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1 A Complexity Result for the DTDF Problem

Theorem 1.1 The DTDF problem is NP-complete even when the number of clusters is 2 and the

tag set of each item is of size at most 3.

Proof: Membership in NP is obvious. We prove NP-hardness through a reduction from 3SAT

which is known to be NP-complete [?]. Let x1, x2, . . ., xn denote the n variables and Y1, Y2, . . .,

Ym denote the m clauses of the 3SAT instance. The reduction to the DTDF problem is as follows.

(a) For each variable xi, we create two tags, denoted by ai and bi. (Tags ai and bi correspond

to the positive and negative literals of xi). So, the tag set T = {a1, a2, . . . , an, b1, b2, . . . , bn},
and |T | = 2n.

(b) For each variable xi, we create an item si with tag set ti = {ai, bi}, 1 ≤ i ≤ n. (Thus, |ti| = 2,

1 ≤ i ≤ n.) Items s1, s2, . . ., sn constitute Cluster C1.

(c) For each clause Yj , we create an item sn+j , 1 ≤ j ≤ m. Suppose Yj contain literals xj1 , xj2
and xj3 . For each literal xj` in Yj , if xj` corresponds to positive literal xi, then tn+j contains

ai and if xj` corresponds to the negative literal xi, then tn+j contains bi. (Thus, |tn+j | = 3,

1 ≤ j ≤ m.) Items sn+1, sn+2, . . ., sn+m constitute Cluster C2.

(d) The set of items S = {s1, s2, . . . , sn+m}.

Clearly, the above construction can be done in polynomial time. It can also be seen that the tag

set of each item produced by the above construction is of size at most three.

Suppose there is a solution to the 3SAT instance. We construct tag sets T1 and T2 for clusters

C1 and C2 as follows. For 1 ≤ i ≤ n, if the given satisfying assignment sets variable xi to True, we

add ai to T2 and bi to T1; if the given satisfying assignment sets variable xi to False, we add bi to

T2 and ai to T1. It is easy to see that T1 and T2 are disjoint. Since the truth assignment satisfies all

the clauses, T2 has at least one item from each tag set tn+j , 1 ≤ j ≤ m. So, T1 and T2 constitute a

solution to the DTDF problem.

Now suppose that there is a solution to the DTDF problem. We have the following claim.

Claim 1: For each i, 1 ≤ i ≤ n, T2 contains at most one of ai and bi.

Proof of Claim 1: The proof is by contradiction. Suppose for some i, 1 ≤ i ≤ n, T2 contains

both ai and bi. Note that C1 contains the item si whose tag set is {ai, bi}. Thus, T1 must contain

at least one of ai and bi. Now, since T1 contains both ai and bi, we conclude that T1 and T2 are

not disjoint. This contradicts the assumption that we have a valid solution to the DTDF problem,

and Claim 1 follows.
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Given a solution to DTDF, we construct a solution to SAT as follows. Consider each variable

xi, 1 ≤ i ≤ n. If tag ai ∈ T2, set xi to True. If bi ∈ T2 or neither ai nor bi appears in T2, set xi
to False. We claim that this is a valid satisfying assignment. First, using Claim 1, it is seen that

each variable is set to either True for False. Consider any clause Cj . T2 contains at least one of

the tags from tn+j , the tag set of item sn+j corresponding to Cj . Thus, the chosen assignment sets

at least one of the literals in Cj to True; that is, the clause is satisfied. This completes the proof

of Theorem ??.

2 A Complexity Result for the (α, β)-Cons-Desc Problem

We showed in the main paper that when α (and hence β) and k (the number of clusters) are fixed,

the (α, β)-Cons-Desc problem can be solved efficiently. We now show that when the number of

clusters k is not fixed, the (α, β)-Cons-Desc problem remains NP-complete even when α is fixed.

