
A Framework for Actionable Clustering using Constraint
Programming

Thi-Bich-Hanh Dao1 and Christel Vrain1 and Khanh-Chuong Duong1 and Ian Davidson2

Abstract. Consider if you wish to cluster your ego network in Face-
book so as to find several useful groups each of which you can in-
vite to a different dinner party. You may require that each cluster
must contain equal number of males and females, that the width
of a cluster in terms of age is at most 10 and that each person in
a cluster should have at least r other people with the same hobby.
These are examples of cardinality, geometric and density require-
ments/constraints respectfully that can make the clustering useful for
a given purpose. However existing formulations of constrained clus-
tering were not designed to handle these constraints since they typ-
ically deal with low-level, instance-level constraints. We formulate
a constraint programming (CP) languages formulation of clustering
with these cluster-level styles of constraints which we call action-
able clustering. Experimental results show the potential uses of this
work to make clustering more actionable. We also show that these
constraints can be used to improve the accuracy of semi-supervised
clustering.

1 Introduction

Most clustering is unsupervised with a recent movement to adding
constraints, an area generally known as constrained clustering [2].
Previous work is most suitable for the semi-supervised setting where
a few instances are labeled and the instance-level must-link and
cannot-link constraints can be generated from them [2]. The
data is then clustered under small numbers of these constraints with
the number of clusters equaling the number of different labels. Per-
formance is typically measured in terms of prediction: how well the
clustering found matches the ground truth clustering induced by the
labels. However, in many domains experts can provide complex con-
straints that are not generated from a ground truth, rather they cap-
ture what makes the clustering useful (or not useful) in the domain.
To emphasize this focus we term this actionable clustering.

Consider our motivating example of clustering an ego network so
that each cluster can be invited to a separate dinner party. A cluster-
ing algorithm may find a useful grouping that results in a successful
party but is unlikely to unless we somehow encode what is required.
Further uses can be modeled in the semi-supervised clustering set-
ting if we know something about the underlying label set. Suppose
we have labels that correspond to gender. If we know that in our data
set there are twice as many males as females we can constrain the
cluster sizes accordingly. Similarly if we know the males are typi-

1 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-
45067, Orléans, France, email: thi-bich-hanh.dao@univ-orleans.fr, khanh-
chuong.duong@univ-orleans.fr, christel.vrain@univ-orleans.fr

2 Department of Computer Science, University of California, Davis, email:
davidson@cs.ucdavis.edu

cally closer in age than the females we can create the requirement to
enforce that the diameter of one cluster is smaller than the other.

Existing instance level constraints cannot be used to specify this
type of guidance. Consider the constraint that the number of males
and females in each cluster should be approximately equal. Since
instance level constraints are specified a priori to the algorithm be-
ginning execution they typically cannot constrain any property that
dynamically changes during the algorithm’s execution such as the
cluster composition. Constraining cluster level properties has proba-
bly not been well studied as it is challenging to do so in procedural
languages and mathematical programming but can be elegantly per-
formed in constraint programming (CP) languages which we use in
this work.

The use of CP means that any clustering algorithm implementation
will not scale to data sets larger than 10,000 points as these methods
find the global optimum. Though this will prevent our work’s usage
on big data problems, recently work has shown [15, 14] many inter-
esting real world problems are small data problems involving small
but difficult to understand data sets. One characteristic of these prob-
lems is the need to find the very best clustering (the global optima)
which effectively precludes scalability due to the intractability of the
underlying optimization problem. Our work can be considered as al-
lowing actionable clustering for these small data problems but our
work can still be applied to thousands of data points as we have done
in our experiments.

Our contributions are as follows:

• We look at new types of constraints beyond instance level con-
straints that must be calculated dynamically allowing for a new
style of cluster level constraints.

• We introduce cardinality, density and geometric styles of cluster
level constraints and show they can be easily specified in CP for-
mulations.

• We experimentally explore the uses of these constraints to enforce
guidance to ensure clusters are actionable by showing they can
find alternative clusterings.

• We show experimentally that these constraints can help in the
semi-supervised setting in a number of ways. They can be used
in addition to instance level constraints or can be used in lieu of
instance level constraints to improve clustering accuracy.

Our paper is laid out as follows. In the next section we outline the
actionable clustering problem and then related work. Next follows
the type of constraints we can build actionable clusters on including
geometric, density and cardinality constraints. Such constraints are
challenging to encode in procedural or mathematical programming
formulations so instead we use a CP framework that allows to en-
code a variety of objective functions. The benefits of modeling both

the constraints and objective functions in CP include ease of solving
but also allow specifying a framework which others can build upon
by adding in more objectives and constraints. Next we describe our
experiments including a variety of data set types after which we con-
clude.

2 The Actionable Clustering Problem
Consider the classic clustering problem. We are given a data set X
where each instance x ∈ X is described by a vector of features f .
Typical objective functions include minimizing the vector quantiza-
tion error (k-means), minimizing graph cuts (spectral methods) if the
data is represented as a graph and a similarity measure is used, and
optimizing cluster properties such as minimizing the maximum clus-
ter diameter. In our work we present the novel extension that each
instance is further described by a set of properties from which the
definitions of what is actionable/interesting is given. To separate our
features and properties we use the notation: xfi and xpi to represent
the features and properties of the ith instance respectfully.

In our formulation the feature vectors X f are used to calculate the
clustering objective function value and the constraints are enforced
on the property vectors X p. However, there is nothing stopping the
same attribute of an instance being in both vectors and used as both
a feature and property.

