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Abstract
A recent paper categorizes classifier learning algorithms

according to their sensitivity to a common type of sample
selection bias where the chance of an example being se-
lected into the training sample depends on its feature vec-
tor x but not (directly) on its class labely. A classifier
learner is categorized as “local” if it is insensitive to this
type of sample selection bias, otherwise, it is considered
“global”. In that paper, the true model is not clearly dis-
tinguished from the model that the algorithm outputs. In
their discussion of Bayesian classifiers, logistic regression
and hard-margin support vector machines, the true model
(or the model that generates the true class label for every
example) is implicitly assumed to be contained in the model
space of the learner, and the true class probabilities and
model estimated class probabilities are assumed to asymp-
totically converge as the training data set size increases.
However, in the discussion of naive Bayes, decision trees
and soft-margin support vector machines, the model space
is assumed not to contain the true model, and these three
classification algorithms are instead argued to be “global
learners”. Here we argue that most classifier learning al-
gorithms including those just discussed may or may not be
affected by sample selection bias; this will depend on the
dataset as well as the heuristics or inductive bias implied
by the classifier learning algorithm and their appropriate-
ness to the particular dataset. We make use of our earlier
experimental results and produce additional results to illus-
trate our claims.

1 Introduction

A common assumption made in data mining is that the
training and test sets are drawn from the same stationary
distribution. However, in practice this rarely happens. Re-
cent work published in the data mining community has ad-
dressed situations where the learned concept (i.e. the rela-
tionship between the class label and the example descrip-
tion) drifts. In this paper, we look at the related and preva-
lent problem that most data mining practitioners face: sam-
ple selection bias. Sample selection bias occurs when the
concept remains static, but the training set is biased in that
the chance of encountering an example is not the same in
the training and test sets. For example, in the application
of data mining to direct marketing, it is common practice

to build models of the response of customers to a partic-
ular offer using only the customers that have received the
offer in the past as the training set, and then to apply the
model to the entire customer database. Because these offers
are usually not given at random, the training set is not drawn
from the same population as the test set. Therefore, a model
learned using this training set may not perform well for the
entire population of customers.

Sample selection bias of all types has been an active re-
search topic. A large body of related work will be reviewed
in Section 5. In this paper, we concentrate on recent work
[Zadrozny, 2004] that focuses on a common type of bias
(defined in the next paragraph) and categorizes inductive
learners into two types, “local” and “global”, based on their
sensitivity to this type of sample selection bias. We clar-
ify some of the important notations and concepts implied
in [Zadrozny, 2004] and make improvements on the catego-
rization of classifiers. We believe these improvements es-
tablish a general relationship between sample selection bias
and the accuracy of inductive learners, and create a founda-
tion for future work on general methods to detect the sensi-
tivity of an algorithm to sample selection bias in real-world
applications.

1.1 Sample Selection Bias

Assume that the events = 1 denotes that a labeled exam-
ple (x, y) is selected from the domainD of examples into
the training setD, and thats = 0 denotes that(x, y) is not
chosen. When constructing a classification model, we only
have access to examples wheres = 1. In [Zadrozny, 2004],
four different types of sample selection bias are clearly dis-
cussed according to the dependency ofs onx andy.

Thefirst caseis thats is independent from bothx andy,
i.e., P (s|x, y) = P (s). In other words, the selection vari-
ables is a random variable completely independent from
both the feature vectorx and the true class labely. In
the second case, the selection biass is dependent on the
feature vectorx and it is conditionally independent of the
true class labely givenx, i.e., P (s|x, y) = P (s|x). This
type of sample selection naturally exists. For example, in
the direct marketing case mentioned earlier, the customers
are selected into the sample based on whether or not they
have received the offer in the past. Because the decision
to send an offer is based on the known characteristics of
the customers (that is,x) before seeing the response (that



is, y) then the bias will be of this type. This type of bias
also occurs in medical data where a treatment is not given
at random, but the patients receive the treatment according
to their symptoms which are contained in the example de-
scription (i.e. thex values). Therefore, the population that
received the treatment in the past is usually not a random
sample of the population that could potentially receive the
treatment in the future. In thethird case, the selection bias
is dependent only on the true class labely, and is indepen-
dent from the feature vectorx, i.e., P (s|x, y) = P (s|y).
This occurs when there is a correlation between the label
value and the likelihood of appearance in the database. For
example, people with higher income may be less inclined
to answer a survey about income. Thus, if we are trying to
learn to predict an individual’s income category using sur-
vey data, this type of bias is likely to occur. In thelast case,
there is no assumption about any independence ofs givenx

andy, and both the example description and its label influ-
ence whether the example will be chosen into the training s
et. Note that in all cases the test set examples are assumed
to be unbiased, since the model will be used on the entire
population. For the remainder of this paper we shall focus
on the second type of sample bias as it is believed to be a
prevalent problem [Zadrozny, 2004].

