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Abstract. Our previous work introduced a 3D particle visualization framework 
that viewed each data point as being a particle affected by gravitational forces. 
We showed the use of this tool for visualizing cluster results and anomaly 
detection. This paper generalizes the particle visualization framework and 
demonstrates further applications to both clustering and classification. We 
illustrate its usage for three new applications. For clustering, we determine the 
appropriate number of clusters and visually compare different clustering 
algorithms’ stability and representational bias. For classification we illustrate 
how to visualize the high dimensional instance space in 3D to determine the 
relative accuracy for each class. We have made our visualization software that 
produces standard VRML (Virtual Reality Markup Language) freely available 
to allow its use for these and other applications. 
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Further Applications of a Particle Visualization Framework1 

Introduction 

Our earlier work describes a general particle framework to display a clustering solution [2] and 
illustrates its use for anomaly detection and segmentation [1]. The three-dimensional information 
visualization represents the previously clustered observations as particles affected by gravitational 
forces. We map the cluster centers into a three-dimensional cube so that similar clusters are 
adjacent and dissimilar clusters are far apart. We then place the particles (observations) amongst 
the centers according to the gravitational force exerted on the particles by the cluster centers. A 
particle's degree of membership to a cluster decides the magnitude of the gravitational force 
exerted. Figure 1 and Figure 2 are example visualizations. 

                                                           
1 Our software is available at www.cs.albany.edu/~davidson/ParticleViz. Because this paper focuses on visualizing 

clustering results, there are an extensive amount of pictures. However, these pictures are only the two dimensional 
mapping of the original 3D visualization. We strongly encourage readers to refer the 3D visualizations at the above 
address while reading the paper. The visualizations are in VRML (Virtual Reality Markup Language) format, which can 
be viewed by any internet browser with a VRML plug-in  (http://www.parallelgraphics.com/products/downloads/). 

 

Clustering is one of the most popular functions performed in data mining. Applications range 
from segmenting instances/observations for target marketing, outlier detection, data cleaning and 
as a general purpose exploratory tool to understand the data. Most clustering algorithms essentially 
are instance density estimation and thus the results are best understood and interpreted with the aid 
of visualization. In this paper, we extend our particle based approach to visualizing clustering 
results [1][2]. We focus on three further applications of the visualization technique in clustering, 
addressing three questions that arises frequently in data mining tasks:  

• Deciding the appropriate number of clusters. 
• Understanding and visualizing representational bias and the stability of different clustering 

algorithms. 
• Visualizing the instance space to determine predictive accuracy. 
While the first two questions are specifically for clustering algorithms, the last can be 

generalized beyond clustering for classification. 
The rest of the paper is organized as following. We first introduce our clustering visualization 

methodology and then describe our improvements to achieve a general purpose visualization 
framework. We then demonstrate how to utilize our visualization technique to solve the three key 
issues mentioned above. Finally we define our future research work direction and draw 
conclusions. 

Particle Based Clustering Visualization Algorithm 

The algorithm takes a k×k cluster distance matrix C and an N×k membership matrix P as the 
inputs, where k is the number of clusters and N the number of instances. In matrix C, each member 
cij denotes the distance between the center of cluster i and the center of cluster j. In the matrix P, 
each member pij denotes the probability of instance i belongs to cluster j. The cluster distance 
matrix may contain the Kullback Leibler (EM algorithm) or Euclidean distances (K-Means) 
between the cluster descriptions. The degree of membership matrix can be generated by most 
clustering algorithms and it must scale in a reasonable fashion so that sum of 1=� j ijp . 

 The algorithm first calculates the positions of the cluster centers in the three dimensional space 
given the cluster distance matrix C. A Multi-Dimensional Scaling (MDS) based simulated 
annealing method maps the cluster centers from higher dimensions into a three dimensional space 
while preserving the cluster distances in the higher dimensional instance space. After the cluster 
centers are placed, the algorithm puts each instance around its closest cluster center at a distance 



 

of ( )�
�

�
�
�

�= ij
j

i pfr sup . Function f is called the probability-distance transformation function, whose 

form we will derive in the next section. The exact position of the instance on the sphere shell is 
finally determined by the remaining clusters gravitational pull on the instance based on the degree 
of membership to them.  

