

Supplementary Material

Paper title: The Cluster Description Problem – Complexity Results, Formulations and Approximations

1 A Complexity Result for the DTDF Problem

Theorem 1.1 *The DTDF problem is **NP**-complete even when the number of clusters is 2 and the tag set of each item is of size at most 3.*

Proof: Membership in **NP** is obvious. We prove **NP**-hardness through a reduction from 3SAT which is known to be **NP**-complete [?]. Let x_1, x_2, \dots, x_n denote the n variables and Y_1, Y_2, \dots, Y_m denote the m clauses of the 3SAT instance. The reduction to the DTDF problem is as follows.

- (a) For each variable x_i , we create two tags, denoted by a_i and b_i . (Tags a_i and b_i correspond to the positive and negative literals of x_i). So, the tag set $T = \{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n\}$, and $|T| = 2n$.
- (b) For each variable x_i , we create an item s_i with tag set $t_i = \{a_i, b_i\}$, $1 \leq i \leq n$. (Thus, $|t_i| = 2$, $1 \leq i \leq n$.) Items s_1, s_2, \dots, s_n constitute Cluster C_1 .
- (c) For each clause Y_j , we create an item s_{n+j} , $1 \leq j \leq m$. Suppose Y_j contain literals x_{j_1}, x_{j_2} and x_{j_3} . For each literal x_{j_ℓ} in Y_j , if x_{j_ℓ} corresponds to positive literal x_i , then t_{n+j} contains a_i and if x_{j_ℓ} corresponds to the negative literal \bar{x}_i , then t_{n+j} contains b_i . (Thus, $|t_{n+j}| = 3$, $1 \leq j \leq m$.) Items $s_{n+1}, s_{n+2}, \dots, s_{n+m}$ constitute Cluster C_2 .
- (d) The set of items $S = \{s_1, s_2, \dots, s_{n+m}\}$.

Clearly, the above construction can be done in polynomial time. It can also be seen that the tag set of each item produced by the above construction is of size at most three.

Suppose there is a solution to the 3SAT instance. We construct tag sets T_1 and T_2 for clusters C_1 and C_2 as follows. For $1 \leq i \leq n$, if the given satisfying assignment sets variable x_i to **True**, we add a_i to T_2 and b_i to T_1 ; if the given satisfying assignment sets variable x_i to **False**, we add b_i to T_2 and a_i to T_1 . It is easy to see that T_1 and T_2 are disjoint. Since the truth assignment satisfies all the clauses, T_2 has at least one item from each tag set t_{n+j} , $1 \leq j \leq m$. So, T_1 and T_2 constitute a solution to the DTDF problem.

Now suppose that there is a solution to the DTDF problem. We have the following claim.

Claim 1: For each i , $1 \leq i \leq n$, T_2 contains at most one of a_i and b_i .

Proof of Claim 1: The proof is by contradiction. Suppose for some i , $1 \leq i \leq n$, T_2 contains both a_i and b_i . Note that C_1 contains the item s_i whose tag set is $\{a_i, b_i\}$. Thus, T_1 must contain at least one of a_i and b_i . Now, since T_1 contains both a_i and b_i , we conclude that T_1 and T_2 are not disjoint. This contradicts the assumption that we have a valid solution to the DTDF problem, and Claim 1 follows.

Given a solution to DTDF, we construct a solution to SAT as follows. Consider each variable x_i , $1 \leq i \leq n$. If tag $a_i \in T_2$, set x_i to **True**. If $b_i \in T_2$ or neither a_i nor b_i appears in T_2 , set x_i to **False**. We claim that this is a valid satisfying assignment. First, using Claim 1, it is seen that each variable is set to either **True** or **False**. Consider any clause C_j . T_2 contains at least one of the tags from t_{n+j} , the tag set of item s_{n+j} corresponding to C_j . Thus, the chosen assignment sets at least one of the literals in C_j to **True**; that is, the clause is satisfied. This completes the proof of Theorem ??.

2 A Complexity Result for the (α, β) -Cons-Desc Problem

We showed in the main paper that when α (and hence β) and k (the number of clusters) are *fixed*, the (α, β) -CONS-DESC problem can be solved efficiently. We now show that when the number of clusters k is *not fixed*, the (α, β) -CONS-DESC problem remains **NP**-complete even when α is fixed.