1.2 Existing Classifier Categorization and its Limita-
tions

In [Zadrozny, 2004], inductive learners are categorized
into two types, either “local” or “global”, according to their
dependency/sensitivity to sample selection bias.

Definition 1.1 The output of aLocal Learner depends
asymptotically only onP (y|x). [Zadrozny, 2004]

Definition 1.2 The output of aGlobal Learner depends
asymptotically both onP (x) andP (y|x). [Zadrozny, 2004]

In the above definition, “the output of the learner” refers
to the classifier constructed from the training set by a par-
ticular learner. These definitions were discussed in the con-
text of the second type of sample bias [Zadrozny, 2004].
In [Zadrozny, 2004], several popular learners including
Bayesian classifiers, naive Bayes, decision trees, logistic
regressions as well as soft and hard margin support vec-
tor machines, are categorized as always being either “local”
or “global” . This original categorization is independent
from the particular application problem and only dependent
on the learner. However, several strong assumptions are
implicitly made, as discussed below, regarding the model
space of the classifiers and the interpretation ofP (y|x) used
in the definition of “local” and “global”.

In the discussion of Bayesian classifiers, logistic regres-
sion, and hard-margin support vector machine always to be
sample bias independent “local” classifiers, the following
two assumptions are made implicitly.

Assumption 1.1 The learner outputs a classifierθ that pro-
duces the probabilityP (y|x, θ) to approximate/estimate the
model independent true probabilityP (y|x).

Assumption 1.2 For Bayesian classifiers, logistic regres-
sion, and hard-margin support vector machine:The
learner is a consistent estimator of the true proba-
bilities P (y|x). That is, the estimated probability
P (y|x, θ) equals the true model independent probability
P (y|x) when the training data is exhaustive. Formally,
∀x lim|D|→∞ P (y|x, θ) = P (y|x).

In this notation,θ denotes the classifier or “the output of
the learner” constructed from training dataD. (A summary
of all notations is in Figure 2.) The above assumptions are
strong since the individuality of different problems and dif-
ferent datasets is not considered. In this paper, we relax
these assumptions and take these differences into account.
We argue that Bayesian classifiers, logistic regression and
hard-margin support vector machines can be either “local”
or “global” classifiers. This is dependent on the particular
dataset to which these learners are applied.

On the other hand, when naive Bayes, decision tree and
soft-margin support vector machines are characterized as
“global” classifiers in [Zadrozny, 2004], the following as-
sumption is made that replaces Assumption 1.2.

Assumption 1.3 For naive Bayes, decision tree, and soft-
margin support vector machines:The learner’s model
space does not contain the true model and hence is incon-
sistent. Formally,∃x lim|D|→∞ P (y|x, θ) 6= P (y|x).

Similarly, this assumption is also strong because the differ-
ences between datasets are not considered either. We can
also argue that naive Bayes, decision trees and soft-margin
support vector machines could be either “local” (invariantto
sample bias) or “global” (affected by sample bias) when the
differences between datasets are accounted for. We gener-
alize this argument to say that most of the known inductive
learners could behave either as “local” or “global” learners,
depending on the particular dataset as well as the induc-
tive bias implied by the learning algorithm. When the true
model of the particular dataset is contained in the model
space, the learner would be local. Nonetheless, when the
true model is not contained in the model space, the learner
would be global.

2 Restrictions of Existing Categorization
To fully understand the assumptions and the practical im-

plications of the “global” and “local” categorization, it is
necessary to formally define some of the important nota-
tions and quantities, particularly,P (x) andP (y|x) used in
Definitions 1.1 and 1.2.

2.1 Formal Definitions

In [Zadrozny, 2004],P (x) is defined as “a global distri-
bution over the entire input space”, and a global classifier is



• x is feature vector,y is class label, ands = 1 denotes that
an example(x, y) is selected into the training setD.

• P (s = 1|x, y) formally describes sample selection bias,
and it denotes the probability that an example(x, y) is se-
lected into the training set.

• P (s = 1|x, y) = P (s = 1|x) is true for the second type
of sample selection bias wheres is only dependent on the
feature vectorx and it is independent from class labely.

• P (x) is the probability distribution of feature vectorx and
it is not related to either class labely or sample selection
biass.

• P (y|x) denotes the true conditional probability for a fea-
ture vectorx to be a member of classy. It is completely
determined by the true concept or true function that an in-
ductive learner is to model. The true function is typically
unknown unless the dataset is synthesized.P (y|x) is in-
dependent from training data as well as sample selection
bias.

• Θ is the model space assumed by a learner.

• θ is a classifier constructed by a learner by searching in the
model spaceΘ given training dataD. By definition,θ is
dependent on bothΘ andD.

• P (y|x, θ) denotes the probability for an examplex to
be of classy, as estimated by a classifierθ. Typically,
P (y|x, θ) 6= P (y|x), in other words, the estimated proba-
bility may not be equal to the true probability.