Theorem 2.1 When the number of clusters k is not fixed, The (α, β)-Cons-Desc problem is

NP-complete even when α = 4 and β = 1.

Proof: Membership in NP is obvious. We prove NP-hardness through a reduction from a

restricted version of 3SAT in which each variable occurs either two or three times (considering both

positive and negative literals of that variable) in the set of clauses. This restricted version of 3SAT,

which will be denoted by R3SAT, is also known to be NP-complete [?].

Let x1, x2, . . ., xn denote the n variables and Y1, Y2, . . ., Ym denote the m clauses of the R3SAT

instance. The reduction to the (α, β)-Cons-Desc problem, where α = 4 and β = 1, is as follows.

1. We first describe how the data items of the (α, β)-Cons-Desc instance are produced.

(a) For each variable xi (1 ≤ i ≤ n), we create a data item wi. Let W = {w1, w2, . . . , wn}.
(b) For each clause Yj , (1 ≤ j ≤ m), we create a data item pj . Let P = {p1, p2, . . . , pm}.
(c) Recall that in R3SAT, each variable occurs positively or negatively in either two or three

clauses. Consider each variable xi. If xi occurs three times in R3SAT, we create six data

items denoted by d1i , e
1
i , d

2
i , e

2
i , d

3
i and e3i . If xi occurs two times in R3SAT, we create

only the first five of these data items (i.e., we don’t create e3i ). For each i, 1 ≤ i ≤ n,

we will refer to these six or five data items as the special data items corresponding to

variable xi. Let D denote the set of all data items created in this step. (Thus, each data

item in D is a special data item corresponding to some variable of R3SAT.)

(d) The set S of data items for the (α, β)-Cons-Desc problem is given by S = W ∪P ∪D.

2. Next, we describe the construction of the set of tags for each data item created above.

(a) The tag set τ(wi) for each data item wi ∈W has two tags, denoted by ai and bi. (Tags

ai and bi correspond to the positive and negative literals of xi).

(b) Consider each data item pj ∈ P corresponding to clause Yj . The tag set τ(pj) for the

data item pj has three tags chosen as follows. Suppose Yj contain literals xj1 , xj2 and

xj3 . For each literal xj` in Yj , if xj` corresponds to positive literal xi, then ai is added

to τ(pj) and if xj` corresponds to the negative literal xi, then bi is added to τ(pj).
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(c) For each variable xi, D contains five or six special data items. First consider the case

where xi has six special data items, namely d1i , e
1
i , d

2
i , e

2
i , d

3
i and e3i . For each `, 1 ≤ ` ≤ 3,

the tag sets τ(d`i) and τ(e`i) contain just one tag, denoted by t`i . If xi has five special data

items, we do the same construction except we don’t produce a tag set for e3i (since that

data item doesn’t exist). We will refer to the set {d1i , d2i , d3i } as the primary special

item set corresponding to xi and the set {e1i , e2i , e3i } (or {e1i , e2i } when xi appears only

in two clauses) as the secondary special item set corresponding to xi.

3. We now describe the construction of the clusters.

(a) For each variable xi, we have a cluster Ai consisting wi and all the three data items d1i ,

d2i and d3i from the primary special item set corresponding to xi, 1 ≤ i ≤ n. (Thus,

|Ai| = 4, 1 ≤ i ≤ n.)

(b) For each clause Yj , we have a cluster Bi containing the following data items. First,

cluster Bj includes the data item pj . Suppose Yj contain (positive or negative) literals

of variables xi1 , xi2 and xi3 . Then, Bj also contains one arbitrary data item each from

the secondary special item sets corresponding to the variables xi1 , xi2 and xi3 . Thus,

|Bj | = 4, 1 ≤ j ≤ m. It should be noted that each data item in the secondary special

item set of each variable xi can only be used in one cluster Bj . (This is because the

clusters must form a partition of the data set S.)

(c) The set C of n+m clusters produced by the construction is given by C = {A1, . . . , An,

B1, . . . , Bm}.

