
Towards Efficient and Improved Hierarchical Clustering

With Instance and Cluster Level Constraints

Ian Davidson∗ S. S. Ravi†

ABSTRACT
Many clustering applications use the computationally
efficient non-hierarchical clustering techniques such as
k-means. However, less efficient hierarchical clustering
is desirable as by creating a dendrogram the user can
choose an appropriate value of k (the number of clus-
ters) and in some domains cluster hierarchies (i.e. clus-
ters within other clusters) naturally exist. In many situ-
ations apriori constraints/information are available such
as in the form of a small amount of labeled data. In this
paper we explore using constraints to improve the effi-
ciency of agglomerative clustering algorithms. We show
that just finding feasible (satisfying all constraints) solu-
tions for some constraint combinations is NP-complete
and should be avoided. For a given set of constraints
we derive upper (kmax) and lower bounds (kmin) on
the value of k where feasible solutions exist. This al-
lows a restricted dendrogram to be created but its cre-
ation is not straight-forward. For some combinations of
constraints, starting with a feasible clustering solution
(k = r) and joining the two closest clusters results in
a “dead-end” feasible solution which cannot be further
refined to create a feasible solution with r − 1 clusters
even though kmin < r − 1 < kmax. For such situa-
tions we introduce constraint driven hierarchical cluster-
ing algorithms that will create a complete dendrogram.
When traditional algorithms can be used, we illustrate
the use of the triangle inequality and a newly defined γ
constraint to further improve performance and use the
Markov inequality to bound the expected performance
improvement. Preliminary results indicate that using
constraints can improve the dendrogram quality.

1. INTRODUCTION AND MOTIVATION
Non-hierarchical clustering algorithms are extensively

used in the data mining community. The k-Means prob-
lem for a given set of data points, S = {x1, . . . , xn} is
to form a k-block set partition of S so as to minimize
the vector quantization error (distortion). However, this
problem is known to be NP-hard via showing that the
distortion minimization problem for a binary distance
function is intractable [7]. Instead, the k-Means algo-
rithm is used to find good local minima and has lin-
ear complexity O(kmni) with respect to the number of
instances, attributes, clusters and iterations of the al-
gorithm: n, m, k, i respectively. However, the algorithm

∗Department of Computer Science, University at Al-
bany - State University of New York, Albany, NY 12222.
Email: davidson@cs.albany.edu.
†Department of Computer Science, University at Al-
bany - State University of New York, Albany, NY 12222.
Email: ravi@cs.albany.edu.

Agglomerative(S = {x1, . . . , xn}) returns
Dendrogramk for k = 1 to |S|.

1. Ci = {xi}, ∀i.

2. for k = |S| to 1
Dendrogramk = {C1...Ck}
d(i, j) = D(Ci, Cj), ∀i, j.
l, m = argmina,bd(a, b).
Cl = Join(Cl, Cm).
Remove(Cm).

endloop

Figure 1: Standard Agglomerative Clustering

is sensitive to initial starting conditions [3] and hence
must be randomly restarted many times.

Conversely, hierarchical clustering algorithms are run
once and create a dendrogram which is a tree struc-
ture containing a k-block set partition for each value
of k between 1 and n. This allows the user to choose
a particular clustering granularity and there even ex-
ists mature work that provides visual support [5] for
the task. Hierarchical clustering also offers many mea-
sures of distance between two clusters such as: 1) the
cluster centroids, 2) the closest points not in the same
cluster and 3) the furthest points not in the same clus-
ter. Furthermore, there are many domains [15] where
clusters naturally form a hierarchy; that is, clusters are
part of other clusters. However, these added benefits
come at the cost of time and space efficiency since the
typical implementation requires O(mn2) computations
and O(n2) space. Hence, hierarchical clustering is not
used as often in data mining applications particularly
for large data sets.

The popular agglomerative algorithms are easy to im-
plement as they just begin with each point in its own
cluster and progressively join the closest clusters to re-
duce the number of clusters by 1 until k = 1. The basic
agglomerative hierarchical clustering algorithm we will
improve upon in this paper is shown in Figure 1.

In this paper we shall explore the use of instance and
cluster level constraints to improve the efficiency of hier-
archical clustering algorithms. This use of prior knowl-
edge to improve efficiency is in contrast to other re-
cent work that use just algorithmic enhancements such
multi-stage algorithms with approximate distance func-
tions [9]. We believe our use of constraints with hierar-
chical clustering to improve efficiency is the first though
there exists work that uses spatial constraints to find
specific types of clusters and avoid others [13, 14]. The

Constraint Complexity
Must-Link P [8, 4]

Cannot-Link NP-Complete [8, 4]
δ-constraint P [4]
ǫ-constraint P [4]

Must-Link and δ P [4]
Must-Link and ǫ NP-complete [4]

δ and ǫ P [4]

Table 1: Results for Feasibility Problems for a
Given k (partitional clustering)

similarly named constrained hierarchical clustering [15]
is actually a method of combining partitional and hi-
erarchical clustering algorithms; the method does not
incorporate apriori constraints.

Recent work [1, 2, 11] in the non-hierarchical cluster-
ing literature has explored the use instance level con-
straints. The must-link and cannot-link constraints
require that two instances must both be part of or not
part of the same cluster respectively. They are particu-
larly useful in situations where a large amount of unla-
beled data to cluster is available along with some labeled
data from which the constraints can be obtained [11].
These constraints were shown to improve cluster purity
when measured against an extrinsic class label not given
to the clustering algorithm [11]. Our own recent work [4]
explored the computational complexity of the feasibil-
ity problem of finding a clustering solution for a given
value of k under a variety of constraints, including must-
link and cannot-link constraints. For example, there is
no feasible solution for the three cannot-link constraints
{(a, b), (b, c), (a, c)} for k < 3. We explored the com-
plexity of this decision problem for a given value of k
with must-link, cannot-link and two additional cluster
level constraints: δ and ǫ. The δ constraint requires
the distance between any pair of points in two different
clusters to be at least δ. For any two point or bigger
cluster Ci, the ǫ-constraint requires that for each point
x ∈ Ci, there must be another point y ∈ Ci such that
the distance between x and y is at most ǫ. The com-
plexity results of this work are shown in Table 1. These
complexity results are important for data mining be-
cause when problems are shown to be intractable in the
worst-case, we should avoid them or should not expect
to find an exact solution efficiently.

In this paper we extend our previous work by ex-
ploring the complexity of the hierarchical clustering
under the above four mentioned instance and cluster
level constraints. This problem is different from the
feasibility problems considered in our previous work in
a number of ways. Firstly, with hierarchical cluster-
ing, k is unbounded and hence we must find the upper
and lower bounds on k that contain feasible solutions.
(Throughout this paper we shall use the term “feasi-
ble solution” to indicate that a clustering solution sat-
isfies all constraints.) Secondly, for some combination
of constraints, given an initial feasible clustering solu-
tion joining the two closest clusters may yield feasible

Constraint Complexity Dead-Ends
Must-Link+Cannot-
link+ǫ+δ

NP-complete Yes

Any combination in-
cluding Cannot-Link
(except above)

P Yes

Any combination not
including Cannot-
Link (except above)

P No

Table 2: Results for Feasibility Problems - Un-
bounded k (hierarchical clustering)

solutions but “dead-end” solutions from which no other
feasible solutions of lesser k value can be obtained even
though they are known to exist. Therefore, the created
dendrograms will be incomplete.