• Since θ is dependent on bothΘ and D, we de-
fine P (y|x,D, Θ) to represent the same probability as
P (y|x, θ), i.e.,P (y|x,D, Θ) = P (y|x, θ).

Figure 1. Summary of Symbols and Concepts

affected by sample selection bias “because the bias changes
P (x)”. Formally,P (x) is the probability distribution solely
as a function of the feature vectorx, and it is independent
of class labelsy. (Strictly speaking, if any featurexi within
the feature vectorx is a continuous variable,P (x) is a den-
sity function.) For example, assume that there are only
two binary-valued features and each unique combination
of feature values happens with equal chance. In this case,
∀x, P (x) = 0.25. Given the new formal definition in this
paper,P (x) is a problem dependent quantity and is inde-
pendent from sample selection bias. Borrowing the notation
of sample selection bias introduced in [Zadrozny, 2004], a
global classifier’s dependence on sample selection bias is
best formalized through the dependence onP (s = 1|x)
rather than onP (x). In general,P (s = 1|x) is not related
to P (x).

Definition 2.1 Improved and General Definition of
Global Learners: A global learner’s output depends
asymptotically on bothP (s = 1|x, y) andP (y|x). Under
the second type of sample selection bias, it depends on
P (s = 1|x) andP (y|x).

An important distinction between definitions 2.1 and 1.2
is that in the improved definition, a global learner’s output
is shown to directly be influenced by the chance of an in-
stance being selected in the training set or the selection bias.
However, in the original definition 1.2, the influence on the
global learner is formulated on the chance of occurring a
feature vector, that is actually independent from sample se-
lection bias.

In [Zadrozny, 2004],P (y|x) “refers to many local distri-
butions, one for each value ofx”. Strictly speaking,P (y|x)
denotes the true conditional probability distribution or the
posterior probability distribution for a feature vectorx to be
a member of classy. The true class label forx is generated
according toP (y|x). P (y|x) is completely determined by
some unknown true function, and is unrelated to either the
training dataD or the model space of the inductive learner.
Obviously, the true probabilityP (y|x) is independent from
both the sample selection bias due to training dataD and the
inductive bias due to choice of hypotheses space of a par-
ticular algorithm. In reality, for most practical applications
where the dataset is not synthesized, the true probability dis-
tributionP (y|x) is not known either before or after training
some model. The availability of true probabilityP (y|x) to
model is very different from the true class labely. Class
labelsy’s are provided in the training data, and are essen-
tial for inductive learners to construct classifiers. However,
the true probabilityP (y|x) is not normally given. Even if
a feature vectorx in the training data has class labely, it is
strongly biased to assume thatP (y|x) = 1 in general. One
instance of(x, y) is just a single observation. By definition,
P (y|x) is the probability to observe class labely whenx is
sampled repeatedly.

2.2 Classifiers as Approximators ofP (y|x)

Most inductive learning algorithms construct classifiers
to either directly or indirectly measure, approximate and
output the true probabilityP (y|x) by searching for one
or a set of hypotheses that are consistent with the train-
ing dataD in some hypotheses spaceΘ specific to each
learning algorithm. The choice of hypothesis is called in-
ductive bias [Mitchell, 1997]. The model space for deci-
sion tree learning algorithm is the complete set of trees that
tests each feature of the feature vector in different orders
and with different splitting conditions. However, the model
for logistic regression is the set of logistic regression formu-
las with different coefficients corresponding to each feature.
For classification algorithms that do not directly output con-
ditional probabilities, they either output a score (specific to
each algorithm) or predict the “most likely” class label. The
scores can be normalized into conditional probability esti-
mates. When scoring is unavailable, we interpret the esti-
mated probability for the predicted class as 1, and 0 for all
others. In summary, classifiers can be represented as ap-
proximators of the true conditional probability.

Formally, we use the notationP (y|x, D, Θ) to denote
a classifier constructed by some learner to approximate



P (y|x). In this notation,D is the training set of examples
with s = 1 or D = {∀(x, y) ∈ D ∧ s = 1}, Θ is the model
space implied by the learning algorithm, such as the com-
plete set of decisions trees. The learning algorithm searches
for a model (or an ensemble of hypotheses)θ ∈ Θ that is
consistent with the training dataD. When there are multiple
hypotheses consistent with the training dataD, preferences
are given to certain models. We could useθ to replace the
dependency on bothD andΘ in the notation, i.e., we define
P (y|x, θ) = P (y|x, D, Θ). In our notation,θ is the “out-
put of the learner” used in the original definitions of “local”
and “global” or Definitions 1.1 and 1.2. The chosen model
θ specifies the exact procedures to compute and approxi-
mate the true probabilityP (y|x). If θ is a decision tree, it
specifies the order of feature tests, the threshold value for
continuous variable tests, and the number of examples be-
longing to different classes at the leaf nodes.