Theorem 2.1 *When the number of clusters k is not fixed, The (α, β) -CONS-DESC problem is **NP**-complete even when $\alpha = 4$ and $\beta = 1$.*

Proof: Membership in **NP** is obvious. We prove **NP**-hardness through a reduction from a restricted version of 3SAT in which each variable occurs either two or three times (considering both positive and negative literals of that variable) in the set of clauses. This restricted version of 3SAT, which will be denoted by R3SAT, is also known to be **NP**-complete [?].

Let x_1, x_2, \dots, x_n denote the n variables and Y_1, Y_2, \dots, Y_m denote the m clauses of the R3SAT instance. The reduction to the (α, β) -CONS-DESC problem, where $\alpha = 4$ and $\beta = 1$, is as follows.

1. We first describe how the data items of the (α, β) -CONS-DESC instance are produced.
 - (a) For each variable x_i ($1 \leq i \leq n$), we create a data item w_i . Let $W = \{w_1, w_2, \dots, w_n\}$.
 - (b) For each clause Y_j , ($1 \leq j \leq m$), we create a data item p_j . Let $P = \{p_1, p_2, \dots, p_m\}$.
 - (c) Recall that in R3SAT, each variable occurs positively or negatively in either two or three clauses. Consider each variable x_i . If x_i occurs three times in R3SAT, we create six data items denoted by $d_i^1, e_i^1, d_i^2, e_i^2, d_i^3$ and e_i^3 . If x_i occurs two times in R3SAT, we create only the first five of these data items (i.e., we don't create e_i^3). For each i , $1 \leq i \leq n$, we will refer to these six or five data items as the *special* data items corresponding to variable x_i . Let D denote the set of all data items created in this step. (Thus, each data item in D is a special data item corresponding to some variable of R3SAT.)
 - (d) The set S of data items for the (α, β) -CONS-DESC problem is given by $S = W \cup P \cup D$.
2. Next, we describe the construction of the set of tags for each data item created above.
 - (a) The tag set $\tau(w_i)$ for each data item $w_i \in W$ has two tags, denoted by a_i and b_i . (Tags a_i and b_i correspond to the positive and negative literals of x_i).
 - (b) Consider each data item $p_j \in P$ corresponding to clause Y_j . The tag set $\tau(p_j)$ for the data item p_j has three tags chosen as follows. Suppose Y_j contains literals x_{j_1}, x_{j_2} and x_{j_3} . For each literal x_{j_ℓ} in Y_j , if x_{j_ℓ} corresponds to positive literal x_i , then a_i is added to $\tau(p_j)$ and if x_{j_ℓ} corresponds to the negative literal \bar{x}_i , then b_i is added to $\tau(p_j)$.

(c) For each variable x_i , D contains five or six special data items. First consider the case where x_i has six special data items, namely $d_i^1, e_i^1, d_i^2, e_i^2, d_i^3$ and e_i^3 . For each ℓ , $1 \leq \ell \leq 3$, the tag sets $\tau(d_i^\ell)$ and $\tau(e_i^\ell)$ contain just one tag, denoted by t_i^ℓ . If x_i has five special data items, we do the same construction except we don't produce a tag set for e_i^3 (since that data item doesn't exist). We will refer to the set $\{d_i^1, d_i^2, d_i^3\}$ as the **primary special item set** corresponding to x_i and the set $\{e_i^1, e_i^2, e_i^3\}$ (or $\{e_i^1, e_i^2\}$ when x_i appears only in two clauses) as the **secondary special item set** corresponding to x_i .

3. We now describe the construction of the clusters.

- (a) For each variable x_i , we have a cluster A_i consisting w_i and all the three data items d_i^1, d_i^2 and d_i^3 from the primary special item set corresponding to x_i , $1 \leq i \leq n$. (Thus, $|A_i| = 4$, $1 \leq i \leq n$.)
- (b) For each clause Y_j , we have a cluster B_j containing the following data items. First, cluster B_j includes the data item p_j . Suppose Y_j contains (positive or negative) literals of variables x_{i_1}, x_{i_2} and x_{i_3} . Then, B_j also contains one arbitrary data item each from the secondary special item sets corresponding to the variables x_{i_1}, x_{i_2} and x_{i_3} . Thus, $|B_j| = 4$, $1 \leq j \leq m$. It should be noted that each data item in the secondary special item set of each variable x_i can only be used in one cluster B_j . (This is because the clusters must form a partition of the data set S .)
- (c) The set C of $n + m$ clusters produced by the construction is given by $C = \{A_1, \dots, A_n, B_1, \dots, B_m\}$.