Our work makes several pragmatic contributions that
can improve the applicability of agglomerative hierar-
chical clustering:

• We illustrate that for some combination of con-
straints that just finding feasible solutions is NP-
complete and hence should be avoided (Section 2
and Table 2).

• We derive lower and upper bounds (kmin and kmax)
on the number of clusters for feasible solutions.
These bounds allow us to prune the dendrogram
from both its bottom and top (Section 3).

• We formally show that for every value of k between
kmin and kmax there exists a feasible clustering
solution (Theorem 6.1).

• For some constraint combinations traditional (clos-
est cluster join) algorithms are applicable and for
these we illustrate the use of the new instance level
γ constraint to perform geometric reasoning so as
to prune the number of joins to perform at each
level (Section 5).

• For some constraint combinations traditional (clos-
est cluster join) algorithms lead to dead-end fea-
sible solutions that do not allow a complete den-
drogram to be completed. For these we develop a
new algorithm that we call constraint-driven ag-
glomerative clustering that will create a complete
dendrogram (Section 6 and Table 2).

• We empirically illustrate the efficiency improve-
ment over unconstrained hierarchical clustering and
present preliminary results indicating that the qual-
ity of the hierarchical clustering also improves (Sec-
tion 8).

2. FEASIBILITY FOR HIERARCHICAL
CLUSTERING

In this section, we examine the feasibility problem,
that is, the problem of determining whether the given

set of points can be partitioned into clusters so that all
the specified constraints are satisfied. A precise state-
ment of the Feasibility problem for Hierarchical
Clustering (Fhc) is given below.

Instance: A set S of nodes, the (symmetric) distance
d(x, y) ≥ 0 for each pair of nodes x and y in S and a
collection C of constraints.

Question: Can S be partitioned into subsets (clusters)
such that all the constraints in C are satisfied?

This section considers the complexity of the above
problem for several different types of constraints. When
the problem is efficiently solvable and the answer to
the feasibility question is “yes”, the corresponding al-
gorithm also produces a partition of S satisfying the
constraints. When the nodes in S are points in Eu-
clidean space and the distance function is the Euclidean
distance, we obtain geometric instances of Fhc.

We note that the Fhc problem considered here is dif-
ferent from the constrained clustering problem consid-
ered in [4]. The main difference between the two prob-
lems is that the feasibility problems considered in [4]
were typically for a given number of clusters; that is,
the number of clusters is, in effect, another constraint.
In the formulation of Fhc, there are no constraints on
the number of clusters, other than the trivial ones (i.e.,
the number of clusters must be at least 1 and at most
|S|).

We shall in this section begin with the same con-
straints as those considered in [4]. They are: (a) Must-
Link (ML) constraints, (b) Cannot-Link (CL) constraints,
(c) δ constraint and (d) ǫ constraint. In later sections
we shall introduce another cluster level constraint to
improve the efficiency of the hierarchical clustering al-
gorithms. As observed in [4], a δ constraint can be effi-
ciently transformed into an equivalent collection of ML-
constraints. Therefore, we restrict our attention to ML,
CL and ǫ constraints. We show that for any pair of these
constraint types, the corresponding feasibility problem
can be solved efficiently. The simple algorithms for these
feasibility problems can be used to seed an agglomera-
tive or divisive hierarchical clustering algorithm as is
the case in our experimental results. However, when all
three types of constraints are specified, we show that
the feasibility problem is NP-complete.

2.1 Combination of ML and CL Constraints
When the constraint set C contains only ML and CL

constraints, the Fhc problem can be solved using the
following simple algorithm.

1. Form the clusters implied by the ML constraints.
(This can be done by computing the transitive clo-
sure of the ML constraints as explained in [4].) Let
C1, C2, . . ., Cp denote the resulting clusters.

2. If there is a cluster Ci (1 ≤ i ≤ p) with nodes
x and y such that x and y are also involved in
a CL constraint, then there is no solution to the
feasibility problem; otherwise, there is a solution.

When the above algorithm indicates that there is a feasi-
ble solution to the given Fhc instance, one such solution
can be obtained as follows. Use the clusters produced
in Step 1 along with a singleton cluster for each node
that is not involved in an ML constraint. Clearly, this
algorithm runs in polynomial time.

2.2 Combination of CL and ǫ Constraints
There is always a trivial solution consisting of |S| sin-

gleton clusters to the Fhc problem when the constraint
set involves only CL and ǫ constraints. Obviously, this
trivial solution satisfies both CL and ǫ constraints.

2.3 Combination of ML and ǫ Constraints
For any node x, an ǫ-neighbor of x is another node

y such that d(x, y) ≤ ǫ. Using this definition, the fol-
lowing algorithm solves the Fhc problem when the con-
straint set consists only of ML and ǫ constraints.

1. Construct the set S′ = {x ∈ S : x does not have
an ǫ-neighbor}.

2. If some node in S′ is involved in an ML constraint,
then there is no solution to the Fhc problem; oth-
erwise, there is a solution.

When the above algorithm indicates that there is a
feasible solution, one such solution is to create a single-
ton cluster for each node in S′ and form one additional
cluster containing all the nodes in S − S′. It is easy to
see that the resulting partition of S satisfies the ML and
ǫ constraints and that the feasibility testing algorithm
runs in polynomial time.

The following theorem summarizes the above discus-
sion and indicates that we can use these combinations of
constraint types to perform efficient hierarchical cluster-
ing. However, it does not mean that we can always use
traditional agglomerative clustering algorithms as the
closest-cluster-join operation can yield dead-end clus-
tering solutions.

Theorem 2.1. The Fhc problem can be solved in
polynomial time for each of the following combinations
of constraint types: (a) ML and CL (b) CL and ǫ and
(c) ML and ǫ.

2.4 Feasibility Under ML, CL and ǫ Con-
straints

In this section, we show that the Fhc problem is
NP-complete when all the three constraint types are
involved. This indicates that creating a dendrogram un-
der these constraints is an intractable problem and the
best we can hope for is an approximation algorithm that
may not satisfy all constraints. The NP-completeness
proof uses a reduction from the following problem which
is known to be NP-complete [10].

One-in-Three 3SAT with Positive Literals (Opl)

Instance: A set c = {x1, x2, . . . , xn} of n Boolean vari-
ables, a collection Y = {Y1, Y2, . . . , Ym} of m clauses,
where each clause Yj = (xj1 , xj2 , xj3} has exactly three
non-negated literals.

Question: Is there an assignment of truth values to the
variables in C so that exactly one literal in each clause
becomes true?

Theorem 2.2. The Fhc problem is NP-complete when
the constraint set contains ML, CL and ǫ constraints.

Proof: See Appendix.

