
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Studying the Difference Between Natural and Programming
Language Corpora

Casey Casalnuovo · Kenji Sagae · Prem Devanbu

Received: date / Accepted: date

Abstract Code corpora, as observed in large software systems, are now known to be far
more repetitive and predictable than natural language corpora. But why? Does the differ-
ence simply arise from the syntactic limitations of programming languages? Or does it arise
from the differences in authoring decisions made by the writers of these natural and pro-
gramming language texts? We conjecture that the differences are not entirely due to syntax,
but also from the fact that reading and writing code is un-natural for humagins, and requires
substantial mental effort; so, people prefer to write code in ways that are familiar to both
reader and writer. To support this argument, we present results from two sets of studies: 1)
a first set aimed at attenuating the effects of syntax, and 2) a second, aimed at measuring
repetitiveness of text written in other settings (e.g. second language, technical/specialized
jargon), which are also effortful to write. We find find that this repetition in source code is
not entirely the result of grammar constraints, and thus some repetition must result from
human choice. While the evidence we find of similar repetitive behavior in technical and
learner corpora does not conclusively show that such language is used by humans to miti-
gate difficulty, it is consistent with that theory. This discovery of “non-syntactic” repetitive
behaviour is actionable, and can be leveraged for statistically significant improvements on
the code suggestion task. We discuss this finding, and other future implications on practice,
and for research.

Keywords Language Modeling · Programming Languages · Natural Languages · Syntax
& Grammar · Parse Trees · Corpus Comparison

Casey Casalnuovo
Department of Computer Science, University of California, Davis, CA, USA
E-mail: ccasal@ucdavis.edu

Kenji Sagae
Department of Linguistics, University of California, Davis, CA, USA
E-mail: sagae@ucdavis.edu

Prem Devanbu
Department of Computer Science, University of California, Davis, CA, USA
E-mail: ptdevanbu@ucdavis.edu

2 Casey Casalnuovo et al.

1 Introduction

Source code is often viewed as being primarily intended for machines to interpret and exe-
cute. However, more than just an interlocutory medium between human and machine, it is
also a form of communication between humans - a view advanced by Donald Knuth:

Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather
on explaining to human beings what we want a computer to do (Knuth, 1984).

Software development is usually a team effort; code that cannot be understood and main-
tained is not likely to endure. It is well known that most development time is spent in main-
tenance rather than di novo coding (Lehman, 1980). Thus it is very reasonable to consider
source code as a form of human communication, which, like natural languages, encodes
information as sequences of symbols, and is amenable to the sorts of statistical language
models (LM) developed for natural language. This hypothesis was originally conceived by
Hindle et al. (Hindle et al, 2012), who showed that LM designed for natural language were
actually more effective for code, than in their original context. Hindle et al used basic ngram
language models to capture repetition in code; subsequent, more advanced models, tuned for
modular structure (Tu et al, 2014; Hellendoorn and Devanbu, 2017), and deep learning ap-
proaches such as LSTMs (Hochreiter and Schmidhuber, 1997) (with implementations such
as (White et al, 2015; Khanh Dam et al, 2016)) yield even better results. Fig 1 demonstrates
this difference on corpora of Java and English, using the standard entropy measure (Manning
and Schütze, 1999) over a held-out test set. A lower entropy value indicates that a token was
less surprising for the language model. These box plots display the entropy for each token
in the test set, and show that (regardless of model) Java is more predictable than English1.

But why is code more predictable? The difference could either arise from a) inher-
ent syntactic differences between natural and programming languages or b) the contingent
authoring choices made by authors. Source code grammars are unambiguous, for ease of
parsing; this limitation might account for the greater predictability of code. But there may
be other reasons; perhaps source code is more domain-specific; perhaps developers deliber-
ately limit their constructions to a smaller set of highly reused forms, just to deal with the
great cognitive challenges of code reading and writing. Recent work on human processing
of natural languages has shown that the entropy of natural language text is correlated with
cognitive load (Frank, 2013), with more surprising language requiring greater effort to in-
terpret. In code, this suggests the intuitive notion that, in general, the use of more familiar
and less surprising source code is expected to reduce cognitive load requirements.

Finally, we note that prior studies on the differences between natural language and code
have typically aimed at exploring one programming language and one natural language
(Hindle et al, 2012; Tu et al, 2014). Though this paper will focus primarily on syntactic
differences between English and Java, we do wish to confirm that the differences seen be-
tween English and Java apply across a variety of programming and natural languages.

This raises 3 questions of interest:

1. Do the differences in repetition seen between English and programming languages like
Java generalize to other programming and natural languages?

2. How much does programming language syntax influence repetitiveness in coding? and
3. What are the contingent factors (not constrained by syntax) that play a role in code

repetitiveness?

1 Precise details on the datasets and language models will be presented later their respective sections.

Studying the Difference Between Natural and Programming Language Corpora 3

Fig. 1 Entropy comparisons of English and Java corpora from 3 different language models

We address the first question, with experiments breaking down the syntactic differences
between source code and natural language. We study the second question using pre-parsed
English and Code data, to account for the effects of syntax. The third question is very open-
ended; to constrain it, we consider a variant thereof:

3. Is repetitiveness observed in code also observed in other natural language corpora that
similarly required significant effort from the creators?

We address this question, with corpora of text that are similarly ”effortful” for the writers
(or readers, or both) or have potentially higher costs of miscommunication: we consider
English as a second language and in specialized corpora such as legal or technical writing.
To summarize our results, we find:

– The differences between source code and English, observed previously in Java hold true
in many different programming and natural languages.