Our method of placing the cluster centers and particles produces visualization with five 
properties: 

a) The distances among clusters indicate their similarity. 
b) The distance from an observation to a cluster center reflects its degree of membership. 
c) A cluster’s shape and opaqueness reflects the distribution of the degrees of membership. 
d) The cluster center placement is stochastic, particle placements are deterministic.  
e) Adjacent observations have similar combinations of degrees of membership. 

 
Figure 1. Visualization of Clustering Results for Segmentation Applications2. 

 
Figure 2. Visualization of Clustering Results with Outliers Shown in Red2. 

                                                           
2 This work was completed while the second author was a staff member at SGI, Mountain View California 



 

The Probability-Distance Transformation Function 
We desire consistency between the observed instance densities in the three dimensional space 

and the densities measured by the membership matrix. Let p represents the degree of membership 
between an instance and its closest cluster center. If we just placed the instances at distance p·k 
from the cluster center in the visualization space (k is the scaling constant), the particle density in 
the three dimensional space cannot convey the instance density measured by the membership 
matrix consistently. To understand this, consider two intervals ],( ε+aa  and ]2,2( ε+aa  in the 
degree of membership, which obviously have equivalent volumes when measured by the 
membership. However, their corresponding volumes in the 3-D space are 4�k2a2

� and 16�k2a2
� 

respectively, which give a difference of four fold. The density inside the latter shell will be 
underestimated by four times, which violates our wish to equate the density estimated by the 
degree of membership to that estimated by the visualization. 

We need a mapping function between p (degree of membership) and r (distance to cluster 
center) to convey the density of instances correctly in the visualization. Let N(r) be the number of 
instances assigned to a cluster that are within distance r of its center in the visualization. If p is the 
degree of membership of an instance to a cluster, then the instance density function Z against the 
degree of membership is defined by: 
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The Z function measures the number of instances that will occupy an interval of size dp. While 

the D function (below and derived in Figure 3) measures the number of instances that will occupy 
an interval of size dr in the visualization. 
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Figure 3. Calculation of the Visualization Density Function, D. 

We wish the two density functions measured by degree of membership and measured by the 
distance in the visualization to be consistent. To achieve this we equate the two and bound them so 
they only differ by a positive scaling constant c3. 
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By solving the differential equation, we attain the probability-distance function f. 
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The constant c is termed the constricting factor which can be used to zoom in and out.  Equation 
( 4 ) can be used to determine how far to place an instance from a cluster center as a function of its 
degree of membership to the cluster. 



 

An Ideal Cluster’s Visual Signature 

The probability-distance transformation function allows us to convey the instance density in a 
more accurate and efficient way. By visualizing the clusters we can tell directly whether the 
density distribution of the cluster is consistent with our prior knowledge or belief. The desired 
cluster density distribution from our prior knowledge is called an ideal density signature. For 
example, a mixture model that assumes independent Gaussian attributes will consist of a very 
dense cluster center with the density decreasing as a function of distance to the cluster center such 
as in Figure 4. The ideal visual signature will vary depending on the algorithm’s assumptions. 
These signatures can be obtained by visualizing artificial data that completely abides by the 
algorithm’s assumptions. 

 

Figure 4. The Ideal Cluster Signature For an Independent Gaussian Attribute. 

Example Problems Our Visualization Can Address 

In this section, we demonstrate three problems in clustering we intend to address using our 
visualization technique. Our purpose is to illustrate the usefulness of the approach and we discuss 
other potential uses in the future work section. 

We begin by using three artificial datasets A, B and C: Dataset (A) is generated from three 
normal distributions, N (-8, 1), N (-4, 1), N (20, 4) with each generating mechanism being equally 
likely. Dataset (B) is generated by three normal distributions, N (-9, 1), N (-3, 1), N (20, 4) with 
the last mechanism being twice as likely as the other two. Dataset (C) is generated by two equally 
likely normal distributions, N (-3, 9), N (3, 9).  

We then demonstrate our visualization technique on the UCI digit data set that consists of 
10,000 digits written using a pen-based device. Each record consists of 8 x-y co-ordinates that 
represent the trajectory the pen took while writing the digit. 

