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ABSTRACT

Perhaps, one of the most important assumptions made byfielass
cation algorithms is that the training and test sets are faem
the same distribution, i.e., the so-called “stationaryrifigtion as-
sumption” that the future and the past are identical fromabpr
abilistic standpoint. In many domains of real-world apations,
such as marketing solicitation, fraud detection, drugingsioan
approval among others, this is rarely the case. This is lsecthe
only labeled sample available for training is biased due vara
ety of practical reasons. In these circumstances, traditimeth-
ods to evaluate the expected generalization error of ficetson
algorithms, such as structural risk minimization, terdfaross-
validation, and leave-one-out validation, usually retpoor esti-
mates of which classification algorithm will be the most aate.
Sometimes, the estimated order of the learning algorittansu-
racy is so poor that it is no better than random guessing.€fbe,

a method to determine the most accurate learner is neededtfor
mining under sample selection bias. We present such an agpro
that can determine which learner will perform the best onrai-u
ased test set, given a possibly biased training set, in éidraof
the cost to use cross-validation based approaches.

Keywords Classification, Sample Selection Bias, Stationary Dis-
tribution Assumption.

1. INTRODUCTION

Consider the following typical situation a data mining girac
tioner faces. He or she has been given a training set and ésl ask
to build a highly accurate predictive model that will be apglto
make a prediction on some future set of testing instances pildc-
titioner has at his or her disposal a variety of algorithmsetrn
classifiers, such as decision trees, naive Bayes and summtar
machines, and wishes to determine the best performingitidgor
The standard approach to determine the most accurate talgori
is to perform cross-validation or leave-one out validat@nthe
training set or if the Vapnik-Chervonenkis dimension of thedel
space is known, to perform structural risk minimization §&fe-
Taylor et’ al 1996]. These standard approaches have sehesd t
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data mining and machine learning community well.

However, as data mining algorithms are applied to more chal-
lenging domains, the assumptions made by traditional &lgos
are violated. Perhaps one of the strongest assumptions byade
classification algorithms is known as the “stationary dsiion
assumption” in the machine learning literature [Vapnik 3]9&nd
“non-biased distribution” in the data mining literatureaf@ozny,
2004].

DEFINITION 1.1. Stationary or Non-Biased Distribution As-
sumption [Vapnik 1995] Each and every training set instance and
test set instance is identically and independently dravamfra
common distribution Q(x, y).

However, consider the example, where we are asked to build a
model to predict if a particular drug is effective for theiempop-
ulation of individuals, that is, instances in the futuret te=t will be
an unbiased sample. However, the available training datgpis
cally a sample from previous hospital trials where indituself
select to participate and are representative of the pati@nthat
hospital but not of the entire popular [Zadrozny, 2004]. Ha ap-
plication of data mining to direct marketing, it is commormgtice
to build models of the response of customers to a particdfar o
using only the customers that have received the offer in #s¢ @5
the training set, and then to apply the model to the entireoousr
database. Because these offers are usually not given atmand
the training set is not drawn from the same population aseke t
set. Therefore, a model constructed using this trainingnsgt not
perform well for the entire population of customers.

In this paper we relax the stationary distribution assuampéind
instead allow the training set and test set to be drawn frdferiig
distributions but within some weak limitations.

DEFINITION 1.2. Biased Training Instance Distribution As-
sumption Each and every training instance is drawn from distri-
bution P(x,y), and test set instance is identically and indepen-
dently drawn from distributior@(x, y). Q(x,y) is the true unbi-
ased distribution of instance®,(x, y) is a biased distribution, and

Q(x,y) # P(x,y).

The above definition only states thBt(x,y) # Q(x,y), but
the two distributions may still differ in many different way The
framework presented by Zadrozny [Zadrozny, 2004] discigag-
ous types of bias. For example, one of the prevalent biagife
bias”, which is best understood via the standard deconiposit
P(x,y) =P(x) - P(ylx) andQ(x,y) = Q(x) - Q(y|x). Feature
bias can occur whe®(x) # Q(x) but P(y|x) = Q(y|x) (de-
tails in Section 2). An example of feature bias is the drug atiod



example given earlier. The concept of when the drug is éffect  (x,y) is not chosen. Using the dependencysotthe training set

does not change between the training and test sets, onlhénee is sampled from the distributioR(x,,s = 1). Sinces = lisa
of encountering a feature vector (representative of a persthis fixed value, we can simplify this notation by removing the letp
situation) is different in the chosen hospital from the gahpopu- dependency or = 1, and it become®(x, y). In other words, we
lation. . . S defineP(x,y,s = 1) = P(x,y).

When the assumption of stationary distribution is liftedaises The training distributiorP (x, /) and testing distributio®(x, y)
problems for answering the question: “Which classificatigo- are related byP(x,y) = P(x,y,s = 1) = Q(x,y) - P(s =

rithm finds the best performing model?” As we shall see the tra
ditional approaches which are used extensively by the datag
community, such as cross-validation and leave-one-oidatibn,
perform hopelessly when sample bias occurs. In some circum-

1|x,y). This is straightforward by applying the product rule, such
that P(x,y,s = 1) = P(x,y) - P(s = 1|x,y). As sample

selection bias is denoted through= 1, 75(x, y) is the same as
) =

stances, the order of expected accuracy of competing misceds the true unbiased distribution 6t(x,y) = Q(x,y). In addition,

even better than random guessing. P(s = 1]x,y) is equivalent toP(s = 1|x,y), as introduced by
Previous work on this problem by Zadrozny [Zadrozny, 2004] Zadrozny in [Zadrozny, 2004].

noted that some learners, such as logistic regression addargin In [Zadrozny, 2004], four different types of sample selecthias

support vector machines, are invariant to feature bias aadribes are clearly discussed according to the dependency @fx and

how to correct this type of sample bias for those learnersate y. Note that in all cases the test set examples are assumed to be
sensitive to feature bias, such as decision trees and naiyesB ~ unbiased, since the model will be used on the entire populat
However, this work is limited to situations where one coulld summary of all notations and assumptions made in this paper i

a model that is asymptotically close to the true unbiasedeiod Figure 2.