3. BOUNDING THE VALUES OF K FOR
SOLUTIONS

The unconstrained version of agglomerative hierar-
chical clustering builds a dendrogram for all values of
k, 1 ≤ k ≤ n, giving rise to the algorithm complexity
of O(n2). However, with the addition of constraints,
not all values of k may contain feasible solutions as dis-
cussed in Section 2. In this section we explore deriving
lower (kmin) and upper bounds (kmax) on the value of
k that contain feasible solutions. For some constraint
types (e.g. CL-constraints) the problem of computing
exact values of these bounds is itself NP-complete, and
we can only calculate bounds (in effect, bounds on the
bounds) in polynomial time.

Therefore, when building the dendrogram we can prune
the dendrogram by starting building clusters at kmax

and stop building the tree after kmin clusters are reached.
As discussed earlier, the δ constraints can be con-

verted into a conjunction of must-link constraints. Let
the total number of points involved in must-link con-
straints be ml. For the set of must-link constraints
(ML) and transformed δ constraints calculate the tran-
sitive closure (TC) (see [4] for an algorithm). For ex-
ample for the must-link constraints ML={(a, b), (b, c),
(c, d)}, TC={a, b, c, d} and hence |TC|=1.

Let there be cl points that are part of cannot link con-
straints each being represented by a node in the graph
Gc = {Vc, Ec} with edges indicating a cannot-link con-
straint between two points.

Let the ǫ constraints result in a graph (Gǫ = {Vǫ, Eǫ})
with a vertex for each instance. The edges in the graph
indicate two points that are within ǫ distance from each
other.

We now derive bounds for each constraint type sepa-
rately.

3.1 Bounds for ML Constraints
When only ML constraints are present, a single clus-

ter containing all points is a feasible solution. Therefore,
kmin = 1. Each set in the transitive closure cannot
be split any further without violating one or more the
ML constraints. However, each of the n − ml points
which are not involved in any ML constraint may be
in a separate singleton cluster. Therefore, for just ML
constraints, kmax=|TC|+n−ml. (More precisely, kmax

= min{n, |TC| + n − ml}.)

3.2 Bounds for CL Constraints
Determining the minimum number of clusters required

to satisfy the cannot-link constraints is equivalent to
determining the minimum number of different labels so
that assigning a label to each of the nodes in Gc gives no

Calculate-Bounds(S,ML,ǫ, δ) returns kmin, kmax where
S is the dataset, ML is the set of must-link constraints,
ǫ and δ values define their respective constraints.

1. Calculate transitive closure of ML: TC =
{{m1}, ...{mp}} (see [4] for an algorithm)

2. Construct Gc (see section 3.2)

3. Construct Gǫ (see section 3.3)

4. kmin = max{NumIsolatedNodes(Gǫ) + 1, χ(Gc)}.

5. kmax= min{n, TC + n − ml}.

Figure 2: Function for calculating kmin and kmax

adjacent pair of nodes having the same label. This pa-
rameter, that is, the minimum number of colors needed
for coloring the nodes of Gc, is commonly denoted by
χ(Gc) [12]. The problem of computing χ(Gc) (i.e., the
graph coloring problem) is typically NP-complete [6].
Thus, for CL constraints, computing the exact value of
kmin = χ(Gc) is intractable. However, a useful upper
bound on χ(Gc) (and hence on kmin) is one plus the
maximum degree of a node (the maximum number of
edges incident on any single node) in Gc [12]. Obvi-
ously, for CL constraints, making n singleton clusters is
a feasible solution. Therefore, when only CL constraints
are present, kmax = n.

3.3 Bounds forǫ Constraints
The ǫ constraints can be represented as a graph Gǫ =

{Vǫ, Eǫ}, with each vertex being an instance and links
between vertices/instances that are within ǫ distance to
each other. Let i denote the number of isolated nodes
in Gǫ. Each of these i nodes must be in a separate
singleton cluster to satisfy the ǫ-constraint. Nodes in
Gǫ with a degree of one or more may be grouped into
a single cluster. Thus, kmin = i + 1. (More precisely,
kmin = min{n, i+1}, to allow for the possibility that all
the nodes of Gǫ are isolated.) As with CL constraints,
making n singleton clusters is a feasible solution for the
ǫ constraint as well. Hence for ǫ constraints kmax = n.

When putting the above results together, it is worth
noting that only must-link constraints can reduce the
number of points to cluster and hence prune the base of
the dendrogram. Cannot-link and ǫ constraints increase
the minimum number of clusters.

Therefore, we find that for all constraint types, we
can bound kmin and kmax as shown in the following
observation.

Observation 3.1. kmin ≥ max{ χ(Gc), IsolatedNodes
(Gǫ) + 1} and kmax ≤ min{n, TC + n − ml}.

A function to determine the bounds on the feasible val-
ues of k is shown in Figure 2.

4. CONSTRAINTS AND IRREDUCIBLE
CLUSTERINGS

In the presence of constraints, the set partitions at
each level of the dendrogram must be feasible. This sec-
tion formally shows that for certain types of constraints
(and combinations of constraints), if mergers are per-
formed in an arbitrary fashion (including the traditional
hierarchical clustering algorithm, see Figure 1), then the
dendrogram may prematurely dead-end. A premature
dead-end implies that the dendrogram reaches a stage
where no pair of clusters can be merged without vio-
lating one or more constraints, even though other se-
quences of mergers may reach significantly higher levels
of the dendrogram. We use the following definition to
capture the informal notion of a “premature end” in the
construction of a dendrogram.

Definition 4.1. Given a feasible clustering C = {C1,
C2, . . ., Ck} of a set S, we say that C is irreducible

if no pair of clusters in C can be merged to obtain a
feasible clustering C′ with k − 1 clusters.

The remainder of this section examines the question
of which combinations of constraints can lead to prema-
ture stoppage of the dendrogram.

4.1 Individual Constraints
We first consider each of the ML, CL and ǫ-constraints

separately. It is easy to see that when only ML-constraints
are used, the dendrogram can reach all the way up to
a single cluster, no matter how mergers are done. The
following example shows that with CL-constraints, if
mergers are not done correctly, the dendrogram may
stop prematurely.

Example: Consider a set S with 4k nodes. To describe
the CL constraints, we will think of S as made up of
four pairwise disjoint sets X, Y , Z and W , each with k
nodes. Let X = {x1, x2, . . ., xk}, Y = {y1, y2, . . ., yk},
Z = {z1, z2, . . ., zk} and W = {w1, w2, . . ., wk}. The
CL-constraints are as follows.

(a) There is a CL-constraint for each pair of nodes
{xi, xj}, i 6= j.

(b) There is a CL-constraint for each pair of nodes
{wi, wj}, i 6= j.

(c) There is a CL-constraint for each pair of nodes
{yi, zj}, 1 ≤ i, j ≤ k.

Assume that the distance between each pair of nodes
in S is 1. Thus, nearest-neighbor mergers may lead to
the following feasible clustering with 2k clusters: {x1, y1},
{x2, y2}, . . ., {xk, yk}, {z1, w1}, {z2, w2}, . . ., {zk, wk}.
This collection of clusters can be seen to be irreducible
in view of the given CL constraints.