Determining the K value 

Many clustering algorithms require the user to apriori specify the number of clusters, k, based 
on information such as experience or empirical results. Though the selection of k can be made part 
of the problem by making it a parameter to estimate [3], this is not common in data mining 
applications of clustering. Techniques such as Akaike Information Criterion (AIC) and Schwarz’s 
Bayesian Information Criterion (BIC) are only applicable in probabilistically formulated problems 
and often give contradictory results. The expected instance density given by the ideal cluster 
signature plays a key role in verifying the appropriateness of the clustering solution. 

Our visualization technique helps to determine if the current k value is appropriate. As we 
assumed our data was Gaussian distributed then good clustering results should have a signature 
density associated with this probability distribution shown Figure 4. We shall illustrate addressing 
this question using dataset A. 

Dataset (A) is clustered with the K-means algorithm with various values of k. The ideal value of 
k for this data set is 3. We start with k=2, shown in Figure 5. The two clusters have quite different 
densities: The cluster on the left has an almost uniform density distribution that indicates the 



 

cluster is not well formed. In contrast, the density of right cluster is indicative of a Gaussian 
distribution. This suggests that the left-hand-side cluster may be further separable and hence we 
increase k to 3 as shown in Figure 6. We can see the density for all clusters approximate the 
Gaussian distribution (the ideal signature), and that two clusters are very close (on the left). At this 
point we can conclude that k=3 is a candidate solution as we assumed the instances were drawn 
from a Gaussian distribution and our visualization confirms this is the case for the clustering 
results. We can see that there are three clusters, two are quite similar and share many instances and 
are quite different from the remaining cluster. For completeness, we increased k to 4 and the 
results are shown in Figure 7. Most of the instances on the right are part of two almost inseparable 
clusters whose density is not consistent with the Gaussian distribution signature. 

 

 
Figure 5. Visualization of dataset (A) clustering results with K-means algorithm (k=2). The cluster on the 

right hand side as the typical signature density associated with a Gaussian distribution. 

 

 

 

Figure 6. Visualization of dataset (A) clustering results with K-means algorithm (k=3) 

 
Figure 7. Visualization of dataset (A) clustering results with K-means algorithm (k=4)  

 
We now try out visualization on the real world digit data set. Due to limitations of representing 

a 3-D visualization on paper, we study the digit data set for determining k when restricted to only 
clustering number 3 and number 8 digits, which constitute a very difficult pair to separate. For this 
dataset, k=3 is actually better than k=2 as there are two different styles of number 8 digits. Our 
visualizations shown in Figure 8 and Figure 9 illustrate that for the sub-optimal choice of k=2 the 
shape of the cluster deviates from the ideal cluster signature and the distribution of the digits 
(coded by the particle color) is almost uniform across both clusters. When k is increased to 3 we 



 

find that the clusters are better separated, with a consistent density and contain digits of 
predominantly the same type. 

 

Figure 8. Visualization of restricted digit data set (only 5 and 8 digits) clustered using K-means (k=2) 

 

Figure 9. Visualization of restricted digit data set (only 5 and 8 digits) clustered using K-means (k=3) 

Comparing Clustering Algorithms 

In this sub-section we describe how our visualization technique can be used to compare 
different clustering algorithms based on their representational bias and stability. Most clustering 
algorithms are sensitive to initial configurations and different initializations lead to different 
cluster solutions. This is known as the stability of the algorithm. Also, different clustering 
algorithms have different limitations on representing clusters. Though analytical studies that 
compare very similar clustering algorithms such as K-means and EM exist [4], such study is 
difficult for fundamentally different clustering algorithms such as self organized maps (SOM). 

Algorithmic Stability 

By randomly restarting the clustering algorithm and clustering the clustering solutions and using 
our visualization technique we can visualize the stability of a clustering algorithm. We represent 
each solution by the cluster parameter estimates (centroid values for K-Means for example). The 
number of instances in a cluster indicates the probability of these particular local minima (and its 
slight variants) being found, while the size of the cluster suggests the basin of attraction associated 
with the local minima. 