Q(y|x). Recently however, Fan, Davidson, Zadrozny and Yu [Fan’  In the complete independent case is independent from both

et al 2005] illustrated that this is not always possible, aldypes x andy, i.e., P(s = 1|x,y) = P(s = 1). Thatis, the sample

of learner may be effected by feature sample bias. It is diffio selection bias depends on some other event completelyendept
know which algorithm is not affected by bias without knowithg of the feature vectax and the true class labgl

true modelQ(y|x). Importantly however, the true modégl(y|x) In the feature dependent cas®r feature bias casethe selec-
is generally never known for real-world problems. That is,ean- tion biass is dependent on the feature vectoand isconditionally

not apply some types of learners and assume that they wibblee a  independent of the true class labedivenx, i.e., P(s = 1|x,y) =
to overcome sample bias. Given this earlier result, thelpob ~ P(s = 1]|x). The training distributiorP(x,y) = P(x)P(y|x)

associated with learning with a biased sample is: and test distributiorQ(x,y) = Q(x)Q(y|x) are associated via
P(x) = Q(x) - P(s = 1]x) andP(y|x) = Q(y|x). This type
ProBLEM 1.1. The Learning From Sample Biased Problem of sample selection is extensive in many mining applicatidfor

Given a labeled training seb, an unlabeled test sét, such that example, in the direct marketing case mentioned earlierctrs-
D and T may or may not be drawn from the same distribution, tomers are selected into the training sample based on whethe
and a series of learning algorithmg(... L): Which learner when not they have received the offer in the past. Because thaidaci
applied toD generates the model that is most accuraté/th to send an offer is based on the known characteristics ofubke c
tomers (that isx) before seeing the response (thatysthen the
We begin by discussing various types of sample selecti®dsa  pjas will be of this type. This type of bias also occurs in medi
well as the notations used throughout the paper. In Sectiore3  c3| data where a treatment is not given at random, but thergati

empirically show that traditional approaches, cross-faltidation receive the treatment according to their symptoms whicrcane
and leave-one-out validation on the training set, can giistead- tained in the example description (i.e., tkevalues). Therefore,
ing, sometimes pessimistic, solutions to Problem 1.1. Hiqaar, the population that received the treatment in the past iallysnot
we provide an explanation of their poor performance in $eci4. a random sample of the population that could potentiallyitec
In Section 4, we describe and explain the mechanism of the pro the treatment in the future.

posed algorithm to solve Problem 1.1. Section 5 empirigélig- In theclass dependent caséhe selection bias is dependent only

trates that our algorithm outperforms the traditional apphes. To  on the true class labgl and isconditionallyindependent from the
be exact, with both biased and unbiased datasets, we shbautha  feature vecto, i.e., P(s|x,y) = P(s|y). This occurs when there
algorithm is capable of choosing the best learner 84% ofithe t s a correlation between the label value and the chance &faapp
while cross-validation and leave one-out validation ashieates ance in the database. For exar‘npk:'xl pe0p|e with h|gher |nc‘mye
approximately from 40% to 68%. Importantly, in Section 6, we pe |ess inclined to answer a survey about income. Thus, ifrere a

have applied the proposed approach on charity donatioritstion trying to learn to predict an individual’s income categosjng sur-
and credit card card fraud detection datasets, where sasafge- vey data, class dependent bias is likely to occur.
tion bias is common. The proposed method correctly ordeeed p In the complete dependent casethere is no assumption about
formance of all competing classifiers, while cross-valifatvas any restriction of the independence ofjiven x andy, and both
right 58% of the time. In Section 7, we explain the mechani$m o - the example description and its label influence whethentample
the proposed algorithm in terms of matching true probabdis- will be chosen into the training set.
tributions. Related work on sample selection bias is reggn
Section 8. : .
ection 2.1 Effect of Bias on Learning
2. TYPES OF SAMPLE SELECTION BIAS Figu.re. 1 illustrates the gffept qf feature as vyell as cllaas bn
the training and test set distributions. In situation a)csifeature
AND NOTATION bias cannot chang®(y|x) but only P(x), the class boundaries
Assume that the evest= 1 denotes that a labeled training ex- typically do not change unlesB(x) becomes zero for some ar-
ample(x, y) is selected from the unbiased joint distributiQfix, y) eas of the instance space. We see that in the training setuthe

of examples into the training sé?, and thats = 0 denotes that probability P(y|x) is under-estimated in region 1, over-estimated



Figure 1: Visualization of a possible effect of a) feature las
and b) class bias on training set. There are two classes, and
only areas with positive class “+” are shaded, and the darknss
or intensity shows frequency of examples in the highlightede-

gion.

_ Training Distributiot

Test Distributiol

a) Feature bias

b) Class bie

in region 2, and, for region 3, there is no effect. In situati),
class bias can change the class boundaries. The posits® @la
P(y="+") is under estimated in the training set, and heneegptbsi-
tive regions shrink in size and “intensity”.

For the remainder of this paper, we concentrate on feata® bi
as it is believed to happen extensively in practice [Zadyp2004,
Fan’ et al 2005]. In addition, we show below that when the prio
class probability is the same in the training and test sef¥gts =
1) = P(y), the only possible sample selection bias is feature bias

or P(s = 1|x,y) = P(s = 1]x).

P(s=1Jx,y)
— P(y,x|s=1)P(s=1)

P(x,y)
_ P(x|s=1).P(y|x,s=1)P(s=1)

P()x,y)
P(x|s=1).P(y|x)P(s=1)

P(x,y)
P(x,s=1).P(x,y)P(s=1)
P(s:l)P(x)PEx,y)

_ P(x,s=1)

Bayes Theorem
Product Rule

No Class Bias
Conditional Probability
Cancellation
Conditional Probability

3. FAILURE OF TRADITIONALAPPROACHES

We begin this section by introducing the eleven data setd use

throughout the paper.

3.1 Biased and Unbiased Datasets

Since in our learning problem definition (see Problem 1.1) we
do not explicitly know if the training sample is biased, welirde
data sets with little or no sample bias such as several Newpgr
data sets in addition to the UCI data sets that will be purfodige

x is feature vectory is class label, and = 1 denotes
that an exampléx, y) is selected into the training sét.

Sample selection bias is formalized as dependency|
tweens = 1,x andy, as P(s = 1|x,y). Different
types of sample selection bias can be found in Sectig

In particular, feature bias is denotediaés = 1|x,y) =
P(s=1]x).

Q(x) is the true target probability of feature vectoin
the instance space.

Q(y|x) is the true conditional probability for featur
vectorx to have class labe).

The test sef” is drawn from the unbiased joint distribu-

tion Q(x,y) = Q(x)Q(y|x). But since the labels ar
not available, we only havé = (X)) = {x;}.