– Programming language corpora are more similar to each other than to English.
– Even when accounting for grammar and syntax in different ways, Java is statistically

significantly more repetitive than English.
– ESL (English as a Second language) corpora, as well as technical, imperative, and legal

corpora, do exhibit repetitiveness similar to that seen in code corpora.
– Our findings on syntax have practical consequences: they help significantly improve

code suggestion on open category tokens in Java, which are harder for language models
to predict but useful for programmers.

These suggest that differences observed between natural and programming languages
are not entirely due to grammatical limitations, and that code is also more repetitive due to
contingent facts – i.e. humans choose to write code more repetitively than English. Our ex-
periments with bodies of text (other than code) that require greater effort indicate that people

4 Casey Casalnuovo et al.

choose to write these corpora quite repetitively as well; this suggests that the greater repeti-
tiveness in code could also arise from a desire to reduce effort. We conclude the paper with
some discussion on the practical actionability of this scientific study, including specifically
on code suggestion. A partial replication package for the data, source code, and experiments
in this paper can be found at https://github.com/caseycas/CodeNLPReplication.

2 Theory

We provide a few definitions used throughout this paper. First, by syntax, we mean the as-
pects of language related to structure and grammar, rather than meaning. Both code (an
artificial language) and natural language have syntactic constraints. Code has intentionally
simplified grammar, to facilitate language learning, and to enable efficient parsing by com-
pilers. Human languages have evolved naturally; grammars for natural languages are imper-
fect models of naturally occurring linguistic phenomena, and in general, are more complex,
non-deterministic, and ambiguous than code grammars.

A language’s syntax constrains the set of valid utterances. The more restrictive the gram-
mar, the less choice in utterances. Thus, it is possible that the entropy differences between
code and NL arise entirely out of the more restrictive grammar for code. If so, the observed
differences are not a result of conscious choice by humans to write code more repetitively;
it is simply the grammar.

However, if we could explicitly account for the syntactic differences between English
and code, and still find that code is repetitive, then the unexplained difference could well
arise from deliberate choices made by programmers. Below, we explore a few theories of
why the syntax of source code may be more repetitive than the syntax of natural language.

Second, to explain another bit of terminology briefly: by corpus, we mean a body of
text assembled with a specific experimental goal in mind, such as: a collection of tweets, a
collection of Java source code, a collection of EU parliamentary speeches, or a very broad
collection of different kinds of text (e.g., the Brown Corpus).

2.1 Syntactic Explanations

2.1.1 Open And Closed Vocabulary Words

As languages evolve, vocabularies expand; with time, certain word categories expand more
rapidly than others. We can call categories of words where new words are easily and fre-
quently added open category (e.g., nouns, verbs, adjectives). As the corpus grows, we can
expect to see more and more open category words. Closed category vocabulary, however, is
limited; no matter how big the corpus, the set of distinct words in these categories is fixed
and limited2. In English, closed category words include conjunctions, articles, and pronouns.
This categorization of English vocabulary is well-established (Bradley, 1978), and we adapt
this analogously for source code.

In code, reserved words, like for, if, or public form a closed set of language-specific
keywords which help organize syntax. The arithmetic and logical operators (which combine
elements in code like conjunctions in English) also constitute closed vocabulary. Code also
has punctuation, like “;” which demarcates sequences of expressions, statements, etc. These

2 While this category is very rarely updated, there could be unusual and significant changes in the language
– for instance a new preposition or conjunction in English.

https://github.com/caseycas/CodeNLPReplication

Studying the Difference Between Natural and Programming Language Corpora 5

categories are slightly different from those studied by Petersen et al (2012) who consider
a kernel or core vocabulary, and an unlimited vocabulary to which new words were added.
Our definitions are tied to syntax rather than semantics, hingeing on the type of word (e.g.
noun vs conjunction or identifier vs reserved word) rather than how core the meaning of the
word is to the expressibility of the language. Closed vocabulary words are necessarily part
of the kernel lexicon they describe, but open category words will appear in both the kernel
and unlimited vocabulary. For example, the commonly used iterator i would be in the ker-
nel vocabulary in most programming languages, but other identifiers like registeredStudent
could fall under Petersen’s unlimited lexicon.

Closed vocabulary tokens relate most to syntactic form, whereas open vocabulary to-
kens relate more to semantic content. As long as grammars are stable, a small number of
closed category tokens is sufficient. In contrast, new nouns, verbs, adverbs, and adjectives
in English, or types and identifiers in Java are constantly invented to express new ideas in
new contexts. Thus, one can expect that the corpus that only contains these words, (viz., the
open-category corpus) would be more reflective of content, and less of the actual syntax.
Thus analyzing the open-category corpus (for code and English) would allow us to judge
the repetitiveness that arises more from content-related choices made by the authors, rather
than merely from syntax per se. Removal of closed category words, to focus on content
rather than form, recapitulates the removal of stop words (frequently occurring words that
are considered of no or low value to a particular task) in natural language processing. Thus,
our first experiment addresses the question:

RQ1. How much does removing closed category words affect the difference in repetitiveness
and predictability between Java and English?

2.2 Ambiguity in Language

Programming language grammars are intentionally unambiguous, whereas natural languages
are rife with grammatical ambiguity. Compilers must be able to easily parse source code;
syntactic ambiguity in code also impedes reading & debugging. For example, in the C lan-
guage, there are constructs that produce undefined behavior (See Hathhorn et al. (Hathhorn
et al, 2015)). Different compilers might adopt different semantics, thus vitiating portability.