Formally the actionable clustering problem is formulated as:

argminΠ g(X f ,Π) (1)

s.t. φc(X p,Π), φd(X p,Π), φg(X p,Π)

where Π is a partition/clustering,

g is an objective function,

φc,d,g models the cardinality, density and geometric constraints

The type of constraints we will explore in this paper can be di-
vided into four categories: i) cardinality, ii) density, iii) geometric
and iv) complex logical combination of these constraints which we
now discuss in turn. They are not the only relevant ones but the most
pragmatic in clustering: cardinality constraints are useful for cate-
gorical attributes, density constraints for relational information and
geometric constraints for real value attributes. It is important to note
that these constraints can be applied simultaneously for multiple
different properties on multiple clusters.
i) Cardinality constraints place a requirement on a count of the ele-
ments in a cluster having a property. They may be as simple as each
cluster should contain at least one female to more complex variations
such as the number of males must be no greater than two times the
number of females.
ii) Density constraints relate to a cardinality constraint in that it pro-
vides requirements on a count of a property except not for an entire
cluster but rather a subset of instances in the cluster. For example,
we may require each person have at least 10 people in his/her cluster
sharing the same hobby.
iii) Geometric constraints place an upper or lower bound on some
geometric property of a cluster or cluster combination. Examples in-
clude that the maximum diameter of a cluster with respect to the age
property is 10 years. This would prevent clusters containing individ-
uals with a wide range of ages.
iv) Complex logic constraints express logic combinations of con-
straints, which can be instance-level or cluster-level constraints. For
instance, we may require that any cluster having more than 2 profes-
sors should have more than 10 PhD students.

Positive vs Negative Requirements. Up to this point we have dis-
cussed finding clusters which are actionable since they meet a partic-
ular set of requirements. However, it is also likely that a clustering is
actionable because it does not contain a set of properties. This idea
of using negative feedback was first explored in the alternative clus-
tering literature [21, 3, 25, 19]. There the problem was given a good
(according to the objective function value) clustering Π which is not
actionable (perhaps because it is trivial or inappropriate) find an al-
ternative clustering Π′ such that Π′ has a good objective function
value but Π and Π′ are different using some sort of measure such as
the Rand index. However, that work is limited in that how Π′ is dif-
ferent to Π is not controlled. Instead with actionable clustering if the
existing clustering has undesirable properties such all females in one
cluster, we can explicitly require that females be equally distributed
(i.e. ∀i, j CountFemale(πi) ≈ CountFemale(πj) where πi is
the ith cluster).

3 Related Work
The style of constraints we explore in this paper to our knowledge
has not been explored before. We briefly survey the related areas of:
i) instance level constrained clustering, ii) relational clustering and
iii) clustering using CP.

Instance level constrained clustering. As mentioned earlier most
of this work is applicable to the semi-supervised setting where the
must-link and cannot-link constraints must be given apriori.
There have been a large variety of clustering algorithms to encode
these constraints such as k-means, hierarchical, expectation maxi-
mization (EM) and spectral methods [2]. Our work differs since we
explore more complex constraints beyond simple pairwise instance
level constraints. Moreover, our framework finds a global optimum
while classic clustering algorithms look for local optima.

Relational clustering. The area of relational clustering [20] aims
to cluster data represented by both feature and simple pairwise re-
lations such as brother, son-of and married. The technical
challenge is to combine both feature and relational information in
such a way that both can be used in the objective function of the
clustering algorithm. Our work differs since we are looking at more
complex guidance beyond relational information but also as we use
extra information beyond features as constraints to be enforced not
modeled as part of the objective function.

Clustering using CP. To our knowledge little work uses Constraint
Programming for clustering. We proposed a CP model for distance-
based clustering integrating several optimization criteria and differ-
ent kinds of constraints [4, 6]. This work integrates only classic con-
straints and does not contain the complex constraints on properties
we consider in this paper. A fundamentally different pattern mining
approach based on CP [10, 17] has been generalized to k-pattern set
mining [18] and applied to model conceptual clustering, where each
cluster is characterized by a set of properties common to all the ele-
ments of the cluster.

4 A Quick Primer on CP
There are many benefits to formulate our work in a CP language. Not
only does it allow elegant formulation as a constrained optimization
problem but it guarantees to find a global optimum, a critical require-
ment for valued data that are small and collected only once (eg. fRMI
data). Furthermore, relaxing the problem so it becomes just a satis-
faction problem allows to explore all the possible solutions and even
to determine if there exists a feasible one.

A Constraint Satisfaction Problem is modeled by (X,Dom,C),
where X is a set of variables, each variable x ∈ X is associated
with a domain Dom(x) and C is a set of constraints, each constraint
expresses a condition on a subset of X . A solution is a complete as-
signment of value v ∈ Dom(x) to each variable x ∈ X that satisfies
all the constraints of C. When an objective function is added, the
problem becomes a Constraint Optimization Problem and the aim is
to find a solution that optimizes the objective. The originality of CP
solvers is to alternate two steps: propagation allowing to filter the
variable domains and branching. Different strategies can be used to
create and to order branches at each branching point. They can be
standard search strategies defined by CP solvers or can be specifi-
cally developed. Moreover, many kinds of constraints are available:
elementary constraints expressing arithmetic or logic relations, or
global constraints, as for instance the cardinality constraint, denoted
by # and allowing to count a set of objects and to place a constraint
on the obtained number. Although equivalent to conjunctions of el-
ementary constraints, global constraints usually benefit from more
efficient filtering algorithms. Reified constraints are available, which
allow to link a boolean variable to the truth value of a constraint.

5 A CP Formulation of Actionable Clustering

We begin by discussing how to find globally optimal clusterings in
CP and then move onto discuss how to encode the new types of con-
straints we introduce in this work. As is typical in the field, we show
how to encode these constraints in a generic language-free manner.
To aid in reproducibility of results all code will be made available in
the CP solver library Gecode3.