The training setD = (X,Y) = {(x:,¥:)} is drawn
from the joint distributionP (x,y, s = 1).
When the explicit dependency en= 1 is omitted in the

notation, the distributio(x, y, s = 1) is short-handed
asP(x,y), andP(x,y) = P(x) - P(y|x).

Whens = 1 is elaboratedP(x,y,s = 1) is decom-
posed intoQ(x,y) - P(s = 1|x, y), or a product of true

unbiased joint distribution with sample selection bias.

P(x) and Q(x) are the probability distributions of feg
ture vectors in the training and test sets respectively.

P(yl|x), Q(y|x) is the conditional probability distribu
tion of class labels given the feature vectors.

Under feature biasP(y|x) = Q(y|x) andP(x) =

Q(x)P(s = 1|x).
O is the model space assumed by a learner.

0. is a best model found by learning algorithi, by
searching in its chosen model spa@g given training
dataD.

T. = {(x,ya)} is the labeling of the test s&t given by
the classifie,.

Q. is,’s estimate 0fQ(x, y).

03 is a new classifier built frorff, using learnet, that
is the model built by, using the test set labeled iy,

AccTraing is the accuracy on the training setof the
classifierdy built from T, using learnel,. It is not the
typical training set accuracy.

be-

D

e

Figure 2: Summary of Symbols and Concepts



biased.

We perform experiments on articles drawn from six pairs ofile
groups [Rennie 2003]. In half of these problems (Mac-Hareéwa
Baseball-Hoc, and Auto-space), the articles in the newgrare
very similar, and in the other half (Christ-Sales, MidERfe, and
MidEast-Guns), are quite different. The training and tegtdets
are created using the standard bydate division into trgi(60%o)
and test (40%) based on the posting date. This division poten
tially creates a sample bias. For example, in the MidEastsGu
newsgroup, the word “Waco” occurs extensively in articleshie
training set but not in the test set, as interest in the topie$.
Therefore, instances of articles containing the word “Waedhe
training set are much more populous than in the test sete$he
proportion of each class label is the same in the trainingtast
data sets, there is no class label bias. We used Rainbow [McCa
lum 1998] to extract features from these news articles. €aaufe
vector for a document consists of the frequencies of the ¢op t
words by selecting words with highest average mutual inédirom
with the class variable.

The UCI data sets are feature biased by sorting the trairghg s
on the first attribute and removing the first 25% of recordsetbyg
creating a selection bias based on the first feature. Thedestre
unaltered.

3.2 Traditional Approaches

For each data set we attempt to estimate the generalization e
ror from the training set for a variety of learners to deterenihe
best performing learner. There are two common areas/agipesa
to achieve this. The structural risk minimization approaockhinds
the generalization error as a function of the training sedreand
Vapnik Chervonenkis (VC) dimension. FormallgF < TE +

VC(L)log(

2n
Vo) , WwhereG E is the generalization er-

ror, TE is the training set errot/ C'(L) is theV C dimension of the
learnerL, n is the size of the training set ads the chance of the
bound failing. However, this bound derivation explicitlyakes the
stationary distribution assumption and makes no claim tm&ly
hold when it is violated as in our case [Vapnik 1995].

Two empirical alternatives for generalization error estiion
commonly used in data mining is ten-fold cross-validatind keave-
one-out validation. In the ten-fold cross-validation aggah, the
training data set is divided into ten equally sized, randoafio-
sen folds. Each fold is used to evaluate the accuracy of a Imode
built from the remaining nine folds, the average accuracyhan
hold-out fold is then used as an estimate of generalizaticor.e
Typically, as in our experiments, the entire process isatgukone
hundred times with different randomly generated folds. hifite
leave-one-out validation approach, each instance is usedtest
set and a model built from all remaining instances. Thougeot
techniques motivated from the probability and statistityature
can be used to find the best performing model, they in factmetu
similar results to cross-validation. It is well known thatenptot-
ically leave-one-out validation is identical to Aikakef§dérmation
criterion (AIC) and that for reasonable (small) valuescahat the
Bayesian information criterion (BIC) returns similar résuo k-
fold cross-validation [Moore 2001].

+1)—log($)

3.3 Unsatisfactory Results

With the Newsgroup data, the actual testing accuracy arid the
order among four algorithms on each of the six datasets ane su
marized in Table 1 and 2. As a comparison, the testing acgurac
and their order estimated by ten-fold cross-validationséi@vn in
Table 3 and 4, and the corresponding results by leave-onareu

DataSet DT | NB | LR | SVM
Christ-Sales | 92.1| 87.7| 92.0| 91.6
Mac-Hardware| 81.6 | 78.9 | 89.3| 76.4
Baseball-Hoc | 84.3| 75.4| 88.6 | 73.9
MidEast-Elec | 85.6 | 82.8 | 92.2| 78.3
MidEast-Guns| 79.7 | 89.3| 89.7| 78.6
Auto-Space | 85.7 | 83.2| 89.4| 79.6

Table 1: Accuracy of Four Classifiers on the Test Set for Vari-
ous Newsgroup Data Sets

DataSet 1st | 2nd | 3rd 4th
Christ-Sales | DT | LR | SVM NB
Mac-Hardware| LR | DT NB | SVM
Baseball-Hoc | LR | DT NB | SVM
MidEast-Elec | LR | DT NB | SVM
MidEast-Guns| LR | NB DT | SVM

Auto-Space | LR | DT NB | SVM

Table 2: Accuracy Order of Four Classifiers on Test Set of Var-
ious Newsgroup Data Sets

in Table 5 and 6.

We find that ten-fold cross-validation can be used to acelyrat
predict the order of learner performance most of the timellin a
but 1 of the 6 data sets (Tables 2 vs 4). As in all our results, an
asterisk indicates an incorrect result when compared ttrtlegest
set error. However, for leave-one-out validation, in 5 dub data
sets, the learner accuracy order is incorrectly predictatlés 2 vs
6).

Furthermore, both ten-fold and leave-one-out appear teesom
times provide poor estimates of the learner accuracy (Tabhle
Tables 3 and 5) with the average difference between thelamtua
ror and error estimated by ten-fold (leave-one-out) beitg(3.6)
with a minimum of 0 (0) and maximum of 7.5 (14.1).