Various theories for explaining the greater ambiguity in natural language have been
proposed. One camp, led by Chomsky, asserts that ambiguity in language arises from NL
being adapted not for purely communicative purposes, but for cognitive efficiency (Chomsky
et al, 2002).

Others have argued that ambiguity is desirable for communication. Zipf (Zipf, 1949)
argued that ambiguity arises from a trade off between speakers and listeners: ambiguity re-
duces speaker effort. In the extreme case if one word expressed all possible meanings then
ease of speaking would be minimized; however, listeners would prefer less ambiguity. If
humans are able to disambiguate what they hear or read more easily, then some ambiguity
could naturally arise. Others argue ambiguity could arise from memory limitations or appli-
cations in inter-dialect communication (Wasow et al, 2005). A variant of Zipf’s argument is
presented by Piantadosi et al. (Piantadosi et al, 2012): since ambiguity is often resolvable
from context, efficient language systems will allow ambiguity in some cases. They empiri-
cally demonstrated that words which are more frequent and shorter in length, tend to possess
more meanings than infrequent and longer words.

6 Casey Casalnuovo et al.

Ambiguity is widely prevalent in natural language, both in word meaning and in sen-
tence structure. Words like “take” are polysemic, with many meanings. Syntactic structure
(even without polysemic words) can lead to ambiguity. One popular example of ambiguous
sentence structure is that of prepositional attachment. Consider the sentence:

They saw the building with a telescope.

There are two meanings, depending on where the phrase with a telescope attaches: did they
see using the telescope, or is the telescope mounted on the building? Both meanings are
valid, where one or the other may be preferred based on the context.

Such ambiguous sentences can be resolved using a constituency parse tree or CPT –
representing natural language in a way similar to how an AST represents source code. A
CPT is built from nested units, building up to a root node that represents the whole sentence
(typically represented with S or ROOT). The terminal nodes are the words of the original
sentence, and the non-terminals include parts of speech (nouns/verbs) and phrase labels
(noun phrases, verb phrases, prepositional phrases, etc). While there is no definitive set of
non-terminals used of labeling English sentences, some sets are very commonly used, such
as the one designed for the Penn Treebank (Marcus et al, 1993).

S

VP

NP

PP

NP

NN

telescope

DT

a

IN

with

NP

NN

building

DT

the

VBD

saw

NP

PRP

they

S

VP

PP

NP

NN

telescope

DT

a

IN

with

VP

NP

NN

building

DT

the

VBD

saw

NP

PRP

they

Fig. 2 Two parse trees for the sentence They saw the building with a telescope. The tree on the left corre-
sponds to the the reading that the telescope is part of the building; on the right, to the reading that the viewing
was done with a telescope

A CPT fully resolves syntactic ambiguities: e.g., consider Fig. 2, which shows the two
possible CPTs for our example sentence. While the raw text is ambiguous, each of the CPTs
fully resolve and clarify the different possible meanings; only one meaning is possible for a
given CPT. In source code, however, the syntactic structure is unambiguous, given the raw
tokens.

Source code syntax is represented using a similar hierarchical construction: the abstract
syntax tree or AST. However, ASTs differ from CPTs in that they exclude some tokens of the
original text, that are inferable from context. Both trees unambiguously represent structure
in natural language and source code. In section 3.4, we will discuss how we modified these
slightly to further improve their comparability.

Using such trees, we can revisit the question of whether the greater repetitiveness and
predictability of source code arises merely from simpler, unambiguous syntactic structure.

Studying the Difference Between Natural and Programming Language Corpora 7

Once converted to a tree based form, code and NL are on equal footing, with all ambigu-
ity vanquished; the syntactic structure is fully articulated. On this equal footing, then, is
code still more repetitive and predictable than English? This leads us to our next research
question:

RQ2. When parse trees are explicitly included for English and Java, to what degree are the
differences in predictability accounted for?

2.3 Explanations From Contingent Factors

After accounting for the inherent explanations for the greater repetitiveness of code, like
syntax and vocabulary, we consider contingent explanations, that is, whether code is more
repetitive because human choose to communicate in code differently.

We theorize that humans communicate differently when the effort of communication,
and/or the cost of mis-communication is high. We clarify these factors with a few exam-
ples. In some settings, the effort required to communicate is higher than others. Settings
requiring specialized language e.g., intricate and technical language, like legal arguments
or mathematical proofs, or unfamiliar settings e.g., speaking in a foreign language—require
greater human effort. In such settings, we might expect people to have lower flexibility, and
thus show less variation in how they choose to communicate. Likewise in some settings, the
cost of mis-communication is very high, e.g., in legal documents, or instruction manuals. In
such settings, we might expect that humans just to be very clear, would resort to very com-
mon, well-understood constructions, to have greater confidence that the language would be
familiar and unambiguous to most readers.

These ideas are consistent with psycholinguistic findings that higher entropy in natural
language incurs greater cognitive load in human language processing (Levy, 2008; Dem-
berg and Keller, 2008), and that the use of less surprising or more predictable word choice
reduces processing effort (Frank, 2013). Since systematic repetition is associated with lower
entropy, it is plausible that repetitiveness is employed as a strategy to manage cognitive load
in situations where the level of effort required for effective communication is high. Addi-
tionally, existing research suggests that developers process software using the same brain
machinery used for natural language, but do so with less fluency. Prior work does suggest
(Siegmund et al, 2014) that some of the parts of the brain used in natural language compre-
hension are shared when understanding source code.