5.1 Clustering in CP

For modeling clustering we rely on the CP clustering model pro-
posed in our earlier work [6]. Clusters are identified by their index,
varying from 1 to K (K denotes the number of clusters). Instances
are also identified by their index, ranging from 1 to N . The assign-
ment of instances to clusters is modeled by the integer variables Gi

for i ∈ [1, N], with Dom(Gi) = [1,K] (the set of integers from 1
to K): Gi = k means that the ith instance is put into cluster num-
ber k. A complete assignment of the variables Gi therefore defines
a clustering. However, several complete assignments can lead to the
same composition of the clusters, where the only difference is the
index of the clusters. In order to break this kind of symmetry, the CP
constraint precede([G1, .., Gn], [1, ..,K]) is used. This constraint en-
forces that the instance number 1 is in the cluster number 1, and an
instance number i can be in a cluster k if the cluster k − 1 is not
empty and contains an instance j with j < i.

The model in [6] integrates several optimization criteria: maximiz-
ing the minimal separation between clusters, minimizing the maxi-
mal diameter of the clusters, minimizing the within-cluster sum of
dissimilarities, or minimizing the within-cluster sum of squares [5].
All these criteria are NP-hard: minimizing the diameter is polynomial
for K = 2 but NP-hard for K ≥ 3 [16], maximizing the separation
is polynomial [11] but becomes NP-hard with user constraints [8],
minimizing the sum of dissimilarities is NP-hard since the weighted
max-cut problem, which is NP-complete [12], is a particular instance
of this problem with K = 2 and the NP-hardness of minimizing the
sum of squares is proven in [1]. These criteria can be used in our
framework where the distances are computed from X f .

3 http://www.gecode.org

We extend this previous work to integrate constraints put on the
property X p. From the semantic point of view these constraints can
be divided into four categories: cardinality constraints, density con-
straints, geometric constraints and complex logic constraints.

5.2 Cardinality Constraints
Cardinality constraints allow to express requirements on the number
of instances that satisfy some conditions in each cluster. The condi-
tion can be for instance being more than 20 years old and the car-
dinality constraint can state that each cluster must have more than
30 persons being more than 20 years old. The minimal capacity con-
straint (also called minimum significant constraint in [13]) is then a
special case of a cardinality constraint.

Given a condition, the set C of the instances that satisfy it can be
computed and the number of instances ofC that are in a cluster k can
be captured using the CP cardinality constraint and a variable Yk:

#{i ∈ C | Gi = k} = Yk (2)

The constraint
∑K

k=1 Yk = |C| enforces the link between the vari-
ables Yk. Cardinality constraints are then expressed by arithmetic
constraints on Yk. Let us illustrate this by some examples.

• Each cluster must have at least 50 females of age more than 20.
The setC is the set of instances i such that female(i) = true and
age(i) > 20. For k ∈ [1,K], the constraint of Equation (2) is put
as well as the constraint Yk ≥ 50. The number of new introduced
variables is K and the number of constraints is 2K + 1.

• In each cluster, the number of teachers must be no less than half
the number of students. Let Ct and Cs be the sets of instances that
are teachers and students, respectively. For k ∈ [1,K], constraints
similar to Equation (2) are put with the variables Tk and Sk to
capture the number of teachers or students in the cluster k. These
variables are linked by the constraint 2Tk ≥ Sk. The number of
new variables is 2K and the number of constraints is 3K + 1.

5.3 Density Constraints
Density constraints provide bounds on the occurrence of some prop-
erties on a subset of instances in each cluster. For instance, each per-
son being more than 20 years old should have in his/her cluster more
than 5 persons sharing the same hobby. Density constraints allow
a more general form than the basic ε-ball count constraint [8]. To
express this constraint, for each instance i ∈ [1, N] which is eligi-
ble (eg. more than 20 years old), the set of neighborhood instances
NI(i) (eg. persons having the same hobby) is determined. The num-
ber of instances of NI(i) in the same cluster as i can be captured
using the variable Zi and:

#{j ∈ NI(i) | Gj = Gi} = Zi (3)

Arithmetic conditions are then stated on Zi to express density con-
straints. Let us take the following examples.

• In the same cluster, each person should have at least 5 persons
having the same hobby. For each instance i, we compute the set
NI(i) = {j ∈ [1, n] | hobby(i) = hobby(j)}. The fact that
there must be at least 5 other persons ofNI(i) in the same cluster
as i means the value of Gi must be taken at least 6 times by the
elements in NI(i). Therefore the constraint of Equation (3) is put
as well as the constraint Zi ≥ 6.

http://www.gecode.org

• Each person of age between 20 and 55 should have at least 10%
persons with a difference in age less than 5 in the same cluster.
For each instance i such that 20 ≤ age(i) ≤ 55, NI(i) contains
all the instances j such that |age(i)−age(j)| ≤ 5. The constraint
of Equation (3) is put as well as the constraint Zi ≥ |NI(i)|/10.

In these cases, the number of new introduced variables is N and the
number of CP constraints is 2N . Let us notice that the computation of
the neighborhoods is done only once before putting CP constraints.

5.4 Geometric Constraints
Geometric constraints allow to set bounds on some geometric prop-
erties inside each cluster, or between the clusters.

• Any two clusters must be separated by at least 10 on the age
property. Therefore any pair of instances i, j having |age(i) −
age(j)| < 10 must be in the same cluster. For these pairs of in-
stances the constraint Gi = Gj is put.

• Each cluster must have at most 40 difference on the age property.
That means any pair of instances i, j having |age(i)− age(j)| >
40 must be in different clusters. For them, Gi 6= Gj is put.

In these cases, the number of CP constraints needed is at most
quadratic compared to the number of instances. However, we have
defined in our earlier work [6] the global constraints split and diam-
eter that use a distance d. The constraint split(G,S, d) enforces that
the minimal split (separation) between cluster is captured by a vari-
able S, and diameter(G,D, d) enforces that the maximal diameter
of the clusters is captured by a variable D. These global constraints
are more efficient than expressing split or diameter constraints by
must-link or cannot-link constraints. They can be used in our setting
with d defined by d(i, j) = |age(i) − age(j)|, the first case is then
expressed by two constraints split(G,S, d) and S ≥ 10.

