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ABSTRACT 
Steganography involves hiding messages in innocuous media such 
as images, while steganalysis is the field of detecting these secret 
messages. The ultimate goal of steganalysis is two-fold: making a 
binary classification of a file as stego-bearing or innocent, and 
secondly, locating the hidden message with an aim to extracting, 
sterilizing or manipulating it. Almost all steganalysis approaches 
(known as attacks) focus on the first of these two issues. In this 
paper, we explore the difficult related problem: given that we 
know an image file contains steganography, locate which pixels 
contain the message. We treat the hidden message location 
problem as outlier detection using probability/energy measures of 
images motivated by the image restoration community. Pixels 
contributing the most to the energy calculations of an image are 
deemed outliers. Typically, of the top third of one percent of most 
energized pixels (outliers), we find that 87% are stego-bearing in 
color images and 61% in grayscale images. In all image types only 
1% of all pixels are stego-bearing indicating our techniques 
provides a substantial lift over random guessing. 

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – classifier 
design and evaluation. 

General Terms 
Algorithms, Experimentation, Security. 

Keywords 
Steganography, Steganalysis, Outlier Detection. 

1. INTRODUCTION AND MOTIVATION 
The term steganography literally means “covered writing” and 
involves transmission of secret messages through apparently 
innocent files without detection of the fact that a message was sent 
[2]. The innocuous file is known as the cover (or innocent or 
clean) medium, while the file containing the hidden-message is 
referred to as the stego (or infected) medium. There are many tools 
available [1] that can hide messages in images, audio and video 
files, and steganography is now in common use [2]. Recent 
terrorist activity has been tentatively linked to the use of 
steganography [3] and is seen by various agencies as a growing 
method of sending covert information [4]. Whereas cryptography 

was the preferred secret-message-sending tool of the past, relying 
on complex ciphers to prevent identification of the message, the 
huge bandwidth of the Internet now offers an alternate and 
complementary approach. Steganography allows hiding messages 
innocuously amongst the vast content of Internet sites: for 
instance, an image containing a hidden message maybe posted to a 
website (eBay is often cited [5]) where others can download the 
image and recover the message with the appropriate password. 

The process of detecting steganographic messages is known as 
steganalysis and a particular steganalysis technique is called an 
attack. If the image type is carefully chosen (as shown in Figure 1 
and Figure 2) then visual detection is difficult. The current state of 
the art involves identifying a particular signature associated with a 
particular steganographic technique and devising a statistical test 
to identify this signature. Such handcrafted approaches are very 
useful but suffer from a high false positive rate and are vulnerable 
to steganographic approaches that hide messages in such a way as 
to reinstate an expected property [6].  

Steganalysis can be viewed as a two-stage process: 1)  
Classification of an image as being stego-bearing or not, and 2) 
Finding the location of stego-bearing pixels (i.e. the pixels 
containing the hidden message bits) with an aim to extracting, 
manipulating or sterilizing the message. There has been 
considerable work on the first stage using statistical techniques to 
identify a particular steganographic technique [7]. Other work 
[8], including our own [9] have explored using pattern recognition 
algorithms to automatically create attacks. However, identifying 
that an image contains a hidden message written using a specific 
technique does not enable us to locate the message. This paper 
explores the second stage: given an image is believed to contain a 
secret message, identify where the message is hidden. We treat 
this problem as outlier detection. To our knowledge no approach 
to steganalysis has tried to locate the actual hidden message or 
treated it as outlier detection. 

2. A QUICK INTRODUCTION TO 
STEGANOGRAPHY TECHNIQUES 
Steganography is most widely used in images, and hence in this 
paper we focus on detecting hidden messages in this media type. 
The raster data of an image is generally stored either by using an 
indexing scheme (as in GIF) or by transforming (smoothing) the 
raster data to make it more suitable for compression (as in JPEG). 
The GIF image format stores a palette of colors or grayscales used 
in the image with each pixel entry being an index to a palette 
entry. While the message to hide may be text, image, etc., in 
digital steganography, it is ultimately represented as bits. The 
hidden message may be compressed or even encrypted before it is 
hidden, to reduce the amount of information or hide its content. A 
very common technique is to embed the hidden message by 
altering the least significant bits (LSBs) of the index entries.  
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Consider hiding the letter “A” in a GIF image. The letter is 
translated into the binary representation of its ASCII value. A 
pseudo random number generator (PRNG) can be used to 
determine the location of the eight carrier pixels (one for each 
message bit). The seed of the PRNG is the password to recover the 
message. For each chosen location, the existing LSB of the index 
is examined and flipped if required. For JPEG images, a similar 
approach is used to flip the LSB of the discrete cosine 
transformation (DCT) coefficients [2]. Earlier work found 
identifying GIF files as stego-bearing using automated techniques 
to be quite challenging [9] due to wide variety of image types. 