Note that For each variable x_i , the construction five or six special data items in D . Three of these data items (i.e., the primary special data items corresponding to x_i) are in cluster A_i . each of the remaining special data items (i.e., those in the secondary special data item set of x_i) appears in one cluster corresponding to each clause in which variable x_i occurs.

This completes the construction. It can be verified that the construction can be carried out in polynomial time. We observe that each cluster has exactly four data items.

We now show that there is a solution to the (α, β) -CONS-DESC problem with $\alpha = 4$ and $\beta = 1$ iff there is a solution to the R3SAT problem.

Suppose there is a solution to the R3SAT instance. We construct a tag set for each cluster as follows.

- (a) Consider each cluster A_i ($1 \leq i \leq n$). For the data item $w_i \in A_i$, tag set is $\{a_i, b_i\}$. If variable x_i is assigned the value **True**, we choose b_i in the descriptor for A_i ; otherwise, we choose a_i . The other three data items in A_i are from D , and each has only one unique tag. We add those three tags to the descriptor set for A_i .
- (b) Consider each cluster B_j ($1 \leq j \leq m$). For the data item $p_j \in B_j$, tag set is created from the literals in clause Y_j . Since the satisfying assignment makes at least one of the literals in Y_j to be **True**, we pick the tag corresponding to an arbitrary literal that is set to **True** by the assignment. The other three data items in B_j are from D , and each has only one unique tag. We add those three tags to the descriptor set for B_j .

It is not difficult to verify that each descriptor set has exactly four tags and that any two descriptors have at most one tag in common. In other words, we have a solution to the (α, β) -CONS-DESC problem with $\alpha = 4$ and $\beta = 1$.

Now, suppose there is a solution to the (α, β) -CONS-DESC problem. We show how to construct a satisfying assignment to the R3SAT instance. Consider the clause A_i corresponding to the Boolean variable x_i ($1 \leq i \leq n$). A_i contains data item w_i with tag set $\{a_i, b_i\}$ and three other data items from D , and each of those three data items has a unique tag. So, the descriptor for A_i must have those three tags. Since the descriptor can only have at most four tags, it can include exactly one of a_i and b_i . If the descriptor for A_i includes a_i , we set variable x_i to **False**; otherwise, we set x_i to **True**. We now argue that this is a satisfying assignment for each of the clauses. Consider any clause Y_j and the corresponding cluster B_j . The descriptor for B_j must include the three tags corresponding to the data items from the set D in B_j since each of those three items has a unique tag. Since the descriptor for B_j is of size 4, it can only include one of the tags of the data item $p_j \in B_j$. Suppose the chosen tag is a_r corresponding to the literal x_r . (The proof is similar if the chosen tag is b_r corresponding to the literal \bar{x}_r .) Thus x_r occurs in clause Y_j . We prove by contradiction that the chosen assignment sets x_r to **True**. Suppose x_r is set to **False**. Consider the descriptors for B_j and A_r (the clause corresponding to x_r). Since x_r is set to **False**, the descriptor for A_r must contain a_r . Note that the variable x_r appears (as a positive literal) in Y_j . Thus, there is a pair of data items d_r^h and e_r^h such that $d_r^h \in A_r$, $e_r^h \in B_j$ and this pair of data items has the same unique tag, namely t_r^h . So, the descriptor sets of B_j and A_r have one common tag, namely t_r^h . Further, since x_r is set to **False**, the two descriptor sets also have the tag a_r in common. In other words, the overlap between the descriptors of B_j and A_r is at least two, contradicting the assumption that $\beta = 1$. Hence, the truth assignment must set x_r to **True**, and clause Y_j is satisfied. In other words, we have a solution to the R3SAT instance, and this completes the proofs of Theorem ??.