A geometric constraint can also place a bound on the sum of all
the values on some properties inside each cluster, or a condition on
the ranges of some properties of the clusters. For instance, age ranges
of the clusters should or should not overlap, or the total sum of age
in each cluster must not exceed some value.

• The average age in each cluster must not exceed 50. To express
this constraint, for each instance i and each cluster k, we introduce
a boolean variable Bik ∈ {0, 1} (0:false and 1:true). A reified
constraint 4 Bik ↔ (Gi = k) is put, ie. Bik represents whether
or not instance i is in the cluster k. For each k ∈ [1,K], the sum
of age Sk and the cardinality Ck are linked by:∑

i∈[1,N] age(i)Bik = Sk

#{i ∈ [1, N] | Gi = k} = Ck

The bound is therefore expressed by: Sk ≤ 50Ck. In this case,
N × K boolean variables (Bik), K float point value variables
(Sk) and K integer value variable (Ck) are introduced. This case
is expressed by 3K CP constraints.

• Constraints on the property ranges of the clusters. We consider
constraints that state conditions on the ranges of the clusters on
a property p. To capture the range of a cluster, for each cluster
k, we introduce the variables Mink and Maxk that represent the

4 A reified constraint on a constraint c, stated by B ↔ c, links the truth
value of a constraint c to a boolean variable B: B is 1 if the constraint c is
satisfied, 0 if c cannot be satisfied, or B ∈ {0, 1} if the satisfaction of c
has not yet been determined.

minimal and the maximal values on the property p of the elements
in the cluster k. Let mp be the maximal value of the property p
for all the instances. The minimal and maximal values are linked
by the following constraints:

Mink = mini∈[1,n](p(i)Bik +mp(1−Bik))
Maxk = maxi∈[1,n](p(i)Bik)

The constraint that the ranges on p of the clusters should not over-
lap can be expressed by putting, for any two clusters k, k′,

(Mink > Maxk′) ∨ (Mink′ > Maxk)

A constraint stating that the range of a cluster k must be included
in the range of another cluster k′ can be expressed by:

Mink ≥Mink′ and Maxk ≤Maxk′

This requires N ×K boolean variables and 2K float point value
variables. The number of constraints is linear on K.

5.5 Complex Logic Constraints

Complex logic constraints can be used to enhance the expressivity
power of formulating knowledge. This can be done in CP using rei-
fied and Boolean constraints as shown by the following examples.

• Two instances 3, 9 are in the same cluster if the instances 11, 15
are in different clusters. Two Boolean variables B1, B2 are intro-
duced with the constraints: B1 ↔ (G11 6= G15), B2 ↔ (G3 =
G9) and B1 ≤ B2.

• Any cluster having more than 5 professors must have at least 10
PhD students. For each k ∈ [1,K], let Pk and Sk be the variables
that capture the number of professors and students in the cluster k,
using cardinality constraints such as in Equation (2). Two Boolean
variables BPk and BSk are introduced and linked by BPk ↔
(Pk ≥ 5), BSk ↔ (Sk ≥ 10), and BPk ≤ BSk.

6 Experiments

We begin by outlining the underlying questions our experiments at-
tempt to address and then move onto the experimental methodology
and results. It is important to realize that many clustering papers will
have experiments showing how well their algorithm performed by
performance on some objective function value. These types of ex-
periments are not applicable in our setting since the CP framework
finds the global optima. Similarly experiments to verify our method
finds a clustering that satisfies the constraints are not required since
once the requirements are formulated by constraints, the CP frame-
work is guaranteed to converge if a feasible clustering exists. Our
experiments attempt to address the following questions:

1. In the semi-supervised clustering setting, can the quality of the
solution be improved with constraints beyond instance-level con-
straints?

2. Can our constraints be used to find actionable clusterings that are
alternatives to an existing clustering?

3. How do our constraints increase the run-time of the underlying
clustering algorithm?

For the first question, we show that a cardinality constraint added
to instance-level constraints yields better solutions than just using

instance-level constraints (see Table 2). This is so as we can effec-
tively control the resultant cluster sizes to better match the label pop-
ulations, something instance level constraints cannot readily do. We
also show for the setting where different labels are not well separated
that a geometric constraint can increase performance where as previ-
ously no instance level constraints have been able to. Finally, we also
show that cardinality constraints enforcing cluster size by themselves
can improve semi-supervised clustering accuracy (see Figures 2 and
3). For the second question we show on a visually understandable
digit data set that our constraints are capable of finding quite dif-
ferent clusterings (Figures 4, 5 and 6) with even simple constraints.
Importantly this explores the novel direction of guided alternative
clustering. For the last question we show that examples of cardinal-
ity, diameter geometric and logical constraints do increase run times
compared to using no constraints (Tables 4, 6 and 7). This increase
is only fractional for most of cases but can be more important for
instance with a density constraint.

The framework is implemented using the CP solver library Gecode
4.3.3. The objective function in the experiments is to minimize the
maximal diameter of the clusters. As it was done in [4, 6], the in-
stances are reordered by the Furthest Point First algorithm [16], so
that instances that are far from the others have small index. Concern-
ing the search strategy, at each branching point, the solver chooses
an unassigned variable Gi with the smallest remaining domain. All
values k ∈ Dom(Gi) are examined and the distance between in-
stance i and cluster k is computed: it is equal to the smallest distance
d(i, j) such that Gj is instantiated to k, or 0 if cluster k is empty.
The value k of the closest cluster to i is chosen and two branches
are created with Gi = k and Gi 6= k. All experiments are per-
formed on a 3.4GHz Intel Core i5 processor with 8Gb of RAM under
Ubuntu 14.04. The relevant code to reproduce the results is available
on www.cp4clustering.com.

