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ABSTRACT
Perhaps, one of the most important assumptions made by classifi-
cation algorithms is that the training and test sets are drawn from
the same distribution, i.e., the so-called “stationary distribution as-
sumption” that the future and the past are identical from a prob-
abilistic standpoint. In many domains of real-world applications,
such as marketing solicitation, fraud detection, drug testing, loan
approval among others, this is rarely the case. This is because the
only labeled sample available for training is biased due to avari-
ety of practical reasons. In these circumstances, traditional meth-
ods to evaluate the expected generalization error of classification
algorithms, such as structural risk minimization, ten-fold cross-
validation, and leave-one-out validation, usually returnpoor esti-
mates of which classification algorithm will be the most accurate.
Sometimes, the estimated order of the learning algorithms’accu-
racy is so poor that it is no better than random guessing. Therefore,
a method to determine the most accurate learner is needed fordata
mining under sample selection bias. We present such an approach
that can determine which learner will perform the best on an unbi-
ased test set, given a possibly biased training set, in a fraction of
the cost to use cross-validation based approaches.

Keywords: Classification, Sample Selection Bias, Stationary Dis-
tribution Assumption.

1. INTRODUCTION
Consider the following typical situation a data mining practi-

tioner faces. He or she has been given a training set and is asked
to build a highly accurate predictive model that will be applied to
make a prediction on some future set of testing instances. The prac-
titioner has at his or her disposal a variety of algorithms tolearn
classifiers, such as decision trees, naive Bayes and supportvector
machines, and wishes to determine the best performing algorithm.
The standard approach to determine the most accurate algorithm
is to perform cross-validation or leave-one out validationon the
training set or if the Vapnik-Chervonenkis dimension of themodel
space is known, to perform structural risk minimization [Shawe-
Taylor et’ al 1996]. These standard approaches have served the
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data mining and machine learning community well.
However, as data mining algorithms are applied to more chal-

lenging domains, the assumptions made by traditional algorithms
are violated. Perhaps one of the strongest assumptions madeby
classification algorithms is known as the “stationary distribution
assumption” in the machine learning literature [Vapnik 1995] and
“non-biased distribution” in the data mining literature [Zadrozny,
2004].

DEFINITION 1.1. Stationary or Non-Biased Distribution As-
sumption [Vapnik 1995] Each and every training set instance and
test set instance is identically and independently drawn from a
common distributionQ(x, y).

However, consider the example, where we are asked to build a
model to predict if a particular drug is effective for the entire pop-
ulation of individuals, that is, instances in the future test set will be
an unbiased sample. However, the available training data istypi-
cally a sample from previous hospital trials where individuals self
select to participate and are representative of the patients at that
hospital but not of the entire popular [Zadrozny, 2004]. In the ap-
plication of data mining to direct marketing, it is common practice
to build models of the response of customers to a particular offer
using only the customers that have received the offer in the past as
the training set, and then to apply the model to the entire customer
database. Because these offers are usually not given at random,
the training set is not drawn from the same population as the test
set. Therefore, a model constructed using this training setmay not
perform well for the entire population of customers.

In this paper we relax the stationary distribution assumption and
instead allow the training set and test set to be drawn from differing
distributions but within some weak limitations.

DEFINITION 1.2. Biased Training Instance Distribution As-
sumption Each and every training instance is drawn from distri-
bution P(x, y), and test set instance is identically and indepen-
dently drawn from distributionQ(x, y). Q(x, y) is the true unbi-
ased distribution of instances,P(x, y) is a biased distribution, and
Q(x, y) 6= P(x, y).

The above definition only states thatP(x, y) 6= Q(x, y), but
the two distributions may still differ in many different ways. The
framework presented by Zadrozny [Zadrozny, 2004] discusses vari-
ous types of bias. For example, one of the prevalent bias is “feature
bias”, which is best understood via the standard decompositions
P(x, y) = P(x) · P(y|x) andQ(x, y) = Q(x) · Q(y|x). Feature
bias can occur whenP(x) 6= Q(x) but P(y|x) = Q(y|x) (de-
tails in Section 2). An example of feature bias is the drug modeling



example given earlier. The concept of when the drug is effective
does not change between the training and test sets, only the chance
of encountering a feature vector (representative of a person in this
situation) is different in the chosen hospital from the general popu-
lation.

When the assumption of stationary distribution is lifted, it raises
problems for answering the question: “Which classificationalgo-
rithm finds the best performing model?” As we shall see the tra-
ditional approaches which are used extensively by the data mining
community, such as cross-validation and leave-one-out validation,
perform hopelessly when sample bias occurs. In some circum-
stances, the order of expected accuracy of competing modelsis not
even better than random guessing.

Previous work on this problem by Zadrozny [Zadrozny, 2004]
noted that some learners, such as logistic regression and hard-margin
support vector machines, are invariant to feature bias and describes
how to correct this type of sample bias for those learners that are
sensitive to feature bias, such as decision trees and naive Bayes.
However, this work is limited to situations where one could build
a model that is asymptotically close to the true unbiased model
Q(y|x). Recently however, Fan, Davidson, Zadrozny and Yu [Fan’
et al 2005] illustrated that this is not always possible, andall types
of learner may be effected by feature sample bias. It is difficult to
know which algorithm is not affected by bias without knowingthe
true modelQ(y|x). Importantly however, the true modelQ(y|x)
is generally never known for real-world problems. That is, we can-
not apply some types of learners and assume that they will be able
to overcome sample bias. Given this earlier result, the problem
associated with learning with a biased sample is:

PROBLEM 1.1. The Learning From Sample Biased Problem
Given a labeled training setD, an unlabeled test setT , such that
D and T may or may not be drawn from the same distribution,
and a series of learning algorithms (L1...Lk): Which learner when
applied toD generates the model that is most accurate onT?

We begin by discussing various types of sample selection bias as
well as the notations used throughout the paper. In Section 3, we
empirically show that traditional approaches, cross-foldvalidation
and leave-one-out validation on the training set, can give mislead-
ing, sometimes pessimistic, solutions to Problem 1.1. In particular,
we provide an explanation of their poor performance in Section 3.4.
In Section 4, we describe and explain the mechanism of the pro-
posed algorithm to solve Problem 1.1. Section 5 empiricallyillus-
trates that our algorithm outperforms the traditional approaches. To
be exact, with both biased and unbiased datasets, we show that our
algorithm is capable of choosing the best learner 84% of the time
while cross-validation and leave one-out validation achieve rates
approximately from 40% to 68%. Importantly, in Section 6, we
have applied the proposed approach on charity donation solicitation
and credit card card fraud detection datasets, where sampleselec-
tion bias is common. The proposed method correctly ordered per-
formance of all competing classifiers, while cross-validation was
right 58% of the time. In Section 7, we explain the mechanism of
the proposed algorithm in terms of matching true probability dis-
tributions. Related work on sample selection bias is reviewed in
Section 8.

