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ABSTRACT
Achieving autonomous learning systems which can govern
themselves is one of the goals of A.I. Most learning systems
explore a fixed model space to explain a set of data. We believe
that the “best” but most distinct models in the available space can
provide insight into questions of autonomy such as when to
change the model space and how to generate new data points (via
experiments). We explore this idea by focusing on clustering
problems where the initial data is known to be insufficient to find
the true model. We propose a method to generate new data points
via experiments. Our approach results in convergence to the true
model using half as many additional data points than if they were
randomly selected.

KEYWORDS: Autonomous learning, machine discovery,
clustering, unsupervised learning

1. INTRODUCTION AND MOTIVATION

If inductive learning aims at answering the question,
“What does the data tell us ?”, autonomous learning adds
the question, “What can we now do to better understand
the domain ?”.
So what can we do to better understand the domain to
which we are applying our learning system ? Inductive
learning like most artificial intelligence problems is
inherently a search through a predefined model space. Most
inductive learning tools whether they be unsupervised [1] or
supervised [2], primarily focus on finding the single best
model with respect to some criterion for a fixed set of data.
This is quite adequate if the tool is to be used by a human
who can interpret the results and make appropriate
changes. To make such tools autonomously learn more
about a domain we must address problems of how to change
the model space and how to generate new data. It is our
belief that finding and using multiple models can provide
insight into these more complex questions associated with
autonomous learning.
In this paper we focus on using multiple models to answer
the question, “Given the current data and the best model(s)
found, what should be the next set of experiments to
conduct be to find the true model for the domain ?”. Which
model is better for a given set of data has been addressed by
the minimal encoding length approach independently
proposed by Wallace (1968) [1] and Rissanen (1978) [3].
Their approach has the benefit that complex models are
chosen over simpler ones only if the data available justifies
it. But to our knowledge the approach provides no
indication of how to generate new data points. Whilst we
focus on this question in this discourse, we believe our
approach could be used to determine how to change the
model space and other questions associated with

autonomous learning. We intend to explore these at a latter
time.
This paper documents our approach for finding and using
multiple models for clustering problems otherwise known
as unsupervised learning. The paper is divided into a
further six sections. The first is a basic introduction to
clustering which provides the terminology used throughout
this paper. In the next section we define in limited detail
the clustering system we have developed (a more complete
description exists [4]). The criterion used to evaluate each
model (the minimum message length) and our search
mechanism (simulated annealing) are described. The
subsequent sections outline how we search the model space
to find multiple models and then how these can be used to
answer our next experiment question. The final two
sections discuss and conclude our current work and touches
on future research.

2. AN INTRODUCTION TO CLUSTERING

Clustering, also called unsupervised or intrinsic
classification, has a long history in numerical taxonomy [5]
and machine learning [6]. Clustering attempts to find
groups within data so as to better understand the domain
the data is from. It has been applied to generation of
taxonomies for flora and fauna, concept formation and data
mining. The objects/entities to be clustered are each
described by a set of d attributes. Clustering involves
determining the number of classes (groups), a description
for each class which can be used to determine membership
and assigning each object to one or more of these classes.
As the number of classes is unknown and no pre-classified
training set exists, clustering is unsupervised. The
collection of classes and their descriptions form a
taxonomy/model of the objects.
A clustering system contains three major parts. The
knowledge representation scheme (KRS) which defines the
searchable model space. The criterion which provides a
“goodness” measure for each model and the search
mechanism which explores the model space attempting to
find the model which leads to the optimal criterion value.
The KRS determines the type of classes and their possible
interrelationships. A dichotomy for clustering options
which impact on the KRS has been defined elsewhere [7].
The criterion evaluates the “goodness” of each of the
models. It is usually a real value function that takes as
parameters the objects and/or class descriptions and is the
objective function of the search.
The search mechanism explores the model space attempting
to find the best model by finding the optimal (either
minimum or maximum) value of the objective function. For
all but the most restrictive model spaces the number of



possible models to evaluate is combinatorially large.
Exhaustively evaluating each model is not even considered
as a search mechanism. The search mechanism must
consistently find the global optima or at least a good local
optima in a number of different application domains with a
minimum of computation.

