

MoHCA-Java∗:
A Tool for C++ to Java Conversion Support

Scott Malabarba, Premkumar Devanbu and Aaron Stearns
Department of Computer Science

University of California, Davis
Davis, CA 95616

530-754-9469
malabarb, devanbu, stearns@cs.ucdavis.edu

March 8, 1999

ABSTRACT

As Java increases in popularity and maturity, many
people find it desirable to convert legacy C++ or C
programs to Java. Our hypothesis is that a tool which
performs rigorous analysis on a C++ program, pro-
viding detailed output on the changes necessary, will
make conversion a much more efficient and reliable
process. MoHCA-Java is such a tool. It performs de-
tailed analysis on a C++ abstract syntax tree; the pa-
rameters of the analysis can be specified and extended
very quickly and easily using a rule-based language.
We have found that MoHCA-Java is very useful for
identifying and implementing source code changes,
and that its extensibility is a very important factor,
specially to adapt the tool to assist in the conversion
of C++ code that makes extensive use of libraries to
Java code that uses similar libraries.

INTRODUCTION

As Java becomes more mature and efficient, many
people find it desirable to convert legacy C++ or C
programs to Java. The complexity of this task varies
greatly between programs. Sometimes the conversion
is trivial; but sometimes high level program design

∗Moderately Helpful C++ Analyzer for Java

must be reconsidered, and the entire program rewrit-
ten. Tools exist to automate the conversion process,
generally relying on some form of text stream process-
ing or partial parsing. This type of tool is effective for
the easier cases of conversion. However, these tools
have certain limitations—their capacity for analysis
is limited, and any change which requires a design
decision is not recognized or reported. Our hypoth-
esis is that a tool which performs rigorous analysis
on a C++ program, providing detailed output on the
changes necessary, will make conversion a much more
efficient and reliable process. MoHCA-Java is such a
tool. It performs detailed analysis on a C++ abstract
syntax tree (AST); the parameters of the analysis can
be specified and extended very quickly and easily us-
ing a domain specific [8] rule-based language.

IMPLEMENTATION

MoHCA-Java is built as a layer of abstraction on
top of the Gen++ code analysis language [4, 3].
Gen++ provides constructs for traversing and ana-
lyzing AST’s generated by the front end of a C++
compiler. We have defined a simple rule-based
language, dubbed MJL (MoHCA-Java Language),
which is used to specify target patterns in the C++
program, and the action(s) to take when those pat-
terns are found. The user simply supplies a file

containing analysis rules written in MJL, which
MoHCA-Java checks against the C++ AST. This
allows for very rapid and flexible specification of
MoHCA-Java functionality, including extension to
cover custom C++ libraries or new features in Java
or C++. MJL captures the semantics needed to
perform basic pattern-matching on an AST, while
dispensing with the complexity of a more powerful
language like Gen++.

We designed the system to be easily extendable on
a deeper level as well, in a modular style. TheMJL
parser, intermediate representation, and Gen++ an-
alyzer program are distinct components connected by
well-defined interfaces; it is possible to modify or re-
place one module without disturbing the others. For
example, the MJL syntax and grammar are con-
stantly evolving - this is done easily by editing the lex
and yacc specifications and rebuilding the analyzer
executable. Likewise, the intermediate representa-
tion of MJL or its interpretation can be optimized
or refined by changing the C++ code used internally,
or the Gen++ code for the analyzer, as appropriate.
This simplifies the porting of MoHCA-Java to other
C++ analyzer tools such as ASTLog [1]. Figure 1
provides a high-level overview of MoHCA-Java’s de-
sign and function.

Rules take the general form proper-
ties:conditions=action. MJL contains constructs
for nested conditions, boolean operations, slot
traversal, and explicit invocation of rules. Rules can
be assigned several optional properties, including
name, category, difficulty and link to another rule.
For the present, the “action” contains the message
text to be printed upon satisfaction of the rule.
Optionally, one may add a sed script which will
perform the translation, if applicable. The language
is sufficiently expressive to allow rules for a wide
range of Java/C++ differences such as those listed
in [2, 6].

Examples

Following are a few rule examples which demonstrate
the basic syntax and semantics of MJL.

• (category library):

user

C++ code

Java code

CFront parse tree

text output

rule set Gen++ program

Figure 1: Overview of system.

(UserCall, printf):
(msg "Use System.out.print instead of
printf")(sed "sed script goes here...");

Look for any UserCall node with “printf” as
its token string

• (category design):(Goto):
(msg "Goto statement not
applicable in Java");

Look for an node of type Goto

• (category library):
(IdName)(or (IdName, cout)
(IdName, cin)(IdName, cerr))
:(msg "Use System instead of iostreams")
(sed "sed script goes here..." ;

Look for any variable reference (IdName) with
token string cout, cin, or cerr.

• (category semantic):(If) (<ifcondition>
not (or (Not)(Less)(Greater)
(GreaterEq)(LessEq)(LogOr)(LogAnd))):
"Non-boolean condition in if statement";

For all If statement nodes, check the
ifcondition slot for a non-boolean expression.