3. PREVIOUS AND RELATED WORK 
Our previous work [9] and the work of others [8] showed the 
feasibility of applying classic learning and mining techniques to 
differentiate between stego and clean media. These are some of the 
earliest work to automatically create blind steganography attacks 
(i.e. attacks without detailed knowledge of the underlying 
steganography algorithm). The remaining steganalysis techniques 
consist of manually crafted measures made in full knowledge of 
the steganography algorithm’s working. 

The first stage of steganalysis (i.e. classification) has received 
considerable attention and the results are promising and constantly 
improving. The approaches of blind steganalysis can have as low 
as 20% false positives [10]. Though hand crafted techniques can 
break some steganography all the time, since they aim to identify 
the presence or absence of a signature, they cannot identify the 
message location. For instance, many steganalysis approaches use 
a Chi-square test of independence [10] which gives no indication 
where the message is hidden. Instead, we will treat identifying the 
message location problem as outlier detection. 

4. AN OVERVIEW OF OUTLIER 
DETECTION 
Outlier detection is often cited as a fundamental task in data 
mining along with classification, associations, clustering and 
regression [11]. The purpose of outlier detection (also known as 
anomaly detection) is given a collection of N data points, specify a 
subset of those points as “not belonging” to the collection and 
label them as outliers. Outlier detection is used in many data 
mining applications such as credit card fraud detection and 
network intrusion detection. Aggarwal et al [12] provides a survey 
of outlier detection techniques and applications. 

There exist two primary forms of outlier detection [13]: distance 
based and distribution based. With distance based outlier 
detection, a model of the data is formed (e.g. a clustering model) 
and an instance’s degree of anomaliness is determined (e.g. its 
Euclidean distance to the closest cluster center). The model 
defines normality and the outliers tend to deviate from this 
normality (e.g. tend to lie between the cluster centers). 
Distribution based outlier detection involves creating a parametric 
model of the data and then re-calculating the model parameters 
with each data point removed one at a time. Essentially N 
additional sets of parameters are calculated from all possible sets 
of N-1 points. Note that typically only the model parameters are 
recalculated, the mining task is not repeated. A data point’s degree 
of anomaliness is determined by the magnitude of the change in 
parameters when it is removed. 

There are many successful outlier detection techniques available 
in the field of data mining [14], which require defining normality 
and some measure of deviation from it. However, the wide variety 
of image content prevents a ubiquitous definition of normality. 
Though there exists spatial outlier detection techniques [15], few 
are readily applicable to image data. Perhaps most importantly, if 
steganalysis is to be used to scan a large number of images, then a 
technique whose complexity is linear with respect to the number 
of pixels is required. We borrow ideas from image restoration to 
develop our own approach whose complexity is linear in the 
number of pixels in an image. 

5. STEGANALYSIS AS OUTLIER 
DETECTION 
To perform outlier detection in an image, we need to build a 
model (i.e. a probability distribution over all possible pixel 
intensities in the image) and measure outliers with respect to that 
model. Due to the wide variety of image content there is no useful 
parametric model for even a small subset of images. Therefore, we 
build a simple non-parametric model for each image. More 
complicated models could be built if needed.  

Examples of such models include the “gradient” of a pixel. Many 
adjacent high gradient pixels can be identified as an edge [16]. 
Similarly, a simple vector model of each pixel can identify 
spatially interesting pixels [17]. Though these models are useful 
for other applications of image mining, we instead use an Ising 
model [18] that is popular in image restoration approaches to 
remove irregularities such as creases and lines in an image [16]. 
The general idea behind our approach is that if an image has an 
embedded message then it will be removed when the image is 
restored. Keeping track of which pixels are restored allows 
identifying the anomalous stego-bearing pixels.  