However, a feasible clustering with k clusters is pos-
sible: {x1, w1, y1, y2, . . ., yk}, {x2, w2, z1, z2, . . .,
zk}, {x3, w3}, . . ., {xk, wk}. Thus, in this example,
a carefully constructed dendrogram allows k additional
levels.

When only the ǫ-constraint is considered, the follow-
ing lemma points out that there is only one irreducible
configuration; thus, no premature stoppages are possi-
ble. In proving this lemma, we will assume that the
distance function is symmetric.

Lemma 4.1. Suppose S is a set of nodes to be clus-
tered under an ǫ-constraint. Any irreducible and feasible
collection C of clusters for S must satisfy the following
two conditions.

(a) C contains at most one cluster with two or more
nodes of S.

(b) Every singleton cluster in C consists of a node x
such that x does not have any ǫ-neighbor in S.

Proof: Consider Part (a). Suppose C has two or more
clusters, say C1 and C2, such that each of C1 and C2

has two or more nodes. We claim that C1 and C2 can be
merged without violating the ǫ-constraint. This is be-
cause each node in C1 (C2) has an ǫ-neighbor in C1 (C2)
since C is feasible and distances are symmetric. Thus,
merging C1 and C2 cannot violate the ǫ-constraint. This
contradicts the assumption that C is irreducible and the
result of Part (a) follows.

The proof for Part (b) is similar. Suppose C has a
singleton cluster C1 = {x} and the node x has an ǫ-
neighbor in some cluster C2. Again, C1 and C2 can be
merged without violating the ǫ-constraint.

4.2 Combinations of Constraints
Lemma 4.1 can be seen to hold even for the combina-

tion of ML and ǫ constraints since ML constraints can-
not be violated by merging clusters. Thus, no matter
how clusters are merged at the intermediate levels, the
highest level of the dendrogram will always correspond
to the configuration described in the above lemma when
ML and ǫ constraints are used.

In the presence of CL-constraints, it was pointed out
through an example that the dendrogram may stop pre-
maturely if mergers are not carried out carefully. It is
easy to extend the example to show that this behav-
ior occurs even when CL-constraints are combined with
ML-constraints or an ǫ-constraint.

5. THE γ CONSTRAINT AND GEOMET-
RIC REASONING

In this section we introduce a new constraint, the γ
constraint and illustrate how the triangle inequality can
be used to perform geometric reasoning to further im-
prove the run-time performance of hierarchical cluster-
ing algorithm. Though this improvement does not af-
fect the worst-case analysis, we can perform a best case
analysis and an expected performance improvement us-
ing the Markov inequality. Future work will investigate
if tighter bounds can be used.

Definition 5.1. (The γ Constraint For Hierarchical
Clustering) Two clusters whose centroids are separated
by a distance greater than γ cannot be joined.

The γ constraint allows us to specify how geometri-
cally well separated the clusters should be.

Recall that the triangular inequality for three points
A,B, C refers to the expression |D(A, B) −D(B, C)| ≤
D(A, C) ≤ D(A, B)+D(C,B) where D is the Euclidean
distance function. We can improve the efficiency of the

IntelligentDistance(γ,C={C1...Ck}) returns d(i,j) ∀ i,j

1. for i = 2...n − 1
d1,i = D(C1, Ci)

endloop

2. for i = 2 to n − 1
for j = i + 1 to n − 1

ˆdi,j = |d1,i − d1,j |
endloop
if ˆdi,j > γ then di,j = γ + 1 ; do not join
else di,j = D(xi, xj)

endloop

3. return d(i, j)∀i, j

Figure 3: Function for Calculating Distances Us-
ing the γ constraint

hierarchical clustering algorithm by making use of the
lower bound in the triangle inequalities and the γ con-
straint. Let A,B, C now be cluster centroids. If we
have already computed D(A, B) and D(B, C) then if
|D(A, B) − D(B, C| > γ then we need not compute
the distance between A and C as the lower bound on
D(A, C) already exceeds γ. Formally the function to
calculate distances using geometric reasoning at a par-
ticular level is shown in Figure 3.

If triangular inequality bound exceeds γ, then we save
making m floating point power calculations and a square
root calculation if the data points are in m dimensional
space. Since we have to calculate the minimum distance
we have already stored D(A, B) and D(B, C) so there
is no storage overhead.

As mentioned earlier we have no reason to believe that
there will be at least one situation where the triangular
inequality saves computation in all problem instances,
hence in the worst case, there is no performance im-
provement. We shall now explore the best and expected
case analysis.

5.1 Best Case Analysis for Using theγ con-
straint

Consider the n points to cluster {x1, ..., xn}. The
first iteration of the agglomerative hierarchical cluster-
ing algorithm using symmetrical distances is to compute
the distance between each point and every other point.
This involves the computation (D(x1, x2), D(x1, x3),
. . ., D(x1, xn)), . . ., (D(xi, xi+1), D(xi, xi+2), . . .,
D(xi, xn)), . . ., (D(xn−1, xn)), which corresponds to the
arithmetic series n−1+n−2+. . .+1. Thus for agglomer-
ative hierarchical clustering using symmetrical distances
the number of distance computations is n(n − 1)/2.

We can view this calculation pictorially as a tree con-
struction as shown in Figure 4.

If we perform the distance calculation at the first level
of the tree then we can obtain bounds using the trian-
gular inequality for all branches in the second level as
to bound the distance between two points the distance
between these points and another common point need

x1

x2 x3 x4 x5

x3 x4 x5 x4 x5 x5

Figure 4: A Simple Illustration of How the Tri-
angular Inequality Can Save Distance Computa-
tions

only be known. Thus in the best case there is only (n-1)
distance computations instead of kn(n − 1)/2.

5.2 Average Case Analysis for Using theγ
constraint

However, it is highly unlikely that the best case situ-
ation will ever occur. We now focus on the average case
analysis using the Markov inequality to determine the
expected performance improvement which we later em-
pirically verify. Let ρ be the average distance between
any two instances in the data set to cluster.

The triangle inequality provides a lower bound which
if exceeding γ will result in computational savings. There-
fore, the proportion of times this occurs will increase as
we build the tree from the bottom up. We can bound
how often this occurs if we can express γ in terms of ρ,
hence let γ = cρ.

Recall that the general form of the Markov inequality

is: P (X = x ≥ a) ≤ E(X)
a

, where x is a single value of
the continuous random variable X, a is a constant and
E(X) is the expected value of X. In our situation, X
is distance between two points chosen at random, E(X)
= ρ, a = cρ. Therefore, at the lowest level of the tree
(k = n) then the number of times the triangular inequal-
ity will save us computation time is (nρ)/(cρ) = n/c
indicating a saving of 1/c. As the Markov inequality is
a rather weak bound then in practice the saving may
be substantially higher as we shall see in our empiri-
cal section. The computation saving that are obtained
at the bottom of the tree are reflected at higher lev-
els of the tree. When growing the entire tree we will
save at least n/c + (n − 1)/c . . . +1/c time. This is an
arithmetic sequence where the additive constant being
1/c and hence the total expected computations saved
is at least n/2(2/c + (n − 1)/c) = (n2 + n)/2c. As the
total computations for regular hierarchical clustering is
n(n − 1)/2, the computational saving is approximately
1/c.