3. OUR CLUSTERING SYSTEM

The clustering system developed merges together two
problem-invariant (robust) technologies: the minimum
message length criterion (MML) and simulated annealing
(SA). This has so far shown to result in a clustering system
which can be applied to a number of different problems
with minimum changes. The objective function of our
search is to minimize the message length for non-
hierarchical and probabilistic classes which objects are
exclusively assigned to. However, most large and
interesting search problems possess many local optima [14].
We feel that SA is a good search mechanism to explore
these complex  model spaces, since it can escape local
minima [14]. In the following sub-sections we describe the
two technologies.

3.1 The Minimum Message Length Criterion

Chaitin [8], Kolmogorov [9] and Solmonoff [10] in varying
forms independently proposed algorithmic information
theory (AIT). AIT intuitively allows us to quantify the
notion of complexity and compressibility of objects.
Learning by induction is inherently about compressing
observations (the objects) into a theory (the model). Boyle’s
law (P = k.N/V) on ideal gases relates the number of
molecules (N) in a measurable closed volume (V) to
pressure (P). A table could store every possible combination
of N and V and the resultant pressure. However, Boyle's law
compresses this table into a much shorter description, the
above equation.
Wallace and Boulton [1], extend this compressibility notion
into their minimum message length (MML) approach to
induction. They define a criterion which can be used to
select the most probable model from a given set of mutually
exclusive and exhaustive models, H*, for the objects, D.
The MML approach specifies that the minimal encoding of
the model and the objects given the model is the best. In
terms of Bayes theorem, we wish to maximise the posterior
distribution, P(Hi | D,c) where c is the background context:
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Our interest is in comparing relative probabilities so we can
ignore const. Information theory [Shannon] tells us that -

log (P(occurrence)) is the minimum length in bits to encode
the occurrence. Hence by minimising equation (2) we
inherently maximise the posterior distribution and find the
most probable model. The expression to minimise has two
parts, the first being the encoding of the model and the
second the encoding of the objects given the model. The
object collection is random if the size of encoding the model
and the objects given the model is approximately equal to
the size of directly encoding the objects. That is there is no
way to compress the objects into a shorter
description/theory. The two part message is precisely
described for intrinsic non-hierarchical classification [1]
and [11].
The MML criterion only defines a goodness measure for a
model with an inherent bias towards simple models. It does
not indicate how to search the model space. To do that we
use simulated annealing.

3.2 Searching The Model Space Using Simulated
Annealing

The Metropolis criterion was first used as a Monte Carlo
method for the evaluation of state equations in statistical
mechanics by Metropolis et al. [12]. Kirkpatrick et al. [13]
demonstrated how using the Metropolis criterion as a test in
iterative optimisation can solve large combinatorial
optimisation problems. They called their approach the
simulated annealing technique as it mimics the annealing
of a piece of metal to minimise the energy state of the
molecules within the metal. SA is an iterative local
optimisation technique. At any time there is only one
current solution which is slightly changed at each iteration.
As SA is a Markov process the current solution, Sn, at time
n, is a result of the perturbation of solution Sn-1. The
algorithm continually perturbs the current solution to
generate new candidate solutions. SA unconditionally
accepts candidates of better quality than the previous
solution and conditionally accepts those of a worse quality
with a probability p, where:
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Worse quality solutions can be accepted which allows the
search to escape from local minima which are common in
most complex search problems [13]. We set the initial
temperature T0, so there is a 90% probability of accepting
an increase in cost. This probability decreases as the
temperature decreases. The cooling constant, R reduces the
temperature such that, Tk = Tk-1.R.
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C0 is the goodness evaluation of the initial solution.

The implementation of our algorithm can be found in [4].



Simulated annealing statistically guarantees that the global
optimum will be found, if the thermodynamic equilibrium is
reached at every temperature and the cooling schedule is
slow enough [14]. However, this is an infinitely long
process. We do not maintain these two requirements due to
the need to find a solution in finite time. Instead, after a
fixed number of iterations at a temperature, the temperature
is reduced and the cooling constant provides discrete
changes in the temperature. However non-ideal SA
approaches, such as the one we use, still find good, local
optima solutions [14].