2. TYPES OF SAMPLE SELECTION BIAS
AND NOTATION

Assume that the events = 1 denotes that a labeled training ex-
ample(x, y) is selected from the unbiased joint distributionQ(x, y)
of examples into the training setD, and thats = 0 denotes that

(x, y) is not chosen. Using the dependency ons, the training set
is sampled from the distribution̂P(x, y, s = 1). Sinces = 1 is a
fixed value, we can simplify this notation by removing the explicit
dependency ons = 1, and it becomesP(x, y). In other words, we
defineP̂(x, y, s = 1) = P(x, y).

The training distributionP(x, y) and testing distributionQ(x, y)

are related byP(x, y) = P̂(x, y, s = 1) = Q(x, y) · P̂(s =
1|x, y). This is straightforward by applying the product rule, such
that P̂(x, y, s = 1) = P̂(x, y) · P̂(s = 1|x, y). As sample
selection bias is denoted throughs = 1, P̂(x, y) is the same as
the true unbiased distribution or̂P(x, y) = Q(x, y). In addition,
P̂ (s = 1|x, y) is equivalent toP (s = 1|x, y), as introduced by
Zadrozny in [Zadrozny, 2004].

In [Zadrozny, 2004], four different types of sample selection bias
are clearly discussed according to the dependency ofs on x and
y. Note that in all cases the test set examples are assumed to be
unbiased, since the model will be used on the entire population. A
summary of all notations and assumptions made in this paper is in
Figure 2.

In the complete independent cases is independent from both
x andy, i.e., P (s = 1|x, y) = P (s = 1). That is, the sample
selection bias depends on some other event completely independent
of the feature vectorx and the true class labely.

In the feature dependent caseor feature bias case, the selec-
tion biass is dependent on the feature vectorx and isconditionally
independent of the true class labely givenx, i.e.,P (s = 1|x, y) =
P (s = 1|x). The training distributionP(x, y) = P(x)P(y|x)
and test distributionQ(x, y) = Q(x)Q(y|x) are associated via
P(x) = Q(x) · P (s = 1|x) andP(y|x) = Q(y|x). This type
of sample selection is extensive in many mining applications. For
example, in the direct marketing case mentioned earlier, the cus-
tomers are selected into the training sample based on whether or
not they have received the offer in the past. Because the decision
to send an offer is based on the known characteristics of the cus-
tomers (that is,x) before seeing the response (that is,y) then the
bias will be of this type. This type of bias also occurs in medi-
cal data where a treatment is not given at random, but the patients
receive the treatment according to their symptoms which arecon-
tained in the example description (i.e., thex values). Therefore,
the population that received the treatment in the past is usually not
a random sample of the population that could potentially receive
the treatment in the future.

In theclass dependent case, the selection bias is dependent only
on the true class labely, and isconditionallyindependent from the
feature vectorx, i.e.,P (s|x, y) = P (s|y). This occurs when there
is a correlation between the label value and the chance of appear-
ance in the database. For example, people with higher incomemay
be less inclined to answer a survey about income. Thus, if we are
trying to learn to predict an individual’s income category using sur-
vey data, class dependent bias is likely to occur.

In the complete dependent case, there is no assumption about
any restriction of the independence ofs given x andy, and both
the example description and its label influence whether the example
will be chosen into the training set.

2.1 Effect of Bias on Learning
Figure 1 illustrates the effect of feature as well as class bias on

the training and test set distributions. In situation a), since feature
bias cannot changeP (y|x) but only P (x), the class boundaries
typically do not change unlessP (x) becomes zero for some ar-
eas of the instance space. We see that in the training set, thetrue
probabilityP (y|x) is under-estimated in region 1, over-estimated



Figure 1: Visualization of a possible effect of a) feature bias
and b) class bias on training set. There are two classes, and
only areas with positive class “+” are shaded, and the darkness
or intensity shows frequency of examples in the highlightedre-
gion.
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in region 2, and, for region 3, there is no effect. In situation b),
class bias can change the class boundaries. The positive class or
P(y=“+”) is under estimated in the training set, and hence the posi-
tive regions shrink in size and “intensity”.

For the remainder of this paper, we concentrate on feature bias
as it is believed to happen extensively in practice [Zadrozny, 2004,
Fan’ et al 2005]. In addition, we show below that when the prior
class probability is the same in the training and test sets orP (y|s =
1) = P (y), the only possible sample selection bias is feature bias
or P (s = 1|x, y) = P (s = 1|x).

P (s = 1|x, y)

= P (y,x|s=1)P (s=1)
P (x,y)

Bayes Theorem

= P (x|s=1).P (y|x,s=1)P (s=1)
P (x,y)

Product Rule

= P (x|s=1).P (y|x)P (s=1)
P (x,y)

No Class Bias

= P (x,s=1).P (x,y)P (s=1)
P (s=1)P (x)P (x,y)

Conditional Probability

= P (x,s=1)
P (x)

Cancellation

= P (s = 1|x) Conditional Probability

3. FAILURE OF TRADITIONAL APPROACHES
We begin this section by introducing the eleven data sets used

throughout the paper.

3.1 Biased and Unbiased Datasets
Since in our learning problem definition (see Problem 1.1) we

do not explicitly know if the training sample is biased, we include
data sets with little or no sample bias such as several Newsgroup
data sets in addition to the UCI data sets that will be purposefully

• x is feature vector,y is class label, ands = 1 denotes
that an example(x, y) is selected into the training setD.

• Sample selection bias is formalized as dependency be-
tweens = 1, x and y, asP (s = 1|x, y). Different
types of sample selection bias can be found in Section 2.

• In particular, feature bias is denoted asP (s = 1|x, y) =
P (s = 1|x).

• Q(x) is the true target probability of feature vectorx in
the instance space.

• Q(y|x) is the true conditional probability for feature
vectorx to have class labely.

• The test setT is drawn from the unbiased joint distribu-
tion Q(x, y) = Q(x)Q(y|x). But since the labels are
not available, we only haveT = (X) = {xi}.

• The training setD = (X, Y ) = {(xi, yi)} is drawn
from the joint distributionP̂(x, y, s = 1).

