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Abstract

Eager learners such as neural networks, decisems.tand naive Bayes classifiers construct a single
model from the training data before observing &%y et instances. In contrast, lazy learners asi¢f+
nearest neighbor consider a test set instanceebtfey generalize beyond the training data. Thosval
making predictions from only a specific selectidrinstances most similar to the test set instarnigiehv

has been shown to outperform eager learners omméeruof problems. However, lazy learners require
the storing and querying of the entire trainingadset for each instance which is unsuitable foldhge
amounts of data typically found in many applicasiokVe introduce and illustrate the benefits of an
example of semi-lazy learning that combines cliis¢eand classification models and has the benefits
eager and lazy learners. We propose dividing te&airtes using cluster-based segmentation and then
using an eager learner to build a classificatiomehdor each cluster. This has the effect of divigthe
instance space into a number of distinct regiomskauilding a local model for each. Our experimeoris
UCI data sets show clustering the data into segsnéein building classification models using a varie

of eager learners for each segment often resulta greater overall cross-validated accuracy than
building a single model or using a pure lazy apphosuch as K-Nearest-Neighbor. We can also consider
our approach to semi-lazy learning as an exampléhefdivide and conquer (DAC) strategy used in
many scientific fields to divide a complex problémo a set of simpler problems. Finally, we fincth
the misclassified instances are more likely to bitiers with respect to the clustering segmentation

1 Introduction and Motivation

Most machine learning tools are examples of eaggners that build a model of the training
data from which to make predictions from beforersgany test set instances. They attempt to
build a global model of the phenomenon of intetest is applicable to the entire instance
space or in other words a global approximationhi target function [1]. Eager learners can
have the advantage of easy comprehension, thettanteild complex models and efficient
scoring of large test sets. Lazy learners such-asdfest neighbor wait until they have seen the
test set instances before making a prediction. alhosvs the learner to make predictions based
on specific instances that are most similar totdst set instances allowing for a very large
number (possibly infinite for a continuous instaspace) of local models (or target functions)
for different regions of the instance space. Theelie of allowing multiple local models is
offset by the cost of storing and querying thenireg data set for each test set instance which
means that lazy learners do not scale well forlainge amount of data associated with many
applications. Though the use of efficient indexmgthods and pre-processing of the data into
KD-Trees can reduce some of this computational dnyrdearch and retrieval times can still be
large [2].

In this paper we propose a semi-lazy learning aggrdhat readily combines the benefits of
eager and lazy learning by first clustering thetanses into segments and then building a
model for each segment. This effectively divides thstance space into distinct regions and
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builds a local model. This approach combines rgaaihailable clustering algorithms such as
K-Means and eager learners such as naive Bayesjaetrees, and neural networks as we
will demonstrate. We show that building local madallows for improved results over just
building a single model using an eager learnersimgiK-Nearest neighbor learners. We can
obtain better results without the penalty of stgramd searching the entire training set for every
test set instance and have the benefits of usirgager learner.

Our approach can also be considered as an exaimble divide and conquer strategy. In most
applications, the classification algorithm buildsiagle model from the entire training set of
data. However, many successful industrial appbceti divide the instances into distinct

segments and build models for each [3]. Dividing ithstances by their geographic location or
time-period are examples of using an obvious DA@Gtsf)y. The expectation is that different
factors will drive the phenomenon to model depegdom the region or time period. For

example, if we were to model the phenomenon of, nam could build a summer and winter

models from data collected during those periodshEmodel contains predictive patterns
specific to a season and may contain general pattapplicable to all seasons. In many
problems, an obvious segmentation scheme is natablea but we can use clustering to

identify appropriate segments. The clustering étlgor only uses the independent attributes
and ignores the dependent attribute.

In the next sections we describe clustering, thaiteology we use, and explore the reasons for
segmenting complex problems. We describe the exjatial methodology we plan to use and
results. From the results we discuss several itsighnally, we summarize our findings and

describe future directions for this work.

2 Clustering and Terminology

Clustering algorithms attempt to identify intrinsitasses. Most algorithms exclusively assign
(known as hard assignment) each instance to om\yctass. We can consider this as finding the
“best” set partition of the instances or partitimgithe instance space. Colloquially, the best
clustering solution is to find groups of instansesthat within a particular group the instances
are similar whilst being dissimilar to instancesther groups. In this paper, we use a K-Means
clustering algorithm [4] that uses hard assignment.