Note that For each variable xi, the construction five or six special data items in D. Three of

these data items (i.e., the primary special data items corresponding to xi) are in cluster Ai.

each of the remaining special data items (i.e., those in the secondary special data item set of

xi) appears in one cluster corresponding to each clause in which variable xi occurs.

This completes the construction. It can be verified that the construction can be carried out in

polynomial time. We observe that each cluster has exactly four data items.

We now show that there is a solution to the (α, β)-Cons-Desc problem with α = 4 and β = 1

iff there is a solution to the R3SAT problem.

Suppose there is a solution to the R3SAT instance. We construct a tag set for each cluster as

follows.

(a) Consider each cluster Ai (1 ≤ i ≤ n). For the data item wi ∈ Ai, tag set is {ai, bi}. If variable

xi is assigned the value True, we choose bi in the descriptor for Ai; otherwise, we choose bi.

The other three data items in Ai are from D, and each has only one unique tag. We add

those three tags to the descriptor set for Ai.

(b) Consider each cluster Bj (1 ≤ j ≤ m). For the data item pj ∈ Bj , tag set is created from the

literals in clause Yj . Since the satisfying assignment makes at least one of the literals in Yj
to be True, we pick the tag corresponding to an arbitrary literal that is set to Trueby the

assignment. The other three data items in Bj are from D, and each has only one unique tag.

We add those three tags to the descriptor set for Bj .
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It is not difficult to verify that each descriptor set has exactly four tags and that any two descrip-

tors have at most one tag in common. In other words, we have a solution to the (α, β)-Cons-Desc

problem with α = 4 and β = 1.

Now, suppose there is a solution to the (α, β)-Cons-Desc problem. We show how to construct

a satisfying assignment to the R3SAT instance. Consider the clause Ai corresponding to the Boolean

variable xi (1 ≤ i ≤ n). Ai contains data item wi with tag set {ai, bi} and three other data items

from D, and each of those three data items has a unique tag. So, the descriptor for Ai must have

those three tags. Since the descriptor can only at most four tags, it can include exactly one of ai
and bi. If the descriptor for Ai includes ai, we set variable xi to False; otherwise, we set xi to True.

We now argue that this is a satisfying assignment for each of the clauses. Consider any clause Yj
and the corresponding cluster Bj . The descriptor for Bj must include the three tags corresponding

to the data items from the set D in Bj since each of those three items has a unique tag. Since the

descriptor for Bj is of size 4, it can only include one of the tags of the data item pj ∈ Bj . Suppose

the chosen tag is ar corresponding to the literal xr. (The proof is similar if the chosen tag is br
corresponding to the literal xr.) Thus xr occurs in clause Yj . We prove by contradiction that the

chosen assignment sets xr to True. Suppose xr is set to False. Consider the descriptors for Bj and

Ar (the clause corresponding to xr). Since xr is set to False, the descriptor for Ar must contain

ar. Note that the variable xr appears (as a positive literal) in Yj . Thus, there is a pair of data

items dhr and ehr such that dhr ∈ Ar, e
h
r ∈ Bj and this pair of data items has the same unique tag,

namely thr . So, the descriptor sets of Bj and Ar have one common tag, namely thr . Further, since

xr is set to False, the two descriptor sets also have the tag ar in common. In other words, the

overlap between the descriptors of Bj and Ar is at least two, contradicting the assumption that

β = 1. Hence, the truth assignment must set xr to True, and clause Yj is satisfied. In other words,

we have a solution to the R3SAT instance, and this completes the proofs of Theorem ??.

3 Finding Descriptors Under Apart (or Cannot-Link) Constraints

We use CL-Feasibility to denote the feasibility problem under Apart (also called cannot-link or

CL) constraints. We show that CL-Feasibility is computationally intractable even for a single

cluster.