However, despite the overlap in brain regions used, eye-tracking studies have shown
that the way in which humans read source code and natural language differ in interesting
ways (Busjahn et al, 2015; Jbara and Feitelson, 2017). Natural language tends to be read
in a linear fashion. For English, normal reading order would be largely left-to-right, top-to-
bottom. While source code is typically read left-to-right at the statement level, it involves a
greater degree of non-linear reading behavior overall. People’s eyes jump around the code
while reading, following function invocations to their definitions, checking on variable dec-
larations, and assignments, following control-flow paths etc. Busjahn et al. (Busjahn et al,
2015) found this behavior in both novices and experts. Although there is no experimental
evidence3 to directly support the claim that code (as a communication medium) is more
difficult for humans than natural language, available evidence and intuition suggests, at the
very least, that code is a type of medium that presents special challenges for humans.

3 Indeed, it is not clear how to even design such an experiment.

8 Casey Casalnuovo et al.

Though establishing differences in difficulty between natural language and code is chal-
lenging, some research in the areas of programming language design and CS education has
touched on the difficulty between programming languages for novices. Programming lan-
guages such as Quorum (Stefik and Ladner, 2017) have leveraged research on what parts of
syntax programming language learners struggle with (Stefik and Siebert, 2013). Languages
such as Ruby, Python, and Quorum were found to be more intuitive than Java or Perl, which
did not better than a language with random keywords, and that static typing was a hurdle
for new programmers to learn. Likewise, alternative schemes such as block-based language
were found to be advantageous in teaching programming language constructs, if not at over-
all program comprehension (Weintrop and Wilensky, 2015). However, these studies focus
on learning difficulty, rather than an inherent difficulty of communication in natural and
programming languages by humans with fluency in these languages.

Finally, Code is actually also inherently a machine, with a highly-specific, and care-
fully designed function, that must be maintained; the consequences of mis-communication
concerning code is very high. If a maintainer misunderstands the intent of the original devel-
oper, and makes inappropriate changes, the results could well be catastrophic. Practical code
typically stays in use for a good long while, and is maintained by large teams; so developers
have a strong incentive to ensure that their code is readily understood by the maintainers.

We hypothesize that these factors cause humans to write code with a very high level of
repetitiveness. This hypothesis concerns the motivations of programmers, and is difficult to
test directly. We therefore seek corpus-based evidence in different kinds of natural language.
Specifically, we would like to examine corpora that are more difficult for their writers to
produce and readers to understand than general natural language. Alternatively, we also
would like corpora where, like code, the cost of miscommunication is higher. Would such
corpora evidence a more repetitive style? To this end, we consider a few specialized types
of English corpora: 1) corpora produced by non-fluent language learners, presumably with
a great deal of effort and 2) corpora written in a technical style or imperative style, with the
intent that readers need to understand the content precisely, without confusion.

2.3.1 Native vs Language Learners

Attaining fluency in a second language is difficult. If humans manage greater language diffi-
culty by deploying more repetitive and templated phrasing, then we might find evidence for
this in English as a Foreign language (EFL) corpora.

Use of templated and repetitive language appears in linguistic research through the con-
cept of formulaic sequences (Schmitt and Carter, 2004). These are word sequences that
appear to be stored and pulled from memory as a complete unit, rather than being con-
structed from the grammar. Such sequences come in many forms, one of the most common
being concept of idioms, but the key point is that they are intended to convey information
in a quick and easy manner (Schmitt and Carter, 2004). This theory is backed by empirical
evidence, as both native and non-native readers have been found to read such phrases faster
than non-formulaic language constructs (Conklin and Schmitt, 2008). Several studies have
found that language learners acquire and use these sequences as a short hand to express
themselves more easily, and thus use them more excessively than native speakers (Schmitt
and Carter, 2004; De Cock, 2000; Paquot and Granger, 2012). We can see such use as an
adaption for novices increased difficulty with the language. If we can statistically capture
the patterns in written corpora of language learners and see similar trends as in source code,
it would be consistent with the hypothesis that source code is more repetitive because it is
more cognitively difficult. Therefore we ask the following questions:

Studying the Difference Between Natural and Programming Language Corpora 9

RQ3. Do english foreign language learners produce writing that resembles code patterns
more closely than general English?

2.3.2 Technical and Imperative Style

Tied into alternative cognitive explanations for the observed differences between program-
ming and natural languages is the question of style. Source code is a technical production;
if writing in a technical style is more difficult, we would expect other technical corpora to
be more repetitive and predictable.

While differences between general and technical language use have long been a focus
of linguists (Gotti, 2011), the attempts to categorize the differences between the two (Gotti,
2011) run into somewhat contradictory forces. Gotti cites Hoffman who gives 11 properties
desirable in technical language, including unambiguousness, objectivity, brevity, simplic-
ity, consistency, density of information, etc. The desire for a lack of ambiguity contradicts
with the desire for a concise and informative text, as the meaning is also intended to be
clear (Hoffmann, 1984; Gotti, 2011). Moreover, technical language is also heavily decided
by the intended audience, ranging a spectrum from communication to laypeople (either for
educational or general public dissemination) to communication between experts, which of-
ten includes highly unambiguous mathematical formulations (Gotti, 2011). Expert to expert
communication is characterized by usage of unexplained terminology, or jargon, which can
be efficient (Varantola, 1986; Gotti, 2011). Moreover, technical language is marked by com-
pound noun phrases, which may be easier for language models to detect. Salager et al. found
that compared to the 0.87% rate of compounds in general English, technical language had
them appear at a rate of 15.37% (Salager, 1983). Once learned, these instances jargon and
compound phrases may act to reduce cognitive load for experts who recognize them, allow-
ing for easier reference of complex ideas.