• When the explicit dependency ons = 1 is omitted in the
notation, the distribution̂P(x, y, s = 1) is short-handed
asP(x, y), andP(x, y) = P(x) · P(y|x).

• Whens = 1 is elaborated,P̂(x, y, s = 1) is decom-
posed intoQ(x, y) ·P (s = 1|x, y), or a product of true
unbiased joint distribution with sample selection bias.

• P(x) andQ(x) are the probability distributions of fea-
ture vectors in the training and test sets respectively.

• P(y|x), Q(y|x) is the conditional probability distribu-
tion of class labels given the feature vectors.

• Under feature bias,P(y|x) = Q(y|x) andP(x) =
Q(x)P (s = 1|x).

• Θ is the model space assumed by a learner.

• θa is a best model found by learning algorithmLa by
searching in its chosen model spaceΘa given training
dataD.

• Ta = {(x, ya)} is the labeling of the test setT given by
the classifierθa.

• Qa is θa’s estimate ofQ(x, y).

• θa
b is a new classifier built fromTa using learnerLb, that

is the model built byLb using the test set labeled byLa.

• AccTraina
b is the accuracy on the training setD of the

classifierθa
b built from Ta using learnerLb. It is not the

typical training set accuracy.

Figure 2: Summary of Symbols and Concepts



biased.
We perform experiments on articles drawn from six pairs of News-

groups [Rennie 2003]. In half of these problems (Mac-Hardware,
Baseball-Hoc, and Auto-space), the articles in the newsgroups are
very similar, and in the other half (Christ-Sales, MidEast-Elec, and
MidEast-Guns), are quite different. The training and test datasets
are created using the standard bydate division into training (60%)
and test (40%) based on the posting date. This division poten-
tially creates a sample bias. For example, in the MidEast-Guns
newsgroup, the word “Waco” occurs extensively in articles in the
training set but not in the test set, as interest in the topic fades.
Therefore, instances of articles containing the word “Waco” in the
training set are much more populous than in the test set. Since the
proportion of each class label is the same in the training andtest
data sets, there is no class label bias. We used Rainbow [McCal-
lum 1998] to extract features from these news articles. The feature
vector for a document consists of the frequencies of the top ten
words by selecting words with highest average mutual information
with the class variable.

The UCI data sets are feature biased by sorting the training set
on the first attribute and removing the first 25% of records thereby
creating a selection bias based on the first feature. The testsets are
unaltered.

3.2 Traditional Approaches
For each data set we attempt to estimate the generalization er-

ror from the training set for a variety of learners to determine the
best performing learner. There are two common areas/approaches
to achieve this. The structural risk minimization approachbounds
the generalization error as a function of the training set error and
Vapnik Chervonenkis (VC) dimension. Formally,GE ≤ TE +
r

V C(L)log( 2n

V C(L)
+1)−log( δ

4
)

n
, whereGE is the generalization er-

ror,TE is the training set error,V C(L) is theV C dimension of the
learnerL, n is the size of the training set andδ is the chance of the
bound failing. However, this bound derivation explicitly makes the
stationary distribution assumption and makes no claim to formally
hold when it is violated as in our case [Vapnik 1995].

Two empirical alternatives for generalization error estimation
commonly used in data mining is ten-fold cross-validation and leave-
one-out validation. In the ten-fold cross-validation approach, the
training data set is divided into ten equally sized, randomly cho-
sen folds. Each fold is used to evaluate the accuracy of a model
built from the remaining nine folds, the average accuracy onthe
hold-out fold is then used as an estimate of generalization error.
Typically, as in our experiments, the entire process is repeated one
hundred times with different randomly generated folds. With the
leave-one-out validation approach, each instance is used as a test
set and a model built from all remaining instances. Though other
techniques motivated from the probability and statistics literature
can be used to find the best performing model, they in fact return
similar results to cross-validation. It is well known that asymptot-
ically leave-one-out validation is identical to Aikake’s information
criterion (AIC) and that for reasonable (small) values ofk that the
Bayesian information criterion (BIC) returns similar results to k-
fold cross-validation [Moore 2001].

3.3 Unsatisfactory Results
With the Newsgroup data, the actual testing accuracy and their

order among four algorithms on each of the six datasets are sum-
marized in Table 1 and 2. As a comparison, the testing accuracy
and their order estimated by ten-fold cross-validation areshown in
Table 3 and 4, and the corresponding results by leave-one-out are

DataSet DT NB LR SVM
Christ-Sales 92.1 87.7 92.0 91.6

Mac-Hardware 81.6 78.9 89.3 76.4
Baseball-Hoc 84.3 75.4 88.6 73.9
MidEast-Elec 85.6 82.8 92.2 78.3
MidEast-Guns 79.7 89.3 89.7 78.6

Auto-Space 85.7 83.2 89.4 79.6

Table 1: Accuracy of Four Classifiers on the Test Set for Vari-
ous Newsgroup Data Sets

DataSet 1st 2nd 3rd 4th
Christ-Sales DT LR SVM NB

Mac-Hardware LR DT NB SVM
Baseball-Hoc LR DT NB SVM
MidEast-Elec LR DT NB SVM
MidEast-Guns LR NB DT SVM

Auto-Space LR DT NB SVM

Table 2: Accuracy Order of Four Classifiers on Test Set of Var-
ious Newsgroup Data Sets

in Table 5 and 6.
We find that ten-fold cross-validation can be used to accurately

predict the order of learner performance most of the time in all
but 1 of the 6 data sets (Tables 2 vs 4). As in all our results, an
asterisk indicates an incorrect result when compared to thetrue test
set error. However, for leave-one-out validation, in 5 out of 6 data
sets, the learner accuracy order is incorrectly predicted (Tables 2 vs
6).

Furthermore, both ten-fold and leave-one-out appear to some-
times provide poor estimates of the learner accuracy (Table1 vs
Tables 3 and 5) with the average difference between the actual er-
ror and error estimated by ten-fold (leave-one-out) being 1.6 (3.6)
with a minimum of 0 (0) and maximum of 7.5 (14.1).