6.1 Improving Semi-Supervised Clustering Results

In the semi-supervised learning setting typically labels on a subset
of instances are used to generate instance-level constraints such as
must-link or cannot-link constraints. Here we first explore if the la-
bels can be better exploited by inferring more complex constraints
on the clusters. We illustrate this point by considering diverse UCI
datasets, which vary on the number of instances and on the number
of classes and that will be used in various conditions. They are de-
scribed in Table 1. In these experiments all the objects of the datasets
are considered and the number K of clusters is set to the true num-
ber of classes for each dataset. Performance is typically measured
in terms of prediction: how well the found clustering matches the
ground truth clustering. To measure the accuracy of a clustering P
compared to the ground truth clustering P ∗, we use the Rand Index
[23] which is defined by RI = (a + b)/(a + b + c + d), where a
and b are the numbers of pairs of instances for which P and P ∗ are
in agreement (a, or b, is the numbers of pairs of instances that are
in the same class, or respectively in different classes, in both P and
P ∗), c and d are the numbers of pairs of instances for which P and
P ∗ disagree (same class in P but different classes in P ∗ and vice
versa). This index varies from 0 to 1 and the better the partitions are
in agreement, the closer RI to 1.

Dataset # objects # classes
Iris 150 3
Wine 178 3
Glass 214 7
Ionosphere 351 2
Breast cancer 569 2
Synthetic control 600 6
Vehicle 846 4
Yeast 1484 10
Multiple feature morphology 2000 10
Image segmentation 2100 7

Table 1. Properties of datasets

6.1.1 Adding A Single Cardinality Constraint to Instance
Level Constraints

Instance-level constraints can decrease the quality of the found clus-
tering compared to the ground truth clustering, as was reported in our
earlier work [9]. We consider the datasets Iris, Wine, Breast Cancer
and Ionosphere in order to match the experiments in [9]. All the at-
tributes are considered as features (X f) in order to compute pairwise
Euclidean distance and they are also considered as properties (X p).
We generate a number of randomly created (from labels) instance-
level constraints as is standard [2]: two instances are randomly taken,
whether their labels are the same or not a must-link or a cannot-link
constraint is stated, and this is repeated until required the number of
instance-level constraints is reached. On those same taken instances
we generate a minimum cardinality constraint for all clusters as fol-
lows: let the whole dataset be of N instances, the labeled sample be
of e instances, and the smallest cluster size observed on the labeled
sample be m, then for the whole dataset, the smallest cluster size is
set to 0.9m

e
N . This simulates a user guess at how big the smallest

cluster should be based on the less frequent occurring label.
We compare two cases: first, clustering with a set of randomly

generated instance-level constraints and second, clustering with the
very same instance-level constraints and a minimum cardinality con-
straint as described above. We perform 1000 experiments and report
the average Rand Index of all the experiments in Table 2. We can
observe that for Iris, Wine and Breast Cancer, adding a cluster cardi-
nality constraint helps to get better clusterings on average. For these
datasets, we analyze the distribution over all experiments of the ac-
curacy decrease or increase over not using any constraints. Figure 1
shows that adding instance-level constraints decreases the quality in
a large number of cases which agrees with [9]. On the other hand,
the improvement is more stable when using a minimum cardinality
constraint along with instance-level constraints. This is most like be-
cause enforcing a cardinality constraint prevents skewed cluster sizes
which can yield poor performance.

Iris Wine Breast Cancer
0 0.8737 0.8737 0.6859 0.6859 0.5509 0.5509

10 0.8735 0.8743 0.6844 0.6899 0.5547 0.7110
20 0.8768 0.8782 0.6857 0.6959 0.5577 0.6757
30 0.8811 0.8825 0.6885 0.7031 0.5602 0.6419

Table 2. The average Rand Index vs number of instance-level constraints
over 1000 runs for 2 cases: just instance-level constraints (left) and instance-
level constraints with a minimal cluster cardinality constraint (right).

A Challenging Data Set. We observe from Table 3 what was ear-
lier reported [9] for Ionosphere, instance level constraints do not im-
prove results significantly. In that earlier paper of ours it was shown

www.cp4clustering.com

that the geometry of the data is quite different to the labels which
means that many labels of different types are inter-mixed close to-
gether, that is there is not naturally a cluster for each class. Not sur-
prisingly, adding a minimum cardinality constraint does not help ei-
ther, as the clusterings found for this dataset with instance level con-
straints have quite balanced cluster sizes. Adding a minimum cardi-
nality constraint in this case does not change therefore the result. We
therefore experiment with a third case, where we force separate clus-
ters as follows. From the subset of the labeled instances, we compute
the approximate minimal split S between clusters, and infer that the
clusters should be separated by at least 2

3
S. This enforces a clus-

ter separation that would normally not be found with instance level
constraints. This results in Table 3, which shows that this constraint
yields better clustering.

Ionosphere
0 0.4988 0.4988 0.4988

10 0.4992 0.4992 0.5988
20 0.4997 0.4997 0.5584
30 0.5002 0.5002 0.5364

Table 3. The average Rand Index over 1000 runs for 3 cases: (1) instance-
level constraints, (2) instance-level constraints with a minimal cluster cardi-
nality constraint, (3) only geometric minimal split constraint.

< −0.05 [−0.05,0] [0,0.01] > 0.01

200

250

300

350

< −0.05 [−0.05,0] [0,0.02] > 0.02

0

100

200

300

< −0.05 [−0.05,0] [0,0.05] > 0.05

0

500

Inst-lev. constraints Inst-lev. and min. size constraint

Figure 1. For the experiments reported in Table 2, the frequency distribu-
tion (y-axis) over the 1000 experiments by the amount of increase or decrease
in accuracy over not using any constraints (x-axis). Ordering of figures are for
Iris, Wine and Breast Cancer each one with 30 instance-level constraints. As
we can see instance-level + cardinality constraints (red-bar) produces more
increases and less decreases in accuracy.