Additionally, longer sentences are associated with technical language, especially legal
language, with increased length sometimes suggested as arising from a need for greater
precision (Gotti, 2011). However, this claim of precision in legal language is disputed, as
Danet points out that for being supposedly precise, laws often require extensive interpre-
tation (Danet, 1980). Though there is evidence of political gamesmanship making the lan-
guage overly verbose and complex, legal language and technical language in general are still
driven in part by the need for precision and reduced ambiguity. Such language can be seen
as more difficult or labored than general language, and we would expect it to feature more
code-like properties.

Finally, if we consider language transactions as an optimization of cognitive effort be-
tween speaker and listener (Zipf, 1949; Piantadosi et al, 2012), then it is useful to consider
how the type of language will shift the balance in one direction or the other. In fact, psy-
cholinguistic research suggests that a reader’s or listener’s cognitive load increases when
faced with certain types of ambiguity and increased entropy in language (Hale, 2003). In
language where there is a high cost when the listener misinterprets the speaker, then these
theories would predict the language would become less ambiguous, which would be re-
flected in language models. In code, there is a very high cost of misinterpretation, and thus
the grammar does not typically permit ambiguity (barring undefined behavior in languages
like C). Thus, in theory, contexts in natural language with a high cost will also more closely
resemble code. Technical language is one such area where clear communication is impor-
tant, but imperative language is another. When humans write instructions or give commands,
if the reader or listener misinterprets the commands, there is presumably a higher cost than

10 Casey Casalnuovo et al.

in the case of merely descriptive language. Therefore, we would also expect such corpora to
exhibit more code-like behavior.

RQ4. Do technical and imperative language, seemingly more difficult and with higher cost
of misinterpretation than general and domain specific language, exhibit more code-like
properties?

2.4 Measuring Repetition in Language

When studying repetition and comparing between our programming and natural languages
we apply two general techniques - language modeling and Zipf frequency plots. This section
provides some background on these methods. Specific details on how we extend and apply
these method in our experiments can be found in sections 3.2 and 3.5.

2.4.1 Statistical Language Models and Entropy

A Statistical Language Model assigns a probability to utterances in a language. These mod-
els are estimated on a representative training corpus, and typically work by by estimating
the probabilities of a token in a given context. Let us define an utterance as a sequence of
tokens S = t1, t2, ..., tn. For each token ti in the sequence, we have a corresponding context
C(ti). The exact definition of the context will depend on what language model is being used.
In ngram models, the context is defined as the preceding n tokens; in neural models such
as an forward LSTM, all previous tokens are available as potential context4. Then, we can
define the probability of the sequence relative a language model LM as:

P(S;LM) =
n

∏
i=1

P(ti|C(ti);LM) (1)

Eq. 1 defines the probability of the sequence as the product of the probabilities of each token
in the sequence, given the context of the token and the language model. Typically, instead
of using the raw probabilities, Eq. 1 is represented in the form of entropy. Formally, the
average entropy per token in S, H̄ is defined as:

H̄(S;LM) =− 1
‖S‖
∗

n

∑
i=1

log(P(ti|C(ti);LM)) (2)

Originally proposed by Shannon (Shannon, 1948), who later used it to predict the next
letter in a sequence of English (Shannon, 1951), entropy models the amount of information
conveyed by a message. That is, if the message where to be translated to binary, what is the
fewest number of bits required to encode it in the language model? The fewer the bits are
needed encode the message, the less information (and thus more repetitive/predictable) the
message. In the context of language models, entropy indicates how unexpected a token is,
and acts as measure of how successful the language model is in capturing the underlying
relevant features that characterize the grammar, vocabulary usage, and ideas of the text.

Different types of models capture different kinds of repetitiveness, so considering the
entropy of a text under multiple language models gives greater insight into the features of a

4 Bidirectional LSTMs can make use of context both before and after a token.

Studying the Difference Between Natural and Programming Language Corpora 11

text. We thus explore predictability and repetition using basic ngram models, ngram cache
models that focus on capturing local repetition, and LSTM models capable of capturing long
term dependencies in the text.

N-gram models are the simplest: here, the context C(ti) is equivalent to the past n tokens
in the sequence. For example, the probability of a sentence in a trigram model would be:

P(S) =
n

∏
i=3

P(ti|ti−2, ti−1) (3)

Note that we can pad the start of a sequence with buffer tokens in order to produce a prob-
ability value for the initial tokens. Thus, in the above example t3 would be the actual first
token in the sequence.

Ngram models capture the global repetitiveness of a corpus, but source code has addi-
tional local repetitiveness. These local patterns are modeled in a local cache, and this type
of model as an ngram cache model. Tu et al. originally observed this effect in Java code
(Tu et al, 2014), and Hellendoorn et al. have recently extended the idea of a cache to have
multiple layers of nesting (Hellendoorn and Devanbu, 2017). It is notable the ngram cache
models do not show improvement over ngram models in English. Formally, Eq. 4 shows the
basic cache model as described by Tu et al.

P(ti|h,cache) = λ ∗Pngram(ti|h)+(1−λ)∗Pcache(ti|h)
0 <= λ <= 1

(4)

The cache model interpolates between two ngram models Pngram and Pcache. The first is
the regular ngram model as described in 3. The second ngram model is built using counts
built from the local cache. Details on this model and how λ is selected can be found in
Zhaopeng et al (Tu et al, 2014).