Consider an image composed of n pixels arranged into a 
rectangular lattice where each pixel i, i=1,2,…,n, takes one of k 
possible values from a discrete set C={1,2,…,k}. We define two 
random variables associated with each pixel i: the observed value 
Xi and the true value Zi. We assume that for the most part Xi=Zi. 
However, hiding a message changes several X values which 
visually disturb the image. The goal of image restoration is to 
maximize P(Z1 … Zn | X1 … Xn) which effectively removes the 
visual disturbances. We can view this in a Bayesian perspective if 
we consider the Z values to be the model parameters. Algorithms 
such as the Gibbs sampler can maximize this probability, that is, 
they find the posterior mode. The Gibbs sampler has various forms 
[19], the simplest is to sweep through every pixel and 
conditionally (on the neighbors’ values/states) update its 
value/state to increase the probabilities. This is repeated until 
convergence (i.e. no change in probabilities) occurs. 

The expression P(Z1 … Zn | X1 … Xn) can be simplified by 
assuming that the Z values are independent of each other and that 
only the immediate neighbors of the ith pixel effect the 
corresponding Z value. That is: 

    P(Z1 … Zn | X1 … Xn) = ΠP(Zi | X1 … Xn)  = ΠP(Zi | NBD(Xi) ) 

where NBD(Xi) denotes the set of pixels in the immediate 
neighborhood of Xi. 



The form of this probability distribution varies depending on the 
application and image type. In our experiments, we use a non-
parametric distribution as follows:  

( )( ) )(1 iNii XEXNBDZP −=  ( 1 ) 

where EN(Xi) is the normalized value (between 0 and 1) of the 
energy E(Xi) defined below. Our results (described later) show 
that the stego images contain more energy than their cover 
counterparts and the stego-bearing pixels are the most energized 
pixels. This can be interpreted as that the stego images are less 
probable than their cover counterparts and that the stego pixels 
within an image are less probable. This is to be expected as the 
stego pixels are artificially embedded in the image. An analogy in 
physics is that a system of particles tends to be in its lowest energy 
configuration and if we disturb this configuration, we inherently 
increase the energy of the system. The energy of a pixel is defined 
by its state and the states of its immediate neighbors. For color 
images we use the function in equation ( 2 ).  
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The energy of a color pixel is the average of the energies of its red, 
green, and blue components. Grayscale images only have an 
associated intensity value. In our experiments with grayscale 
images we measure the energy as follows:  
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where the entropy is calculated over all Xj ∈NBD(Xi).  

We have two different measures, as the effect of hiding messages 
in color and grayscale images are quite different. For color images, 
a small change in a palette index can create a large change in the 
corresponding color intensity triplet, as the adjacent indices in the 
palette do not normally map to similar colors. However, since in 
grayscale images, the palette entries are typically ordered in terms 
of their intensities, a small change in a palette index only slightly 
changes the pixel’s intensity. Moreover, for some grayscale 
images, a small change in palette indices results in no change in 
pixel intensities if adjacent indices have the same intensities. We 

find that these functions are suitable for commonly used 
steganography techniques, but acknowledge that more 
complicated function may be used as new steganography 
techniques are created. 

6. EXPERIMENTAL RESULTS 
We use a color database consisting of 150 images of flowers, 
mountains and trees (50 of each type) and a grayscale database of 
30 images that are predominantly old photographs of landscapes 
and people (downloaded from webshots.com and similar 
websites). We have purposely chosen natural images as they are 
conducive to hide messages in. The messages we hide are taken 
from the verses of Genesis from the Kings James Bible and are 
typically 400 bytes long each. As approximately half of these 
message bits require an LSB flip of the indices and our images 
were all 320x480 pixels, the proportion of stego-bearing pixels is 
typically 1% of all pixels. We focus on small messages because 
they are the most challenging to detect. We use the popular 
steganography tool Hide&Seek [1] that represents the typical 
LSB-based steganography approach as described earlier. We 
obtain comparable results with less sophisticated tools such as S-
Tools, Third Eye etc [1]. Our work is a blind steganalysis 
approach using outlier detection since we assume no knowledge of 
the hiding algorithm. We use a neighborhood of distance 1 for 
calculating the energy of a pixel. We find in our work that only 
one iteration of the Gibbs update sufficiently identifies a large 
number of stego-bearing pixels. 

