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Abstract to build models of the response of customers to a partic-

A recent paper categorizes classifier learning algorithms Ular offer using only the customers that have received the
according to their sensitivity to a common type of sample ©ffer in the past as the training set, and then to apply the
selection bias where the chance of an example being semodel to the entire customer database. Because these offers

lected into the training sample depends on its feature vec-ar€ usually notgiven atrandom, the training set is not drawn
tor x but not (directly) on its class labej. A classifier from the same population as the test set. Therefore, a model

learner is categorized as “local” if it is insensitive to i Iearned using_this training set may not perform well for the
type of sample selection bias, otherwise, it is considered€Ntire population of customers. _
“global”. In that paper, the true model is not clearly dis- Sample.selectlon bias of all types has be_en an ac;tlve re-
tinguished from the model that the algorithm outputs. In S€&rch topic. A large body of related work will be reviewed
their discussion of Bayesian classifiers, logistic regimss 1N Section 5. In this paper, we concentrate on recent work
and hard-margin support vector machines, the true model [£adrozny, 2004] that focuses on a common type of bias
(or the model that generates the true class label for every (d€finéd in the next paragraph) and categorizes inductive

example) is implicitly assumed to be contained in the model'€&mers into two types, “local” and “global”, based on thei
space of the learner, and the true class probabilities and S€NSitivity to this type of sample selection bias. We clar-
model estimated class probabilities are assumed to asymplfy Some of the important notations and concepts implied

totically converge as the training data set size increases. N [£&drozny, 2004] and make improvements on the catego-
However, in the discussion of naive Bayes, decision trees

rization of classifiers. We believe these improvements es-

and soft-margin support vector machines, the model Spacetablish a general relationship between sample selectas bi

is assumed not to contain the true model. and these three2Nd the accuracy of inductive learners, and create a founda-
classification algorithms are instead argued to be “global tion for future work on general methods to detect the sensi-

learners”. Here we argue that most classifier learning al- tVity of an algorithm to sample selection bias in real-vabrl
gorithms including those just discussed may or may not be@Pplications.

affected by sample selection bias; this will depend on the1.1 Sample Selection Bias

dataset as well as the heuristics or inductive bias implied
by the classifier learning algorithm and their appropriate-
ness to the particular dataset. We make use of our earlier
experimental results and produce additional results tasHl
trate our claims.

Assume that the event= 1 denotes that a labeled exam-
ple (x,y) is selected from the domaih of examples into
the training seD, and thats = 0 denotes thatx, y) is not
chosen. When constructing a classification model, we only
have access to examples where 1. In [Zadrozny, 2004],
four different types of sample selection bias are cleardy di
cussed according to the dependency ofix andy.

A common assumption made in data mining is that the  Thefirst caseis thats is independent from botk andy,
training and test sets are drawn from the same stationaryi.e., P(s|x,y) = P(s). In other words, the selection vari-
distribution. However, in practice this rarely happens- Re able s is a random variable completely independent from
cent work published in the data mining community has ad- both the feature vectax and the true class label. In
dressed situations where the learned concept (i.e. the relathe second casgethe selection bias is dependent on the
tionship between the class label and the example descripfeature vecto and it is conditionally independent of the
tion) drifts. In this paper, we look at the related and preva- true class labe} givenx, i.e., P(s|x,y) = P(s|x). This
lent problem that most data mining practitioners face: sam-type of sample selection naturally exists. For example, in
ple selection bias. Sample selection bias occurs when thehe direct marketing case mentioned earlier, the customers
concept remains static, but the training set is biased in tha are selected into the sample based on whether or not they
the chance of encountering an example is not the same irhave received the offer in the past. Because the decision
the training and test sets. For example, in the applicationto send an offer is based on the known characteristics of
of data mining to direct marketing, it is common practice the customers (that i) before seeing the response (that

1 Introduction



is, 1) then the bias will be of this type. This type of bias Assumption 1.1 The learner outputs a classifiéithat pro-

also occurs in medical data where a treatment is not givenduces the probability?(y|x, §) to approximate/estimate the

at random, but the patients receive the treatment accordingnodel independent true probabilif§(y|x).

to their symptoms which are contained in the example de-

scription (i.e. thex values). Therefore, the population that Assumption 1.2 For Bayesian classifiers, logistic regres-
received the treatment in the past is usually not a randomsion, and hard-margin support vector machine:The
sample of the population that could potentially receive the learner is a consistent estimator of the true proba-
treatment in the future. In thihird case, the selection bias ~ bilities P(y|x).  That is, the estimated probability

is dependent only on the true class lapeand is indepen-  P(y|x,6) equals the true model independent probability
dent from the feature vectoy, i.e., P(s|x,y) = P(sly).  P(ylx) when the training data is exhaustive. Formally,
This occurs when there is a correlation between the labelVxlim|p|—.o P(y[x,0) = P(y|x).