The BASE ACCURACY is the 10-fold cross-validatedca@cy obtained by building and
testing a single model using the entire data setoBtain the SEGMENTED ACCURACY by
segmenting the instances into disjoint groups, taiding, and testing models specific to a
segment using the instances only from that segnide. SEGMENTED ACCURACY is the
weighted (by cluster size) 10-fold cross-validateturacy obtained for each segment. We
diagrammatically show how we train and test moftai®ach segment in Figure 1. The overall
model consists of first dividing the instances adow to the clustering model and then
applying the appropriate classification model.
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Figure 1. Training and testing using segment speaifodels. The clustering algorithm or
model does not use the dependent variable.

3 Why Segment a Problem?

Two main areas of work motivate segmenting instarared then building models. The eager
and lazy learning literature from machine learniiigrature and the divide and conquer
approach from the A.l. and computer science comti@sni

3.1 Lazy Learning: Two or More Models are Better ttan One

Consider a handwriting digit recognition problemendn the aim is to determine the written
digit. The data consists of many digits writtendyumber of different individuals. An eager
learner such as a neural network tries to leartolbag function to predict each class (digit).
However, because different individuals write digiifferently (see Figure 2) a single function
that models each digit is difficult to produce aeager learners do not fair well on such
problems.

Now consider the K-Nearest neighbor the simplesnfof lazy learner. Rather than forming a
single model, for each test set instancekthearest (in terms of the instance space) traisgtg
instances are polled and the test set instan@bedd as the majority occurring digit amongst
its neighbors. This allows a multitude of simpledtctive devices local to parts of the instance
space by using a different set of instances foh @aediction depending on the test set instance.
Lazy learners can outperform eager learners [5jmthere exists large within class variations
of the concept to learn.

686285215

Figure 2: Examples of Differently Drawn Numbersnirthe UCI Digit Dataset [9].
3.2 Divide and Conquer

The divide and conquer (DAC) strategy is in usenany fields of A.l. and computer science
for problems such as combinatorial optimizationd6fl machine learning [7]. Though there is
other similar heuristics such as separate and &n@AC) and reconsider and conquer (RAC)
[8], DAC is the most widely used. The premise bdhn»AC is to divide a complex problem

into a number of easier sub-problems. Solving &et tombining the sub-solutions provides



To Appear in MLMTA 2003 Davidson et al

an overall solution [6]. For instance, the DAC #gy in the field of combinatorial
optimization makes combinatorially large problemactable. If we are trying to find an
optimal tour in a traveling salesman problem oftyhcities in the U.S.A., the number of
possible tours is 30!. If we determined the touwnlddoe divided into an east and west coast
tours of 15 cities each, with a connecting triggrthwe have divided the problem into two sub-
problems which together have a potential numbéowfs of 2.15!, a considerable saving.

A common application of the DAC approach in macheerning is to use a combination of
simple models to learn a complex concept. HiddenkbaModels (HMM) can be considered
an example of the DAC strategy with a complicateztgimg of the sub-problem solutions. A
HMM in an application such as speech recognitioa series of naive Bayes classifiers whose
decisions are merged by a transition matrix [7]e Haive Bayes classifier by itself would not
by itself be able to learn to predict complicatedjiences, but when used within a HMM is
capable of doing so. The top-down decision treeegdimg algorithms such as C5.0 are
examples of the divide and conquer strategy.

4  Experimental Methodology

Our first set of experiments focus on often usedlkn data sets available from the UCI
collection to get a clear understanding on thecefté the approach on accuracy and variance.
The second set of experiments show the approadefalness on larger more complex data
sets from the same collection.

4.1 Smaller Data Sets

The BREAST CANCER (BC), IRIS (I), DNA (D), VOTE (VPIMA (P), HYPOTHYROID
(H) and CHURN (C) data sets available from the W@@llection [9] will be the basis of this
part of the empirical study.

For each data set we compare the cross-validamday of a single model built and tested
from the entire data set against models built astiet! specifically for each segment. Every
record is assigned entirely to only one segmengning no records are removed. We segment
the instances using a weighted K-Means clusteriggrighm trying k=1...10 and stop the
algorithm when the change in distortion is less1tha’. We present the best results and the
value ofk used to achieve them. The predictive models aii¢ iming C5.0 with the default
settings or a naive Bayes classifier with uniforrions. We also present the ten fold cross-
validated accuracies for the K-nearest neighboorétgn for the value ok that obtained the
best results.

Our aim is to determine if the approach leads tisdically significant increases in the
accuracy. To get an estimate of the classifiersiracy we perform 10 fold cross validation 20
times and compute the mean and standard deviafidheocross-validated accuracy. In our
experiments if the model for a segment did notiob&a accuracy greater than the best guess
model then the best guess model is used in itsepl@he best guess model is to always predict
the most populous class.