6.1.2 Adding Multiple Cardinality Constraints

Here we consider the novel use of our work for semi-supervised clus-
tering. Rather than using the labeled data to generate must-link and
cannot-link constraints, we instead use the labels to provide upper
and lower bound estimates on the cluster sizes. The datasets Glass,
Breast cancer, Vehicle and Yeast, which have larger numbers of ob-
jects and of clusters are considered. We experiment four cases: (1) no
constraint, (2) a constraint on minimal cluster size α is added, (3) a
constraint on maximal cluster size β is added, and (4) a constraint on
minimal cluster size α and a constraint on maximal cluster size β are
added. The thresholds α and β are set depending on the known la-
bels of the datasets: they are respectively 9 and 90 for Glass, 150 and
400 for Breast cancer, 150 and 250 for Vehicle and 10 and 500 for
Yeast. The Rand Index is measured for each case and the results are
presented in Figure 2. We can clearly observe that with a size con-
straint the Rand Index is improved compared to the unconstrained
case. This behavior is the same for a small value ofK (Breast cancer
with K = 2) or with a large value of K (Yeast with K = 10). The
improvement is very large for Breast cancer and convincingly shows
that if the cluster sizes can be effectively estimated based on labels
they can yield improved results over using no constraints.

Glass Brst. Canc. Vehicle Yeast
0.5

0.6

0.7

0.8
R

an
d

In
de

x

Unconstrained α ≤ size
size ≤ β α ≤ size ≤ β

Figure 2. Rand Index in different cases: without constraint and with mini-
mal and/or maximal size constraints

A related question is of course how do instance level and cardinal-
ity constraints interact. To explore this question we use a wide variety
of data set properties. Figure 3 presents the obtained Rand Index for
the datasets Breast cancer, Synthetic control, Multiple feature and
Image segmentation with four other cases. In the first case, there is
no user constraint. In the second case, 20 instance-level constraints
are randomly generated and added. In the third case, the constraints
requiring that the cluster size must be between α and β are added,
where α and β are respectively 150 and 400 for Breast cancer, 50
and 150 for Synthetic control, 50 and 350 for Multiple feature and
200 and 400 for Image segmentation. In the fourth case both cluster
size constraints and 20 instance-level constraints are added. For the
second and the fourth cases, we make 100 runs and report the aver-
age Rand Index of all the runs. We can observe different behaviors
with cluster size constraints here. While for Synthetic control, the
constraints slightly decrease the Rand Index, for Multiple Feature,
they bring slight improvement. The most significant improvement is
observed for Image Segmentation. This dataset is composed by 2100
objects of 7 classes with 300 objects per class. In the unconstrained
case, the clustering found has the Rand Index 0.226314 and is very
unbalanced, with two clusters of 1 object and with a large cluster of
1972 objects. The situation is not improved with 20 random must-
link or cannot-link constraints, the clusterings found are always un-

balanced. Adding cluster size constraints such that the clusters must
have their size between 200 and 400, the clustering found has the
Rand Index grow to nearly 0.80. On Breast cancer we can see that
with only size constraints, the Rand Index is over 0.80, while the
same constraint together with 20 instance-level constraints gives the
Rand Index only about 0.66.

Brst. Canc. Synth. Cont. Mult. Feat. Image Seg.
0

0.2

0.4

0.6

0.8

R
an

d
In

de
x

Unconstrained 20 ML/CL constraints
α ≤ size ≤ β α ≤ size ≤ β and 20 ML/CL

Figure 3. Rand Index in different cases: unconstrained, with instance-level
constraints and/or minimal and maximal size constraints

6.2 Guided Alternative Clustering

In the area of alternative clustering one tries to find an equally good
alternative to a given clustering [21, 3, 25, 19]. However, it is some-
what unrefined in that no guidance can be given to specify how the
clustering is to differ from the given clustering. To address this issue
we consider the UCI Pen Digit dataset where each instance corre-
sponds to a single digit and has 16 attributes, which represent the 8
x, y positions of the pen as the digit is being written. All the 16 at-
tributes are considered as features (X f) in order to compute pairwise
Euclidean distances and are also considered as properties (X p). We
use 1000 random instances of the dataset. We aim to find alternative
ways that people write digits and we consider the simplest case where
the number of clusters k = 2. This effectively forms a dichotomy of
the two ways people in the data set write their digits.

Figure 4. The centroids of the clustering found without any constraints.
Time=1.16s, maximal cluster diameter=263.58. Arrows indicate pen move-
ment.

For each cluster, the centroid is computed, which is considered
as the representative of the cluster and can be easily visualized to
show the underlying digit prototype the cluster represents. In the
case of minimizing the maximal cluster diameter and without any
constraints, the centroids of the found clusters, which represent two
types of writing, are represented in Figure 4. The clustering found is
the global optimum of the clustering algorithm objective function.
However the centroids are not really meaningful unless of saying
that in one way people write from up to down then up again, and in

Figure 5. The centroids of the clustering found with a diameter constraint
on the horizontal value of the third time step. Time=0.02s, maximal cluster
diameter=291.50. Arrows indicate pen movement.