3 Finding Descriptors Under Apart (or Cannot-Link) Constraints

We use CL-FEASIBILITY to denote the feasibility problem under **Apart** (also called cannot-link or CL) constraints. We show that CL-FEASIBILITY is computationally intractable even for a single cluster.

Theorem 3.1 *Given a single cluster L and a set A of CL constraints, the problem of determining whether there is a descriptor for L that satisfies all the constraints in A is **NP**-complete.*

Proof: It is easy to see that CL-FEASIBILITY is in **NP**. Our proof of **NP**-hardness uses a reduction from 3SAT. This reduction is similar to the one used to prove Theorem ??.

Let x_1, x_2, \dots, x_n denote the n variables and Y_1, Y_2, \dots, Y_m denote the m clauses of the 3SAT instance. The reduction to the DTDF problem is as follows.

- (a) For each variable x_i , we create two tags, denoted by a_i and b_i . (a_i and b_i correspond to the positive and negative literals of x_i). So, the tag set $T = \{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n\}$, and $|T| = 2n$.
- (b) For each clause Y_j , we create an item s_j , $1 \leq j \leq m$. Thus, the set of items $S = \{s_1, s_2, \dots, s_m\}$. The tag set t_j for s_j is chosen as follows. Suppose Y_j contains literals x_{j_1}, x_{j_2} and x_{j_3} . For

each literal $x_{j\ell}$ in Y_j , if $x_{j\ell}$ corresponds to positive literal x_i , then t_j contains a_i and if $x_{j\ell}$ corresponds to the negative \bar{x}_i , then t_j contains b_i . (Thus, $|t_j| = 3$, $1 \leq j \leq m$.) The set $S = s_1, s_2, \dots, s_m$ constitutes the only Cluster L .

(c) The constraint set A has n CL-constraints given by $\text{CL}(a_i, b_i)$, $1 \leq i \leq n$.

It can be seen that the above construction produces just one cluster. Further, the cardinality of the tag set for each item is exactly three.

Suppose there is a solution to the 3SAT instance. we construct a tag set Q for the cluster L as follows. For $1 \leq i \leq n$, if the given satisfying assignment sets variable x_i to **True**, we add a_i to Q ; otherwise, we add b_i to Q . Note that for each i , Q contains exactly one of a_i and b_i , $1 \leq i \leq n$. Thus, all the CL constraints in A are satisfied. Since the truth assignment satisfies all the clauses, Q has at least one item from each tag set t_j , $1 \leq j \leq m$. So, Q constitutes a solution to the CL-FEASIBILITY problem.

Now suppose that there is a solution to the CL-FEASIBILITY problem. Let Q denote the chosen descriptor for the cluster L . For each i ($1 \leq i \leq n$), if $a_i \in Q$, we set x_i to **True** and if $b_i \in Q$, we set x_i to **False**. Further, if neither a_i nor b_i appears in Q , we set x_i to **False**. We first note that this assigns a truth value to each variable x_i . Further, since the CL constraints ensure that for each i , Q does not contain both a_i and b_i , each variable is assigned a unique truth value. We now claim that this assignment satisfies all the clauses. To see this, consider any clause Y_j . Note that Q contains at least one of the tags from t_j , the tag set of item s_j corresponding to Y_j . Thus, the chosen assignment sets at least one of the literals in Y_j to **True**; that is, the clause is satisfied. This completes the proof of Theorem ??.

We note that the cluster description problem with CL constraints differs significantly from the feasibility problem for finding clusters with CL constraints. In particular, the feasibility problem for finding clusters satisfying a given set of CL constraints is efficiently solvable for two clusters while it is **NP**-complete for three or more clusters [?]. For the cluster description problem, computational intractability sets in even for the simplest case, namely describing a single cluster.

4 Additional Enlarged Figures

Figure ?? is a larger version of Figure 2 in the main paper showing community composition in detail.