With biased UCI datasets, we find that both ten-fold and leave-
one-out validation do not indicate well which learner performs the
best. The actual testing accuracy is summarized in Table 7, and
the estimated accuracy by ten-fold cross-validation and leave-one-
out are in Tables 8 and 9. If we summarize the results in com-
plete accuracy order, the results would appear pessimistic. Instead,
we have chosen a pairwise comparison. For each data set, the
four classifiers’ accuracy are compared against each other giving
rise toC2

4/2 = 6 combinations (DT vs NB, DT vs LR, DT vs
SVM, NB vs LR, NB vs SVM and LR vs SVM). Therefore, for
our five UCI datasets, there are 30 classifier comparisons (6 per
dataset). Table 10 shows the correct pairwise comparison obtained
from the test set. Table 11 shows that the results of using ten-fold
cross-validation repeated 100 times (at great computationcost) are
correct only 17 out of the 30 times. In addition, ten-fold cross-
validation is a woeful method to indicate learner accuracy with the
average difference being 6.2 (minimum of 0.6 and maximum 20.9)
(Tables 7 and 8). The results for leave-one-out validation results
(Tables 12) are even worse. For the 30 pairwise comparisons,only
15 have been correctly predicted. Furthermore, the averagediffer-
ence in accuracy is 6.4 with the minimum being 0.4 and the maxi-
mum 21.2 (Tables 7 and 9).

The training accuracy results (not shown) are almost identical
to the results for leave-one-out validation, and hence is also a poor
indicator of the classifiers’ true accuracy on the test sets for both the
Newsgroup datasets and biased UCI datasets. This is to be accepted



DataSet DT NB LR SVM
Christ-Sales 91.5 88.1 91.7 91.5

Mac-Hardware 85.0 80.0 89.2 75.8
Baseball-Hoc 85.7 76.8 87.7 73.5
MidEast-Elec 91.5 80.8 92.2 75.4
MidEast-Guns 87.2 89.3 90.2 78.7

Auto-Space 89.5 84.2 91.5 79.7

Table 3: Accuracy for Ten-Fold Cross-Validation of Four Clas-
sifiers on Training Set of Various Newsgroup Data Sets. Aver-
aged Accuracy over 100 Trials. c.f. Table 1

DataSet 1st 2nd 3rd 4th
Christ-Sales *LR *SVM *DT NB

Mac-Hardware LR DT NB SVM
Baseball-Hoc LR DT NB SVM
MidEast-Elec LR DT NB SVM
MidEast-Guns LR NB DT SVM
Auto-Space LR DT NB SVM

Table 4: Accuracy Order for Ten-Fold Cross-Validation of
Four Classifiers on Training Set of Various Newsgroup Data
Sets. Averaged Accuracy over 100 Trials. An “*” indicates a
different ordering than Table 2.

as the biased training data set is not representative of the unbiased
test set.

3.4 An Explanation
Consider the distributionsQ(x, y) = Q(y|x)·Q(x) from which

the test set is drawn and the biased distributionP(x, y) = P(y|x) ·
P(x) from which the training set is drawn. For the feature bias
case, which is the focus of this paper,P(y|x) = Q(y|x) but
P(x) 6= Q(x). Even if our learner perfectly estimates the true con-
ditional probabilityQ(y|x), the estimated generalization error will
still most likely be incorrect. LetP(y∗|x) be the probability for the
most likely label for a particular instance, then the learner’s lowest
generalization error possible isGE =

P

x
Q(x)(1 − P(y ∗ |x)).

However, the lowest generalization error that can be estimated from
the training set isĜE =

P

x
P(x)(1 − P(y ∗ |x)) 6= GE as

P(x) 6= Q(x). For example in Figure 1:a) the error for Region 1
will be under estimated compared to the region’s true error.This
is because∀x ∈ Region 1,P(x) < Q(x). An over and under
occurrence of instances in the training set compared to the test set
will lead to systematically under or over stating the generalization
error. This is also indicated by our experimental results (Tables 7
and 8). Each and every technique under-estimates the true error for
the Breast and Vote data sets, while every technique over-estimates
the true error for Iris and Wine. For Pima, three out of the four clas-
sification techniques over estimate the true error. Similarresults to
cross-validation are observed for leave-one-out validation.

4. A NEW APPROACH
The previous experimental results illustrate that traditional cross-

validation based approaches cannot be used effectively to deter-
mine which learner will outperform the others when the training
set is biased. In this section, we propose one that can.

4.1 Basic Idea: ReverseTesting
Assume thatθa andθb are two classifiers trained by algorithms

La andLb from the training setD. We are interested to orderθa

DataSet DT NB LR SVM
Christ-Sales 92.1 87.8 91.9 91.5

Mac-Hardware 85.3 80.6 89.3 75.7
Baseball-Hoc 86.4 76.3 87.5 87.3
MidEast-Elec 92.0 80.5 92.0 92.4
MidEast-Guns 87.8 89.3 90.2 90.2

Auto-Space 89.6 84.1 91.5 91.7

Table 5: Accuracy for Leave-One-Out Validation of Four Clas-
sifiers on Training Set of Various Newsgroup Data Sets. c.f.
Table 1.

DataSet 1st 2nd 3rd 4th
Christ-Sales DT LR SVM NB

Mac-Hardware LR DT NB SVM
Baseball-Hoc LR *SVM *DT *NB
MidEast-Elec *SVM *LR *DT *NB
MidEast-Guns *SVM *LR *NB *DT
Auto-Space *SVM *LR *DT *NB

Table 6: Accuracy Order for Leave-One-Out Validation of
Four Classifiers on Training Set of Various Newsgroup Data
Sets. An “*” indicates a different ordering than Table 2.

andθb’s accuracy on unlabeled test setT . The intuition is to make
use of the testing data’s feature vectors but the training data’s labels.
The conceptual steps ofReverseTestingare

1. Classify test dataT with θa andθb. As a result,Ta is the
labeled test data byθa, andTb by θb.

2. Train “some new classifiers” fromTa andTb.

3. Evaluate “these new classifiers” on labelled training dataD.

4. Based on the accuracy of “these new classifiers” onD, use
“some rules” to order the original classifiers’ (θa andθb) ac-
curacy onT .

The name “ReverseTesting” comes from the procedure to “come
back” to the training data. In the above basic framework of Rever-
seTesting, it does not specify either the exact ways to train“new
classifiers” or the exact “some rules”. We next instantiate these
basic procedures with a preferred implementation.

4.2 One Preferred Implementation
The two classifiers,θa, θb, are constructed by applying learning

algorithmsLa andLb on the training data setD. To determine
which one of two classifiers is more accurate onT , the first step
is to use both classifiers,θa andθb, to classify the unlabeled test
set to obtain two “labeled” data setsTa andTb. In the second step,
we construct four new classifiers by applyingLa andLb on the
two labeled test sets,Ta andTb, respectively, and these four new
classifiers are named asθa

a , θb
a, θa

b , andθb
b. For example,θa

b is the
new classifier built using algorithmLb onTa or the test set labeled
by θa. Since the original training setD is labeled, we can useD
to evaluate the accuracy of these four new classifiers. Assume that
their accuracy onD is AccTraina

a, AccTrainb
a, AccTraina

b , and
AccTrainb

b respectively, i.e.,AccTrainb
a is the accuracy ofθb

a on
D. It is important to understand thatAccTrainb

a is not the typical
training set accuracy, rather it is the accuracy on the training set of
a classifier trained byLa from labeled original test dataTb.