2.3 Learner Consistency at Estimating Probabilities

The classifierθ is trained to estimate/approximate the
true probabilityP (y|x). However, the estimated probability
P (y|x, θ) may not be equal toP (y|x), if the true model or
a model that producesP (y|x) is not contained in the model
space of the learner. We say that a learner is consistent if the
learning algorithm can find a modelθ that is equivalent to
the true model at producing class conditional probabilities
given an exhaustive training data set. Formally, a learner
is consistent if it can find a modelθ from an exhaustive
number of examples such that∀x lim|D|→∞ P (y|x, θ) =
P (y|x). For example, if a decision tree algorithm is used to
approximate a non-vertical and non-horizontal linear func-
tion that separate the space into two classes, it will never be
able to find a tree with 0 error rate. At best, a decision tree
approximates the linear function with steps. Clearly, the
consistency of a particular learner depends on the dataset
that it is applied to. In other words, the same learner could
be consistent for some dataset but inconsistent for others.
Verification of learner consistency for an arbitrary dataset is
a difficult problem. To the best of our knowledge, there is no
published work to exhaustively test a learner’s consistency
for an arbitrary dataset. A complete answer is impossible
for realistic problems with infinite number of examples and
unknown true function, such as mortgage application and
catalog campaigns. Based on the above analysis, we pro-
pose to relax Assumptions 1.2 and 1.3.

Assumption 2.1 Relaxed assumption of Assumption 1.2
and 1.3We do not assume the learner’s consistency, i.e., it
could be either consistent or inconsistent.

2.4 Limited Utility of P (y|x, s = 1) = P (y|x)

It is true by the definition of the second type of sample
selection bias thatP (s|y,x) = P (s|x) in [Zadrozny, 2004].
Re-writing by the definition of conditional probability, it
becomesP (s,y,x)

P (y,x) = P (s,x)
P (x) . Re-arranging the denomina-

tors and using the definition of conditional probabilities,it

becomes obvious thatP (y|s = 1,x) = P (y|x). Follow-
ing the definition of training datasetD, the dependency on
s = 1 can be replaced by a dependency on the training set
D, i.e.,P (y|D,x) = P (y|x).

P (y|s = 1,x) = P (y|x) is used in [Zadrozny, 2004] to
argue that some algorithms, e.g., Bayesian classifier, logis-
tic regression and SVM, are independent from the second
type of sample selection bias. However, this is only true un-
der assumption 1.2 that the learner is consistent. However,
as discussed in Section 2.2, the estimated probability is ac-
tually P (y|x, θ), and we generally cannot assume the learn-
ers are consistent for many realistic problems. One deeper
interpretation is that any consistent learner is “sufficiently
and necessarily” local under the second type of sample se-
lection bias since

(

P (y|s = 1,x) = P (y|x)
)

⇐⇒
(

P (s =

1|x, y) = P (s = 1|y)
)

.

3 Analysis of Popular Algorithms
In [Zadrozny, 2004], Bayesian classifiers, logistic re-

gression, and hard-margin support vector machines are ar-
gued to be “local” classifiers that are insensitive to sample
selection bias. However, naive Bayes, decision trees, and
soft-margin support vector machines have been argued as
“local” learners that are sensitive to sample selection bias.
We argue that all these learners can be either global or local,
and this depends on both the learner and dataset, but not on
the learner itself.

3.1 Bayesian Classifiers

In the analysis of Bayesian classifiers to be “lo-
cal” [Zadrozny, 2004], the following equation is used

P (x|y, s = 1)P (y|s = 1)

P (x|s = 1)
= P (y|x, s = 1) = P (y|x)

The above analysis does not consider the dependency on
the model space of the learner orΘ. For a Bayesian clas-
sifier, Θ describes exactly how to estimateP (x|y, s = 1)
andP (x|s = 1) from the training dataD with sample se-
lection bias. In fact,P (x|y, s = 1) andP (x|s = 1) are
P (x|y, s = 1, Θ) andP (x|s = 1, Θ) respectively. By def-
inition of D, the dependency ons = 1 can be replaced
by dependency onD. These two probabilities can be then
represented asP (x|y, D, Θ) andP (x|D, Θ) instead. As an
example, suppose that we have a dataset with all categorical
features. Obviously,P (x|y, D, Θ) is the ratio of all exam-
ples in the training dataD with class labely that also have
feature vectorx. Now, the problem is to decide what num-
bers to divide to calculate this ratio. For simplicity, we as-
sume that each feature vectorx is unique. In this case, if the
choice is to consider every featurexi in the feature vectorx,
thenP (x|y, D, Θ) = 1

|Dy|
if x has class labely, otherwise

0. In this notation,Dy is the subset of examples in the train-
ing datasetD that have class labely. P (x|D, Θ) is 1

|D| be-
cause each feature vectorx is assumed to be unique. Taking
everything into consideration,P (y|x, D, Θ) = 1 if x has