value and the likelihood of appearance in the database. For

example, people with higher income may be less inclined In this notation,f denotes the classifier or “the output of
to answer a survey about income. Thus, if we are trying to the learner” constructed from training ddfa (A summary
learn to predict an individual’s income category using sur- Of all notations is in Figure 2.) The above assumptions are
vey data, this type of bias is likely to occur. In st case strong since the individuality of different problems ané di
there is no assumption about any independeneeyofenx ferent datasets is not considered. In this paper, we relax
andy, and both the example description and its label influ- these assumptions and take these differences into account.
ence whether the example will be chosen into the training sWe argue that Bayesian classifiers, logistic regression and
et. Note that in all cases the test set examples are assume@rd-margin support vector machines can be either “local”
to be unbiased, since the model will be used on the entire®f “global” classifiers. This is dependent on the particular
population. For the remainder of this paper we shall focus dataset to which these learners are applied.

on the second type of sample bias as it is believed to be a On the other hand, when naive Bayes, decision tree and

prevalent problem [Zadrozny, 2004]. soft-margin support vector machines are characterized as
“global” classifiers in [Zadrozny, 2004], the following as-
1.2 EXiSting Classifier Categorization and its Limita- Sumption is made that rep'aces Assumption 1.2.
tions

Assumption 1.3 For naive Bayes, decision tree, and soft-
margin support vector machines:The learner's model
space does not contain the true model and hence is incon-
sistent. Formally3x lim| p| .., P(y|x, 0) # P(y[x).

In [Zadrozny, 2004], inductive learners are categorized
into two types, either “local” or “global”, according to tine
dependency/sensitivity to sample selection bias.

Definition 1.1 The output of aLocal Learner depends  Similarly, this assumption is also strong because therdliffe
asymptotically only orP(y|x). [Zadrozny, 2004] ences between datasets are not considered either. We can

also argue that naive Bayes, decision trees and soft-margin
support vector machines could be either “local” (invartant
sample bias) or “global” (affected by sample bias) when the
differences between datasets are accounted for. We gener-

In the ab definition. “th fthe | " ref alize this argument to say that most of the known inductive
n the above definition, “the output ot the learner” reters o, o5 could behave either as “local” or “global” leamer

to the classifier constructed from the training set by a par- depending on the particular dataset as well as the induc-

:Icutlarfli?rner. Thgste def|nf|t|ons v;/ergdlsc;sged in ch%gzn tive bias implied by the learning algorithm. When the true
ext of the second type of sample bias [Zadrozny, 1 model of the particular dataset is contained in the model

:: [Za_drozrlwy, 2,?,04]’ SeYeraé populgr I_ez_:\rners |ncI|ud|.ng. space, the learner would be local. Nonetheless, when the
ayesian classiliers, naive bayes, decision trees, 10gisti 4 e model is not contained in the model space, the learner
regressions as well as soft and hard margin support VeCy,ould be global

tor machines, are categorized as always being either *local o o o
or “global” . This original categorization is independent 2 Restrictions of Existing Categorization

from the particular application problem and only dependent 14 f,j1y understand the assumptions and the practical im-
on t_hg learner. However, several strong a;sumptlons ar&jications of the “global’ and “local” categorization, i i
implicitly made, as discussed below, regarding the model hocessary to formally define some of the important nota-

space of the classifiers and the interpretatiof @f|x) used tions and quantities, particularly?(x) and P(y|x) used in
in the definition of “local” and “global”. Definitions 1.1 and 1.2. '

In the discussion of Bayesian classifiers, logistic regres-
sion, and hard-margin support vector machine always to be
sample bias independent “local” classifiers, the following  In [Zadrozny, 2004]P(x) is defined as “a global distri-
two assumptions are made implicitly. bution over the entire input space”, and a global class#ier i

Definition 1.2 The output of aGlobal Learner depends
asymptotically both o (x) and P(y|x). [Zadrozny, 2004]

2.1 Formal Definitions



e x is feature vectory is class label, and = 1 denotes thaf An important distinction between definitions 2.1 and 1.2

an examplex, ) is selected into the training sét. is that in the improved definition, a global learner’s output
e P(s = 1|x,y) formally describes sample selection bias, is shown to directly be influenced by the chance of an in-

and it denotes the probability that an examptey) is se- stance being selected in the training set or the selectam bi

lected into the training set. However, in the original definition 1.2, the influence on the

global learner is formulated on the chance of occurring a

e P(s = 1|x,y) = P(s = 1|x) is true for the second type
of sample selection bias wheses only dependent on the  feature vector, that is actually independent from sample se
feature vecto and it is independent from class lahel lection bias.