Consider the 150 instance IRIS data set (n=150) where
the average distance (with attribute value ranges all be-
ing normalized to between 0 and 1) between two in-
stances is 0.6 then ρ = 0.6. If we state that we do not
wish to join clusters whose centroids are greater than
3.0 then γ = 3.0 = 5ρ. By not using the γ constraint

and the triangular inequality the total number of com-
putations is (11175) and the number of computations
that are saved is at least (1502 + 150)/10 = 2265 and
hence the saving is about 20%.

6. CONSTRAINT DRIVEN HIERARCHI-
CAL CLUSTERING

6.1 Preliminaries
In agglomerative clustering, the dendrogram is con-

structed by starting with a certain number of clusters,
and in each stage, merging two clusters into a single
cluster. In the presence of constraints, the clustering
that results after each merge must be feasible; that is,
it must satisfy all the specified constraints. The merg-
ing process is continued until either the number of clus-
ters has been reduced to one or no two clusters can be
merged without violating one or more of the constraints.
The focus of this section is on the development of an ef-
ficient algorithm for constraint-driven hierarchical clus-
tering. We recall some definitions that capture the steps
of agglomerative (and divisive) clustering.

Definition 6.1. Let S be a set containing two or
more elements.

(a) A partition π = {X1, X2, . . . , Xr} of S is a col-
lection of pairwise disjoint and non-empty subsets
of S such that ∪r

i=1Xi = S. Each subset Xi in π
is called a block.

(b) Given two partitions π1 = {X1, X2, . . . , Xr} and
π2 = {Y1, Y2, . . . , Yt} of S, π2 is a refinement of
π1 if for each block Yj of π2, there is a block Xp

of π1 such that Yj ⊆ Xp. (In other words, π2 is
obtained from π1 by splitting each block Xi of π1

into one or more blocks.)

(c) Given two partitions π1 = {X1, X2, . . . , Xr} and
π2 = {Y1, Y2, . . . , Yt} of S, π2 is a coarsening of
π1 if each block Yj of π2 is the union of one or
more blocks of π1. (In other words, π2 is obtained
from π1 by merging one or more blocks of π1 into
a block of π2.)

It can be seen from the above definitions that suc-
cessive stages of agglomerative clustering correspond to
coarsening of the initial partition. Likewise, successive
stages of divisive clustering correspond to refinements
of the initial partition.

6.2 An Algorithm for Constraint-Driven
Hierarchical Clustering

Throughout this section, we will assume that the con-
straint set includes all three types of constraints (ML,
CL and ǫ) and that the distance function for the nodes
is symmetric. Thus, a feasible clustering must satisfy
all these constraints. The main result of this section is
the following.

Theorem 6.1. Let S be a set of nodes with a sym-
metric distance between each pair of nodes. Suppose

Input: Two feasible clusterings C1 = {X1, X2, . . .,
Xk1

} and C2 = {Z1, Z2, . . ., Zk2
} of a set of nodes S

such that k1 < k2 and C2 is a refinement of C1.
Output: A feasible clustering D = {Y1, Y2, . . ., Yk1+1}
of S with k1 + 1 clusters such that D is a refinement of
C1 and a coarsening of C2.
Algorithm:

1. Find a cluster Xi in C1 such that two or more
clusters of C2 were merged to form Xi.

2. Let Yi1 , Yi1 , . . ., Yit (where t ≥ 2) be the clusters
of C2 that were merged to form Xi.

3. Construct an undirected graph Gi(Vi, Ei) where
Vi is in one-to-one correspondence with the clus-
ters Yi1 , Yi1 , . . ., Yit . The edge {a, b} occurs if
at least one of a and b corresponds to a singleton
cluster and the singleton node has an ǫ neighbor
in the other cluster.

4. Construct the connected components (CCs) of Gi.

5. If Gi has two or more CCs, then form D by split-
ting Xi into two clusters X1

i and X2
i as follows:

Let R1 be one of the CCs of Gi. Let X1
i contain

the clusters corresponding to the nodes of R1 and
let X2

i contain all the other clusters of Xi.

6. If Gi has only one CC, say R, do the following.

(a) Find a spanning tree T of R.

(b) Let a be a leaf of T . Form D by splitting
Xi into two clusters X1

i and X2
i in the fol-

lowing manner: Let X1
i contain the cluster

corresponding to node a and let X2
i contain

all the other clusters of Xi.

Figure 5: Algorithm for Each Stage of Refining
a Given Clustering

ConstrainedAgglomerative(S,ML,CL,ǫ, δ, γ) returns

Dendrogrami, i = kmin ... kmax

1. if(CL 6= ∅) return empty //Use Figure 5 algorithm

2. kmin, kmax = calculateBounds(S, ML, ǫ, δ, γ)

3. for k=kmax to kmin

Dendrogramk = {C1...Ck}
d = IntelligentDistance(C1...Ck)
l, m = closest legally joinable clusters
Cl = Join(Cl, Cm) remove(Cm)

endloop

Figure 6: Constrained Agglomerative Clustering

there exist two feasible clusterings C1 and C2 of S with
k1 and k2 clusters such that the following conditions
hold: (a) k1 < k2 and (b) C1 is a coarsening of C2.
Then, for each integer k, k1 ≤ k ≤ k2, there is a feasi-
ble clustering with k clusters. Moreover, given C1 and
C2, a feasible clustering for each intermediate value k
can be obtained in polynomial time.

Proof: We prove constructively that given C1, a clus-
tering D with k1 + 1 clusters, where D is a refinement
of C1 and a coarsening of C2, can be obtained in poly-
nomial time. Clearly, by repeating this process, we can
obtain all the intermediate stages in the dendrogram
between C1 and C2. The steps of our algorithm are
shown in Figure 5. The correctness of the algorithm is
established through a sequence of claims.

Claim 6.1. The clustering D produced by the algo-
rithm in Figure 5 has k1 + 1 clusters. Further, D is a
refinement of C1 and a coarsening of C2.

Proof: We first observe that Step 1 of the algorithm
chooses a cluster Xi from C1 such that Xi is formed by
merging two or more clusters of C2. Such a cluster Xi

must exist since C2 is a refinement of C1 and C2 has
more clusters than C1. The remaining steps of the algo-
rithm form D by splitting cluster Xi into two clusters
X1

i and X2
i and leaving the other clusters of C1 intact.

Thus, clustering D has exactly k1+1 clusters. Also, the
splitting of Xi is done in such a way that both X1

i and
X2

i are formed by merging one or more clusters of C2.
Thus, D is a refinement of C1 and a coarsening of C2 as
stated in the claim.

Before stating the next claim, we have simple graph
theoretic definition. A connected subgraph G′(V ′, E′)
of Gi consists of a subset V ′ ⊆ V of vertices and a sub-
set E′ ⊆ E of edges. Thus, G′ has only one connected
component (CC). Note that G′ may consist of just a
single vertex.

Claim 6.2. Let G′(V ′, E′), be any connected subgraph
of Gi. Let Y denote the cluster formed by merging
all the clusters of C2 that correspond to vertices in V ′.
Then, the ǫ-constraint is satisfied for Y .