6.1 The Distribution of Outlier Pixels 
Figure 1 through Figure 4 show the location of the 500 top 
outliers out of 320x480 pixels (i.e. 0.33% of all pixels) for an 
innocent and a stego image in our database. For images with 
highly contrasting regions, we find that the naturally occurring 
outliers are located on the transition lines. For other images, the 
naturally occurring outliers are more uniformly distributed 
throughout the image. Identifying the pixels to restore can identify 
between 57 to 96 percent of all stego bearing pixels. Our approach 
does not assume that the stego tool randomly distributes the 
message throughout the image. As Figure 3 and Figure 4 show, 
our approach can detect hidden messages in quite busy images 
also. 
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Figure 1 :  An innocent image from the color database with the location of the top 500 (0.33%) outliers shown on the right. The 

average energy per pixel is 166.73. 
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Figure 2 :  The stego version of the above image with the location of the top 500 (0.33%) outliers shown on the right. Of these 500 

pixels, 71% are stego-bearing pixels. The average energy per pixel is 171.66. 
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Figure 3: An innocent image from the grayscale database with the location of the top 500 (0.33%) outliers shown on the right. The 
average energy per pixel is 1.73. 
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Figure 4: The stego version of the above image with the location of the top 500 (0.33%) outliers shown on the right. Of these 500 

pixels, 57% are stego-bearing pixels. The average energy per pixel is 1.74. 

6.2 Detecting the Outlier Pixels 
We calculate the energy of each pixel and sort the pixels in 
decreasing order of energy. We take some percentage of pixels at 
the top of the list and label these as outliers. We determine what 
pixels are stego-bearing by identifying which pixels differ 
between the stego and cover image. This is only required to 
measure the accuracy of our approach. In practice, the cover 

image is not needed to locate the stego-bearing pixels. The 
success of our approach is measured by what proportion of the 
pixels identified as outliers are indeed stego-bearing (precision) 
and the number of these correctly identified outliers as a 
proportion of the total number of stego-bearing pixels (recall). As 
precision increases recall decreases and vice-versa. 



6.2.1 Color Images 
Table 1 shows that the stego images have an average energy 
increase of 8.5% over their innocent counterparts. Furthermore, 
we found that every stego image has a higher energy than its 
innocent counterpart. The standard deviation of the energy of the 
images is great due to the variation in the image content. Table 2 
and Table 3 show the accuracy (precision) and the ability to 
recover (recall) of the stego-bearing pixels. The pixels are sorted 
in decreasing order of energy and those 500 (0.33% of the total 
number of pixels), 1000 (0.65%) and 1500 (0.98%) occurring at 
the top of the list are examined to determine if they are stego 
pixels. On average, 87% of all pixels in the top 0.33% are stego-
bearing, and these 0.33% pixels represents 28% of all stego-
bearing pixels. Looking further down the list until 0.98% of all 
pixels, we find that the amount of stego pixels recalled is close to 
50%. Figure 5 illustrates extended average precision and recall 
results. 

Table 1: Comparing the energy (std. dev.) in innocent and 
stego color images. 

Average Energy (std. dev.) Per Pixel Color    
Database Innocent Images Stego Images 

Flowers 113.73     ( 31.28) 122.60     (30.50) 
Mountains 96.79       (21.48) 106.16     (21.73) 
Trees 103.72     (25.19) 111.93     (24.45) 

 
Table 2: The average precision (std. dev.) of identifying stego-
bearing pixels in color images for different proportions of total 

pixels occurring at the top of the ordered list. 
Average Precision (std. dev.) Color 

Database 0.33% 0.65% 0.98% 
  Flowers 86% (0.16) 66% (0.20) 51% (0.18) 
  Mountains 91% (0.10) 70% (0.15) 54% (0.14) 
  Trees 85% (0.15) 61% (0.17) 46% (0.13) 

 
Table 3: The average recall (std. dev.) of identifying stego-

bearing pixels in color images for different proportions of total 
pixels occurring at the top of the ordered list. 

Average Recall (std. dev.) Color 

Database 0.33% 0.65% 0.98% 
  Flowers 28% (0.07) 41% (0.11) 48% (0.12) 
  Mountains 30% (0.07) 45% (0.08) 51% (0.08) 
  Trees 27% (0.08) 39% (0.10) 44% (0.10) 

6.2.2 Grayscale Images 
Table 4 shows that the stego images on average have a higher 
energy.  Though the average increase is small (the measure being 
entropy based and hence on a log scale), every stego image in our 
study has a higher energy than its innocent counterpart. 