Figure 6. The centroids of the clustering found with a diameter constraint
on the horizontal value of the fifth time step. Time=0.02s, maximal cluster
diameter=269.68. Arrows indicate pen movement.

the other way only from up to down. Instead we wish to find an ac-
tionable alternative by adding a diameter constraint on the horizontal
position of the pen at the 3rd time step. This effectively means that
all digits in the same cluster must have a similar horizontal pen lo-
cation at the third time step. We obtain a different clustering whose
centroids are shown in Figure 5 but whose quality, in term of the ob-
jective function, is comparable to the first clustering found in Figure
4. These centroids have the 3rd positions respectively on the right
and on the left. The centroids can give an interpretation such that
in one way people write from left to right and in the other way like
a spiral from right to left and in both ways from up to down. By
adding a diameter constraint on the horizontal position of the pen at
the 5th time step, we obtain another very different clustering whose
centroids are shown in Figure 6. Again the centroids have the 5th

position either on the right or on the left, and the quality of this clus-
tering is comparable to the initial clustering in Figure 4. This is an
example of guided alternative clustering which unlike ours and oth-
ers earlier work [7, 3] did not find an arbitrary alternative clustering,
rather we find one with specific properties. Adding constraints can
deteriorate the quality in term of the objective function, however the
flexibility of our framework allows to control the gap between the
constrained case and the unconstrained case by means of constraints.
For instance let the maximal diameter of the clusters in the uncon-
strained case be Dopt, one can require an actionable alternative clus-
tering with both a diameter constraint on the horizontal position of
the pen at the 3rd time step and another constraint stating that the
maximal diameter of the clusters does not exceed 1.2Dopt.

6.3 Computational Effect of Constraints
To address the computational effect of constraints, we report times
taken by different cases in Subsection 6.1. The total runtimes (stating
constraints and search) are presented in Table 4, where +1800 means
the solver did not complete the search after 30 minutes. Cluster size
constraints can give large variations in runtime. One explanation is

that the efficiency of a CP framework depends on the power of con-
straint propagation. For cardinality constraint filtering the domains
of all variables to arc-consistency [22] is NP-hard. However, when
setting an upper bound and a lower bound on the count variables,
efficient filtering algorithms have been developed [24], which help
pruning the search space.

Dataset N K case time (s)
Glass 214 7 unconstrained 0.02

9 ≤ size ≤ 90 0.62
Breast cancer 569 2 unconstrained 0.30

150 ≤ size ≤ 400 0.70
Vehicle 846 4 unconstrained 0.62

150 ≤ size ≤ 250 5.57
Yeast 1484 10 unconstrained 3.15

10 ≤ size ≤ 500 11.56
Synthetic Control 600 6 unconstrained 0.49

50 ≤ size +1800
size ≤ 150 2.58
50 ≤ size ≤ 150 3.02

Multiple Feature 2000 10 unconstrained 10.30
50 ≤ size 76.80
size ≤ 350 +1800
50 ≤ size ≤ 350 71.04

Image Segmentation 2100 7 unconstrained 3.29
200 ≤ size 86.85
size ≤ 400 +1800
200 ≤ size ≤ 400 92.00

Table 4. Total runtime in seconds for (un)constrained cases with cardinality
requirements.

For other kinds of constraints we consider the census dataset avail-
able at UCI5. This dataset has 48,842 instances, each one is described
by 14 attributes with 6 continuous and 8 symbolic. We choose 5 con-
tinuous attributes (age, capital-gain, capital-loss, hours-per-week and
fnlwgt) as features (X f) to compute distances on. All of the 14 at-
tributes are used as properties. We generate 5 samples each one of
1000 instances and for each sample we conduct experiments with 5
use-cases described in Table 5. In each use-case, the number of clus-
ters is set to 2 and to 3. Tables 6 and 7 give average runtime across
five samples for the use cases with K = 2 and K = 3 respectively.

1 No constraints.
2 Cardinality constraint. A cardinality constraint is added,

which requires that in each cluster, the ratio of
#femalec/#malec for the cluster c is between a half
and twice the ratio of females and males in the sample.

3 Density constraint. A constraint is added, stating each per-
son of age between 20 and 50 must have at least 10% of
people with the same work occupation in the same cluster.

4 Diameter Geometric constraint. A constraint is added,
which states that the difference in age in each cluster must
not exceed 2(max(age)−min(age))/3.

5 Complex logic constraint. A constraint is added, which
states that a cluster having more than 20 persons younger
than 20 should have more than 30 persons older than 45,
and each cluster has at least 100 persons.

Table 5. The five use cases for testing the computation time effect of con-
straints.

5 https://archive.ics.uci.edu/ml/datasets/Adult

Sample UC1 UC2 UC3 UC4 UC5
1 0.42 0.41 2.51 0.42 0.49
2 0.32 0.69 1.71 0.32 0.35
3 0.44 0.54 2.94 0.41 0.34
4 0.44 0.31 0.71 0.32 0.34
5 0.36 0.48 2.16 0.32 0.32

Table 6. The runtime (seconds) for use cases (see Table 5) across five sam-
ples, for K = 2.

Sample UC1 UC2 UC3 UC4 UC5 UC3+4
1 0.32 1.93 +1800 0.40 0.36 4.14
2 0.44 2.79 6.82 0.44 0.45 2.72
3 0.50 2.23 +1800 0.48 0.40 +1800
4 0.44 0.33 +1800 0.86 0.34 1.19
5 0.33 2.30 +1800 0.36 0.32 2.91

Table 7. The runtime (seconds) for use cases (see Table 5) across five sam-
ples, for K = 3. Note how using UC3 and UC4 together mitigates the in-
creases of just using UC3.

We can see from Table 6 that the run-time to find the best solution
in the unconstrained setting is under 0.5 second (use case 1) for all the
5 samples. Use cases 2, 4 and 5 take comparable run-time. Use case
3, which is expressed by a large number of CP cardinality constraints,
is the most difficult among all the use cases. This trend is confirmed
with K = 3 (Table 7), for the solver does not complete the search
after the timeout of 30 min for 4 of the 5 samples.

One explanation for this variety of run times is that some con-
straints when added help the solver to prune the search tree at the
top levels which has a large effect. Some other constraints, for in-
stance, the cardinality constraint, however are useful in pruning the
search tree only in more deeper levels towards the leaf nodes reduc-
ing down the benefits of pruning. On the other hand, constraints such
as the diameter geometric constraint are useful in general. We have
combined the diameter geometric constraint of use case 4 with the
constraint of use case 3. The run-times of the combination reported
in the last column of Table 7 have almost dropped for most of the
samples.

