random radius r where r is a random number

between 1 and N/(N/16).  Progressively swaps all activities in the neighbourhood
given by r with the centre activity until a cost decrease is established or the
neighbourhood is exhausted.

A perturbation operator was randomly selected and applied each and every
iteration.  The majority of trialed optimisation runs resulted in an improvement in the
quality of solution than for runs using the single swap perturbation operator.  The
random selection of perturbation operator is the initial and obvious choice on
coordinating multiple perturbation operator.  The author hopes to implement a genetic
algorithm to evolve the optimum sequence of perturbation operators with respect to
problem type and simulated annealing control variables.

These operators together have been trialed and are capable of handling many
difficult problems where clustering of activity types has occurred.  Clustering may be
in number of patterns such as blocks, diamonds, lines and others.  It is believed that
the these perturbation operators can handle the majority of these patterns.

7. Conclusion

The author feels that greater insight into what is computionally occurring is a valid
method of attempting to reduce the time and improve the quality of the optimisation
process.  Langton has discussed the notion of universal computation being supported
in CA’s if in Wolfram’s Class 4 behaviour where phase transitions occur.  Simulated
annealing with the correct annealing schedule keeps the system at thermodynamic



equilibrium.  Kirkpatrick illustrated that simulated annealing undergoes phase
transitions as a actual solid annealing does.

Hence it is feasible that given both CA’s and simulated annealing can be viewed
as dynamical systems there exists the possibility of some sort of implicit computation
occurring during a simulated annealing run.  It is shown that there exists implicit or
emergent computation occurring in one form of the binary quadratic assignment
problem if the annealing schedule is slow enough.  An explicit single swap
perturbation operator gives rise to an implicit pair swap perturbation operator.  The
possibility of using a combination of explicit perturbation operators that give rise to
implicit emergent perturbation operators is discussed. This approach was used on
large real world problems with promising results.  Such an approach can potentially
offer a powerful and flexible method of reducing the time to implement the
optimisation technique (there is no need to specifically trial and test perturbation
operators), reducing the optimisation time and can often find a better solution that
was incapable of being found with only one perturbation operator.
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