With biased UCI datasets, we find that both ten-fold and leave
one-out validation do not indicate well which learner perfs the
best. The actual testing accuracy is summarized in Tabled, a
the estimated accuracy by ten-fold cross-validation aaddene-
out are in Tables 8 and 9. If we summarize the results in com-
plete accuracy order, the results would appear pessimistitead,
we have chosen a pairwise comparison. For each data set, the
four classifiers’ accuracy are compared against each othiegg
rise toCZ/2 = 6 combinations (DT vs NB, DT vs LR, DT vs
SVM, NB vs LR, NB vs SVM and LR vs SVM). Therefore, for
our five UCI datasets, there are 30 classifier comparisoni(6 p
dataset). Table 10 shows the correct pairwise comparistaineal
from the test set. Table 11 shows that the results of usindolen
cross-validation repeated 100 times (at great computatst) are
correct only 17 out of the 30 times. In addition, ten-fold sso
validation is a woeful method to indicate learner accuraiti the
average difference being 6.2 (minimum of 0.6 and maximurf)20.
(Tables 7 and 8). The results for leave-one-out validatesults
(Tables 12) are even worse. For the 30 pairwise comparisong,
15 have been correctly predicted. Furthermore, the aveliffge-
ence in accuracy is 6.4 with the minimum being 0.4 and the maxi
mum 21.2 (Tables 7 and 9).

The training accuracy results (not shown) are almost idahti
to the results for leave-one-out validation, and hencesis alpoor
indicator of the classifiers’ true accuracy on the test sethdth the
Newsgroup datasets and biased UCI datasets. This is to éptadc



DataSet DT | NB | LR | SVM
Christ-Sales | 91.5| 88.1| 91.7| 91.5
Mac-Hardware| 85.0 | 80.0 | 89.2 | 75.8
Baseball-Hoc | 85.7 | 76.8| 87.7 | 73.5
MidEast-Elec | 91.5| 80.8| 92.2| 75.4
MidEast-Guns| 87.2 | 89.3| 90.2| 78.7
Auto-Space | 89.5| 84.2| 91.5| 79.7

Table 3: Accuracy for Ten-Fold Cross-Validation of Four Clas-
sifiers on Training Set of Various Newsgroup Data Sets. Aver-
aged Accuracy over 100 Trials. c.f. Table 1

DataSet 1st 2nd 3rd 4th
Christ-Sales | *LR | *SVM | *DT | NB
Mac-Hardware| LR DT NB | SVM
Baseball-Hoc | LR DT NB | SVM
MidEast-Elec | LR DT NB | SVM
MidEast-Guns| LR NB DT | SVM

Auto-Space | LR DT NB | SVM

Table 4: Accuracy Order for Ten-Fold Cross-Validation of

Four Classifiers on Training Set of Various Newsgroup Data
Sets. Averaged Accuracy over 100 Trials. An “*” indicates a
different ordering than Table 2.

as the biased training data set is not representative ofrthiased
test set.

3.4 An Explanation

Consider the distribution@(x, y) = Q(y|x)-Q(x) from which
the test set is drawn and the biased distribufitiix, y) = P(y|x) -
P(x) from which the training set is drawn. For the feature bias
case, which is the focus of this papé?(y|x) = Q(y|x) but
P(x) # Q(x). Even if our learner perfectly estimates the true con-
ditional probabilityQ(y|x), the estimated generalization error will
still most likely be incorrect. LeP(yx*|x) be the probability for the
most likely label for a particular instance, then the legmlewest
generalization error possible@E = 3 Q(x)(1 — P(y * |x)).
However, the lowest generalization error that can be egtigfaom
the training set iIsGE = S P(x)(1 — P(y * |x)) # GE as
P(x) # Q(x). For example in Figure 1:a) the error for Region 1
will be under estimated compared to the region’s true erftuis
is becauserx € Region 1P(x) < Q(x). An over and under
occurrence of instances in the training set compared tcetteset
will lead to systematically under or over stating the gelieation
error. This is also indicated by our experimental resuleb(@s 7
and 8). Each and every technique under-estimates the naref@r
the Breast and Vote data sets, while every technique otienaes
the true error for Iris and Wine. For Pima, three out of the fdas-
sification techniques over estimate the true error. Simdaults to
cross-validation are observed for leave-one-out validati

4. ANEW APPROACH

The previous experimental results illustrate that trad#i cross-
validation based approaches cannot be used effectivelyetier-d
mine which learner will outperform the others when the train
set is biased. In this section, we propose one that can.

4.1 Basic Idea: ReverseTesting

Assume that, andf, are two classifiers trained by algorithms
L, and L;, from the training setD. We are interested to ordéy,

DataSet DT | NB | LR | SVM
Christ-Sales | 92.1| 87.8| 91.9| 91.5
Mac-Hardware| 85.3 | 80.6 | 89.3| 75.7
Baseball-Hoc | 86.4 | 76.3| 87.5| 87.3
MidEast-Elec | 92.0| 80.5| 92.0| 92.4
MidEast-Guns| 87.8 | 89.3| 90.2 | 90.2
Auto-Space | 89.6 | 84.1| 91.5| 91.7

Table 5: Accuracy for Leave-One-Out Validation of Four Clas
sifiers on Training Set of Various Newsgroup Data Sets. c.f.
Table 1.

DataSet 1st 2nd 3rd 4th
Christ-Sales DT LR SVM | NB
Mac-Hardware| LR DT NB | SVM
Baseball-Hoc LR *SVM | *DT | *NB
MidEast-Elec | *SVM *LR *DT | *NB
MidEast-Guns| *SVM *LR *NB | *DT
Auto-Space | *SVM *LR *DT | *NB

Table 6: Accuracy Order for Leave-One-Out Validation of
Four Classifiers on Training Set of Various Newsgroup Data
Sets. An “*” indicates a different ordering than Table 2.

andé,’s accuracy on unlabeled test §et The intuition is to make
use of the testing data’s feature vectors but the trainitgjslabels.
The conceptual steps BeverseTestingare

1. Classify test datd” with 6, and,. As a result,T, is the
labeled test data bg,, andT;, by 65.

2. Train “some new classifiers” froffi, andT.
3. Evaluate “these new classifiers” on labelled trainingdat

4. Based on the accuracy of “these new classifiersDoruse
“some rules” to order the original classifierg,(andd,) ac-
curacy onf'.

The name “ReverseTesting” comes from the procedure to “come
back” to the training data. In the above basic framework ofdRe
seTesting, it does not specify either the exact ways to tirzémw
classifiers” or the exact “some rules”. We next instantifiese
basic procedures with a preferred implementation.