e P(x) is the probability distribution of feature vectarand In [Zadrozny, 2004]P(y|x) “refe_rs to many_local distri-
it is not related to either class labglor sample selectiop ~ butions, one for each value &f. Strictly speaking P (y|x)
biass. denotes the true conditional probability distribution e t

« P(y|x) denotes the true conditional probability for a fa posterior probability distribution for a featurg vectoto be
ture vectorx to be a member of class It is completely a member of clasg. The true class label fot is generated

determined by the true concept or true function that an|in- according toP(y|x). P(y[x) is completely determined by
ductive learner is to model. The true function is typically Some unknown true function, and is unrelated to either the

»

unknown unless the dataset is synthesiz&dy|x) is in- training dataD or the model space of the inductive learner.
dependent from training data as well as sample selection Obviously, the true probability’(y|x) is independent from
bias. both the sample selection bias due to training datnd the
e Oisthe model space assumed by a learner. inductive bias due to choice of hypotheses space of a par-
e 0 is a classifier constructed by a learner by searching in the ticular algorithm. l_n reality, for mOSt practical appl'@_s
model space® given training dataD. By definition, 6 is where the dataset is not synthesized, the true probahisity d
dependent on bot® and D. tribution P(y|x) is not known either before or after training

e P(ylx,6) denotes the probability for an exampie to son;elmodel. -I(-jh; ava”?bmty ﬁf true pr?babllllﬂl(g{%) to
be of classy, as estimated by a classifiér Typically, model is very different from the true class label Class

P(y|x,8) # P(y|x), in other words, the estimated probp-  2belsy’s are provided in the training data, and are essen-
bility may not be equal to the true probability. tial for inductive learners to construct classifiers. Hoargv
e Since 0 is dependent on bott® and D, we de- the true probabili_tyP(y|x) _is_ not normally given. Ev_e_n if
fine P(y|x, D, ©) to represent the same probability as a feature yectox in the training data has.class lahglit is
P(y|x,0), i.e., P(y|x, D, ©) = P(y|x,6). strongly biased to assume thafy|x) = 1 in general. One
instance of x, y) is just a single observation. By definition,
P(y|x) is the probability to observe class labelvhenx is
sampled repeatedly.

Figure 1. Summary of Symbols and Concepts

2.2 Classifiers as Approximators ofP(y|x)

affected by sample selection bias "because the bias changes \jost inductive learning algorithms construct classifiers
P(x)". Formally, P(x) is the probability distribution solely 4 ejther directly or indirectly measure, approximate and
as a function of the feature vectgr and it is independent output the true probability?(y|x) by searching for one

of class labely. (Strictly speaking, if any feature; within or a set of hypotheses that are consistent with the train-
the featur_e vectax is a continuous variablé?(x) is a den- ing dataD in some hypotheses spa€e specific to each
sity function.) For example, assume that there are only |earming algorithm. The choice of hypothesis is called in-
two binary-valued features a_md each unique complnatlonductive bias [Mitchell, 1997]. The model space for deci-
of feature values happens with equal chance. In this casegjon tree learning algorithm is the complete set of trees tha
Vx, P(x) = 0.25. Given the new formal definition in this  tests each feature of the feature vector in different orders
paper,P(x) is a problem dependent quantity and is inde- 4nq with different splitting conditions. However, the mbde
pendent from sample selection bias. Borrowing the notationyo ogistic regression is the set of logistic regressiamfo-

of sample selection bias introduced in [Zadrozny, 2004], a 55 with different coefficients corresponding to each fesatu
global classifier's dependence on sample selection bias is-or c|assification algorithms that do not directly outputco

best formalized through the dependenceffy = 1[x) ditional probabilities, they either output a score (spedii
rather than orP(x). In general,P(s = 1|x) is notrelated  gach algorithm) or predict the “most likely” class label.eTh
to P(x). scores can be normalized into conditional probability-esti

mates. When scoring is unavailable, we interpret the esti-
Definition 2.1 Improved and General Definition of  mated probability for the predicted class as 1, and 0O for all
Global Learners A global learner’'s output depends others. In summary, classifiers can be represented as ap-
asymptotically on bottP(s = 1|x,y) and P(y|x). Under proximators of the true conditional probability.
the second type of sample selection bias, it depends on Formally, we use the notatioR(y|x, D,©) to denote
P(s =1|x) and P(y|x). a classifier constructed by some learner to approximate