We are particularly interested in knowing if thesplassified instances are more likely to be
outliers with respect to the clustering scheme.inuestigate this we group the instances into
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four intervals depending on their normalized distnto their respective cluster’s center. We
determine what proportion of all misclassificatidab in each interval. Finally, we use a recent
visualization technique [10] to visually display @k the outliers occur.

4.2 Larger Data Sets

To test our approach on large data sets we focuh@rPEN-BASED RECOGNITION OF
HANDWRITTEN DIGITS (over ten thousand instancesgtesen continuous attributes, ten
classes) and ISOLET SPOKEN LETTER RECOGNITION (oseven thousand instances, six
hundred and seventeen attributes and twenty sese$d data sets from the UCI repository. The
problem in the DIGIT data set consists of forty pleowriting the digits zero through nine with
the aim to identify the written digit. The ISOLETatd set consists of 150 individuals who
spoke each letter of the alphabet twice. The aito identify the spoken letter of the alphabet.
As neural networks have been very accurate in ttves@lata sets we will use them as the base
learner. The neural network is an example of a fatinnected feed-forward network that is
trained using the back propagation (BP) algoriti#a. before, we build a model for each
cluster. It would appear on the surface that bloéisé¢ data sets would benefit from local models
to capture the variations in the way that individuarite digits and speak letters. We present
the ten fold cross-validated accuracies for the erast neighbor algorithm to test this
hypothesis and for comparison.

5 Experimental Results

5.1 Smaller Data Sets

Table 1 and Table 2 show the BASE and SEGMENTED BRECY for C5.0 decision trees,
Table 3 and Table 4 for naive Bayes classifiers @adle 5 the results for the K-Nearest
neighbor algorithm.

BC I H P C D V
X-Validated Mean (%) | 93.6 94.3 99.2 74.5 94.8 94.295.3

Standard® Deviation(%)| 0.54 0.38 0.01 0.10 0.02 0.040.04
MSE 0.30 0.15 0.001 0.08 0.0030.010.004
Table 1. BASE ACCURACY for various data sets udimg C5.0 algorithm.

BC I H P C D V
X-Validated Mean (%) | 97.5 96.5 99.5 74.8 94.8 93.9 94.7

Standard® Deviation(%)| 0.19 0.55 0.00 0.08 0.03 0.02 0.03

MSE 0.04 0.31 0.000 0.07 0.004 0.004 0.004

Lift / Room For Lift (%) 61 39 375 1 1 -4 -12
Significant Difference’ | Yes Yes Yes No No No Yes
Value of k 3 2 2 3 5 4 3

Table 2. SEGMENTED ACCURACY for various data sets1g C5.0 algorithm. The data sets
are ordered left to right in decreasing order fotiat segmentation provides.

! The accuracy standard deviation for all folds @leR0 experiments.
2 Test of statistical significance between the BASECURACY and SEGMENTED ACCURACY at 95% confidenesél
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| BC | H P C D V
X-Validated Mean (%) | 97.1 92.1 98.4 75,5 87.2 95.6 91.2
Standard' Deviation(%)|0.630 2.100 0.220 1.560 0.470 0.360 1.430
MSE 0.001 0.006 0.000 0.060 0.016 0.002 0.008
Table 3. BASE ACCURACY for various data sets ugimg naive Bayes algorithm.

BC | H P C D V
X-Validated Mean (%) | 96.2 95.9 98.4 76.4 93.3 95.3 96.4
Standard® Deviation(%) | 1.140 2.380 0.320 2.65 0.650 0.620 1.710
MSE 0.002 0.003 0.000 0.056 0.008 0.002 0.002
Lift / Room For Lift (%) | -34 48 -1 4 48 -8 59
Significant Difference’ | Yes Yes No No Yes No Yes
Value of k 3 2 2 3 5 4 3
Table 4. SEGMENTED ACCURACY for various data setsg the naive Bayes algorithm.

BC I H P C D V
X-Validated Mean (%) | 94 87.2 94.3 70.2 85.6 92.2 91.2
Standard® Deviation(%)[0.63 2.1 0.22 1.56 0.37 0.36 1.43

MSE 0.36 1.68 0.33 7.75 2.07 0.61 0.79

Value of k 12 5 7 4 6 6 3
Table 5. BASE ACCURACY for various data sets udimg K-Nearest Neighbor algorithm.