Next, we use two simple rules based on these four accuracy mea-
surements to determine the better performing classifier betweenθa

andθb on the unlabeled test setT .



DataSets DT NB LR SVM
Breast 98.9 98.5 98.0 99.0

Iris 92.0 88.0 84.0 66.0
Pima 73.5 72.4 75.0 72.0
Vote 97.0 91.8 97.8 99.3
Wine 55.6 55.6 72.2 66.7

Table 7: Performance of Four Classifiers on Test Set of Various
UCI Data Sets

DataSet DT NB LR SVM
Breast 94.4 95.7 96.6 96.7

Iris 92.9 94 93.9 86.9
Pima 72.6 76.9 77.7 77.3
Vote 95.3 91.2 92.0 94.4
Wine 72.2 75.3 71.6 77.7

Table 8: Accuracy for Ten-Fold Cross-Validation of Four Clas-
sifiers on Training Set of Various UCI Data Sets. Averaged Ac-
curacy over 100 Trials

DataSet DT NB LR SVM
Breast 94.8 95.8 96.8 96.8

Iris 92.4 93.9 94.5 86.4
Pima 69.2 76.8 77.8 77.0
Vote 95.1 90.8 93.2 94.5
Wine 74.6 76.8 71.1 77.5

Table 9: Accuracy for Leave-One-Out Validation of Four Clas-
sifiers on Training Set of Various UCI Data Sets.

CONDITION 4.1. If (AccTrainb
a > AccTraina

a) ∧
(AccTrainb

b > AccTraina
b ), thenθb is expected to be more accu-

rate thanθa on unlabeled test setT .

CONDITION 4.2. If (AccTrainba
a > AccTrainb

a) ∧
(AccTraina

b >AccTrainb
b), thenθa is expected to be more accu-

rate thanθb on unlabelled test setT .

CONDITION 4.3. Otherwise,θa andθb are tied and hard to dis-
tinguish.

Assume thatθb is more accurate thanθa on the testing dataT .
Under this assumption, there are more examples with correctlabels
in Tb (or T labeled byθb) thanTa. By means of its predicted labels,
Tb describes a “concept” that is expected to be closer to the true
model thanTa. For a reasonable learning algorithm, the classifier
built from Tb is expected to be more accurate than a classifier built
from Ta by the same algorithm. Conditions 4.1 and 4.2 capture this
reasoning and also rules out that the converse situation since either
Ta or Tb is typically a better labeling of the test set.

In summary, ifθa andθb don’t have the same accuracy, either
i) (AccTraina

a > AccTrainb
a) ∧ (AccTraina

b > AccTrainb
b)

whenθa is more accurate thanθb, or ii) (AccTrainb
a > AccTraina

a)∧
(AccTrainb

b > AccTraina
b ) whenθb is more accurate thanθa, is

expected to be true. In other words, if(AccTraina
a > AccTrainb

a)∧
(AccTraina

b > AccTrainb
b), θa is more accurate thanθb, and if

(AccTrainb
a > AccTraina

a) ∧ (AccTrainb
b > AccTraina

b ), θb

is more accurate thanθa.
Whenθa is more accurate thanθb, could other orders of accu-

racy, for example,(AccTraina
a > AccTrainb

a)∧(AccTraina
b <

AccTrainb
b) be true? In some rare situations, it could happen that

Breast DT NB LR SVM
DT DT DT SVM
NB NB SVM
LR SVM

Iris DT NB LR SVM
DT DT DT DT
NB NB NB
LR LR LR

Pima DT NB LR SVM
DT DT LR DT
NB LR NB
LR LR

Vote DT NB LR SVM
DT DT LR SVM
NB LR SVM
LR SVM

Wine DT NB LR SVM
DT DT LR SVM
NB LR SVM
LR LR

Table 10: Pairwise Competitive Performance of Four Classi-
fiers on Test Set of Various Biased UCI Data Sets. Each entry
indicates which of the classifiers outperformed the other.

a more correctly labeledT may not induce a more accurate classi-
fier. These rare situations include learning algorithms that do not
behave reasonably, and those stochastic problems where thetrue
label of some examples have probabilities significantly less than 1
or formally∃(x, y),Q(y|x) ≪ 1. When neither Condition 4.1 nor
Condition 4.2 is true,θa andθb are either tied or hard to separate.
The complete algorithm is summarized in Figure 3.

4.3 Efficiency
The proposed algorithm is significantly less time consumingthan

the traditional approaches. With ten-fold cross-validation to com-
pare two learners, we need to build2×10×100 models (2 learners
and 10 folds repeated 100 times), and with leave one-out validation,
2 × n models wheren is the number of instances in the training
data set. However, for ReverseTesting, we instead need onlyto
build 6 models (two models from the training set, then four models
from the labeled test set). Forℓ models comparison, ten-fold cross-
validation and leave-one-out constructℓ×10×100 andℓ×n models
respectively, and ReverseTesting constructℓ+4× (ℓ+1)× ℓ/2 =
2ℓ2 + 3ℓ models. Approximately, only when there were more than
500 algorithms to compare orℓ > 500, ReverseTesting could be be
less efficient than cross-validation.

5. EXPERIMENTAL RESULTS
We begin by evaluating our algorithm on the Newsgroup data

sets where ten-fold cross-validation but not leave-one-out valida-
tion performed well at choosing the best performing learner. The
results are summarized in Table 13. Importantly, we see thatfor the
Newsgroup data sets, which may or may not be biased, that Rever-
seTesting performs exactly the same as ten-fold cross-validation
(Table 4 vs 13) ) and significantly better than leave-one-outval-
idation (Table 6). These results are important since Newsgroup
datasets have small or no sample selection bias. This illustrates
that the proposed algorithm works well when the stationary or non-



Breast DT NB LR SVM
DT *NB *LR SVM
NB NB SVM
LR SVM

Iris DT NB LR SVM
DT *NB *LR DT
NB NB NB
LR LR

Pima DT NB LR SVM
DT *NB LR *SVM
NB LR *SVM
LR LR

Vote DT NB LR SVM
DT DT *DT *DT
NB LR SVM
LR SVM

Wine DT NB LR SVM
DT *NB *DT SVM
NB *NB SVM
LR *SVM

Table 11: Pairwise Competitive Performance for Ten-Fold
Cross-Validation of Four Classifiers on Training Set of Vari-
ous Biased UCI Data Sets. Averaged Accuracy over 100 Trials.
Each entry indicates which of the classifiers outperformed the
other. An asterisk means a difference to the correct value in
Table 10

biased distribution assumption holds.
For the purposefully biased UCI datasets, the pairwise compari-

son results of ReverseTesting are shown in Table 14. We see that,
out of the 30 comparisons, there are only 5 errors as opposed to
13 errors when using ten-fold cross-validation and 15 errors when
using leave-one-out validation. In 3 of the 5 errors, Condition 4.3
occurred and hence no decision on which classifier performedbest
could be made.