P(y|x). In this notation,D is the training set of examples becomes obvious tha®(y|s = 1,x) = P(y|x). Follow-
withs =1orD = {V(x,y) € D A s =1}, © is the model ing the definition of training datasé?, the dependency on
space implied by the learning algorithm, such as the com-s = 1 can be replaced by a dependency on the training set
plete set of decisions trees. The learning algorithm search D, i.e., P(y|D,x) = P(y|x).
for a model (or an ensemble of hypotheses} © that is P(yls = 1,x) = P(y|x) is used in [Zadrozny, 2004] to
consistent with the training dafa. When there are multiple  argue that some algorithms, e.g., Bayesian classifiers4ogi
hypotheses consistent with the training dBXgpreferences  tic regression and SVM, are independent from the second
are given to certain models. We could s replace the  type of sample selection bias. However, this is only true un-
dependency on both and® in the notation, i.e., we define  der assumption 1.2 that the learner is consistent. However,
P(y|x,0) = P(y|x, D,©). In our notationg is the “out- as discussed in Section 2.2, the estimated probability-is ac
put of the learner” used in the original definitions of “Idtal  tually P(y|x, #), and we generally cannot assume the learn-
and “global” or Definitions 1.1 and 1.2. The chosen model ers are consistent for many realistic problems. One deeper
6 specifies the exact procedures to compute and approxiinterpretation is that any consistent learner is “suffitien
mate the true probability’(y|x). If 6 is a decision tree, it  and necessarily” local under the second type of sample se-
specifies the order of feature tests, the threshold value forlection bias sincé P(y|s = 1,x) = P(y[x)) < (P(s =
continuous variable tests, and the number of examples be—1|x,y) =P(s= 1|y)),
longing to different classes at the leaf nodes. . .
3 Analysis of Popular Algorithms

In [Zadrozny, 2004], Bayesian classifiers, logistic re-
gression, and hard-margin support vector machines are ar-
gued to be “local” classifiers that are insensitive to sample
selection bias. However, naive Bayes, decision trees, and
soft-margin support vector machines have been argued as
“local” learners that are sensitive to sample selectios.bia
We argue that all these learners can be either global or,local
and this depends on both the learner and dataset, but not on
the learner itself.

2.3 Learner Consistency at Estimating Probabilities

The classifierd is trained to estimate/approximate the
true probabilityP(y|x). However, the estimated probability
P(y|x,0) may not be equal t&(y|x), if the true model or
a model that produceB(y|x) is not contained in the model
space of the learner. We say that a learner is consistemt if th
learning algorithm can find a modelthat is equivalent to
the true model at producing class conditional probabidlitie
given an exhaustive training data set. Formally, a learner
is consistent if it can find a modé from an exhaustive
number of examples such thek lim|p|_.o P(y|x,0) =

P(y|x). For example, if a decision tree algorithmisusedto |5 the analysis of Bayesian classifiers to be

approximate a non-vertical and non-horizontal linear func caJ” [zadrozny, 2004], the following equation is used
tion that separate the space into two classes, it will neger b

able to find a tree with O error rate. At best, a decision tree  P(x|y,s = 1)P(y|s = 1)

approximates the linear function with steps. Clearly, the P(x|s =1)

consistency of a particular learner depends on the dataset

that it is applied to. In other words, the same learner could  The above analysis does not consider the dependency on

be consistent for some dataset but inconsistent for othersthe model space of the learner®r For a Bayesian clas-

Verification of learner consistency for an arbitrary datése  sifier, © describes exactly how to estimak¥x|y,s = 1)

a difficult problem. To the best of our knowledge, thereis no and P(x|s = 1) from the training datdD with sample se-

published work to exhaustively test a learner’s consistenc lection bias. In factP(x|y,s = 1) and P(x|s = 1) are

for an arbitrary dataset. A complete answer is impossible P(x|y, s = 1,0) and P(x|s = 1, ©) respectively. By def-

for realistic problems with infinite number of examples and inition of D, the dependency os = 1 can be replaced

unknown true function, such as mortgage application andby dependency ofv. These two probabilities can be then

catalog campaigns. Based on the above analysis, we prorepresented aB(x|y, D, ©) andP(x|D, ©) instead. As an

pose to relax Assumptions 1.2 and 1.3. example, suppose that we have a dataset with all categorical
features. ObviouslyP(x|y, D, ©) is the ratio of all exam-

Assumption 2.1 Relaxed assumption of Assumption 1.2 ples in the training dat&® with class label, that also have

and 1.3We do not assume the learner’s consistency, i.e., it feature vectox. Now, the problem is to decide what num-

3.1 Bayesian Classifiers
“lo-

= P(ylx,s = 1) = P(y[x)

could be either consistent or inconsistent.