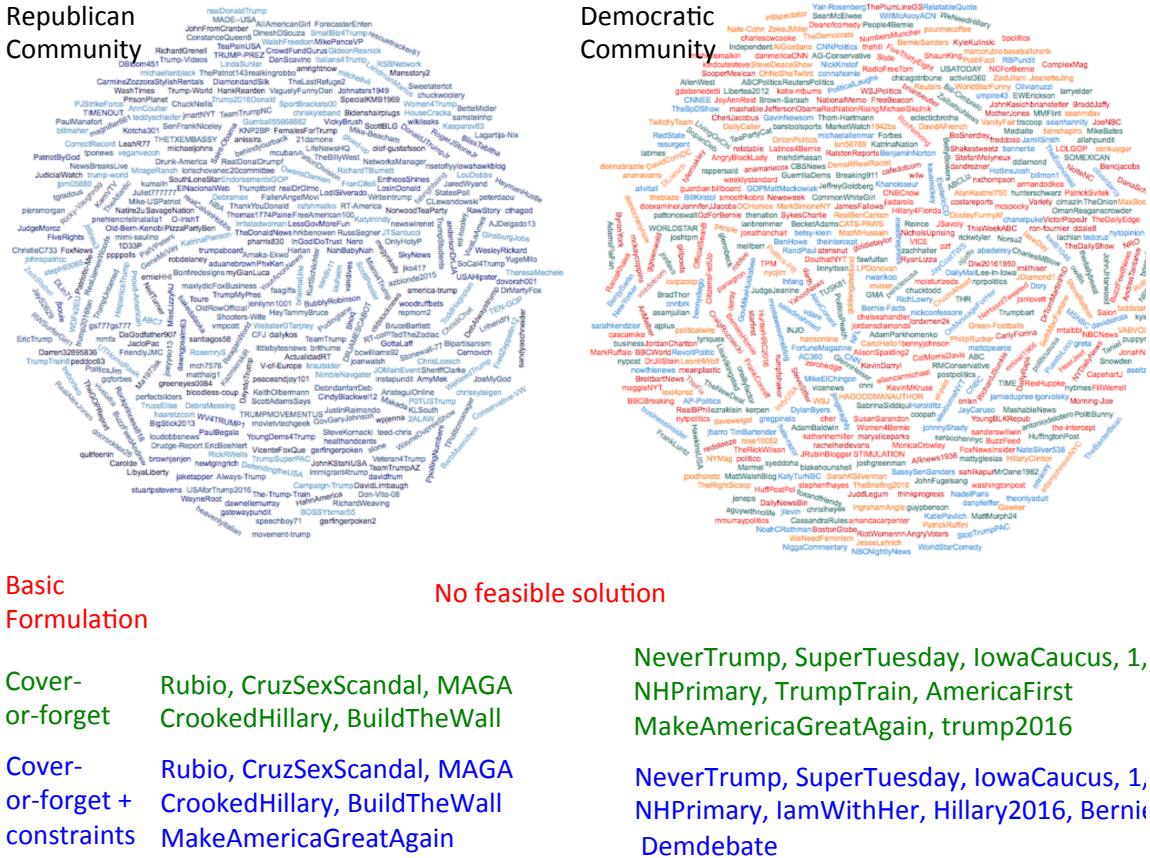


Figure 1: A Twitter Network of the 1000 most popular accounts divided into two communities using spectral clustering explained by their use of political hashtags during the 2016 US primary election season. The basic formulation was too restrictive and no feasible solution exists. The cover-or-forget formulation finds a solution for $I_1 = I_2 = 5$ but no users were ignored in the Republican community but the following users were ignored from the Democratic community: ZaidJilani, VictorPopeJr, TedTheZodiac. The cover-or-forget + constrained formulation finds more complete results for the republic community and more consistent results for the democratic community.

References

- [1] T. Cormen, C. E. Leiserson, R. Rivest and C. Stein, *Introduction to Algorithms*, MIT Press and McGraw-Hill, Cambridge, MA, 2001.
- [2] I. Davidson and S. S. Ravi, “The Complexity of Non-Hierarchical Clustering with Instance and Cluster Level Constraints”, *Data Mining and Knowledge Discovery*, Vol. 14, No. 1, February 2007, pp. 25–61.
- [3] M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-completeness*, W. H. Freeman & Co., San Francisco, CA, 1979.
- [4] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan and R. E. Stearns, “The Complexity of Planar Counting Problems”, *SIAM J. Computing*, Vol. 27, No. 4, 1998, pp. 1142–1167.