2

ANALYSIS METHODS

We have cataloged differences between Java and C++
and separated them into categories and difficulty lev-
els. The categories are syntax, semantic, library, and
design. Syntactic differences involve simple changes
in the syntax of an expression; for example, C++
classes contain public/private sections, while in Java
each member is classified as public or private. Se-
mantic differences are deeper, involving changes in
the semantic definition of an expression. An exam-
ple is the condition of an if statement - in Java this
must be a boolean, unlike C++. Library changes are
simply a switch from one function or global variable
to another - say, from printf to System.out.print.
Design issues require some redesign of the program,
typically because of a feature which exists in one lan-
guage but not the other - for instance, multiple inher-
itance or pointer usage. Difficulty level is a measure
of the time and system knowledge required to enact
a given change. We make the assumption that for
most programs the bulk of the changes required will
be low-difficulty syntax and library issues, with a few
complex design issues on the other end of the scale.
This categorization lends itself to efficient division
of labor - the more numerous, time-consuming minor
tasks could be assigned to a junior programmer, while
a senior programmer handles more difficult issues re-
quiring design decisions or specialized knowledge.

Output

Output consists of an HTML version of the source
code analyzed - each line where rule(s) were matched
is linked to a brief description of the change needed,
and to a more detailed explanation in a separate
file. Numerical data regarding number and type of
changes needed is provided. A SED script file is also
created, containing any SED commands correspond-
ing to matched rules. This script is then run on the
C++ source file to automate as much of the conver-
sion as possible. Generally source files require some
manual postprocessing before compiling in Java, as
not all changes are completely automated.

StatementExpression

If

ifTbranchifcondition

if (x)

 // do something...
}

{

C++ compiler

C++ Abstract Syntax Tree (AST)C++ code

Figure 2: Analysis method.

RELATED WORK

Several similar tools exist, including C2J [7] and
J2C++ [5]. C2J performs partial parsing of C++
files, generating Java source code according to a se-
ries of rules. C2J differs from MoHCA-Java in three
significant areas:

• C2J generates complete Java code for all changes
it is equipped to handle.

• MoHCA-Java permits full exploitation of all se-
mantic information present in the AST.

• C2J translation rules are hard-coded and not
easily customized or extended.

J2C++ provides Java wrappers for existing C++
classes using the Java native method interface. It
does not actually translate the C++ code, only makes
it accessible to Java programs. The advantage to
this approach is that translation, with all of its in-
herent complications, is not necessary. However, for
applications where source code conversion is required,
J2C++ cannot assist.

In comparison with the others MoHCA-Java is
more flexible and powerful, but automated conver-
sion is not as seamless. Integration of translation
capability into MoHCA-Java is an area of ongoing
work. The ability to extend and use different rule

3

sets is invaluable; creation ofMJL rule sets for var-
ious existing C++ libraries is also a major focus of
effort.

DISCUSSION

Currently, only partial translation is done, using SED
scripts as provided by the author of the rule set.
As any sort of text processing is very limited in se-
mantic transformations, the user must code all other
changes manually, using the output provided as a
guide. MoHCA-Java would be even more useful if it
could be extended to perform the translation directly
on the AST wherever possible, leaving only those
changes which are impossible to automate cleanly for
the user to do. In this case a rule would specify both a
pattern to search for in the C++ AST, and the trans-
formation used to create the corresponding section of
a Java AST. Gen++ does not have any mechanism
for translation, so it will be necessary to either extend
Gen++ or use another tool.

We have recently begun to test the system by using
it to convert several programs of varying complexity
both with and without its assistance, and comparing
the time and expertise required for each task. Manu-
ally identifying necessary changes and locating them
in code can be difficult, and we predict significant
savings in time and energy. During development and
initial testing we have found that MoHCA-Java is
indeed very useful for identifying and implementing
source code changes, and that its extensibility is a
very important factor.

AVAILABILITY

MoHCA-Java requires an installation of Gen++,
which is freely available for download [3]. MoHCA-
Java itself is still under development and testing; we
plan to make it available under a free source license
on the GEN++ home page [3] by early Fall 1999.

Currently the basicMJL rule set covers most lan-
guage differences between C++ and Java. Rule sets
for various libraries such as the Unix system calls,
string functions, etc. have also been written. De-

pending on available support, we also plan to port it
to other source analysis tools [1].

References

[1] R. F. Crew. Astlog: A language for ex-
amining abstract syntax trees. In Proceedings,
First Usenix Conference on Domain-Specific Lan-
guages, October 1997.

[2] Deitel and Deitel. Java: How to Program. Pren-
tice Hall, 1998.

[3] P. Devanbu. The gen++ page.
http://seclab.cs.ucdavis.edu/devanbu/genp,
1998.

[4] P. Devanbu. Genoa - a customizable, front-
end retargetable source code analysis framework.
ACM Transactions on Software Engineering and
Methodology, (accepted, to appear), 1999.

[5] M. Hubbard and A. Schade. J2c++
developer tool for integrating c++ ob-
jects with java applets and applications.
http://www.alphaworks.ibm.com/formula/J2C++.

[6] JavaSoft. The java language envi-
ronment. Technical report, Java-
Soft, 1996. http://www.javasoft.com/-
docs/white/langenv/index.html.

[7] C. Laffra. C2j, a c++ to java translator.
http://members.aol.com/laffra/c2j.html.

[8] J. C. Ramming. Proceedings, First Usenix Con-
ference on Domain-Specific Languages. October
1997. (Edited).

4