2.4 Limited Utility of P(y|x,s =1) = P(y|x)

It is true by the definition of the second type of sample
selection bias thaP(s|y, x) = P(s|x) in[Zadrozny, 2004].
Re-writing by the definition of conditional probability, it
becomesplﬁaﬂ’;) = Pp(f:;). Re-arranging the denomina-
tors and using the definition of conditional probabilitiés,

bers to divide to calculate this ratio. For simplicity, we as
sume that each feature vectois unique. In this case, if the
choice is to consider every featurgin the feature vectax,
thenP(x|y, D,©) = ‘D—ly‘ if x has class labe}, otherwise
0. Inthis notationD,, is the subset of examples in the train-
ing dataseiD that have class labgl P(x|D,©) is ﬁ be-
cause each feature vectois assumed to be unique. Taking
everything into consideratiorf? (y|x, D,0) = 1 if x has



%0

class labely or O otherwise. This computation is straight- = o - o - 5
forward but not very useful, since there is no generalizatio ~ «| o : nfo® : n} o .
and it is equivalent to “rote learning”. The problems come = = *® . « ® . « ® .
from the strong assertions to consider every featyrén T h e B w w woh e %waw Twa o %owoa
the feature vectox. In reality, we normally only consider

a “subset” of features in the feature vectotin order for Figure 2. Logistic Regression

the algorithm to generalize. The exact subset of features

to consider depends on the training data Since® actu-

ally represents these inevitable choices, the dependency odence assumption is one whose true label is only depen-
© cannot be ignored. This problem becomes more compli-dent on one feature, and all other features are irrelevant,
cated when some features are continuous, as there are in-€.,3i, P(y|x) = P(y|xz;).

finite number of choices to either discretize the continuous 3.3 | ogistic Regression

features or split them into halves. In summary, due to the
inevitable assertions and choices, it is generally verg tar
computeP(y|x) exactly for Bayesian classifiers. As a mat- 1

ter of fact, we still computé®(y|x, D, ©), and neither the ~ Py =1[x,s =1) = 15 exp(Bo + Pz - ..+ Buzn)
dependency oy nor the dependence @hcan be removed.

We provide an example to show that Bayesian clas- Logistic regression is argued to be free from the second
sifier can also be “global”, as opposed to the analysistype of sample selection bias in [Zadrozny, 2004] as “be-
in [Zadrozny, 2004] that it is always “local’. Assume that cause we are assuming thatis independent of given
the feature vector can be decomposed into two disjoint sub-x we have thatP(y = 1[x,s = 1) = P(y = 1|x)".
setsx = (x1,xp). Let the true conditional probability ~This assumption ignores the effect bf on 0, or the set
only depend orx,, i.e., P(y|x) = P(y|x;), and the se- of parameterg; in this case. A further proof would be re-
lector variable depend only oRy, i.e., P(s = 1]x) = quired to justify that3;’s are not affected by = 1 for any
P(s = 1|x3). Under this situation, the choice of features datasetD. However, this could be very difficult singgs
to computeP(x|y,s = 1) and P(x|s = 1) decides how are computed fronD by minimizing log-likelihood func-
much the sample selection bias will influence these esti-tion through Newton’s method. In [Zadrozny, 2004], a sim-
mated quantities from the data. If luckily, only those fea- ple example of one independent variable is shown to justify
turesc x; are taken into account to compueéx|y, s = 1) the claim that logistic regression is not affected by sample
and P(x|s = 1), then the effect of sample selection bias selection bias. Although this example is indeed corred, it
will be rather small. However, if any features x, are over simplified. The true function for the given example is
chosen to comput®(x|y, s = 1) andP(x|s = 1), the esti-  a simple linear separable functiét(1|z > —0.75) = 1.
mated probability will reflect sample selection bias. In+ea The likelihood equation of logistic regression, both bi-
ity however, we normally do not know if the feature vector nary response and ordinal response % classes), is not
could be decomposed into the two disjoint subsets. In so-guaranteed to have a finite solution. The existence of max-
phisticated situationsfor different examples could depend imum likelihood estimate depends on the configuration of
on a different feature subset. In the same time, the choicechosen training examples [So, 1999]. There are three mutu-
of features to comput®(x|y,s = 1) and P(x) could be ally exclusive and exhaustive categories, i.e., complepe s
rather arbitrary. Because of limited number of examples in aration, quasicomplete separation and overlap. Consider a
the training set, some combination of feature values couldbinary response model of classgs= 1 andy = 2. In
result in very few or even no examples in the training set. complete separationthere exists a vectds that correctly
When this happens, the estimated probability can be statisallocates all observations to their response groups, ¢hat i

In [Zadrozny, 2004], logistic regression is described as

tically unreliable due to trivial sample size. bx>0 y=1 1. corresponds to the simplest case
) N b'x<0 y=2
3.2 Naive Bayes Classifier of “linear separatability” where the maximum likelihood es