7 Conclusion
Clustering is ubiquitously used in AI as it can add structure to col-
lections of images, documents and even songs. A recent progression
has been the addition of instance level constraints to clustering. These
constraints though useful are severely limited in the information they
can encode. In particular they cannot constrain any dynamic prop-
erty of the clustering and hence cannot be used to enforce complex
constraints such as those on cardinality (have equal number of males
and females) or density (each person in the cluster should have other
q persons with the same hobby). In this work we introduce three new
styles of complex constraints, geometric, cardinality and density as
well as logical combinations of them. We show how CP is a natural
vehicle to encode such constraints and has the added benefit of find-
ing the global optima. Although this requirement precludes scaling
our work to huge data sets in many settings finding the global op-
tima is desirable and our method works with thousands but not tens
of thousands of instances. We showed that our new constraints can
improve semi-supervised clustering accuracy when added to instance
level constraints, find guided alternative clusterings and finally does
not significantly increase run time except for density constraints.

REFERENCES

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat, ‘NP-
hardness of Euclidean Sum-of-squares Clustering’, Machine Learning,
75(2), 245–248, (2009).

[2] Sugato Basu, Ian Davidson, and Kiri Wagstaff, Constrained clustering:
Advances in algorithms, theory, and applications, CRC Press, 2008.

[3] Xuan Hong Dang and James Bailey, ‘A framework to uncover multiple
alternative clusterings’, Machine Learning, 98(1-2), 7–30, (2015).

[4] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain, ‘A
Declarative Framework for Constrained Clustering’, in ECMLPKDD,
pp. 419–434, (2013).

[5] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain, ‘Con-
strained minimum sum of squares clustering by constraint program-
ming’, in Principles and Practice of Constraint Programming, CP
2015, Proceedings, pp. 557–573, (2015).

[6] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain, ‘Con-
strained clustering by constraint programming’, Artificial Intelligence,
(To appear).

[7] Ian Davidson and Zijie Qi, ‘Finding alternative clusterings using con-
straints’, in Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pp. 773–778. IEEE, (2008).

[8] Ian Davidson and S.S. Ravi, ‘The complexity of non-hierarchical clus-
tering with instance and cluster level constraints’, Data Min Knowl
Disc, 14, 25–61, (2007).

[9] Ian Davidson, Kiri L. Wagstaff, and Sugato Basu, ‘Measuring
Constraint-Set Utility for Partitional Clustering Algoirthms’, in PKDD,
pp. 115–126, (2006).

[10] Luc De Raedt, Tias Guns, and Siegfried Nijssen, ‘Constraint program-
ming for itemset mining’, in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 204–212, (2008).

[11] Michel Delattre and Pierre Hansen, ‘Bicriterion Cluster Analysis’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, (4),
277–291, (1980).

[12] Michael R. Garey and David S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, 1979.

[13] Rong Ge, Martin Ester, Wen Jin, and Ian Davidson, ‘Constraint-driven
clustering’, in KDD, pp. 320–329, (2007).

[14] Sean Gilpin and Ian Davidson, ‘A flexible ilp formulation for hierarchi-
cal clustering’, Artificial Intelligence, (2015).

[15] Sean Gilpin, Siegried Nijssen, and Ian N Davidson, ‘Formalizing hier-
archical clustering as integer linear programming.’, in AAAI, (2013).

[16] T. Gonzalez, ‘Clustering to minimize the maximum intercluster dis-
tance’, Theoretical Computer Science, 38, 293–306, (1985).

[17] Tias Guns, Siegfried Nijssen, and Luc De Raedt, ‘Itemset mining:
A constraint programming perspective’, Artificial Intelligence, 175,
1951–1983, (2011).

[18] Tias Guns, Siegfried Nijssen, and Luc De Raedt, ‘k-Pattern set mining
under constraints’, IEEE Transactions on Knowledge and Data Engi-
neering, 25(2), 402–418, (2013).

[19] Kleanthis-Nikolaos Kontonasios and Tijl De Bie, ‘Subjectively interest-
ing alternative clusterings’, Machine Learning, 98(1-2), 31–56, (2015).

[20] Bo Long, Zhongfei Mark Zhang, and Philip S Yu, ‘A probabilistic
framework for relational clustering’, in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 470–479. ACM, (2007).

[21] ZiJie Qi and Ian Davidson, ‘A principled and flexible framework
for finding alternative clusterings’, in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 717–726. ACM, (2009).

[22] Claude-Guy Quimper, Alejandro López-Ortiz, Peter van Beek, and
Alexander Golynski, ‘Improved algorithms for the global cardinality
constraint’, in Principles and Practice of Constraint Programming -
CP 2004, 10th International Conference, Proceedings, pp. 542–556,
(2004).

[23] William M. Rand, ‘Objective Criteria for the Evaluation of Cluster-
ing Methods’, Journal of the American Statistical Association, 66(336),
846–850, (1971).

[24] Jean-Charles Régin, ‘Generalized arc consistency for global cardinality
constraint’, in Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial

Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August
4-8, 1996, Volume 1., pp. 209–215, (1996).

[25] Duy Tin Truong and Roberto Battiti, ‘A flexible cluster-oriented alter-
native clustering algorithm for choosing from the pareto front of solu-
tions’, Machine Learning, 98(1-2), 57–91, (2015).

	Introduction
	The Actionable Clustering Problem
	Related Work
	A Quick Primer on CP
	A CP Formulation of Actionable Clustering
	Clustering in CP
	Cardinality Constraints
	Density Constraints
	Geometric Constraints
	Complex Logic Constraints

	Experiments
	Improving Semi-Supervised Clustering Results
	Adding A Single Cardinality Constraint to Instance Level Constraints
	Adding Multiple Cardinality Constraints

	Guided Alternative Clustering
	Computational Effect of Constraints

	Conclusion