Proof: Consider any vertex v ∈ V ′. Suppose the clus-
ter Zj in C2 corresponding to v has two or more nodes
of S. Then, since C2 is feasible and the distances are
symmetric, each node in Zj has an ǫ-neighbor in Zj .
Therefore, we need to consider only the case where Zj

contains just one node of S. If V ′ contains only the node
v, then Zj is a singleton cluster and the ǫ-constraint
trivially holds for Zj . So, we may assume that V ′ has
two or more nodes. Then, since G′ is connected, node
v has a neighbor, say w. By the construction of Gi, the
node in the singleton cluster Zj has an ǫ-neighbor in
the cluster Zp corresponding to node w of G′. Nodes
in Zp are also part of Y . Therefore, the ǫ-constraint is
satisfied for the singleton node in cluster Zj .

Claim 6.3. The clustering D produced by the algo-
rithm in Figure 5 is feasible.

Proof: Since C1 is feasible and D is a refinement of
C1, D satisfies all the CL-constraints. Also, since C2

is feasible and D is a coarsening of C2, D satisfies all
the ML-constraints. Therefore, we need only show that
D satisfies the ǫ-constraint. Note also that D was ob-
tained by splitting one cluster Xi of C1 into two clusters
X1

i and X2
i and leaving the other clusters of C1 intact.

Therefore, it suffices to show that the ǫ-constraint is
satisfied by X1

i and X2
i . To prove this, we consider two

cases depending on how X1
i was chosen.

Case 1: X1
i was chosen in Step 5 of the algorithm.

In this case, the graph Gi has two or more CCs. From
Claim 6.2, we know that the ǫ-constraint is satisfied for
each CC of Gi. Since X1

i and X2
i are both made up of

CCs of Gi, it follows that they satisfy the ǫ-constraint.
This completes the proof for Case 1.
Case 2: X1

i was chosen in Step 6 of the algorithm.
In this case, the graph Gi has only one CC. Let x

denote the leaf vertex from which X1
i was formed. Since

x by itself is a (trivially) connected subgraph of Gi, by
Claim 6.2, the ǫ-constraint is satisfied for X1

i . Since
x is a leaf vertex in T and removing a leaf does not
disconnect a tree, the remaining subgraph T ′ is also
connected. Cluster X2

i is formed by merging the clusters
of C2 corresponding to the vertices of T ′. Thus, again
by Claim 6.2, the ǫ-constraint is also satisfied for X2

i .
This completes the proof for Case 2.

It can be verified that given C1 and C2, the algorithm
shown in Figure 5 runs in polynomial time. This com-
pletes the proof of the theorem.

7. THE ALGORITHMS
The algorithm for traditional agglomerative cluster-

ing with constraints is shown in Figure 6.
The algorithm for constrain Driven Agglomerative clus-

tering is shown in Figure 5.

8. EMPIRICAL RESULTS
In this section we present the empirical results of us-

ing the algorithm derived in this paper. We present the
work on extensions to existing agglomerative cluster-
ing algorithms and illustrate the efficiency improvement
over unconstrained hierarchical clustering and prelimi-
nary results indicating that the quality of dendrogram
improves. We also verify the correctness of our average
case performance bound. Since our constraint driven
agglomerative clustering algorithm to our knowledge is
the first of its kind, we could report no empirical results
other than to show that the algorithm is correct which
we have formally shown in Section 6.

8.1 Results for Extensions to Agglomera-
tive Clustering Algorithms

In this sub-section we report results for six UCI data
sets to verify the efficiency improvement and expected
case performance bound. We will begin by investigating
must and cannot link constraints. For each data set we
clustered all instances but removed the labels from 90%
of the data and used the remaining 10 % to provide an
equal number of must-link and cannot-link constraints.
The must-link constraints were between instances with

Data Set Unconstrained Constrained
Iris 11,175 9,996

Breast 243,951 212,130
Digit (3 vs 8) 1,999,000 1,800,050

Pima 294,528 260,793
Census 1,173,289,461 998,892,588
Sick 397,386 352,619.68

Table 3: Constructing a Restricted Dendrogram
Using the Bounds from Section 3 (Mean Number
of Join/Merger Ops.)

Data Set Unconstrained Constrained
Iris 3.2 2.7

Breast 8.0 7.3
Digit (3 vs 8) 17.1 15.2

Pima 9.8 8.1
Census 26.3 22.3
Sick 17.0 15.6

Table 4: Average Distortion per Instance of En-
tire Dendrogram

the same class label and cannot-link constraints be-
tween instances of differing class labels. We repeated
this process twenty times and reported the average of
performance measures. All instances with missing val-
ues were removed as hierarchical clustering algorithms
do not easily handle such instances. Furthermore, all
non-continuous columns were removed as there is no
standard distance measure for discrete columns.

Table 3 illustrates the improvement due to the cre-
ation of a bounded/pruned dendrogram. We see that
even a small number of must-link constraints effectively
reduces the number of instances to cluster and this re-
duction will increase as the number of constraints in-
creases.

Tables 4 and 5 illustrate the quality improvement
that the must-link and cannot-link constraints provide.
Note, we compare the dendrograms for k values between
kmin and kmax. For each corresponding level in the
unconstrained and constrained dendrogram we measure
the average distortion (1/n∗

Pn

i=1 Distance(xi−Cf(xi)),
where f(xi) returns the index of the closest cluster to
xi) and present the average over all levels. It is impor-

Data Set Unconstrained Constrained
Iris 58% 66%

Breast 53% 59%
Digit (3 vs 8) 35% 45%

Pima 61% 68%
Census 56% 61%
Sick 50 % 59%

Table 5: Average Percentage Cluster Purity of
Entire Dendrogram

Data Set Unconstrained Constrained
Iris 11,175 8,929

Breast 243,951 163,580
Digit (3 vs 8) 1,999,000 1,585,707

Pima 294,528 199,264
Census 1,173,289,461 786,826,575
Sick 397,386 289,751

Table 6: The Efficiency of an Unrestricted
Dendrogram Using the Geometric Reasoning
Approach from Section 5 (Mean Number of
Join/Merger Ops.)

Data Set Unconstrained Constrained
Iris 11,175 3,275

Breast 243,951 59,726
Digit (3 vs 8) 1,999,000 990,118

Pima 294,528 61,381
Census 1,173,289,461 563,034,601
Sick 397,386 159,801

Table 7: Cluster Level δ Constraint: The Mean
Number of Joins for an Unrestricted Dendro-
gram

tant to note that we are not claiming that agglomerative
clustering has the distortion as an objective function,
rather that it is a good measure of cluster quality. We
see that the distortion improvement is typically in the
order of 15%. We also see that the average percentage
purity of the clustering solution as measured by the class
labels improves. We believe these improvement are due
to the following. When many pairs of clusters have sim-
ilar short distances the must-link constraints guide the
algorithm to a better join. This type of improvement
occurs at the bottom of the dendrogram. Conversely
towards the top of the dendrogram the cannot-link con-
straints rule out ill-advised joins. However, this prelimi-
nary explanation requires further investigation which we
intend to address in the future. In particular a study of
the most informative constraints for hierarchical clus-
tering remains an open question, though promising pre-
liminary work for the area of non-hierarchical clustering
exists [2].