We use dataset (B) to illustrate this particular use of the visualization technique. Dataset (B) is 
clustered using k=3 with three different clustering algorithms: weighted K-means, weighted EM, 
and unweighted EM. Each algorithm makes 1000 random restarts thereby generating 1000 
instances. These 1000 instances represent the different clustering solutions found, are separated 
into 2 clusters using a weighted K-means algorithm. We do not claim k=2 is optimal but will serve 
our purpose of determining the algorithmic stabilities. The results for all three algorithms are 
shown in Figure 10, Figure 11 and Figure 12. We find the K-means algorithm is more stable than 



 

EM algorithms, and unweighted EM is more stable than the weighted version of the algorithm. 
This is consistent with the known literature on EM [4]. 

 

Figure 10. Visualization of dataset (B) clustering solutions of random restarts with unweighted EM  

 
Figure 11. Visualization of dataset (B) clustering solutions of random restarts with weighted EM  

 
Figure 12. Visualization of dataset (B) clustering solutions of random restarts with weighted K-means  

Visualizing Representational Bias 

We use dataset (C) to illustrate the representational bias of the clustering solutions found. We do 
clustering with both the EM and K-means algorithm and show the visualized results in Figure 13 
and Figure 14. 

The different representational biases of K-means and EM can be inferred from the 
visualizations. We found that for EM, almost all instances exterior to cluster’s main body are 
attracted to the neighboring cluster. In contrast, only about half of the exterior cluster instances for 
K-Means are attracted to the neighboring cluster. The other half are too far from the neighboring 
cluster to show any noticeable attraction. This confirms the well known belief that K-Means finds 
cluster centers that are further apart, have smaller standard deviations and less well defined than 
EM for overlapping clusters. 

 
Figure 13. Visualization of dataset (C) clustering results with EM algorithm (k=2) 

 
Figure 14. Visualization of dataset (C) clustering results with K-means  algorithm (k=2) 

The benefit of comparing clustering algorithms through visualization is we are not restricted to 
only mathematically comparable algorithms. For the rest of this section we compare Kohonen self 



 

organized maps (SOM) with EM and K-Means. SOM are well studied as models of associated 
memory and are common in many commercial data mining tools along with K-means and EM[5], 
however, little is known about their behavior in comparison to K-Means in the clustering context 
though the two are quite similar. For example, both SOM and K-means clustering algorithms 
attempt to minimize the vector quantization error (distortion). However, because SOM 
dynamically determine k and K-Means assumes k is given, comparing the two algorithms is 
difficult. Our visualization technique provides a method to compare the two. To show the 
comparative differences between the algorithms we chose a data set of three independent variables 
that contains three overlapping clusters as given in Table 1. 

 Variable 1 Variable 2 Variable 3 
Cluster 1 N(1, 0.25) N(0, 0.25) N(0, 0.25) 
Cluster 2 N(0, 0.25) N(1, 0.25) N(0, 0.25) 
Cluster 3 N(0, 0.25) N(0, 0.25) N(1, 0.25) 

Table 1. Example three variables Gaussian problem for comparing SOM and K-Means.  

The visualizations of the clustering results obtained by the SOM, EM and K-Means, algorithms 
are are shown in Figure 15, Figure 16 and Figure 17 respectively. Note that in these 
pictures the colors represent the generating mechanism that produced the instance. A perfect  
clustering solution would contain instances only of the same color. A commentary of the biases of 
three clustering algorithms is given in Table 2 

 Cluster 
Sizes 

Overlap Among 
Clusters 

Cluster 
Quality3 Accuracy4 

SOM not similar Yes not good not good 
EM similar Yes good good 

K-means similar No good very good 

Table 2. Summary of the different clustering algorithms for the three Gaussian variable data set. 

From these results we find that SOM inherently does not provide equal weights to each cluster 
since the clusters are of different sizes. However, like EM but unlike K-Means it can model 
overlapping clusters. Even though the SOM automatically found the correct number of clusters, 
the clustering result is not particularly useful as is given by the cluster quality and validated by 
cluster accuracy. Note that the cluster quality is indicative of the accuracy. 