In [Zadrozny, 2004], naive Bayes is argued to a ftimate does not exist and there exists multiple vectsss
global classifier that is affected by sample selection thatcanequally separate the data points completely. The ex

bias since in generafZilys=V-.-D(enlys=1) Plyls=1) act solution for the same labeled training set, i.e., whih p
P(xly,s=1)P(yls=1) P.(x|5:1) ) ticularb’s is chosen, depends on the implementation. Dur-
Pxls=1) - However, this does not imply that jnq the iterative process to fit the logistic regression nhode

the naive Bayes classifier is always a “global classifier” the negative log-likelihood decreases to 0. As long as all th
for any datasets. For some datasets where the independata points in the domair are linearly separatable, logis-
dence assumption holds true, naive Bayes computes exactlyic regression is completely free from any sample selection
P(x‘yjf@lzig‘szn = P(y|x,s = 1), which isP(y|x) ac-  bias including the second type of sample selection bias as
cording to the assumption of the second type of sample se-discussed in [Zadrozny, 2004]. Although the exact vebtor
lection bias. A simple example that satisfies the indepen-selected by the iterative process may still be dependent on




the sample selection bias. However, this difference is in- is indeed the case, sample selection bias will not asymptot-
significant since each satisfyingseparates the data points ically affect the output of the hard-margin SVM algorithm
equally well. In thequasicomplete separationcase, the  as argued by [Zadrozny, 2004]. However, because this al-
data points are not “linearly” separable, and there exists agorithm does not have a solution if the data is not linearly
b’x>0 y=1 Similar separable it cannot be applied in most practical cases.
b'x<0 y=2" The soft-margin SVM algorithms introduces slack vari-
to the complete separation case, the maximum likelihoodables¢; > 0 for each exampléx;,y;). The optimization
estimate does not exist. However, during the iterative pro-is changed to minimize¥ (a, b, £) = %a ca+CY G
cess, the log-likelihood does not diminish to 0 as in the casesubject to:Vi : y;[a-x;+b] > 1 —&;, & > 0 If atraining
of complete separation. If neither complete separation norexample lies on the wrong side of the decision boundary,
guasicomplete separation exists, there iewrlap of sam- the corresponding; is greater than 1. Therefor®, ! , &
ple points. For every vectds drawn in the sample space, is an upper bound on the number of training errors. The
there is always a sample point of different classes on thefactorC is a parameter that allows one to trade off training
same side of the vector. In this case, maximum likelihood error and model complexity.
exists and is unique although there could be multiple vec-  In [Zadrozny, 2004] it is argued that sample selection
tors b that equally converge to the maximum likelihood. bias affects the soft-margin SVM because it can change the
Both quasicomplete and overlapping cases are sensitive tgaum of ¢; values by making regions of the feature space
the second type of sample selection bias. As shown in Fig-denser than others. When this sum is changed, the deci-
ure 2, quasicomplete is sensitive to the placement samplesion boundary is also changed. Therefore, the soft-margin
points that fall exactly on the vectar. If we introduce on  SVM algorithm is characterized as a global leaner. While
additional example that crosses to the “wrong” sidebpf  this is true in general, like other learners, the soft-margi
the problem becomes “overlapping”. For overlapping prob- SVM algorithm can also behave as a local learner depend-
lems, all satisfying vectors forms an envelope. The intro- ing on the specific dataset used. In particular, if the data is
duction of one example that crosses to the “wrong” side of linearly separable, the sum &f values will be always zero
this envelope will change the maximum likelihood. and sample selection bias will not asymptotically affeet th
output. This is also the case if the minimum of the sum is
not changed by the bias (for example if the bias only affects
Decision trees are argued to be “global” classifier inde- examples that are on the correct side of the boundary).
pendent from the dataset and problem in [Zadrozny, 2004]. . .
However, a decision tree could also be a “local” classi- 4 Experimental Studies
fier. The decision path of a tree tests a sequence of fea- We empirically validate the claims in the paper. The
tures starting from the root of tree to the current node. thesis is that a classifier learner cannot always be global
Without loss of generality, assume that decision path is or local. In fact, whether it is local or global depends on

unigue vectorb such that{

3.4 Decision Trees

(z1,22,...,2%), Which is a true subset of the full fea- the combination of the data set, modeling assumptions of
ture vector, orCc x = (x1,x2,...,x,). Assume that thelearner and their appropriatenessto model the paaticul

each feature is categorical. ThdM(y|x,s) = P(y|x) dataset. In [Zadrozny, 2004], it has already been shown that
implies P(y|x1,za,...,2k,8) = Pylz1,za,...,zx) if decision tree and naive Bayes classifiers are global and af-
ZTr+1,---,T, are irrelevant at predicting the class lalel  fected by sample bias, and that logistic regression and hard
but may be exclusively used to determine if the instancesmargin SVM are local and not be effected by sample bias.
are selected into the training set. It remains to show that naive Bayes and decision trees can