We now show that the γ constraint can be further
used to improve efficiency in addition to Table 3. Ta-
ble 6 illustrates the improvement that using a γ con-
straint equal to five times the average pairwise instance
distance. We see that the average improvement is con-
sistent with the average case bound derived in section
5 but as expected can produce significantly better than
20% improvement as the Markov inequality is a weak
bound.

Finally, we use the cluster level δ constraint with an
arbitrary value to illustrate the great computational
savings that such constraints offer. Our earlier work
[4] explored ǫ and δ constraints to provide background
knowledge towards the “type” of clusters we wish to

find. In that paper we explored their use with the Aibo
robot to find objects in images that were more than 1
foot apart as the Aibo can only navigate between such
objects. For these UCI data sets no such background
knowledge exists and how to set these constraint values
for non-spatial data remains an active research area,
hence we must test these constraints with arbitrary val-
ues. We set δ equal to 10 times the average distance be-
tween a pair of points and re-run our algorithms. Such
a constraint will generate hundreds even thousands of
must-link constraints that can greatly influence the clus-
tering results and save efficiency as shown in Table 7.
We see that the minimum improvement was 50% (for
Census) and nearly 80% for Pima.

9. CONCLUSION
Non-hierarchical/partitional clustering algorithms such

as k-means are used extensively in data mining due to
their computational efficiency at clustering large data
sets. However, they are limited in that the number of
clusters must be stated apriori. Hierarchical agglomera-
tive clustering algorithms instead present a dendrogram
that allows the user to select a value of k and are de-
sirable in domains where clusters within clusters occur.
However, non-hierarchical clustering algorithms’ com-
plexity is typically linear in the number of instances (n)
while hierarchical algorithms are typically O(n2).

In this paper we explored the use of instance and clus-
ter level constraints to improve the efficiency of hier-
archical clustering algorithms. Our previous work [4]
studied the complexity of clustering for a given value
of k under four types of constraints (must-link, cannot-
link, ǫ and δ). We extend this work for unbounded k and
find that clustering under all four types of constraints
is NP-complete and hence creating a dendrogram that
satisfies all constraints at each level is intractable. We
also derived bounds in which all feasible solutions exist
that allows us to create a restricted dendrogram.

An unexpected interesting result was that whenever
using cannot-link constraints (either by themselves or
in combination) traditional agglomerative clustering al-
gorithms may yield dead-end or irreducible cluster solu-
tions. For this case we create a constraint driven hierar-
chical clustering algorithm that is guaranteed to create
a dendrogram that contains a complete range of feasible
solutions.

We introduced a fifth constraint type, the γ con-
straint, that allows the performing geometric reasoning
via the triangle inequality to save computation time.
The use of the γ constraint in our experiments allows
a computation saving of at least 20% and verified the
correctness of our bound.

Our experimental results indicate that small amounts
of labeled data can yield small but significant efficiency
improvement via constructing a restricted dendrogram.
A primary benefit of using labeled data is the improve-
ment in the quality of the resultant dendrogram with
respect to cluster purity and “tightness” (as measured
by the distortion).

We find that our cluster level constraints which can
apply to many data points offer the potential for large

efficiency improvement. The δ and ǫ constraints can
be efficiently translated into conjunctions and disjunc-
tions of must-link constraints for ease of implementa-
tion. Just using the δ constraint provides saving of be-
tween two and four fold though how to set a value for
this constraint remains an active research area.

10. ACKNOWLEDGMENTS
We would like to thank the anonymous SIAM Data

Mining Conference reviewer who pointed out our earlier
results [4] are applicable beyond non-hierarchical clus-
tering.

11. REFERENCES

[1] S. Basu, A. Banerjee, and R. Mooney, Semi-supervised
Clustering by Seeding, 19th ICML, 2002.

[2] S. Basu, M. Bilenko and R. J. Mooney, Active
Semi-Supervision for Pairwise Constrained Cluster-
ing, 4th SIAM Data Mining Conf.. 2004.

[3] P. Bradley, U. Fayyad, and C. Reina, ”Scaling Clus-
tering Algorithms to Large Databases”, 4th ACM
KDD Conference. 1998.

[4] I. Davidson and S. S. Ravi, “Clustering with Con-
straints and the k-Means Algorithm”, 5th SIAM
Data Mining Conf. 2005.

[5] Y. Fua, M. Ward, E. Rundensteiner, Hierarchical
parallel coordinates for exploration of large datasets,
IEEE Viz. 1999.

[6] M. Garey and D. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness,
Freeman and Co., 1979.

[7] M. Garey, D. Johnson and H. Witsenhausen, “The
complexity of the generalized Lloyd-Max problem”,
IEEE Trans. Information Theory, Vol. 28,2, 1982.

[8] D. Klein, S. D. Kamvar and C. D. Manning, “From
Instance-Level Constraints to Space-Level Constraints:
Making the Most of Prior Knowledge in Data Clus-
tering”, 19th ICML Conf. 2002.

[9] A. McCallum, K. Nigam and L. Ungar. Efficient
Clustering of High-Dimensional Data Sets with Ap-
plication to Reference Matching, 6th ACM KDD
Conf., 2000.

[10] T. J. Schafer, “The Complexity of Satisfiability
Problems”, Proc. 10th ACM Symp. Theory of Com-
puting (STOC’1978), 1978.

[11] K. Wagstaff and C. Cardie, “Clustering with Instance-
Level Constraints”, 17th ICML, 2000.

[12] D. B. West, Introduction to Graph Theory, Second
Edition, Prentice-Hall, 2001.

[13] K. Yang, R. Yang and M. Kafatos, “A Feasible
Method to Find Areas with Constraints Using Hi-
erarchical Depth-First Clustering”, Scientific and
Statistical Database Management Conf., 2001.

[14] O. R. Zaiane, A. Foss, C. Lee, W. Wang, On Data
Clustering Analysis: Scalability, Constraints and
Validation, 6th PAKDD Conf., 2000.

[15] Y. Zho & G. Karypis, Hierarchical Clustering Algo-
rithms for Document Datasets, University of Min-
nesota, Comp. Sci. Dept. TR03-027.

12. APPENDIX A

Proof of Theorem 2.2
Proof: It is easy to see that Fhc is in NP since one can
guess a partition of S into clusters and verify that the
partition satisfies all the given constraints. We establish
NP-hardness by a reduction from Opl.

Given an instance I of the Opl problem consisting of
variable set X and clause set Y , we create an instance
I ′ of the Fhc problem as follows.

We first describe the nodes in the instance I ′. For
each Boolean variable xi, we create a node vi, 1 ≤
i ≤ n. Let V = {v1, v2, . . . , vn}. For each clause
yj = {xj1 , xj2 , xj3}, 1 ≤ j ≤ m, we do the following:

(a) We create a set Aj = {wj1 , wj2 , wj3} containing
three nodes. (The reader will find it convenient
to think of nodes wj1 , wj2 and wj3 as correspond-
ing to the variables xj1 , xj2 and xj3 respectively.)
We refer to the three nodes in Aj as the primary
nodes associated with clause yj .