4. FINDING MULTIPLE MODELS

Our thesis is that distinct but good models can be used to
generate new experiments whose results can be used to
better understand the domain. This requires finding the n
models which provide the best values for the objective
function but are sufficiently different from each other. Just
finding the n best models would most likely result in
finding a good model and slight variations of it.
To achieve our aim we must handle two key issues. Firstly,
we must be able to quantify the difference between two
models. Secondly we must adjust our search mechanism.
Let us discuss the first.

4.1 Quantifying The Difference Between Models

A model can be characterised by its predictions or its
syntactic description. A model (the taxonomy) makes
predictions on how to group together objects. Each model
assigns each object to a cluster. For two clusters from
different models, we can measure the similarity between
them by counting the number of common objects. For two
models we can measure their similarity by counting the
number of common objects for  every possible combination
of cluster pairs (one from each model). This is inherently a
measure of the common “cluster neighbourhood”
(clusterhood) each entity has in two different models. This
measure can be achieved by building a r × c contingency
table, P, where r is the number of clusters in model A (MA)
and c is the number of clusters in model B (MB). The cell
Pij in the table holds the number of objects common to
cluster i in MA and cluster j in MB. The total count of the
table will be the number of objects/entities we are
clustering. Where MA is the same as MB only the leading
diagonal of the resultant table will contain non-zero
elements.
A model can also be characterised by its description. In
clustering, a model consists of classes and their
descriptions. In our approach each class description
contains a probability distribution for each attribute. The
message we construct (whose length we are trying to
minimise) only encodes an attribute distribution of a class if
it is sufficiently different from the population’s (collection
of all objects) distribution for that attribute. We can
characterise the descriptive difference between two models
in a contingency table, D, which has the same structure as
the contingency table P. For each attribute we can

determine which of the clusters for each model has a
distribution for that attribute that is the greatest from the
populations. The cell Dij holds the count of attributes for
cluster i in MA and cluster j in MB whose probability
distribution is of greatest distance from the population’s
distribution. The total count for the table is the number of
attributes. The contigency table inherently holds the
distinguishing features (attributes) of each class.
The contingency tables P and D contain the differences
between the two models A and B in their most rudimentary
forms (predictions and descriptions). We can use this
information to measure if a relationship exists between the
two models. Note we do not attempt to determine what the
relationship is, only if it exists. This can be achieved by
using a number of different contingency table association
measures [15]. We choose the Goodman and Kruskal
lambda measure of predictive ability because it is both a
readily interpretable probability measure and is not
symmetrical. The measure λAB measures the ability to
predict the cluster in model B given we know the cluster in
model A. It should be noted that λAB ≠ λBA is generally true.
That is, A may be predictable from B but not B from A and
vice versa. Specifically λAB calculates the relative decrease
in the probability of an error in guessing the class given by
model A if the class for model B is known. Formally we can
write:
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where n.i is the total of column i, nj. is the total of row j and
nij is the value of the contingency table at row i and column
j.

By calculating the lambda value for the tables, P (λAB(P))
and D (λAB(D)) we can measure the predictability of a
model from another in terms of predictions and descriptions
respectively.

4.2 Adjusting The Search

The ideal annealing algorithm converges to the global
optimum. However the trajectory through the model space
in getting there may not be sufficiently diverse to find other
good but different local optima. We must therefore adjust
our search method to be consistent with our aim. We can
achieve this by introducing a bias which guides the search
away from already found good local optima. This is
facilitated by storing n models which are the best (with
respect to the objective function) but sufficiently different
from each other. These models are the best and most
diverse models known.



Models are only considered to be stored if their message
length is less than any of the currently stored models. To be
stored, the summation of the models predictability from
every other stored model must be less than this same
measure for one of the currently stored models. The model
whose predictability is the greatest is replaced.
Predictability is calculated using the λAB measures for either
the P or D contingency tables. Candidate models have a
penalty added to their “goodness” value in proportion to
their similarity to the stored models.