4.2 One Preferred Implementation

The two classifierd,, 0, are constructed by applying learning
algorithms L, and L; on the training data seb. To determine
which one of two classifiers is more accurate’®Bnthe first step
is to use both classifierd,, andé,, to classify the unlabeled test
set to obtain two “labeled” data s€ts andT,. In the second step,
we construct four new classifiers by applyidg and L; on the
two labeled test setqd, and T}, respectively, and these four new
classifiers are named 8%, 6%, 62, and6?. For exampledy is the
new classifier built using algorithth, on T, or the test set labeled
by 6,. Since the original training sd? is labeled, we can usP
to evaluate the accuracy of these four new classifiers. Assbat
their accuracy o is AccTrain?, AccTraint, AccTraing, and
AccTrain? respectively, i.e. AccTrain is the accuracy of® on
D. ltis important to understand thatccTrain, is not the typical
training set accuracy, rather it is the accuracy on theitrgiset of
a classifier trained by, from labeled original test dat&,.

Next, we use two simple rules based on these four accuracy mea
surements to determine the better performing classifievedsid,,
andd, on the unlabeled test sét



DataSets| DT | NB | LR | SVM
Breast | 98.9| 98.5| 98.0| 99.0
Iris 92.0| 88.0| 84.0| 66.0
Pima | 735]| 724|750 72.0
\ote 97.0| 91.8| 97.8| 99.3
Wine 55.6| 55.6| 72.2| 66.7

Table 7: Performance of Four Classifiers on Test Set of Variosl
UCI Data Sets

DataSet| DT | NB | LR | SVM
Breast | 94.4| 95.7| 96.6 | 96.7
Iris 92.9| 94 | 93.9| 86.9
Pima | 726|769 77.7| 77.3
\ote 95.3|91.2| 920| 944
Wine | 722| 753|716 77.7

Table 8: Accuracy for Ten-Fold Cross-Validation of Four Clas-
sifiers on Training Set of Various UCI Data Sets. Averaged Ac-
curacy over 100 Trials

DataSet| DT | NB | LR | SVM
Breast | 94.8 | 95.8 | 96.8| 96.8
Iris 92.4| 93.9| 945| 86.4
Pima | 69.2| 76.8| 77.8| 77.0
\lote 95.1| 90.8| 93.2| 94.5
Wine | 746 76.8| 71.1| 775

Table 9: Accuracy for Leave-One-Out Validation of Four Clas
sifiers on Training Set of Various UCI Data Sets.

CONDITION 4.1. If (AccT'rainl, > AccTrain®) A
(AccTraing > AccTraing), thend, is expected to be more accu-
rate thané,, on unlabeled test séft.

CONDITION 4.2. If (AccTraind? > AccTrainb) A
(AccTraing >AccTraind), thend, is expected to be more accu-
rate thand, on unlabelled test sé&f.

CONDITION 4.3. Otherwisef, and#, are tied and hard to dis-
tinguish.

Assume that), is more accurate thaf, on the testing datd’.
Under this assumption, there are more examples with cdakets
in Ty, (or T' labeled byd,) thanT, . By means of its predicted labels,
T, describes a “concept” that is expected to be closer to the tru
model thanT,. For a reasonable learning algorithm, the classifier
built from T} is expected to be more accurate than a classifier built
from T, by the same algorithm. Conditions 4.1 and 4.2 capture this
reasoning and also rules out that the converse situatioe sither
T. or Ty is typically a better labeling of the test set.

In summary, ifd, andé, don’t have the same accuracy, either
i) (AccTraing > AccTrainb) A (AccTraing > AccTrainy)
whené,, is more accurate that, or ii) (AcchinZ > AccTraing )N
(AccTrain} > AccTraing) whend, is more accurate thah,, is
expected to be true. In other words(ifccTraing > AccTrainl)A
(AccTraing > AccTrainZ), 0, is more accurate thafy,, and if
(AccTrainl, > AccTrain®) A (AccTrainy > AccTraing), 0,
is more accurate thah, .

When#, is more accurate thafy,, could other orders of accu-
racy, for example(AccTraing > AccTrain®) A (AccTraing <
AccT'rain}) be true? In some rare situations, it could happen that

Breast | DT | NB | LR | SVM
DT DT | DT | SVM
NB NB | SVM
LR SVM
Iris DT | NB | LR | SVM
DT DT | DT DT
NB NB NB
LR LR LR

Pima | DT | NB | LR | SVM
DT DT | LR DT
NB LR NB
LR LR

Vote | DT | NB | LR | SVM
DT DT | LR | SVM
NB LR | SVM
LR SVM

Wine | DT | NB | LR | SVM
DT DT | LR | SVM
NB LR | SVM
LR LR

Table 10: Pairwise Competitive Performance of Four Classi-
fiers on Test Set of Various Biased UCI Data Sets. Each entry
indicates which of the classifiers outperformed the other.

a more correctly labele@ may not induce a more accurate classi-
fier. These rare situations include learning algorithms dlwanot
behave reasonably, and those stochastic problems wheteuthe
label of some examples have probabilities significantlg kesn 1

or formally 3(x, y), Q(y|x) < 1. When neither Condition 4.1 nor
Condition 4.2 is trued, andé, are either tied or hard to separate.
The complete algorithm is summarized in Figure 3.

4.3 Efficiency

The proposed algorithm is significantly less time consurtirag
the traditional approaches. With ten-fold cross-valiolatio com-
pare two learners, we need to bubick 10 x 100 models (2 learners
and 10 folds repeated 100 times), and with leave one-owtaiadin,

2 x n models where: is the number of instances in the training
data set. However, for ReverseTesting, we instead needtonly
build 6 models (two models from the training set, then foudele
from the labeled test set). Fémodels comparison, ten-fold cross-
validation and leave-one-out constrdet10x 100 and/xn models
respectively, and ReverseTesting constiugd x (£ +1) x £/2 =

20% 4+ 3¢ models. Approximately, only when there were more than
500 algorithms to compare ér> 500, ReverseTesting could be be
less efficient than cross-validation.