Considering both Newsgroup and UCI datasets, counting the
number of *’s or losses in all tables and the total number of all
entries (20 for Newsgroup and 30 for biased UCI), the summaryis

as follows

#Entry 10-fold leave-1 RvT
Newsgroup 20 3 15 3
biased UCI 30 13 15 5(3)
Sum 50 16 30 8
% Choose Best Learner 68% 40% 84%

It clearly shows that the proposed algorithm can choose the cor-
rect learner most of the time, while ten-fold cross-validation and
leave-one-out validation cannot.

6. APPLICATIONS ON DONATION SOLIC-
ITATION AND CREDIT CARD FRAUD

We have applied ReverseTesting to two important applications
where sample selection bias is known to exist. The first application
is charity donation dataset from KDDCUP’98 and the second isa
month-by-month data of credit card fraud detection. These prob-
lems are particularly interesting since both employ cost-sensitive
loss function as opposed to 0-1 loss.

For the donation dataset (Donate), suppose that the cost of re-
questing a charitable donation from an individualx is $0.68, and

Breast DT NB LR SVM
DT *NB *LR SVM
NB *LR SVM
LR SVM

Iris DT NB LR SVM
DT *NB *LR DT
NB *LR NB
LR LR

Pima DT NB LR SVM
DT *NB LR *SVM
NB LR *SVM
LR LR

Vote DT NB LR SVM
DT DT *DT *DT
NB LR SVM
LR SVM

Wine DT NB LR SVM
DT *NB *DT SVM
NB *NB SVM
LR *SVM

Table 12: Pairwise Competitive Performance for Leave-One-
Out Validation of Four Classifiers on Training Set of Various
Biased UCI Data Sets. Each entry indicates which of the classi-
fiers outperformed the other. An asterisk means a differenceto
the correct value in Table 10

DataSet 1st 2nd 3rd 4th
Christ-Sales *LR *SVM *DT NB

Mac-Hardware LR DT NB SVM
Baseball-Hoc LR DT NB SVM
MidEast-Elec LR DT NB SVM
MidEast-Guns LR NB DT SVM
Auto-Space LR DT NB SVM

Table 13: Accuracy Order for ReverseTesting of Four Classi-
fiers on Training Set of Various Newsgroup Data Sets. An “*”
indicates a different ordering than Table 2.

the best estimate of the amount thatx will donate isY (x). Its ben-
efit matrix (converse of loss function) is:

predictdonate predict¬donator
actualdonate Y(x) - $.0.68 0
actual¬donate -$0.68 0

The accuracy is the total amount of received charity minus the cost
of mailing. Assuming thatp(donate|x) is the estimated probabil-
ity thatx is a donor, we will solicit tox iff p(donate|x) · Y (x) >
0.68. The data has already been divided into a training set and a test
set. The training set consists of 95412 records for which it is known
whether or not the person made a donation and how much the do-
nation was. The test set contains 96367 records for which simi-
lar donation information was not published until after the KDD’98
competition. We used the standard training/test set splitssince it
is believed that these are sampled from different individuals thus
incuring feature bias [Zadrozny, 2004]. The feature subsets (7 fea-
tures in total) were based on the KDD’98 winning submission.To
estimate the donation amount, we employed the multiple linear re-
gression method. As suggested in [Zadrozny and Elkan, 2001], to



function ReverseTesting(La , Lb, D, T )
where:

• La, Lb are the two learners to compare and choose.
• D = {(x1, y1)...(xn, yn)} is the labeled and potentially biased

training set.
• T = {x1...xm} is the unlabeled test set.

begin:

1. θa andθb are the two models trained by applying algorithmLa and
Lb on the training set respectively.

2. Ta is the labeled test set by classifierθa. Similarly,Tb is the labeled
test set by classifierθb.

3. θb
a is a classifier trained by applying algorithmLa onTb. Similarly,

we haveθa
a, θa

b
andθb

b
.

4. Test classifiersθb
a, θa

a , θa
b

, and θb
b

on training dataD, and
their corresponding accuracies onD are denoted asAccTrainb

a,
AccTraina

a, AccTraina
b

, andAccTrainb
b
.

5. If AccTrainb
a > AccTraina

a andAccTrainb
b

> AccTraina
b

,
thenθb trained by algorithmLb is more accurate on unlabeled test
dataT .

6. Else If AccTraina
a > AccTrainb

a and AccTraina
b

>

AccTrainb
b
, thenθa trained by algorithmLa is more accurate on

T .

7. Otherwise,θa andθb are either tied or hard to distinguish.

end

Figure 3: A preferred implementation of ReverseTesting to de-
termine the best Learner

avoid over estimation, we only used those contributions between
$0 and $50.

The second data set is a credit card fraud detection (CCF) prob-
lem. Assuming that there is an overheadv = $90 to dispute and
investigate a fraud andy(x) is the transaction amount, the follow-
ing is the benefit matrix:

predictfraud predict¬fraud
actualfraud y(x) - v 0
actual¬fraud -v 0

The accuracy is the sum of recovered frauds minus investigation
costs. Ifp(fraud|x) is the probability thatx is a fraud,fraud
is the optimal decision iffp(fraud|x) · y(x) > v. The dataset
was sampled from a one year period and contains a total of .5M
transaction records. The features (20 in total) record the time of the
transaction, merchant type, merchant location, and past payment
and transaction history summary. We use data of the last month as
test data (40038 examples) and data of previous months as training
data (406009 examples), thus obviously creating feature bias since
no transactions will be repeated.