5. THE USES OF MULTIPLE MODELS

In the previous section we defined two measures of
difference between models. These measures can be encoded
in a contingency table and the predictability of one model
from another calculated. How we should use these measures
to influence our search depends on what we are trying to
achieve. In this paper we focus on what the next best set of
experiments to conduct are.
The question of how to guide the next experiments to
conduct has been addressed in Lenat’s work on AM [16]
and Kulkarni and Simon’s work on Kekada [6]. Lenat
described the notion of “interestingness” and felt the system
should focus its attention on interesting phenomena.
Similarly, Kekada focuses its next experiments on
surprising phenomena, believing that if a result of an
experiment was unexpected then the knowledge of that area
of the domain is obviously lacking and should be explored.
Both approaches use heuristics to describe the notions of
interestingness and surprise. As we hope to have available
the best but most different models we focus the next set of
experiments where these models’ predictions differ. By
doing this we can resolve which of these models is the
better for the domain. By continually running the clustering
system, finding distinct but good models, and then
generating data points where these models’ predictions
differ we generate data points where our knowledge of the
domain is contradictory.
To determine which of measure of predictability (model
description or predictability) is better we conducted
experiments on the following problem. Consider a
population of objects/entities each having m binary
attributes. In the population there exists m classes. Class i, i
= 1 .. m can be precisely described as having the value 0
(false) for all attribute except the ith which is 1 (true). Table
1 provides the precise description for a few classes for the
m=10 situation.

Attribute 1 2 3 4 5 6 7 8 9 10
Class 1 1 0 0 0 0 0 0 0 0 0
Class 10 0 0 0 0 0 0 0 0 0 1

Table 1. Precise description for classes in m=10 situation.

To determine the proportion of each class in the population
we make use that the summation of the first r integers is
given by:
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from this the relative proportion, Pi, i = 1… m of class i in the
population is given by:
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By using the MML equations described in [1] we can
determine the approximate number of objects (data points)
required to find the true model if the objects are randomly
sampled from the population. For our trial set of objects this
number was 184. Below this amount of data the  best model
is to place all objects into one class, indicating that the data
from an information theoretic view is random. For this data
set the encoding of the model and data for the true model
and one class model were 566.21 and 570.24 nits
respectively. The difference between the lengths is the
comparitive difference in likelihood.  Thus the true model is
approximately e4

 times more likely than the one class model
for the given data set.
We conducted trials to determine how successful our
strategy of focusing experiments on where the models
predictions differ is. In each trial the clusterer was given the
first 60, 80 and 120 objects of our data set. As we have
shown, this is insufficient to chose the true model over the
one class model. For 120 objects the true model and one
class model had encoding length of 415.56 and 368.32 nits
respectively for this reduced data set. The true model is
approximately e47 times less likely than the one class model
for the data. The class distributions follow in table 2:

Class
Number

1 2 3 4 5 6 7 8 9 10

Frequency 5 1 7 13 7 13 15 17 21 21

Table 2. Class distributions for initial 120 objects

Our aim is to generate new data points so that eventually
the true model is found. The number of new experiments
required to converge to the true model is one obvious
measure of performance.

5.1 How To Generate New Experimental Data

The process of running the clustering system with a given
set of data produces a number of theories
(taxonomies/models) of the data. We wish to generate new
experimental data which can be used in further applications
of the clustering system to better understand the domain
and find the true model. We focus on generating new data
where the predictions of the theories are different. An
example based approach is used where an example of an
object the models’ predictions disagree upon is used as
input into an experiment. The experiment takes the object
as an input and returns similar objects. For additional
complexity there is a stochastic aspect to the experiments



which results in the chance that the experiment will return
the wrong result. In our studies this error is 25%.
The examples can be selected by re-arranging a P
contingency table so that the leading diagonal has the
largest counts. The remaining elements represent objects
which are predicted indifferently for these two models.
Completing this task for all possible pairs of models can
determine those objects for which the model’s predictions
differ the greatest.
Experiments could also be generated by prescription. This
would involve a description of an exemplar object for
which, if it were to exist, the current stored models would
make contradictory predictions for. This exemplar could be
constructed from where cluster descriptions differ the most
between all clusters from one model with all clusters from
another. We have not explored this option as yet.
We established two control trials. One generated new
objects by sampling them from the population (sampPop)
whilst another generated new objects from each class in
equal proportion (equProp).
Table 3 illustrates the comparison between each model
search and experiment generation technique. Both search
techniques stored the five best models which had the
shortest message lengths but were different from each other.
The techniques differed in the notion of difference. Search
technique A used the predictive difference between models;
B the description difference between models. Two
experiment generation techniques were tried: technique C
generates new objects in batches of 10 whilst technique D
generated objects in batches of 20. After each batch was
generated, the clusterer was re-run and the process repeated
until the true model was discovered. The control trial
generated objects in batches of 5. All four of our variations
outperformed the two control approaches by requiring
approximately half as many data points to converge to the
true model.