 
Figure 15. Clustering result for three variable Gaussian problem by SOM 

                                                           
3 Comparison of the clusters shape with expected shape (see Figure 4). 
4 Accuracy is indicated by the purity of the cluster’s color 



 

 
Figure 16. Clustering result for three variable Gaussian problem by EM 

 
Figure 17. Clustering result for three variable Gaussian problem by K-means 

An Algorithm’s Relative Scoring Ability  

In this section we describe how to use our visualization to determine how well a clustering 
algorithm will perform at identifying a particular extrinsic class label. We use the real world 
handwritten digit (over ten thousand instances, sixteen continuous attributes, ten extrinsic classes) 
data set available from the UCI repository. For this application of our visualization we need to 
describe the data set in more detail. The sixteen attributes represent eight co-ordinates the pen 
writing the digit went through. The data set consists of forty people writing the digits zero through 
nine with the aim to identify the written digits which are written slightly differently as shown in 
Figure 18. We can cluster all instances, labeling each cluster according to its majority occurring 
extrinsic label (digit). Future instances are assigned the extrinsic label of the majority occurring 
digit of the cluster they most belong to. Using this approach an accuracy of 85% can be achieved 
though the accuracy for identifying a particular digit varies from as little as 2% to as much as 40%. 
We intend to use our visualization to attempt to apriori, before any clustering is performed, 
identify the relative performance at identifying a particular digit. 

 

 
 

 
Figure 18: Examples of Differently Drawn Numbers from the UCI Digit Dataset [6] 



 

To address this issue for each digit type we determine the mean and standard deviations for all 
attributes. We refer to this as the class prototype. We then calculate for each instance the 
conditional probability of each attribute given the prototype of the digit it is an example of. This 
provides us with a n by d table that represents the instances of a particular digit and how “similar” 
each instance’s attribute is to the prototypical version of the digit. We use this table as input into 
our visualizing. The results are shown in Figure 19, Figure 20, and Figure 21. We can see that for 
digit three nearly all instances are anchored to at least one particular point of the prototype 
defining the digit. In contrast for digits five and seven we find that many instances are not 
anchored to any one point in the prototype and instead are loosely anchored to many points. The 
more uniformly distributed the instances the greater the volume of the prototypical definition of 
the digit. The greater the volume of the prototype definition the less concise the prototype 
definition hence the less expected accuracy. 

We expect that if we were to cluster these instances and then try the clusters scoring ability on a 
holdout set, the accuracy at predicting digit three would be greater than five and seven. Table 3 
shows that this is indeed the case but we could not have determined this by just considering the 
mean and standard deviations of the probability of the instance’s attribute values given the 
prototypical values. 

 
Figure 19: Results for the all Three (3) digits 



 

 
Figure 20: Results for the all Five (5) digits 

 
Figure 21: Results for the all Seven (7) digits 

 



 

Digit 0 1 2 3 4 5 6 7 8 9 
Error 2% 36% 4% 4% 26% 40% 0% 21% 26% 4% 
Mean 0.6 0.55 0.61 0.61 0.62 0.5 0.6 0.61 0.52 0.58 
Stdev 0.04 0.07 0.12 0.11 0.14 0.07 0.08 0.08 0.04 0.07 

Table 3. Row one refers to the prediction error. Rows two and three refer to the mean and standard 
deviations of the instances’ conditional probability given the prototypical values of a particular digit. 

Future Work and Conclusions  

Visualization techniques provide considerable aids in clustering problems. In this paper we 
extended our particle visualization framework and focused on three new applications in clustering. 
Our visualization experiments showed that: 

• The cluster signature indicates the quality of the clustering results and thus can be used for 
clustering diagnosis such as finding the appropriate number of clusters. 

• It is possible to visually describe the different representational biases and stabilities of 
clustering algorithms such as EM, K-Means and SOM. Although sometimes these can be 
analyzed mathematically, visualization techniques facilitate the process and provide aids in 
their detection and presentation. 

• The particle visualization framework can also be used to present the statistics of the instance 
space, which can be used to forecast the predictive accuracies. The approach could 
potentially be used for clustering as well as supervised learning. 

We do not claim that visualizations can solely address these problems but believe that in 
combination with analytic solutions can provide more insight. Similarly we are not suggesting that 
these are the only problems the technique can address. The software is freely available for others 
to pursue these and other problems. 

We intend to use our approach to generate multiple visualizations of the output of clustering 
algorithms and visually compare them side by side. We aim to investigate adapting our framework 
to visually comparing multiple algorithms’ output on the one canvas.  
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