For cost-sensitive problems, the most suitable methods arethose
that can output calibrated reliable posterior probabilities [Zadrozny
and Elkan, 2001]. For this reason, we use unpruned single deci-
sion tree (uDT), single decision tree with curtainlment (cDT), naive
Bayes using binning with 10 bins (bNB), and random decision tree
with 10 random trees (RDT). Since both datasets are significant in
size and leave-one-out would have taken a long time to complete,
we only tested 10 cross-validation, repeated for 10 times for each
dataset, to compare with ReverseTesting. The detailed accuracy re-
sults are summarized in Table 15 and 16, and pairwise orders are
summarized in Table 17 and Table 18. ReverseTesting predicted
exactly the order as the actual pairwise order on the test datasets
for both donation and credit card fraud detection, so its results are

Breast DT NB LR SVM
DT DT DT SVM
NB *?? SVM
LR *??

Iris DT NB LR SVM
DT DT DT DT
NB NB NB
LR LR

Pima DT NB LR SVM
DT DT *?? DT
NB LR NB
LR LR

Vote DT NB LR SVM
DT DT *DT SVM
NB LR SVM
LR SVM

Wine DT NB LR SVM
DT DT *DT SVM
NB LR SVM
LR LR

Table 14: Pairwise Competitive Performance of Four Classi-
fiers of Various Biased UCI Data Sets using ReverseTesting on
Training Set. Each entry indicates which of the classifiers out-
performed the other. An entry of “??” indicates that Conditi on
4.3 occurred and hence no decision could be made. An asterix
means a difference to the correct value in Table 10

DataSet bNB uDT cDT RDT
Donate 11334 12577 14424 14567
CCF 412303 537903 691044 712314

Table 15: Accuracy of Four Classifiers on the Test Set for Do-
nation and CCF Data Sets

the same as Table 17. On the other hand, for pairwise order, 10-fold
cross validation was correct in 7 out 12 times.

7. INTERPRETATION BASED ON PROBA-
BILITY DISTRIBUTION APPROXIMA-
TION

The proposed algorithm is built around the main idea of Con-
dition 4.1 or “if (AccTrainb

a > AccTraina
a) ∧ (AccTrainb

b >
AccTraina

b ), thenθb is expected to be more accurate thanθa on
unlabeled test setT .” On the basis of this main idea, we study how
ReverseTesting chooses the most accurate classifier to approximate
the unbiased distributionQ(x, y). We use Kullback-Leilber dis-
tance or KL-distance to measure the difference between two distri-
butions.

Recall that testing data setT is drawn from the unbiased joint
distributionQ = Q(x, y) (class labely is withheld though), and
the training dataD is drawn from the biased distributionP =
P(x, y). Now assume thatQb = Qb(x, y) is the estimate of
Q(x, y) by classifierθb, and similarly,Qa = Qa(x, y) by clas-
sifier θa. We will show that when Condition 4.1 holds true, the
KL-distance betweenQ andQb is expected to be less than between
Q andQa, or KL(Q,Qb) < KL(Q,Qa).

In order to do so, we first show that if Condition 4.1 holds, then



DataSet bNB uDT cDT RDT
Donate 129 112 135 127
CCF 601434 574123 589416 612434

Table 16: Accuracy for Ten-Fold Cross-Validation of Four
Classifiers on Donation and CCF Datasets

Donate bNB uDT cDT RDT
bNB uDT cDT RDT
uDT cDT RDT
cDT RDT

CCF bNB uDT cDT RDT
bNB uDT cDT RDT
uDT cDT RDT
cDT RDT

Table 17: Pairwise Competitive Performance of Four Classi-
fiers on Testing Data of Donate and CCF. ReverseTesting pre-
dicted exactly the same order

the following condition is also true.

OBSERVATION 7.1. If (AccTrainb
a > AccTraina

a) ∧
(AccTrainb

b > AccTraina
b ) then,KL(P ,Qb) < KL(P ,Qa).

Since both algorithmsLa andLb were able to compute classi-
fiersθb

a andθb
b fromTb (whose accuracy on the labeled training data

D areAccTrainb
a andAccTrainb

b respectively) that are more ac-
curate on the labeled training setD than the other two classifiersθa

a

andθa
b constructed fromTa, thenTb is expected be closer in distri-

bution toD thanTa or KL(P ,Qb) < KL(P ,Qa). In the unusual
situations where this doesn’t occur and insteadKL(P ,Qb) >
KL(P ,Qa), is when either one or both algorithmsLa andLb be-
haves unreasonably and constructs more accurate models from less
accurately labeled training set.

OBSERVATION 7.2. By the definition of accuracy, it is expected
to be true that ifθb is more accurate thanθa, thenKL(Q,Qb) <
KL(Q,Qa).

Based on the above two observations, we can therefore rewrite
Condition 4.1 as:

If KL(P ,Qb) < KL(P ,Qa) (1)

then

KL(Q,Qb) < KL(Q,Qa)

Next, we examine when the above equation holds true. In the
simple case, clearly when the stationary distribution assumption
holds orP = Q, the above Eq 1 is trivially correct. This shows that
the proposed algorithm should match the probability distribution
very well when there is no sample selection bias.

With feature bias, we expand Eq 1 by applying the following set
of equations

P = P(x)Q(y|x) = Q(x)P (s = 1|x)Q(y|x) (2)

Q = Q(x)Q(y|x)

Qa = Qa(x)Qa(y|x)

Qb = Qb(x)Qb(y|x)

Donate bNB uDT cDT RDT
bNB *bNB cDT *bNB
uDT cDT RDT
cDT *cDT

CCF bNB uDT cDT RDT
bNB *bNB *bNB RDT
uDT cDT RDT
cDT RDT

Table 18: Pairwise Competitive Performance Predicted by Ten-
Fold Cross-Validation on Donate and CCF Data Sets. A * indi-
cates a difference in order from the test data

In the above equations,Qa(x) = Qb(x) = P(x) unlessθa or θb

is not trained fromD directly (such as bootstrap samples) or they
are not consistent learners. Using these equations, Eq 1 becomes

If KL(P(x)Q(y|x),P(x)Qb(y|x)) < (3)

KL(P(x)Q(y|x),P(x)Qa(y|x))

then

KL(Q(x)Q(y|x),P(x)Qb(y|x)) <

KL(Q(x)Q(y|x),P(x)Qa(y|x))

The antecedent of Eq 3 can be simplified intoKL(Q(y|x),Qb(y|x)) <
KL(Q(y|x),Qa(y|x)) by removing the constantP (x). In other
words, Condition 4.1 is an approximate way to test the precisions
of the estimated posterior probabilityQa(y|x) andQb(y|x) to ap-
proximate the true posterior probabilityQ(y|x). WhenQb(y|x)
is a better estimate of the posterior probability, the consequent of
Eq 3 is expected to be true unless the biasP (s = 1|x) is so skewed
on a very large portion of the instance space. We ran several tests
using synthetic datasets with multiple Boolean variables,and have
found that this holds true around 99.9% of the time. Details on this
simulation will be in the longer version of this paper.