Theorem 3.1 Given a single cluster L and a set A of CL constraints, the problem of determining

whether there is a descriptor for L that satisfies all the constraints in A is NP-complete.

Proof: It is easy to see that CL-Feasibility is in NP. Our proof of NP-hardness uses a reduction

from 3SAT. This reduction is similar to the one used to prove Theorem ??.

Let x1, x2, . . ., xn denote the n variables and Y1, Y2, . . ., Ym denote the m clauses of the 3SAT

instance. The reduction to the DTDF problem is as follows.

(a) For each variable xi, we create two tags, denoted by ai and bi. (ai and bi correspond to the

positive and negative literals of xi). So, the tag set T = {a1, a2, . . . , an, b1, b2, . . . , bn}, and

|T | = 2n.

(b) For each clause Yj , we create an item sj , 1 ≤ j ≤ m. Thus, the set of items S = {s1, s2, . . . , sm}.
The tag set tj for sj is chosen as follows. Suppose Yj contain literals xj1 , xj2 and xj3 . For
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each literal xj` in Yj , if xj` corresponds to positive literal xi, then tj contains ai and if xj`
corresponds to the negative xi, then tj contains bi. (Thus, |tj | = 3, 1 ≤ j ≤ m.) The set

S = s1, s2, . . . , sm constitutes the only Cluster L.

(c) The constraint set A has n CL-constraints given by CL(ai, bi), 1 ≤ i ≤ n.

It can be seen that the above construction produces just one cluster. Further, the cardinality of

the tag set for each item is exactly three.

Suppose there is a solution to the 3SAT instance. we construct a tag set Q for the cluster L as

follows. For 1 ≤ i ≤ n, if the given satisfying assignment sets variable xi to True, we add ai to Q;

otherwise, we add bi to Q. Note that for each i, Q contains exactly one of ai and bi, 1 ≤ i ≤ n.

Thus, all the CL constraints in A are satisfied. Since the truth assignment satisfies all the clauses,

Q has at least one item from each tag set tj , 1 ≤ j ≤ m. So, Q constitutes a solution to the

CL-Feasibility problem.

Now suppose that there is a solution to the CL-Feasibility problem. Let Q denote the chosen

descriptor for the cluster L. For each i (1 ≤ i ≤ n), if ai ∈ Q, we set xi to True and if bi ∈ Q,

we set xi to False. Further, if neither ai nor bi appears in Q, we set xi to False. We first note

that this assigns a truth value to each variable xi. Further, since the CL constraints ensure that

for each i, Q does not contain both ai and bi, each variable is assigned a unique truth value. We

now claim that this assignment satisfies all the clauses. To see this, consider any clause Yj . Note

that Q contains at least one of the tags from tj , the tag set of item sj corresponding to Yj . Thus,

the chosen assignment sets at least one of the literals in Yj to True; that is, the clause is satisfied.

This completes the proof of Theorem ??.

We note that the cluster description problem with CL constraints differs significantly from the

feasibility problem for finding clusters with CL constraints. In particular, the feasibility problem for

finding clusters satisfying a given set of CL constraints is efficiently solvable for two clusters while it

is NP-complete for three or more clusters [?]. For the cluster description problem, computational

intractability sets in even for the simplest case, namely describing a single cluster.

4 Additional Enlarged Figures

Figure ?? is a larger version of Figure 2 in the main paper showing community composition in

detail.
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Figure 1: A Twitter Network of the 1000 most popular accounts divided into two communities
using spectral clustering explained by their use of political hashtags during the 2016 US primary
election season. The basic formulation was too restrictive and no feasible solution exists. The
cover-or-forget formulation finds a solution for I1 = I2 = 5 but no users were ignored in the
Republican community but the following users were ignored from the Democratic community:
ZaidJilani, VictorPopeJr, TedTheZodiac. The cover-or-forget + constrained formulation finds
more complete results for the republic community and more consistent results for the democratic
community.
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