5. EXPERIMENTAL RESULTS

We begin by evaluating our algorithm on the Newsgroup data
sets where ten-fold cross-validation but not leave-ortevalida-
tion performed well at choosing the best performing learfdre
results are summarized in Table 13. Importantly, we sedohéte
Newsgroup data sets, which may or may not be biased, tharReve
seTesting performs exactly the same as ten-fold crosdatain
(Table 4 vs 13) ) and significantly better than leave-onevalt
idation (Table 6). These results are important since Newggr
datasets have small or no sample selection bias. Thisrdhest
that the proposed algorithm works well when the stationaryom-



Breast | DT | NB LR SVM
DT *NB | *LR | SVM
NB NB SVM
LR SVM
Iris DT | NB LR SVM
DT *NB | *LR DT
NB NB NB
LR LR

Pima | DT | NB LR SVM
DT *NB | LR | *SVM
NB LR | *SVM
LR LR

Vote | DT | NB LR SVM
DT DT | *DT *DT
NB LR SVM
LR SVM

Wine | DT | NB LR SVM
DT *NB | *DT | SVM
NB *NB | SVM
LR *SVM

Table 11: Pairwise Competitive Performance for Ten-Fold
Cross-Validation of Four Classifiers on Training Set of Vark
ous Biased UCI Data Sets. Averaged Accuracy over 100 Trials.
Each entry indicates which of the classifiers outperformedhe
other. An asterisk means a difference to the correct value in
Table 10

biased distribution assumption holds.

For the purposefully biased UCI datasets, the pairwise eoimp
son results of ReverseTesting are shown in Table 14. We age th
out of the 30 comparisons, there are only 5 errors as oppased t
13 errors when using ten-fold cross-validation and 15 srvdren
using leave-one-out validation. In 3 of the 5 errors, Caodié.3
occurred and hence no decision on which classifier perfotmst
could be made.

Considering both Newsgroup and UCI datasets, counting the
number of *'s or losses in all tables and the total number bf al
entries (20 for Newsgroup and 30 for biased UCI), the sumrigary

#Entry | 10-fold leave-1 RvT
Newsgroup 20 3 15 3

as follows biased UCI 30 13 15 5(3)
Sum 50 16 30 8

% Choose Best Learngr 68% 40% 84%

It clearly shows that the proposed algorithm can choose éhe c
rect learner most of the time, while ten-fold cross-valigiatand
leave-one-out validation cannot.

6. APPLICATIONS ON DONATION SOLIC-
ITATION AND CREDIT CARD FRAUD

We have applied ReverseTesting to two important applinatio
where sample selection bias is known to exist. The first agftin
is charity donation dataset from KDDCUP’98 and the secoral is
month-by-month data of credit card fraud detection. Thesbp
lems are particularly interesting since both employ cesisgtive
loss function as opposed to 0-1 loss.

For the donation dataset (Donate), suppose that the cost of r
questing a charitable donation from an individwails $0.68, and

Breast | DT | NB LR SVM
DT *NB | *LR | SVM
NB *LR | SVM
LR SVM
Iris DT | NB LR SVM
DT *NB | *LR DT
NB *LR NB
LR LR

Pima | DT | NB LR SVM
DT *NB | LR | *SVM
NB LR | *SVM
LR LR

Vote | DT | NB LR SVM
DT DT | *DT *DT
NB LR SVM
LR SVM

Wine | DT | NB LR SVM
DT *NB | *DT | SVM
NB *NB | SVM
LR *SVM

Table 12: Pairwise Competitive Performance for Leave-One-
Out Validation of Four Classifiers on Training Set of Various
Biased UCI Data Sets. Each entry indicates which of the class
fiers outperformed the other. An asterisk means a differenceo
the correct value in Table 10

DataSet 1st 2nd 3rd 4th
Christ-Sales | *LR | *SVM | *DT | NB
Mac-Hardware| LR DT NB | SVM
Baseball-Hoc | LR DT NB | SVM
MidEast-Elec | LR DT NB | SVM
MidEast-Guns| LR NB DT | SVM

Auto-Space | LR DT NB | SVM

Table 13: Accuracy Order for ReverseTesting of Four Classi-
fiers on Training Set of Various Newsgroup Data Sets. An “*”
indicates a different ordering than Table 2.

the best estimate of the amount tlxawill donate isY (x). Its ben-

efit matrix (converse of loss function) is:

predictdonate | predict—donator
actualdonate Y(x) - $.0.68 0
actual—donate -$0.68 0

The accuracy is the total amount of received charity minestst

of mailing. Assuming thap(donate|x) is the estimated probabil-

ity thatx is a donor, we will solicit tax iff p(donate|x) - Y (x) >

0.68. The data has already been divided into a training set argt a te

set. The training set consists of 95412 records for whichkhown

whether or not the person made a donation and how much the do-

nation was. The test set contains 96367 records for whick sim
lar donation information was not published until after thB[X98
competition. We used the standard training/test set sgilitse it
is believed that these are sampled from different indiVisitlaus
incuring feature bias [Zadrozny, 2004]. The feature subgefea-
tures in total) were based on the KDD’98 winning submissitm.
estimate the donation amount, we employed the multiplafine-
gression method. As suggested in [Zadrozny and Elkan, 2091]



function ReverseTestit{@., Ly, D, T)
where:
e L., L, are the two learners to compare and choose.

e D = {(x1,y1)---(Xn,yn)} is the labeled and potentially biased
training set.

o T = {x1...xm} is the unlabeled test set.
begin:
1. 6, and#, are the two models trained by applying algorittim and
Ly on the training set respectively.

2. Ty is the labeled test set by classiftey. Similarly, T}, is the labeled
test set by classifiet;.

3. 0% is a classifier trained by applying algorithf, on T;. Similarly,
we havef2, 92 and6?.

4. Test classifiersd},02,0¢, and 62 on training dataD, and

their corresponding accuracies @ are denoted aglccTrain?,
AccTrain, AccTraing, andAccTrainZ.

5. If AccTrainb > AccTraing and AccTrain} > AccTraing,
then#, trained by algorithmZ; is more accurate on unlabeled test
dataT.

6. Else If AccTrain? > AccTrain? and AccTraing >

AccTrainZ, thend,, trained by algorithmL,, is more accurate on
T.

7. Otherwisef, andé, are either tied or hard to distinguish.
end

Figure 3: A preferred implementation of ReverseTesting to &-
termine the best Learner

avoid over estimation, we only used those contributionsveen
$0 and $50.

The second data set is a credit card fraud detection (CCB} pro
lem. Assuming that there is an overhead= $90 to dispute and
investigate a fraud angl(x) is the transaction amount, the follow-
ing is the benefit matrix:

predictfraud | predict—fraud
actualfraud y(z)-v 0
actual—fraud - 0

The accuracy is the sum of recovered frauds minus invegiigat
costs. Ifp(fraud|x) is the probability that is a fraud, fraud
is the optimal decision iffp( fraud|x) - y(z) > v. The dataset

was sampled from a one year period and contains a total of .5M

transaction records. The features (20 in total) recordithe of the
transaction, merchant type, merchant location, and pasheat
and transaction history summary. We use data of the lasthramt
test data (40038 examples) and data of previous monthsiaisitra
data (406009 examples), thus obviously creating feata® $ince
no transactions will be repeated.