Table 6 and Table 7 show how many test set instemselassifications fall into the various
distance-to-cluster-center intervals. Figure 3 afies misclassifications for a Breast Cancer
test data set using a recent visualization teclnid®@]. This technique places the cluster
centers in three-dimensional space so that simlilesters are adjacent and different clusters far
apart. This involves mapping the distances betweertluster centers that occur in the original
higher-dimensional instance space into the lowesettdimensional space. The instances are
then placed amongst the cluster centers to refieat distance to the cluster centers.

BC | H P CDV
25% of Closest Observations | 0 0 2 13 11 21 23
26-50% of Closest Observationg 0 0 3 16 12 24 23
51-75% of Closest Observationg 32 27 31 36 32 23 29
76-100% of Closest Observations68 73 64 35 35 32 25

Table 6. The percentage of all instance misclasditins occurring in a distance-to-cluster-
center interval for the C5.0 decision tree algonith
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BC I H P CDV
25% of Closest Observations | 14 0 1614 2 21 1

26-50% of Closest Observationy4 15 0 1717 7 23 1
51-75% of Closest Observationg 31 2322 32 25 22 32
76-100% of Closest Observations40 77 45 37 66 34 66

Table 7. The percentage of all instance misclasgifins occurring in a distance-to-cluster-
center interval for the naive Bayes algorithm.

Figure 3. Visualization of the misclassificatiort®lpred darker and bounded by a box) for a
breast cancer test set using a C5.0 classifieh Estance is a sphere; the distance an instance
is from the cluster center represents its Euclidisiance to that cluster center.

5.2 Larger Data Sets

Table 8 shows the performances comparison of diffelearners: K-Nearest Neighbor (KNN),
Neural Network (NN) and our approach to semi-lazgrhing on some large data sets where
local models should be useful.

Data set - Measure KNN NN (%) Semi-lazy (%)
(%)

Digit — Mean Accuracy 93.3 93.2 96.9

Digit — Std. Deviation 1.3 2.8 1.4

Isolet — Mean Accuracy| 79.1 95.5 93.2

Isolet — Std. Deviation 4.0 1.0 1.4

Table 8. Average accuracy across all ten foldssaaadard deviation for large data sets
obtained using K-Nearest Neighbor, Neural Netwoaksl Semi-lazy learning
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6 Experimental Discussion

In this section, we discuss several insights ddrivem our experiments.

We found that decision tree, naive Bayes classifeand neural networks benefited from
building local models for each segment. Segmerttiegpopulation using K-Means clustering
and then building prediction models using eithecislen trees or naive Bayes classifiers
overall provides better results for a variety ofadsets. For only one data set was the BASE
ACCURACY significantly greater than the SEGMENTEIZBURACY. When using decision
trees the BREAST CANCER, IRIS and HYPOTHYROID dasets benefited from
segmentation whilst the VOTE data set did not befefm segmentation. When using naive
Bayes classifiers the IRIS, CHURN and VOTE data ke significantly better SEGMENTED
than BASE ACCURACIES and one data set had worseE@BH CANCER). Interestingly,
the significantly better results for each classifion technique did not occur for the same data
sets indicating that best way to divide the instesygace depends on the base learner.

When using the neural network on large data setdowad that a significant increase in
accuracy occurred for the DIGIT data set but neti8OLET data set. Given the poor results of
the K-Nearest Neighbor algorithm on the ISOLET dsgtithis is to be expected as it appears
that localized models do not provide any advantage.

The accuracy increase for decision trees, naiveeBalassifiers and neural network did not
increase the variance unduly and for unstable ézant decreased. We found that the semi-lazy
learning approach yields a lower learner variamcéve of the seven data sets for decision
trees. This is expected as decision trees areioosty unstable estimators and technigques such
as bagging improve accuracy by increasing thebilga[11]. In four of the seven data sets the
overall MSE was also reduced. Naive Bayes classifiee more stable to variations in the
training set and as expected the application ofapyrroach yields a higher variance, but of the
seven data sets, five (IRIS, PIMA, HYPOTHYROID, CRN and VOTE) had a lower MSE.
This approach can reduce the bias and variancarnfstable learners and reduces the bias of
stable learners. Regardless of the stability ofehener, MSE is reduced.

Finally, we investigated if misclassified instanecasre likely to be outliers with respect to the
clustering scheme. Table 6 and Table 7 shows tih@&nwhe segmentation scheme yields a
SEGMENTATION ACCURACY greater than the BASE ACCURXCoverwhelmingly the
misclassifications are outliers. Figure 3 shows tha misclassified instances are located on the
outer edges of the clusters. Furthermore, theicgoteent is often between the cluster centers
indicating that they do not belong strongly to amg cluster.