(b) We create six additional nodes denoted by a1
j , a2

j ,

b1
j , b2

j , c1
j and c2

j . We refer to these six nodes as
the secondary nodes associated with clause yj .
For convenience, we let Bj = {a1

j , b
1
j , c

1
j}. Also, we

refer to a2
j , b2

j and a2
j as the twin node of a1

j , b1
j

and c1
j respectively.

Thus, the construction creates a total of n + 9m nodes.
The distances between these nodes are chosen in the
following manner, by considering each clause yj , 1 ≤
j ≤ n.

(a) Let the primary nodes wj1 , wj2 and wj3 associ-
ated with clause yj correspond to Boolean vari-
ables xp, xq and xr respectively. Then d(vp, wj1)
= d(vq, wj2) = d(vr, wj3) = 1.

(b) The distances among the primary and secondary
nodes associated with yj are chosen as follows.

(i) d(a1
j , a

2
j) = d(b1

j , b
2
j) = d(c1

j , c
2
j) = 1.

(ii) d(a1
j , wj1) = d(a1

j , wj2) = 1.

(iii) d(b1
j , wj2) = d(b1

j , wj3) = 1.

(iv) d(c1
j , wj1) = d(c1

j , wj3) = 1.

For each pair of nodes which are not covered by cases
(a) or (b), the distance is set to 2. The constraints are
chosen as follows.

(a) ML-constraints: For each j, 1 ≤ j ≤ n, there are
the following ML-constraints: {wj1 , wj2}, {wj1 , wj3},
{wj2 , wj3}, {a

1
j , a

2
j}, {b

1
j , b

2
j} and {c1

j , c
2
j}.

(b) CL-constraints:

(i) For each pair of nodes vp and vq , there is a
CL-constraint {vp, vq}.

(ii) For each j, 1 ≤ j ≤ m, there are three CL-
constraints, namely {a1

j , b
1
j}, {a

1
j , c

1
j} and {b1

j , c
1
j}.

(c) ǫ-constraint: The value of ǫ is set to 1.

This completes the construction of the Fhc instance I ′.
It can be verified that the construction can be carried
out in polynomial time. We now prove that the Fhc

instance I ′ has a solution if and only if the Opl instance
I has a solution.

If part: Suppose the Opl instance I has a solution.
Let this solution set variables xi1 , xi2 , . . ., xir to true
and the rest of the variables to false. A solution to the
Fhc instance I ′ is obtained as follows.

(a) Recall that V = {v1, v2, . . . , vn}. For each node v in
V − {vi1 , vi2 , . . . , vik

}, create the singleton cluster
{v}.

(b) For each node viq corresponding to variable xiq ,
1 ≤ q ≤ r, we create the following clusters. Let
yj1 , yj2 , . . ., yjp be the clauses in which variable
xik

occurs.

(i) Create one cluster containing the following nodes:
node viq , the three primary nodes correspond-
ing to each clause yjl

, 1 ≤ l ≤ p, and one pair
of secondary nodes corresponding to cluster yjl

chosen as follows. Since xiq satisfies clause yjl
,

one primary node corresponding to clause yjl

has viq as its ǫ-neighbor. By our construction,
exactly one of the secondary nodes correspond-
ing to yjl

, say a1
jl

, is an ǫ-neighbor of the other
two primary nodes corresponding to yjl

. The
cluster containing viq includes a1

jl
and its twin

node a2
jl

.

(ii) For each clause yjl
, 1 ≤ l ≤ p, the cluster

formed in (i) does not include two secondary
nodes and their twins. Each secondary node
and its twin is put in a separate cluster. (Thus,
this step creates 2p additional clusters.)

We claim that the clusters created above satisfy all the
constraints. To see this, we note the following.

(a) ML-constraints are satisfied because of the follow-
ing: the three primary nodes corresponding to each
clause are in the same cluster and each secondary
node and its twin are in the same cluster.

(b) CL-constraints are satisfied because of the follow-
ing: each node corresponding to a variable appears
in a separate cluster and exactly one secondary
node (along with its twin) corresponding to a vari-
able appears in the cluster containing the three pri-
mary nodes corresponding to the same variable.

(c) ǫ-constraints are satisfied because of the following.
(Note that singleton clusters can be ignored here.)

(i) Consider each non-singleton cluster containing
a node vi corresponding to Boolean variable xi.
Let yj be a clause in which xi appears. Node vi

serves as the ǫ-neighbor for one of the primary
nodes corresponding to yj in the cluster. One
of the secondary nodes, corresponding to yj ,
say a1

j , serves as the ǫ-neighbor for the other
two primary nodes corresponding to yj as well
as its twin node a2

j .

(ii) The other non-singleton clusters contain a sec-
ondary node and its twin. These two nodes are
ǫ-neighbors of each other.

Thus, we have a feasible clustering for the instance I ′.

Only if part: Suppose the Fhc instance I ′ has a solu-
tion. We can construct a solution to the Opl instance
I as follows. We begin with a claim.

Claim 12.1. Consider any clause yj . Recall that Aj=
{wj1 , wj2 , wj3} denotes the set of three primary nodes
corresponding to yj. Also recall that V = {v1, v2, . . . , vn}.
In any feasible solution to I ′, the nodes in Aj must be
in the same cluster, and that cluster must also contain
exactly one node from V .

Proof of claim: The three nodes in Aj must be in
the same cluster because of the ML-constraints involv-
ing them. The cluster containing these three nodes may
include only one node from the set Bj = {a1

j , b
1
j , c

1
j} be-

cause of the CL-constraints among these nodes. Each
node in Bj has exactly two of the nodes in Aj as its
ǫ-neighbor. Note also that the only ǫ-neighbors of each
node in Aj are two of the nodes in Bj and one of the
nodes from the set V = {v1, v2, . . . , vn}. Thus, to sat-
isfy the ǫ-constraint for the remaining node in Aj , the
cluster containing the nodes in Aj must also contain at
least one node from V . However, because of the CL-
constraints between each pair of nodes in V , the cluster
containing the nodes in Aj must have exactly one node
from V . This completes the proof of the claim.

Claim 12.2. Consider the following truth assignment
to the variables in the instance I: Set variable xi to true
if and only if node vi appears in a non-singleton clus-
ter. This truth assignment sets exactly one literal in
each clause yj to true.

Proof of Claim: From Claim 12.1, we know that the
cluster containing the three primary nodes correspond-
ing to yj contains exactly one node from the set V =
{v1, v2, . . . , vn}. Let that node be vi. Thus, vi is the
ǫ-neighbor for one of the primary nodes corresponding
to yj . By our construction, this means that variable xi

appears in clause yj . Since xi is set to true, clause yj is
satisfied. Also note that the cluster containing vi does
not include any other node from V . Thus, the chosen
truth assignment satisfies exactly one of the literals in
yj .

From Claim 12.2, it follows that the instance I has a
solution, and this completes the proof of Theorem 2.2.