Finally, we also use Long Short Term Memory Network, or LSTM (Hochreiter and
Schmidhuber, 1997). Unlike traditional feedforward models, these recursive neural net-
works (RNNs) allow models to leverage variable-length contexts (Mikolov et al, 2010).
LSTMs are RNNs, with the ability to choose to remember some of the prior elements of the
sequence5. This “selective memory” allows LSTMs to learn longer contexts than the fixed
ngram models.

LSTMs and RNNs have been applied to both natural (Mikolov et al, 2010; Sundermeyer
et al, 2012) and programming languages (White et al, 2015; Khanh Dam et al, 2016). We
include LSTMs to compare and contrast their ability to learn natural and programming lan-
guages, but also to leverage their greater context when modeling our linearized parse trees.
Much larger ngram models are needed to capture the text of these trees, but the selective
learning of the LSTM is greater able to capture the repetition in them. We provide more
details on these in sections 3.4 and 3.5.

2.4.2 Zipfian Distributions in Natural Language and Code

Zipf famously observed that the distribution of the vocabulary of natural language is made up
of a few highly frequent words with a long tail of very rare words (Zipf, 1949). The original

5 A good explanation of the details of LSTM cell structure can be found at: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

12 Casey Casalnuovo et al.

formula indicates a power-law relationship between the rank of a word and its frequency.
By rank, we mean that the most frequent word receives rank 1 (or 0), then the next most
frequent gets rank 2, and so on. Then, the frequencies of this words following roughly this
formula:

f ≈ C
rα

(5)

Here, f represents the frequency of the word, C is a constant, r is the word rank, and α

is the power used to fit the line (originally observed as being close to 1) to the data. This law
was improved slightly to better fit very frequent and very rare words by Mandelbrot soon
after (Mandelbrot, 1953). He proposed an additional constant b, which was better able to
account for high frequency words in natural language texts:

f ≈ C
(r+b)α

(6)

However, the power law only approximates the frequency patterns of language uni-
grams. More precise models of word frequency include a bipartite function known as the
Double Pareto; this plot of the distribution has an observable bend in log-log plots of natu-
ral language data (Ferrer i Cancho and Solé, 2001; Gerlach and Altmann, 2013; Piantadosi,
2014; Mitzenmacher, 2004), between two slopes. The first slope is associated with the most
frequent words, called a kernel lexicon, and a second rate of decrease among the less com-
mon words, belonging to an unlimited lexicon. When new vocabulary is added to a natural
language, they are added to the unlimited lexicon at a decreasing rate over time (Petersen
et al, 2012). By accounting for these two vocabularies in modeling, very accurate simula-
tions of natural language vocabulary frequency and growth can be captured (Gerlach and
Altmann, 2013). Notably, the decreasing need for additional words observed in natural lan-
guage (Petersen et al, 2012), is not true in source code, as developers make up new identifiers
for new files, which is why cache models are so much more effective in code (Hindle et al,
2012; Tu et al, 2014). Finally, while these two lexicons are similar to the notion of open and
closed vocabularies, they are slightly different. The kernel lexicon consists of the closed cat-
egory words that build the structure of the language, as well as very frequent open category
words. The rest of the open category words fall into the unlimited lexicon.

Power laws and other related distributions (exponential, lognormal, etc) have been ex-
amined in regards to many source code features of interest: class methods and fields, depen-
dency and function call graphs, etc (Louridas et al, 2008; Concas et al, 2007; Baxter et al,
2006). Of closest interest to our work are two papers (Zhang, 2008; Pierret and Poshyvanyk,
2009) source code lexical tokens against Zipf law’s in the same manner as natural language.
Both find that source code unigrams do largely follow Zipfian patterns, both in Java (Zhang,
2008) and in several additional languages (Pierret and Poshyvanyk, 2009). Zhang explores
dividing Java tokens into five categories and remarks on the similarity of java keywords to
the natural language concept of stop words. However, neither paper explores the the Zipf
curves of programming languages directly with natural language for comparison purposes.
We will use Zipf curves in addition to language models so that some language features can
be confirmed in a environment agnostic to the choices of a particular language model.

Studying the Difference Between Natural and Programming Language Corpora 13

Table 1 Summary of the size and vocabulary of the programming language corpora

Language # of Tokens # of Unique Tokens Projects
Java 16797357 283255 12

Haskell 19113708 473065 100
Ruby 17187917 862575 15

Clojure 12553943 563610 561
C 14172588 306901 10

3 Materials and methods

3.1 Data

We collected many different kinds of natural and programming language corpora. Below,
we shall describe how each were collected, along with any modifications made to them for
our experiments.

3.1.1 Programming Language Corpora

We focus most on Java and English; however, we empirically confirm that the Java/English
difference also applies to several programming languages, including some functional lan-
guages. We gather source from OSS projects written in Java, Haskell, Ruby, Clojure, and
C. We chose Java and Ruby due to their popularity on GitHub and Java in particular due
to its past use as a research subject for ngram models (Hindle et al, 2012; Allamanis and
Sutton, 2013). We also add C as well due to its historical significance as a procedural lan-
guage. Haskell and Clojure are among the most popular functional languages on Github.
Two requirements were used when selecting projects for our corpora: (1) the combined size
of the projects chosen for each language were roughly equivalent and (2) the projects did
not overlap too much in shared domain or source code.