For cost-sensitive problems, the most suitable methodthase
that can output calibrated reliable posterior probab#ifizadrozny
and Elkan, 2001]. For this reason, we use unpruned singlie dec
sion tree (uDT), single decision tree with curtainimentT¢Maive
Bayes using binning with 10 bins (bNB), and random decisiea t
with 10 random trees (RDT). Since both datasets are signtfina
size and leave-one-out would have taken a long time to cdmple
we only tested 10 cross-validation, repeated for 10 timegéch
dataset, to compare with ReverseTesting. The detailedancte-
sults are summarized in Table 15 and 16, and pairwise orders a
summarized in Table 17 and Table 18. ReverseTesting peedict
exactly the order as the actual pairwise order on the tessdet
for both donation and credit card fraud detection, so itsltesre

Breast | DT | NB | LR | SVM
DT DT | DT | SVM
NB *?? | SVM
LR *?9?
Iris DT | NB | LR | SVM
DT DT | DT DT
NB NB NB
LR LR

Pima | DT | NB | LR | SVM
DT DT | *?? DT
NB LR NB
LR LR

Vote | DT | NB | LR | SVM
DT DT | *DT | SVM
NB LR | SVM
LR SVM

Wine | DT | NB | LR | SVM
DT DT | *DT | SVM
NB LR | SVM
LR LR

Table 14: Pairwise Competitive Performance of Four Classi-
fiers of Various Biased UCI Data Sets using ReverseTesting on
Training Set. Each entry indicates which of the classifiers at-
performed the other. An entry of “??” indicates that Conditi on
4.3 occurred and hence no decision could be made. An asterix
means a difference to the correct value in Table 10

DataSet| bNB uDT cDT RDT
Donate | 11334 | 12577 | 14424 | 14567
CCF | 412303| 537903| 691044 | 712314

Table 15: Accuracy of Four Classifiers on the Test Set for Do-
nation and CCF Data Sets

the same as Table 17. On the other hand, for pairwise orddold0
cross validation was correct in 7 out 12 times.

7. INTERPRETATION BASED ON PROBA-
BILITY DISTRIBUTION APPROXIMA-
TION

The proposed algorithm is built around the main idea of Con-
dition 4.1 or “if (AccTrainl, > AccTrain?) A (AccTrainy >
AccTrainy), theny, is expected to be more accurate thganon
unlabeled test sé&t.” On the basis of this main idea, we study how
ReverseTesting chooses the most accurate classifier toximaite
the unbiased distributio®(x, y). We use Kullback-Leilber dis-
tance or KL-distance to measure the difference between isio-d
butions.

Recall that testing data s&t is drawn from the unbiased joint
distribution Q@ = Q(x,y) (class labely is withheld though), and
the training dataD is drawn from the biased distributioR =
P(x,y). Now assume tha, = Q,(x,y) is the estimate of
Q(x,y) by classifierf,, and similarly, 0, = Q.(x,y) by clas-
sifier 8,. We will show that when Condition 4.1 holds true, the
KL-distance betwee® andQ,, is expected to be less than between
QandQ,,or KL(Q, Q) < KL(Q, Q).

In order to do so, we first show that if Condition 4.1 holdsnthe



DataSet| bNB ubDT cDT RDT
Donate 129 112 135 127
CCF 601434 | 574123 | 589416 | 612434

Table 16: Accuracy for Ten-Fold Cross-Validation of Four
Classifiers on Donation and CCF Datasets

Donate | bNB | uDT | cDT | RDT
bNB uDT | cDT | RDT
uDT cDT | RDT
cDT RDT
CCF bNB | uDT | cDT | RDT
bNB uDT | cDT | RDT
uDT cDT | RDT
cDT RDT

Table 17: Pairwise Competitive Performance of Four Classi-
fiers on Testing Data of Donate and CCF. ReverseTesting pre-
dicted exactly the same order

the following condition is also true.

OBSERVATION 7.1. If (AccTrain®, > AccTraing) A
(AccTraing > AccTraind) then, KL(P, Q) < KL(P, Q).

Since both algorithmg., and L, were able to compute classi-
fiers@? and@? from T}, (whose accuracy on the labeled training data
D are AccT'rain?, and AccT'rain! respectively) that are more ac-
curate on the labeled training getthan the other two classifief§
and@; constructed fromTy, thenT,, is expected be closer in distri-
bution toD thanT, or KL(P, Q) < KL(P, Qa). Inthe unusual
situations where this doesn’t occur and instéat(P, Q) >
KL(P, Qa), is when either one or both algorithnis andL; be-
haves unreasonably and constructs more accurate modal$efse
accurately labeled training set.

OBSERVATION 7.2. By the definition of accuracy, it is expected
to be true that i, is more accurate thaf,, thenKL(Q, Q) <
KL(Q7 Qa)-

Based on the above two observations, we can therefore eswrit
Condition 4.1 as:

If KL(P,Qy) < KL(P, Qa)
then

KL(Q, Q) < KL(Q, Qa)

Next, we examine when the above equation holds true. In the
simple case, clearly when the stationary distribution @xggtion
holds orP = Q, the above Eq 1 s trivially correct. This shows that
the proposed algorithm should match the probability distion
very well when there is no sample selection bias.

With feature bias, we expand Eq 1 by applying the following se
of equations

@)

P P(x)Qylx) = Q(x)P(s = 1[x)Q(ylx)  (2)
Q = Q(x)Qylx)
Qu = Qa(x)Qalylx

Q Qp(x) o (yx)

Donate | bNB | uDT cDT | RDT
bNB *bNB | cDT | *bNB
ubDT cDT | RDT
cDT *DT
CCF bNB | uDT cDT | RDT
bNB *bNB | *bNB | RDT
ubDT cDT | RDT
cDT RDT

Table 18: Pairwise Competitive Performance Predicted by Te-
Fold Cross-Validation on Donate and CCF Data Sets. A * indi-
cates a difference in order from the test data

In the above equation§), (x) = Qy(x) = P(x) unlesy, orf,
is not trained fromD directly (such as bootstrap samples) or they
are not consistent learners. Using these equations, Egoinasc

It KL(P(x)Q(ylx), P(x) s (ylx)) <
KL(P(x)Q(ylx), P(x)Qa(ylx))
then

KL(Q(x)Q(ylx), P(x) s (ylx)) <
KL(Q(x)Q(ylx), P(x)Qa(ylx))

The antecedent of Eq 3 can be simplified iafd. (O (y|x), Qs (y|x)) <
KL(Q(y|x), Qa(y|x)) by removing the constarf®(x). In other
words, Condition 4.1 is an approximate way to test the piatss
of the estimated posterior probabilig). (y|x) and Q, (y|x) to ap-
proximate the true posterior probabili(y|x). When Q(y|x)
is a better estimate of the posterior probability, the cquoset of
Eq 3 is expected to be true unless the litds = 1|x) is so skewed
on a very large portion of the instance space. We ran sewst t
using synthetic datasets with multiple Boolean variakéesl have
found that this holds true around 99.9% of the time. Detailshis
simulation will be in the longer version of this paper.