class labely or 0 otherwise. This computation is straight-
forward but not very useful, since there is no generalization
and it is equivalent to “rote learning”. The problems come
from the strong assertions to consider every featurexj in
the feature vectorx. In reality, we normally only consider
a “subset” of features in the feature vectorx in order for
the algorithm to generalize. The exact subset of features
to consider depends on the training dataD. SinceΘ actu-
ally represents these inevitable choices, the dependency on
Θ cannot be ignored. This problem becomes more compli-
cated when some features are continuous, as there are in-
finite number of choices to either discretize the continuous
features or split them into halves. In summary, due to the
inevitable assertions and choices, it is generally very hard to
computeP (y|x) exactly for Bayesian classifiers. As a mat-
ter of fact, we still computeP (y|x, D, Θ), and neither the
dependency onD nor the dependence onΘ can be removed.

We provide an example to show that Bayesian clas-
sifier can also be “global”, as opposed to the analysis
in [Zadrozny, 2004] that it is always “local”. Assume that
the feature vector can be decomposed into two disjoint sub-
setsx = (x1,x2). Let the true conditional probability
only depend onx1, i.e., P (y|x) = P (y|x1), and the se-
lector variable depend only onx2, i.e., P (s = 1|x) =
P (s = 1|x2). Under this situation, the choice of features
to computeP (x|y, s = 1) andP (x|s = 1) decides how
much the sample selection bias will influence these esti-
mated quantities from the data. If luckily, only those fea-
tures∈ x1 are taken into account to computeP (x|y, s = 1)
andP (x|s = 1), then the effect of sample selection bias
will be rather small. However, if any features∈ x2 are
chosen to computeP (x|y, s = 1) andP (x|s = 1), the esti-
mated probability will reflect sample selection bias. In real-
ity however, we normally do not know if the feature vector
could be decomposed into the two disjoint subsets. In so-
phisticated situations,s for different examples could depend
on a different feature subset. In the same time, the choice
of features to computeP (x|y, s = 1) andP (x) could be
rather arbitrary. Because of limited number of examples in
the training set, some combination of feature values could
result in very few or even no examples in the training set.
When this happens, the estimated probability can be statis-
tically unreliable due to trivial sample size.

3.2 Naive Bayes Classifier

In [Zadrozny, 2004], naive Bayes is argued to a
global classifier that is affected by sample selection
bias since in generalP (x1|y,s=1)...P (xn|y,s=1)P (y|s=1)

P (x|s=1) 6=
P (x|y,s=1)P (y|s=1)

P (x|s=1) . However, this does not imply that
the naive Bayes classifier is always a “global classifier”
for any datasets. For some datasets where the indepen-
dence assumption holds true, naive Bayes computes exactly
P (x|y,s=1)P (y|s=1)

P (x|s=1) = P (y|x, s = 1), which isP (y|x) ac-
cording to the assumption of the second type of sample se-
lection bias. A simple example that satisfies the indepen-
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Figure 2. Logistic Regression

dence assumption is one whose true label is only depen-
dent on one feature, and all other features are irrelevant,
i.e.,∃i, P (y|x) = P (y|xi).

3.3 Logistic Regression

In [Zadrozny, 2004], logistic regression is described as

P (y = 1|x, s = 1) =
1

1 + exp(β0 + β1x1 + . . . + βnxn)

Logistic regression is argued to be free from the second
type of sample selection bias in [Zadrozny, 2004] as “be-
cause we are assuming thaty is independent ofs given
x we have thatP (y = 1|x, s = 1) = P (y = 1|x)”.
This assumption ignores the effect ofD on θ, or the set
of parametersβi in this case. A further proof would be re-
quired to justify thatβi’s are not affected bys = 1 for any
datasetD. However, this could be very difficult sinceβ′

is
are computed fromD by minimizing log-likelihood func-
tion through Newton’s method. In [Zadrozny, 2004], a sim-
ple example of one independent variable is shown to justify
the claim that logistic regression is not affected by sample
selection bias. Although this example is indeed correct, itis
over simplified. The true function for the given example is
a simple linear separable functionP (1|x ≥ −0.75) = 1.