Due to differences between the more and less popular languages, we cannot adopt ex-
actly the same selection criteria for each language. On Github, developers mark projects
they want to follow with stars.6 These stars are a proxy for popularity (Tsay et al, 2014),
which we use to choose projects in very popular languages like Java, Ruby, and C. For these
languages, we manually selected the projects by examining the list of most starred projects
and carefully reading the project descriptions. We chose projects such that they were both
popular, and that their descriptions indicated that the project purpose did not overlap in
domain.7

The functional languages, Haskell and Clojure, are not as popular. After the few most
popular projects, the code size of each new project drops drastically. As having signifi-
cantly smaller training data can negatively affect model performance, we decided that hav-
ing corpora be roughly equivalent in size was more important than domain diversity. Many
more projects are needed to provided sufficient data. This makes manually selecting diverse
projects unfeasible, especially as the smaller projects often lack meaningful descriptions.

We thus use an automated process that focuses first on collecting a sufficient amount of
data, but still apply some constraints to filter out less meaningful projects and avoid projects
that share code. First, we use GHTorrent (Gousios and Spinellis, 2012) to obtain a list of all

6 https://help.github.com/articles/about-stars/
7 One exception for Java is the Eclipse project, which was not hosted on GitHub, but is selected for

significance within the Java community

https://help.github.com/articles/about-stars/

14 Casey Casalnuovo et al.

Table 2 Summary of the size and vocabulary of the English and other natural language corpora

Category Corpus # of Tokens # Unique Tokens

General English Brown 1209052 48675
1-Billion Sample 16444921 186864

Specialized English Texts

NASA 302582 10965
US Code 2800633 29752

Commit Messages 1933678 74280
Scifi 1541467 40700

Shakespeare 1027515 27218
Recipes 1388875 14328

English as a Foreign Language Gachon 3063661 40116
Teccl 2108397 35806

Other Natural Languages German 17007990 710301
Spanish 16955041 453133

non forked projects in the language on Github, and select those with over 100 commits. Any
project whose name directly contains the name of another project on the list is removed. We
then parsed the git logs to verify the GHTorrent results and remove any projects under the
commit threshold or with only 1 contributor.

Finally, as we wish to avoid projects including that share significant amounts of exactly
copied code, we remove projects that share overly similar directory structures. For each
project, we build a set of names, where the each name is a source code file and the directory
immediately above it. Then, we use the Jaccard index to compare these sets of names. This
index takes the intersection of the two sets and divides it by their union. Any pair of projects
that share more than 10% of the their names are thus excluded. In deciding which of the two
projects to keep, we remove one if it is an obvious fork of the the other, or if it conflicts with
several projects. Otherwise we pick whichever project is larger in bytes, or if they are the
same, delete one arbitrarily.

Then, for the projects selected for each programming language, we selected all files
associated with the primary file type for that language. We took .java, .clj, .hs, .rb, and
.c/.h files for Java, Clojure, Haskell, Ruby, and C respectively. We use the Pygments syn-
tax highlighting library8 in python to divide the code in tokens, and separate them with
spaces, ignoring comments and removing indentation and other whitespace. Additionally,
we treat the content of strings as three units, giving a token to the opening and closing
quotes, but removing all spacing within the string and count it as one individual token.
For example of what one tokenized line looks like, the line return EpollSocketTestPermuta-
tion.INSTANCE.socket(); is represented as return EpollSocketTestPermutation . INSTANCE
. socket () ;.

Table 1 shows the size in tokens and projects of the resulting corpora. We see that all the
language sizes fall in roughly the same order of magnitude, though the number of projects
needed to achieve the size varies.

3.1.2 English Corpora

We drew on a variety of natural language corpora to capture general characteristics of writ-
ing, those specific to writing produced by English language learners, and the differences in
English technical and non-technical language. We will describe each corpus in turn below;
summaries of all English (and other natural language) corpora are located in Table 2.

8 http://pygments.org/

http://pygments.org/

Studying the Difference Between Natural and Programming Language Corpora 15

First, for general purpose English, we began with the topically balanced Brown Corpus
(Kučera and Francis, 1967), provided by the NLTK project (Bird, 2006). While well bal-
anced, this corpus is small for modern statistical language modeling, so we also used as a
general English corpus a 1 billion token benchmark corpus (Chelba et al, 2013). As noted
previously, it is important that the language models are explored to roughly equivalent sized
training sets, and 1 billion tokens is orders of magnitude larger than our code corpora. Thus,
we select a random sample of this corpus, ending up with approximately 17 million tokens
– about the same size as the programming language corpora.

Although English is our primary example of natural language, we also consider two
other natural language corpora, German and Spanish, to verify that our results are not spe-
cific to English and rather apply to other natural languages. These are only used to in the ini-
tial experiment, aimed at seeing how well the comparison of the differences in repetitiveness
of Java and English holds across various programming and natural languages. The German
and Spanish corpora were selected from a sample of files from the unlabeled datasets from
the ConLL 2017 Shared Task (Ginter et al, 2017), which consist of web text obtained from
CommonCrawl.9 Like the 1 billion token English corpus, we selected a random subsample
to make these corpora size comparable with our other corpora. In this sample, we excluded
files from the Wikipedia translations, as we observed Wikipedia formatting mixed in with
some of the files. Summaries of the vocabulary token counts of these corpora are also in
Table 2.