®)

8. RELATED WORK

The sample selection bias problem has received a great fleal o
attention in econometrics. There it appears mostly becdaiseare
collected through surveys. Very often people that resporaddur-
vey are self-selected, so they do not constitute a randorpleash
the general population. In Nobel-prize winning work, [Hewn,
1979] has developed a two-step procedure for correctingpleam
selection bias in linear regression models, which are confyno
used in econometrics. The key insight in Heckman'’s work & th
if we can estimate the probability that an observation iscted
into the sample, we can use this probability estimate toecbthe
model. The drawback of his procedure is that it is only apjhlie
to linear regression models. In the statistics literattive,related
problem of missing data has been considered extensivettigLi
and Rubin, 2002]. However, they are generally concernet wit
cases in which some of the features of an example are missidg,
not with cases in which whole examples are missing. Thealiter
ture in this area distinguishes between different types iskimg
data mechanisms: missing completely at random (MCAR), miss
ing at random (MAR) and not missing at random (NMAR). Differ-
ent imputation and weighting methods appropriate for eggé of
mechanism have been developed. More recently, the samete se
tion bias problem has begun to receive attention from theniac
learning and data mining communities. Fan, Davidson, Zagro
and Yu [Fan’ et al 2005] use the categorization in [Zadro26@4]



to present an improved categorization of the behavior ahieg
algorithms under sample selection bias (global learners les
cal learners) and analyzes how a number of well-known classi
fier learning methods are affected by sample selection bike
improvement over [Zadrozny, 2004] is that the new categtion
considers the effects of incorrect modeling assumptioniherte-
havior of the classifier learner under sample selection Iesther
words, the work relaxes the assumption that the data is dfieammn

a distribution that could be perfectly fit by the model. Thesino
important conclusion is that most classification learnilggpathms
could or could not be affected by feature bias. This all ddpen
on if the true model is contained in the model space of thenkzar
or not, which is generally unknown. Smith and Elkan [Smitkl an
Elkan, 2004] provide a systematic characterization of ifferént
types of sample selection bias and examples of real-wonlz-si
tion where they arise. For the characterization, they usaya&an
network representation that describes the dependence sktac-
tion mechanism on observable and non-observable featndesra
the class label. They also present an overview of existiagnle
ing algorithms from the statistics and econometrics ltterathat
are appropriate for each situation. Finally, Rosset et Rlosfet
et al., 2005] consider the situation where the sample setebtas

under accuracy to match true class labels as well as KLrdisttd
match probability distributions.

Experimental studies have found that when there is littlamr
sample selection bias, our proposed algorithm predicterther of
performance as good as ten-fold cross-validation andfsignily
better than leave-one-out validation. Importantly, wheer¢ is
sample selection bias, our proposed algorithm is signifigdret-
ter (5 errors including 3 undetermined) than cross-vailidaf13
errors) and leave-one-out (15) errors among 30 pairwisgpaom
isons. For charity donation solicitation and credit camufi de-
tection applications where sample bias is a common prokiRan,
verseTesting is correct in predicting all 12 pairwise osdavhile
cross-validation is correct in 7 of these cases.

Future Work Although, the algorithm itself does not limit the
type of sample selection bias, our paper mainly focuses aturfe
selection bias. In future work, we will consider other typésam-
ple selection bias. Our algorithm correctly orders the esxy of
competing learners. However, it does not estimate the hatua
curacy on the test data itself. This is another challengiadplpm
since the label of the test set is not given in our problenirgetiVe
choose a preferred implementation of ReverseTestinginitésest-
ing to evaluate other possibilities on how to train the neagsifiers

depends on the true label and present an algorithm basedeon th from labeled test data and the rules to induce performarder.or

method of moments to learn in the presence of this type of bias

9. CONCLUSION AND FUTURE WORK

Addressing sample selection bias is necessary for datagini
in the real world for applications such as merchandise ptmmp
clinical trial, charity donation, etc. One very importanbplem
is to study the effect of sample selection bias on inductani-
ers and choose the most accurate classifier under sampitaele
bias. Some recent works formally and experimentally shaat th
most classifier learners’ accuracy could be sensitive towamg
common form of sample selection bias, where the chance ¢otsel
an example into the training set depends on feature vedboit not
directly on class labej. Importantly, this sensitivity depends on
whether or not the unknown true model is contained in the inode
space of the learner, which is generally not known eitheofgebr
after data mining for real-world applications. This factkea the
problem to choose the most accurate classifier under saelple s
tion bias a critical problem. Our paper provides such a smiut

We first discuss three methods for classifier selection usater
ple selection bias, ten-fold cross-validation, leave-ontvalidation
and structural risk minimization, and empirically evakiste first
two. Our experiments have shown that both the predictedrorde
and value of the learners’ accuracy are far from their aqiegir-
mance on the unbiased test set. In the worst cases, the tebdic
order is not even better than random guessing. This re-confire
need to design a new algorithm to select classifiers undeplsam
selection bias.

We propose a new algorithm that is significantly differewinfir
those three methods to evaluate a classifier’'s accuracyrlprob-
lem formulation, we do not assume that the training andrtgstata
are drawn from the same distribution. In other words, theyldto
be drawn from either the same or different distribution. t@wiif-
ferent from the ways of solely relying on labelled trainirafal we
make use of unlabelled test data during model selectionb@bie
idea and process is to use the competing classifiers traioetthe
training set to label the test data set, i.e, one labeledé&t$or each
competing classifier, and then re-construct a set of nevsifieais
from these labeled test sets. We then order the original etingp
classifiers accuracy based on the new classifiers’ accuratleo
training set. The correctness of the proposed algorithriseidsed
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