The likelihood equation of logistic regression, both bi-
nary response and ordinal response (> 2 classes), is not
guaranteed to have a finite solution. The existence of max-
imum likelihood estimate depends on the configuration of
chosen training examples [So, 1999]. There are three mutu-
ally exclusive and exhaustive categories, i.e., complete sep-
aration, quasicomplete separation and overlap. Consider a
binary response model of classesy = 1 andy = 2. In
complete separation, there exists a vectorb that correctly
allocates all observations to their response groups, that is
{

b
′
x > 0 y = 1

b
′
x < 0 y = 2

This corresponds to the simplest case

of “linear separatability” where the maximum likelihood es-
timate does not exist and there exists multiple vectorsb’s
that can equally separate the data points completely. The ex-
act solution for the same labeled training set, i.e., which par-
ticularb’s is chosen, depends on the implementation. Dur-
ing the iterative process to fit the logistic regression model,
the negative log-likelihood decreases to 0. As long as all the
data points in the domainx are linearly separatable, logis-
tic regression is completely free from any sample selection
bias including the second type of sample selection bias as
discussed in [Zadrozny, 2004]. Although the exact vectorb

selected by the iterative process may still be dependent on



the sample selection bias. However, this difference is in-
significant since each satisfyingb separates the data points
equally well. In thequasicomplete separationcase, the
data points are not “linearly” separable, and there exists a

unique vectorb such that

{

b
′
x ≥ 0 y = 1

b
′
x ≤ 0 y = 2

. Similar

to the complete separation case, the maximum likelihood
estimate does not exist. However, during the iterative pro-
cess, the log-likelihood does not diminish to 0 as in the case
of complete separation. If neither complete separation nor
quasicomplete separation exists, there is anoverlap of sam-
ple points. For every vectorb drawn in the sample space,
there is always a sample point of different classes on the
same side of the vector. In this case, maximum likelihood
exists and is unique although there could be multiple vec-
tors b that equally converge to the maximum likelihood.
Both quasicomplete and overlapping cases are sensitive to
the second type of sample selection bias. As shown in Fig-
ure 2, quasicomplete is sensitive to the placement sample
points that fall exactly on the vectorb. If we introduce on
additional example that crosses to the “wrong” side ofb,
the problem becomes “overlapping”. For overlapping prob-
lems, all satisfying vectorsb forms an envelope. The intro-
duction of one example that crosses to the “wrong” side of
this envelope will change the maximum likelihood.

3.4 Decision Trees

Decision trees are argued to be “global” classifier inde-
pendent from the dataset and problem in [Zadrozny, 2004].
However, a decision tree could also be a “local” classi-
fier. The decision path of a tree tests a sequence of fea-
tures starting from the root of tree to the current node.
Without loss of generality, assume that decision path is
(x1, x2, . . . , xk), which is a true subset of the full fea-
ture vector, or⊂ x = (x1, x2, . . . , xn). Assume that
each feature is categorical. ThenP (y|x, s) = P (y|x)
implies P (y|x1, x2, . . . , xk, s) = P (y|x1, x2, . . . , xk) if
xk+1, . . . , xn are irrelevant at predicting the class labely
but may be exclusively used to determine if the instances
are selected into the training set.

3.5 Support Vector Machines (SVM)

In [Zadrozny, 2004], the hard-margin SVM algorithm is
argued to be a local learner, while the soft-margin SVM al-
gorithm is argued to be a global learner. The hard-margin
SVM algorithms learn the parametersa and b describing
a linear decision rule,h(x) = sign(a · x + b) whose
sign determines the label of an example, so that the small-
est distance between each training example and the deci-
sion boundary, i.e. the margin, is maximized. Given a
sample of examples(xi, yi), whereyi ∈ {−1, 1}, it ac-
complishes margin maximization by solving the follow-
ing optimization problem: minimize:V (a, b) = 1

2a · a,
subject to:∀i : yi[a · xi + b] ≥ 1. The constraint requires
that all examples in the training set are classified correctly,
i.e., that the data can be separated by a hyperplane. If this

is indeed the case, sample selection bias will not asymptot-
ically affect the output of the hard-margin SVM algorithm
as argued by [Zadrozny, 2004]. However, because this al-
gorithm does not have a solution if the data is not linearly
separable it cannot be applied in most practical cases.

The soft-margin SVM algorithms introduces slack vari-
ablesξi > 0 for each example(xi, yi). The optimization
is changed to minimize:V (a, b, ξ) = 1

2a · a + C
∑n

i=1 ξi,
subject to:∀i : yi[a ·xi + b] ≥ 1− ξi, ξi > 0 If a training
example lies on the wrong side of the decision boundary,
the correspondingξi is greater than 1. Therefore,

∑n

i=1 ξi

is an upper bound on the number of training errors. The
factorC is a parameter that allows one to trade off training
error and model complexity.

In [Zadrozny, 2004] it is argued that sample selection
bias affects the soft-margin SVM because it can change the
sum of ξi values by making regions of the feature space
denser than others. When this sum is changed, the deci-
sion boundary is also changed. Therefore, the soft-margin
SVM algorithm is characterized as a global leaner. While
this is true in general, like other learners, the soft-margin
SVM algorithm can also behave as a local learner depend-
ing on the specific dataset used. In particular, if the data is
linearly separable, the sum ofξi values will be always zero
and sample selection bias will not asymptotically affect the
output. This is also the case if the minimum of the sum is
not changed by the bias (for example if the bias only affects
examples that are on the correct side of the boundary).