8. RELATED WORK
The sample selection bias problem has received a great deal of

attention in econometrics. There it appears mostly becausedata are
collected through surveys. Very often people that respond to a sur-
vey are self-selected, so they do not constitute a random sample of
the general population. In Nobel-prize winning work, [Heckman,
1979] has developed a two-step procedure for correcting sample
selection bias in linear regression models, which are commonly
used in econometrics. The key insight in Heckman’s work is that
if we can estimate the probability that an observation is selected
into the sample, we can use this probability estimate to correct the
model. The drawback of his procedure is that it is only applicable
to linear regression models. In the statistics literature,the related
problem of missing data has been considered extensively [Little
and Rubin, 2002]. However, they are generally concerned with
cases in which some of the features of an example are missing,and
not with cases in which whole examples are missing. The litera-
ture in this area distinguishes between different types of missing
data mechanisms: missing completely at random (MCAR), miss-
ing at random (MAR) and not missing at random (NMAR). Differ-
ent imputation and weighting methods appropriate for each type of
mechanism have been developed. More recently, the sample selec-
tion bias problem has begun to receive attention from the machine
learning and data mining communities. Fan, Davidson, Zadrozny
and Yu [Fan’ et al 2005] use the categorization in [Zadrozny,2004]



to present an improved categorization of the behavior of learning
algorithms under sample selection bias (global learners vs. lo-
cal learners) and analyzes how a number of well-known classi-
fier learning methods are affected by sample selection bias.The
improvement over [Zadrozny, 2004] is that the new categorization
considers the effects of incorrect modeling assumptions onthe be-
havior of the classifier learner under sample selection bias. In other
words, the work relaxes the assumption that the data is drawnfrom
a distribution that could be perfectly fit by the model. The most
important conclusion is that most classification learning algorithms
could or could not be affected by feature bias. This all depends
on if the true model is contained in the model space of the learner
or not, which is generally unknown. Smith and Elkan [Smith and
Elkan, 2004] provide a systematic characterization of the different
types of sample selection bias and examples of real-world situa-
tion where they arise. For the characterization, they use a Bayesian
network representation that describes the dependence of the selec-
tion mechanism on observable and non-observable features and on
the class label. They also present an overview of existing learn-
ing algorithms from the statistics and econometrics literature that
are appropriate for each situation. Finally, Rosset et al. [Rosset
et al., 2005] consider the situation where the sample selection bias
depends on the true label and present an algorithm based on the
method of moments to learn in the presence of this type of bias.

9. CONCLUSION AND FUTURE WORK
Addressing sample selection bias is necessary for data mining

in the real world for applications such as merchandise promotion,
clinical trial, charity donation, etc. One very important problem
is to study the effect of sample selection bias on inductive learn-
ers and choose the most accurate classifier under sample selection
bias. Some recent works formally and experimentally show that
most classifier learners’ accuracy could be sensitive to onevery
common form of sample selection bias, where the chance to select
an example into the training set depends on feature vectorx but not
directly on class labely. Importantly, this sensitivity depends on
whether or not the unknown true model is contained in the model
space of the learner, which is generally not known either before or
after data mining for real-world applications. This fact makes the
problem to choose the most accurate classifier under sample selec-
tion bias a critical problem. Our paper provides such a solution.

We first discuss three methods for classifier selection undersam-
ple selection bias, ten-fold cross-validation, leave-one-out-validation
and structural risk minimization, and empirically evaluate the first
two. Our experiments have shown that both the predicted order
and value of the learners’ accuracy are far from their actualperfor-
mance on the unbiased test set. In the worst cases, the predicted
order is not even better than random guessing. This re-confirms the
need to design a new algorithm to select classifiers under sample
selection bias.

We propose a new algorithm that is significantly different from
those three methods to evaluate a classifier’s accuracy. In our prob-
lem formulation, we do not assume that the training and testing data
are drawn from the same distribution. In other words, they could
be drawn from either the same or different distribution. Quite dif-
ferent from the ways of solely relying on labelled training data, we
make use of unlabelled test data during model selection. Thebasic
idea and process is to use the competing classifiers trained from the
training set to label the test data set, i.e, one labeled testset for each
competing classifier, and then re-construct a set of new classifiers
from these labeled test sets. We then order the original competing
classifiers accuracy based on the new classifiers’ accuracy on the
training set. The correctness of the proposed algorithm is discussed

under accuracy to match true class labels as well as KL-distance to
match probability distributions.

Experimental studies have found that when there is little orno
sample selection bias, our proposed algorithm predicts theorder of
performance as good as ten-fold cross-validation and significantly
better than leave-one-out validation. Importantly, when there is
sample selection bias, our proposed algorithm is significantly bet-
ter (5 errors including 3 undetermined) than cross-validation (13
errors) and leave-one-out (15) errors among 30 pairwise compar-
isons. For charity donation solicitation and credit card fraud de-
tection applications where sample bias is a common problem,Re-
verseTesting is correct in predicting all 12 pairwise orders, while
cross-validation is correct in 7 of these cases.

Future Work Although, the algorithm itself does not limit the
type of sample selection bias, our paper mainly focuses on feature
selection bias. In future work, we will consider other typesof sam-
ple selection bias. Our algorithm correctly orders the accuracy of
competing learners. However, it does not estimate the actual ac-
curacy on the test data itself. This is another challenging problem
since the label of the test set is not given in our problem setting. We
choose a preferred implementation of ReverseTesting. It isinterest-
ing to evaluate other possibilities on how to train the new classifiers
from labeled test data and the rules to induce performance order.

10. REFERENCES
Fan W., Davidson I., Zadrozny B. and Yu P., (2005), An
Improved Categorization of Classifier’s Sensitivity on Sample
Selection Bias, 5th IEEE International Conference on Data
Mining, ICDM 2005.
Heckman, J. (1979). Sample selection bias as a specification
error.Econometrica, 47:153–161.
Little, R. and Rubin, D. (2002).Statistical Analysis with
Missing Data. Wiley, 2nd edition.
McCallum, A. (1998). Bow: A toolkit for statistical language
modeling, text retrieval, classification and clustering. CMU TR.
Moore, A.A Tutorial on the VC Dimension for Characterizing
Classifiers, Available from the Website:
www.cs.cmu.edu/ãwm/tutorials
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