Search Technique
A B A B samp equ

Experiment Generation
Technique C C D D Pop Prop

New objects required to
find true model. 60 initial
objects. 70 70 80 80 170 140
Additional objects required
to converge to true model.
80 initial objects. 50 60 80 60 140 120
Additional objects required
to converge to true model.
120 initial objects. 40 40 60 60 100 80

Table 3. Results of trials

6. DISCUSSION AND FUTURE WORK

We shall focus our discussion on the situation with 120
initial objects using search technique A (model difference
measured by predictions) and experiment generation
technique C (batch sizes of 10). The system behavior is
summarized in table 4.

1st

Trial
2nd

Trial
3rd

Trial
4th

Trial
5th

Trial
True Classes
Found In One of
the Best Models

6 8 7 9 10

Class experiments
focus on

1 3 9 2

True Model Found No No No No Yes
Table 4. Summary of Behavior For 120 Initial Object Case.

The ten classes in the true model are not justified by the
initial data. After the first trial with 120 objects, the best
models, in combination, contained the correct description
and object assignments for six of these classes. The models
most disagreed upon what class objects in the class 1 should
belonged to, more objects similar to this class were
requested. A further 4 more trials occurred before the true
model was found. Of course in our situation we know what
the true model is. It was interesting that the number of true
classes found did not increase monotonically, nor that the
class the models predictions differed most on, was not the
least frequent.
One of our aims was to determine the impact of searching
the model space to find the best but most different models
with respect to description and predictions. However
irregardless of the measure of difference used, similar
models were found. We feel this is due to the simplicity of
the problem and most likely this will not occur in more
complex domains.
We have not made use if there exists any relationship
between the similarity of two models for their predictive
capability and descriptions. We can consider five cases:

Relationship Interpretation
λAB(P) > λAB(D) The models predictions are more

similar than their descriptions.
λAB(P) >> λAB(D) The models predictions are

significantly more similar than their
descriptions.

λAB(P) < λAB(D) The models descriptions are more
similar than their predictions.

λAB(P) << λAB(D) The models descriptions are
significantly more similar than their
predictions.

λAB(P) ≈ λAB(D) The similarity between the models with
respect to their descriptions and
predictions are fairly equivalent.

Table 5. The relationship between measures of similarity
between a models description and its predictions.

We can diagramatically represent each situation by
considering a population of things which only has one
attribute, which we believe to be normally distributed. Each
model has only one class whose description is the mean and
standard deviation for that particular attribute. Figure 1



illustrate the situations for λAB(P) > λAB(D). The circles
represented data points. In this situation the models make
similar predictions for the current data points, but they are
evidently different. λAB(P) is larger than  λAB(D) because
the current data points do not occur in areas where the
models predictions would differ. Using and contrasting both
measures could be of benefit.

Figure 1. λAB(P) > λAB(D)

We intend to explore the annealing literature to see if any
insight can be provided to bias the search technique to
better explore the model space. The lambda measures of
association used in the contingency tables whilst adequate
are problematic for skewed distributions. We intend to
explore measuring the information content of contingency
tables to obtain better measures of predictability. As stated
earlier we believe that using multiple models can address
other questions in autonomous learning such as when to
change the model space which we plan to explore. Our
clustering system can change the model space by taking the
Cartesian product of attributes and changing the probability
distribution (discrete or normal) assumed for each attribute.

7. CONCLUSION

We have developed a clustering system which can search
the model space for good but distinct models. The
difference between models can be measured regarding their
predictions or descriptions. Using these models can provide
insight into how to address questions of autonomous
learning systems of which, we have focused on the next set
of experiments to conduct to better understand the domain.
We have applied this clustering system to an artificial
problem where the initial set of data is inadequate to find
the true model. We explore the idea of generating new
objects where the models predictions differ. We have
shown that this approach results in finding the true model
by generating only half as many additional objects than by
using blind techniques for our problem.
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