7 Related Work

In this section we survey related work to our ovsazy learning has been the focus of

considerable attention in machine learning liteatiPure K-Nearest neighbor approaches have
been popular, as have alternatives such as losellyhted regressions [12] where the “vote” of

an instance depends on its distance to the tegtstahce. These approaches however will not
scale well as the training instances need to bredtand queried repetitively for each test set
instance. Lazy decision trees (LazyDT) [13], laayve Bayesian classifiers [14] are examples
of lazy learning where a model is built after sgeihe test set instance. Though these
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approaches can improve on the accuracy of modelley learners they are even more time
consuming to apply.

Perhaps the closest related work in principle to approach to semi-lazy learning is radial
basis functions [15] a form of neural network tleainsists of many local kernel functions
which are gated together to form one model. Eaddém layer node is a Gaussian kernel and
represents some part of the instance space. A &eigidn in radial basis functions is how
many kernels to use. It is common in smaller d&ts $0 have a kernel function for each
instance [1] but this does not scale well. An alsive is to use mixture modeling (soft
assignment clustering) to find a region of theanse space for each kernel. This has the effect
of separately setting the weights of the inputdaygng a mixture modeler and the output layer
weights using a typical neural network trainingoaithm.

Even though it was known that lazy learners scalerlp since the computational cost is

directly proportional to the number of test andnireg set instance [1] and less lazy learners
have been mentioned [16] little work has exploredhkining eager and lazy learners to form a
hybrid approach. Our approach to semi-lazy leaoaer overcome the scalability problem by
partitioning the instance space and building lonadels in advance of obtaining the test set
instances thus avoiding storing and searchingrdirimg set. However, our approach inherits
the advantage of pure lazy learners that a predictnly uses the most pertinent training data.

8 Conclusion and Future Work

Eager and lazy learners both have desirable piepeEager learners can in the case of naive
Bayes classifiers and decision trees provide arpnetable model and can quickly score large
test sets. However, eager learners do not perfoeth when multiple localized models best
approximate the general phenomenon to model. b diiation lazy learners such as the K-
Nearest neighbor algorithm can outperform eagenéra as the instances to base predictions
on are not chosen until the test set instancees. ddowever, lazy learners require the storage
and search of the entire training set for eacheumy test instance which does not lend itself
to the large amount of data typically found in maapplications. We postulate semi-lazy
learning and discuss one such approach that segrtfeninstances using clustering and then
building a model for each segment. By dividing theining data into segments, we build a
local model for a particular region of the instaspace. This can be considered a divide and
conquer strategy when an obvious segmentation shemot available. Divide and conquer
strategies have been used extensively and sucligssfnany areas of science.

We tried in total seven smaller UCI data sets as®tboth naive Bayes and C5.0 decision tree
classifiers. Of these data sets for both technigimese had statistically significant increases in
accuracies, three had no significant differencel, ame was significantly worst. The approach
also worked for larger data sets with neural netwosuch as the DIGIT data set where
localized models are desirable but not for the IEDIdata sets where the K-Nearest neighbor
technique performed poorly.

From our empirical studies we found that the apghmogields significantly better results in
many cases for the three types of base classifest. tThe improved accuracy is often better
than any of the base classifier's accuracy andchtoeiracy obtained by the K-Nearest neighbor
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approach showing that the improvement is practicatinificant. For unstable learners such as
decision trees, the increase in accuracy comesamitbcrease in variance and MSE. However,
when applied to stable learners such as naive Bagssifiers an increase in variance occurs,
but in five cases, the MSE is reduced. Finally, mviising this approach the misclassifications
that occur are overwhelmingly outliers.

From these insights, it seems worthwhile to sinmdtausly build both the clustering and
classification models and we plan to explore thitiam in the future. Furthermore, since
misclassifications tend to be outliers, it wouldibteresting to further investigate the idea of
building models only from the inliers (that is reweahe outliers).

We have inherently created an ensemble of predictord we will conduct empirical
comparisons against similar techniques such asirzpgd/e have shown our approach works
for hard divisive clustering approaches such as & and believe this will also occur for
probabilistic approaches such as mixture modeling.

We would like to determine if the approach yieldemll less complex models and compare its
computation time to producing a single model. Maaild require careful consideration of the
measure of complexity to factor in the complexityperforming the segmentation. Finally, we
would also like to explore further and propose aasnee not unlike the BIC (Bayesian
Information Criterion) or AIC (Akaike InformationriZerion) [17] to determine the best model
space (value ofk) to search that will yield the greatest SEGMENTED QURACY
improvement.
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