4 Experimental Studies
We empirically validate the claims in the paper. The

thesis is that a classifier learner cannot always be global
or local. In fact, whether it is local or global depends on
the combination of the data set, modeling assumptions of
the learner and their appropriateness to model the particular
dataset. In [Zadrozny, 2004], it has already been shown that
decision tree and naive Bayes classifiers are global and af-
fected by sample bias, and that logistic regression and hard-
margin SVM are local and not be effected by sample bias.
It remains to show that naive Bayes and decision trees can
also be local and not be affected by sample bias, while lo-
gistic regression and hard-margin SVM can be still effected
by sample bias.

Naive Bayes and Decision Tree Can be Local Clas-
sifiers We construct an artificial data set for naive Bayes
where∃i, P (y|x) = P (y|xi) as described in Section 3.2.
We generate 100 random datasets of 1000 data points de-
scribed by 20 Boolean variables (T or F). For each data set,
one of the 20 variables is selected to determine the class la-
bel. Each feature value is generated with equal likelihood.
For the chosen variablexi that decides the class label, we
setP (y = +|xi) = 1/i. We then generate test sets in ex-
actly the same way. To produce the biased training sets, we
select a variablexj among the remaining variables (i.e. ex-
cludingxi) and set sample selection biasP (s = 1|xj = T)
randomly in between 0 and 1. No other variable effects the



Figure 3. Examples where naive Bayes and Deci-
sion trees Behave as Local Learners
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Figure 4. Typical scatter plots of mean number of
top ten word for newsgroup data sets
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sample selection bias. Though quite simple, it is a clear
example of the situation where the true model is contained
in the model space of the learner. The comparison of the
naive Bayes models constructed from biased and unbiased
training sets are shown in the left plot of Figure 3. It clearly
demonstrates that naive Bayes in this circumstance is not
effected by sample bias and hence is a local learner.

For decision trees, we create the situation discussed in
Section 3.4. We randomly divide the 20 Boolean feature
vector into two equal sized separate disjoint subsets of vari-
ablesxi andxj . The class probability is only dependent on
xi not onxj as for all combination of attributes values for
xi we setP (y = +|xi) randomly as either 0.1 or 0.9. To
introduce sample selection bias, we choose one variablexj

from the subsetxj i.e. xj ∈ xj and set the selection bias
asP (s = 1|xj = T) = 1/j, no other variable effects the
sample selection. We generated 100 training and test sets
with 1000 examples each as before. The results are summa-
rized in the right plot of Figure 3. Clearly, the learner is not
effected by sample bias since the true model is in the model
space and the sample bias does not effect the tree generated.

Text DatasetsFor the newsgroup datasets, the training
and test data sets are drawn from similar but not identi-
cal distributions. These data sets are of particular impor-
tance since they contain sample bias, and it is very likely
that the unknown true model may not be in the model space
of logistic regression, decision tree, naive Bayes or support
vector machine classifiers. Since the chance of encounter-
ing a particular class is the same in the training and test
sets, henceP (y|s = 1) = P (y). We show below when

P (y|s = 1) = P (y), the only possible selection bias is due
to the feature vectorx but noty.

P (s = 1|x, y) Bayes Theorem

= P (y,x|s=1)P (s=1)
P (x,y) Product Rule

= P (x|s=1).P (y|x,s=1)P (s=1)
P (x,y) No Class Bias

= P (x|s=1).P (y|x)P (s=1)
P (x,y) Conditional Probability

= P (x,s=1).P (x,y)P (s=1)
P (s=1)P (x)P (x,y) Cancellation

= P (x,s=1)
P (x) Conditional Probability

= P (s = 1|x)

We perform experiments on the 20 Newsgroups datasets us-
ing the standard “by-date” division into training (60%) and
test (40%) sets based on posting date. This division cre-
ates a temporal bias. For example, in the Guns newsgroup
the word “Waco” occurs extensively in news articles in the
training set but not in the test set, as interest in the topic
fades. This can be seen visually by examining the relative
frequency of word occurrences (the attribute values) in the
training and test sets in the scatter plots of Figure 4. This
verifies the existence of sample selection bias, and based on
our derivation above, it is the second type of sample selec-
tion bias. We used the tool Rainbow to extract features from
news articles. The feature vector for a document consists of
the frequencies of top ten words by selecting words with
highest mutual information with the class variable. On the
other hand, the unbiased training and tests sets were cre-
ated by randomly shuffling all of the newsgroup data and
selecting training and test sets irrespective of the news item
posting date. The results shown in Table 1 illustrate that the
hard-margin SVM and logistic regression learners can be
adversely effected by sample bias (i.e. the Baseball-Hock,
MidEast-Guns and Mac-Religion data sets) as well as being
invariant to sample bias (the other three data sets).