. also be local and not be affected by sample bias, while lo-
3.5 Support Vector Machines (SVM) gistic regression and hard-margin SVM can be still effected
In [Zadrozny, 2004], the hard-margin SVM algorithm is by sample bias.

argued to be alocal learner, while the soft-margin SVM al-  Naive Bayes and Decision Tree Can be Local Clas-
gorithm is argued to be a global learner. The hard-marginsifiers We construct an artificial data set for naive Bayes
SVM algorithms learn the parametersand b describing  where3i, P(y|x) = P(y|x;) as described in Section 3.2.

a linear decision ruleh(x) = sign(a - x + b) whose We generate 100 random datasets of 1000 data points de-
sign determines the label of an example, so that the small-scribed by 20 Boolean variables (T or F). For each data set,
est distance between each training example and the deciene of the 20 variables is selected to determine the class la-
sion boundary, i.e. the margin, is maximized. Given a bel. Each feature value is generated with equal likelihood.

sample of exampleéx;, y;), wherey; € {—1,1}, it ac- For the chosen variable; that decides the class label, we
complishes margin maximization by solving the follow- setP(y = +|z;) = 1/i. We then generate test sets in ex-
ing optimization problem: minimizeV (a,b) = %a - a, actly the same way. To produce the biased training sets, we

subjectto:Vi: y;[a-x; +b] > 1. The constraint requires  select a variable; among the remaining variables (i.e. ex-
that all examples in the training set are classified cotyectl cludingz;) and set sample selection biR§s = 1|z; = T)
i.e., that the data can be separated by a hyperplane. If thigandomly in between 0 and 1. No other variable effects the



P(y|s = 1) = P(y), the only possible selection bias is due
Figure 3. Examples where naive Bayes and Deci- to the feature vectax but noty.
sion trees Behave as Local Learners
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We perform experiments on the 20 Newsgroups datasets us-
) . ing the standard “by-date” division into training (60%) and
Figure 4. Typical scatter plots of mean number of test (40%) sets based on posting date. This division cre-
top ten word for newsgroup data sets ates a temporal bias. For example, in the Guns newsgroup
the word “Waco” occurs extensively in news articles in the
Baseball-Hockey MidEast.Guns training set but not in the test set, as interest in the topic
fades. This can be seen visually by examining the relative
frequency of word occurrences (the attribute values) in the

08 0.8

06 . o ¢ training and test sets in the scatter plots of Figure 4. This
0a . 0wl oty . . verifies the existence of sample selection bias, and based on
02| . wl & ¢ our derivation above, it is the second type of sample selec-

N g . tion bias. We used the tool Rainbow to extract features from
o 02 04 05 08 1 o 0z 04 06 08 1 news articles. The feature vector for a document consists of

the frequencies of top ten words by selecting words with
sample selection bias. Though quite simple, it is a clear highest mutual information with the class variable. On the
example of the situation where the true model is containedother hand, the unbiased training and tests sets were cre-
in the model space of the learner. The comparison of theated by randomly shuffling all of the newsgroup data and
naive Bayes models constructed from biased and unbiase@electing training and test sets irrespective of the nesws it
training sets are shown in the left plot of Figure 3. It clgarl posting date. The results shown in Table 1 illustrate thet th
demonstrates that naive Bayes in this circumstance is nothard-margin SVM and logistic regression learners can be
effected by sample bias and hence is a local learner. adversely effected by sample bias (i.e. the Baseball-Hock,
For decision trees, we create the situation discussed inMidEast-Guns and Mac-Religion data sets) as well as being
Section 3.4. We randomly divide the 20 Boolean feature invariant to sample bias (the other three data sets).
vector into two equal sized separate disjoint subsets of var
ablesx; andx;. The class probability is only dependent on 5 Related Work
x; not onx; as for all combination of attributes values for The sample selection bias problem has received a great
x; we setP(y = +|x;) randomly as either 0.1 or 0.9. To deal of attention in econometrics. There it appears mostly
introduce sample selection bias, we choose one varigble because data are collected through surveys. Very often peo-
from the subsek; i.e. z; € x; and set the selection bias ple that respond to a survey are self-selected, so they do
asP(s = 1lz; = T) = 1/4, no other variable effects the not constitute a random sample of the general population.
sample selection. We generated 100 training and test setén Nobel-prize winning work, [Heckman, 1979] has devel-
with 1000 examples each as before. The results are summasped a two-step procedure for correcting sample selection
rized in the right plot of Figure 3. Clearly, the learnerig no bias in linear regression models, which are commonly used
effected by sample bias since the true model is in the modelin econometrics. The key insight in Heckman’s work is
space and the sample bias does not effect the tree generatethat if we can estimate the probability that an observation
Text DatasetsFor the newsgroup datasets, the training is selected into the sample, we can use this probability esti
and test data sets are drawn from similar but not identi- mate to correct the model. The drawback of his procedure
cal distributions. These data sets are of particular impor-is that it is only applicable to linear regression models In
tance since they contain sample bias, and it is very likely the statistics literature, the related problem of missiatad
that the unknown true model may not be in the model spacehas been considered extensively [Little and Rubin, 2002].
of logistic regression, decision tree, naive Bayes or stppo However, they are generally concerned with cases in which
vector machine classifiers. Since the chance of encountersome of the features of an example are missing, and not
ing a particular class is the same in the training and testwith cases in which whole examples are missing. The lit-
sets, hencé’(y|s = 1) = P(y). We show below when erature in this area distinguishes between different tges