Table 4: Comparing the energy (std. dev.) in innocent and 
stego grayscale images. 

Average Energy (std. dev.) Per Pixel 
Innocent Images Stego  Images 

Grayscale 
Database 

1.73 (0.44) 1.75 (0.44) 
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Figure 5: The precision and recall curves for our three color 

data sets. The x-axis represents the top x% of all pixels 
ordered in terms of their energy.  

Table 5 shows the accuracy (precision) and ability to recover 
(recall) of the stego-bearing pixels. As in color images, the pixels 
are sorted in decreasing order of energy and those at the top 
0.33%, 0.65% and 0.98% of the list examined to determine if they 
are stego-bearing. On average, 61% of all pixels in the top 0.33% 
of pixels are stego-bearing, and these 0.33% of pixels contain on 
average 20% of all stego-bearing pixels. However, looking further 
down the list until 0.98% of all pixels we find that the amount of 
stego pixels recalled is still no more than 28%. Figure 6 shows the 
plot of average precision and recall against percentages of the 
total number of pixels occurring on top of the list.  

Table 5: The average precision and recall (std. dev.) of 
identifying stego-bearing pixels in grayscale images for 

different proportions of total pixels on top of the ordered list. 
Average Precision & Recall (std. dev.) Grayscale  

Database 0.33% 0.65% 0.98% 

Precision 61% (0.29) 39% (0.23) 29% (0.16) 

Recall 20% (0.11) 25% (0.16) 28% (0.16) 
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Figure 6: Precision and recall curves for our grayscale data 

sets. The x-axis represents the top x% of all pixels ordered on 
energy 

7. DISCUSSION 
We have shown that: 

• Hiding a message increases the energy of an image (Table 
1 and Table 4). 

• The most energized pixels are typically stego-bearing 
(Table 2, Table 3 and Table 5). 

• As the number of potential outliers taken from the sorted 
list increases, the number of correctly identified stego-
bearing pixels also increases (Figure 5 and Figure 6). 

• The most energized pixels for innocent images are 
concentrated while for stego images they are evenly 
distributed throughout (Figure 1 through Figure 4). 

The monotonicity of the precision and the recall curves implies 
that our technique is robust and capable of identifying the stego-
bearing pixels as outliers. Though our results for grayscale images 
are quite accurate, they are not as good as for color images. 
Detecting hidden messages in grayscale images is difficult for two 
reasons: the variance amongst the palette intensities is very small, 
and many images are scans of old black and white pictures 
containing imperfections. Applying image restoration techniques 
[16] followed by our approach may improve the results.  

Steganography and steganalysis techniques are in a continual 
arms race. Our technique is a developing framework and of course 
not a panacea. In particular, our approach can be defeated if the 
steganography algorithm has knowledge of our probability/energy 
function (i.e. equations 2 and 3), or if the message is carefully 
embedded in the high energy regions of an image. However, the 
capacity available to such a steganography algorithm would be 
greatly reduced. Therefore, to send the same amount of 
information would require sending more images. An activity 
monitoring system such as one that monitors Internet traffic or 
monitors downloads from and uploads to a particular website 
could then detect the covert transmissions. 

8. CONCLUSION 
We defined a framework for hidden message location based on 
image restoration. Hiding a message in an image effectively 
decreases the probability of an image, or put another way, 
increases the energy of an image. We defined two energy 
functions for color and grayscale images. This allows us to 

measure the probability/energy of each pixel. The outliers in an 
image are the most energized (i.e. least probable) pixels. 

Our results indicate that the stego images contain more energy 
than their cover counterparts. Our approach can identify stego-
bearing pixels with significant accuracy. For the 0.33% most 
energized pixels, 87% were actually stego-bearing for color 
images and 61% for grayscale images. Furthermore, we find that 
the precision and recall of our technique are monotonic functions 
of the number of predicted outliers. We believe our results could 
be improved by dividing the image into similar regions using 
spatial clustering techniques or Kohonen self organized maps [11] 
and apply our approach to identify outliers in each region. 
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