5 Related Work
The sample selection bias problem has received a great

deal of attention in econometrics. There it appears mostly
because data are collected through surveys. Very often peo-
ple that respond to a survey are self-selected, so they do
not constitute a random sample of the general population.
In Nobel-prize winning work, [Heckman, 1979] has devel-
oped a two-step procedure for correcting sample selection
bias in linear regression models, which are commonly used
in econometrics. The key insight in Heckman’s work is
that if we can estimate the probability that an observation
is selected into the sample, we can use this probability esti-
mate to correct the model. The drawback of his procedure
is that it is only applicable to linear regression models In
the statistics literature, the related problem of missing data
has been considered extensively [Little and Rubin, 2002].
However, they are generally concerned with cases in which
some of the features of an example are missing, and not
with cases in which whole examples are missing. The lit-
erature in this area distinguishes between different typesof



Technique Baseball Christian MCyles MidEast MidEast Mac
vs Hock. vs Sale vs Guns vs Guns vs Elec vs Relig.

NB 22.2% (24.6%) 12.0% (12.3%) 11.5% (10.5%) 11.0% (10.7%) 17.4% (17.2%) 19.4% (21.1%)
DT(C4.5) 13.3% (15.7%) 8.7% (7.9%) 8.2% (10.8%) 10.5% (20.3%) 17.4% (17.2%) 14.1% (18.4%)

LogR 11.9% (11.4%) 8.1% (8.0%) 7.8% (8.1%) 10.15% (10.3%) 17.4% (17.2%) 11.1% (10.7%)
SVM 24.8% (26.1%) 8.2% (8.4%) 15.4% (14.2%) 18.4% (21.4%) 17.4% (17.2%) 22.9% (23.6%)

Table 1. Error of various techniques on newsgroup data from u nbiased training sample and biased
training sample (shown in parentheses)

missing data mechanisms: missing completely at random
(MCAR), missing at random (MAR) and not missing at ran-
dom (NMAR). Different imputation and weighting meth-
ods appropriate for each type of mechanism have been de-
veloped. More recently, the sample selection bias problem
has begun to receive attention from the machine learning
and data mining communities. The publication extended in
this paper [Zadrozny, 2004] presents a new categorization
of the behavior of learning algorithms under sample selec-
tion bias (global learners vs. local learners) and analyzes
how a number of well-known classifier learning methods
are affected by sample selection bias. The main shortcom-
ing of this work is that they do not consider the effects of in-
correct modeling assumptions on the behavior of the classi-
fier learner under sample selection bias. In other words, the
work implicitly assumes that the data is drawn from a dis-
tribution that could be perfectly fit by the model. Smith and
Elkan [Smith and Elkan, 2004] provide a systematic char-
acterization of the different types of sample selection bias
and examples of real-world situation where they arise. For
the characterization, they use a Bayesian network represen-
tation that describes the dependence of the selection mecha-
nism on observable and non-observable features and on the
class label. They also present an overview of existing learn-
ing algorithms from the statistics and econometrics litera-
ture that are appropriate for each situation. Finally, Rosset
et al. [Rosset et al., 2005] consider the situation where the
sample selection bias depends on the true label and present
an algorithm based on the method of moments to learn in
the presence of this type of bias.

6 Conclusion and Future Work
Addressing sample selection bias is necessary for data

mining in the real world for applications such as merchan-
dise promotion, clinical trial, charity donation, etc. One
very important problem is to study the effect of sample se-
lection bias on inductive learners. One recent work cat-
egorizes several learners sensitivity on one very common
form of sample selection bias, where the chance to select
an example into the training set depends on feature vector
x but not directly on class labely. A learner is categorized
as “local” if it is insensitive to this type of sample selec-
tion bias. Bayesian classifier, logistic regression and hard-
margin SVM’s are argued to be “local”, with a strong and

implicit assumption that the true model is contained in the
model space of these learners regardless of the dataset that
they are applied to. On the other hand, a learner is catego-
rized as “global” if it is sensitive to sample selection. Deci-
sion trees, naive Bayes and soft-margin SVM are argued to
be always “global”, with a strong and different assumption
that the true model is not contained in their model space.

In this paper, we formalize the definitions of sample se-
lection bias, and make the local and global categorizations
more rigorous. In particular, we distinguish the difference
between true generative probability and model estimated
probability. We generalize these important categorizations
by relaxing the assumptions made previously. We argue for-
mally and by examples that most of these popular learners
could be either local or global, and it all depends on the
combination of the dataset and the learner. In general, a
learner could be local for some datasets and global for oth-
ers. In addition, we also show formally and by examples
that when there is no class label bias, the only possible sam-
ple selection bias comes from the dependency on feature
vectors.

Future Work Our paper raises the question of how to
categorize classifiers when there is no pre-assumption or
prior knowledge about if the true model is contained in
the model space of a learner. In our future work, we will
propose a method based on bias-variance decomposition to
quantify the sensitivity to selection bias.
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