Technique Baseball Christian MCyles MidEast MidEast Mac
vs Hock. vs Sale vs Guns vs Guns vs Elec vs Relig.
NB 22.2% (24.6%)| 12.0% (12.3%)| 11.5% (10.5%)| 11.0% (10.7%) | 17.4% (17.2%)| 19.4% (21.1%)
DT(C4.5) | 13.3% (15.7%)| 8.7% (7.9%) | 8.2% (10.8%) | 10.5% (20.3%) | 17.4% (17.2%)| 14.1% (18.4%)
LogR 11.9% (11.4%)| 8.1% (8.0%) 7.8% (8.1%) | 10.15% (10.3%)| 17.4% (17.2%)| 11.1% (10.7%)
SVM 24.8% (26.1%)| 8.2% (8.4%) | 15.4% (14.2%)| 18.4% (21.4%) | 17.4% (17.2%)| 22.9% (23.6%)

Table 1. Error of various techniques on newsgroup data from u nbiased training sample and biased

training sample (shown in parentheses)

missing data mechanisms: missing completely at randomimplicit assumption that the true model is contained in the
(MCAR), missing at random (MAR) and not missing at ran- model space of these learners regardless of the dataset that
dom (NMAR). Different imputation and weighting meth- they are applied to. On the other hand, a learner is catego-
ods appropriate for each type of mechanism have been derized as “global” if it is sensitive to sample selection. Dec
veloped. More recently, the sample selection bias problemsion trees, naive Bayes and soft-margin SVM are argued to
has begun to receive attention from the machine learningbe always “global”, with a strong and different assumption
and data mining communities. The publication extended in that the true model is not contained in their model space.
this paper [Zadrozny, 2004] presents a new categorization In this paper, we formalize the definitions of sample se-
of the behavior of learning algorithms under sample selec-lection bias, and make the local and global categorizations
tion bias (global learners vs. local learners) and analyzesmore rigorous. In particular, we distinguish the differenc
how a number of well-known classifier learning methods between true generative probability and model estimated
are affected by sample selection bias. The main shortcom-probability. We generalize these important categorizatio
ing of this work is that they do not consider the effects of in- by relaxing the assumptions made previously. We argue for-
correct modeling assumptions on the behavior of the classi-mally and by examples that most of these popular learners
fier learner under sample selection bias. In other words, thecould be either local or global, and it all depends on the
work implicitly assumes that the data is drawn from a dis- combination of the dataset and the learner. In general, a
tribution that could be perfectly fit by the model. Smith and learner could be local for some datasets and global for oth-
Elkan [Smith and Elkan, 2004] provide a systematic char- ers. In addition, we also show formally and by examples
acterization of the different types of sample selectiorsbia that when there is no class label bias, the only possible sam-
and examples of real-world situation where they arise. For ple selection bias comes from the dependency on feature
the characterization, they use a Bayesian network represenvectors.

tation that describes the dependence of the selection mecha Future Work Our paper raises the question of how to
nism on observable and non-observable features and on theategorize classifiers when there is no pre-assumption or
class label. They also present an overview of existing learn prior knowledge about if the true model is contained in
ing algorithms from the statistics and econometrics litera the model space of a learner. In our future work, we will
ture that are appropriate for each situation. Finally, Rbss propose a method based on bias-variance decomposition to
et al. [Rosset et al., 2005] consider the situation where thequantify the sensitivity to selection bias.

sample selection bias depends on the true label and preser eferences

an algorithm based on the method of moments to learn in

the presence of this type of bias.
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