To test hypotheses about language difficulty and repetition, we used two english lan-
guage learner corpora. The Gachon (Carlstrom and Price, 2013) corpus is a collection of
primarily Korean, but also some Chinese and Japanese English language learners. The Ga-
chon corpus covers a range of just over 25K 100 to 150 words answers to 20 essay questions.
It has meta information including the years a student has studied the language, the their na-
tive language, and their TOEIC language proficiency score10. While this corpus contains
explicit information about the writer’s language proficiency, it does suffer from a confound-
ing effect of being limited in domain to merely 20 topics. Domain specificity is known to
make corpora more predictable and repetitive (Hindle et al, 2012). Therefore, we include the
Teccl Corpus (Ten-thousand English Compositions of Chinese Learners) (Xue, 2015) as an-
other example of EFL for robustness. Unlike the Gachon corpus, Teccl covers a much wider
range of topics (the authors estimate around 1000). It consists of a wide range of writers in
both geographically and in current education level.

The question of technical and imperative language is also confounded with the possi-
bility of restricted domain. Therefore we selected six corpora, three technical corpora, two
non-technical corpora with potentially restricted domain, and a corpus of instructions in the
form of cooking recipes. The two non-technical corpora came from literature: a corpus of
Shakespeare’s works (Norvig, 2009), restricted in domain by having the same author, and a
corpus complied of 20 classic science fiction novels from the Gutenberg corpus11, which all
fall under the same literary genre.

For the technical and imperative language corpora, we selected a corpus of NASA di-
rectives, a corpus of legal language, a corpus of commit messages, and a corpus of cooking
recipes. The NASA directives were scraped from the NASA website. Directives share sim-
ilarities with source code requirement documents, a written English equivalent to source
code. Source code requirements explain in detail what is expected from a software applica-

9 http://commoncrawl.org
10 https://www.ets.org/toeic
11 https://www.gutenberg.org/

http://commoncrawl.org
https://www.ets.org/toeic
https://www.gutenberg.org/

16 Casey Casalnuovo et al.

tion, and the requirements documents of the NASA CM1 and Modis projects have been used
in many requirements studies (Hayes et al, 2005; Sundaram et al, 2005). However, the re-
quirements documents for the two NASA projects often used in these studies are only about
1.2K words for Modis, and 22K words for CM1. Language models typically require far
more words, we mined the more general NASA directives, creating a corpus approximately
245K words long.

Among technical corpora, one type of corpus of special interest are English documents
surrounding the source code process. In addition to their technical and domain limited na-
ture, these documents, like code, are also written by developers. One could argue that pro-
grammers as authors may simply be more likely to use repetitive patterns in all of their
writing, whether text or source code. If such language demonstrates the same repetitiveness
as code, then it would support the idea that the repetition comes from the type of author of
the text. Therefore, we considered several sources of texts likely to be written by those in the
development community, including stack overflow posts, GitHub issues and pull requests,
and commit messages. Ultimately, we selected commit messages as our example as we ob-
served the other corpora more frequently had a dual language problem - they included both
English and source code in the text. As separating the two languages is often non-trivial,
commit messages effectively fulfill the corpus requirements.

For our corpus of commit messages, we began from a sample of 200 of the top 900 most
starred GitHub projects, coming from a dataset mined for a study by Kavaler et al. (Kavaler
et al, 2017). Initial exploration into this corpus lead us to observe the frequent presence
of URLs along with some automatically generated segments. To normalize these commit
messages, we replaced URLs with a special tag, and then removed all lines starting with
”git-svn-id”, as they represented a highly repetitive automated pattern not representative of
real programmer written English. We then took a random sample of these commit messages
to obtain a corpus of roughly equivalent size to all of our other specialized English corpora.

Legal language, like code tends to be prescriptive and precise. Just as code variables and
functions regularly reference other parts of the code, so to do references within legal text.
For this purpose, we downloaded the US Legal Code 12. The US legal code consists of 54
major title sections relating to the general permanent federal law of the United States.

Finally, we use a recipe corpus as a study of relatively precise, purposeful imperative
language usage. This corpus comes from the text found in the million recipe corpus (Sal-
vador et al, 2017). Like source code, recipes are instruction sequences, though the degree
of precision required in the writing is lower. In order to make this corpus comparable to our
technical corpora, we selected a random sample of the recipes with total textual size of about
1 million tokens. The full corpus contains images, ingredients, and instructions associated
with each recipe. For our purposes, we only considered the instructions text for each recipe
as input into our models.

3.1.3 Parse Tree Corpora

For our parse tree comparison experiment, we needed to extract an abstract syntax tree for
a software corpus, and represent it in a similar fashion to natural language constituency
trees (as described below). This experiment was limited to our Java and English data. When
comparing the parse trees, we first selected constituency parse trees for written English from
the Penn Treebank (Marcus et al, 1993), which includes sections from the Brown Corpus and
the Wall Street journal corpora. Then, we used a modified version of the Eclipse Abstract

12 http://uscode.house.gov/download/download.shtml

http://uscode.house.gov/download/download.shtml

Studying the Difference Between Natural and Programming Language Corpora 17

Table 3 Summary of corpora token counts and vocabulary for the modified English and Java parse trees

Java Trees English Trees
All Tokens 11267469 11354764

Terminal Tokens 2191014 1740902
Simplified Non-Terminal Vocabulary Size 81 93

Syntax Tree parser to transform all the files in our Java corpus to English. Since the Java
trees could be automatically created, we randomly sampled from these Java files in order to
make the corpora roughly size equivalent in token count to the Penn Treebank trees. Details
on the modifications made to make the two trees more comparable are described in section
3.4.

Table 3 shows the sizes of the resulting corpora. We see that the trees have roughly the
same number of non-terminal tokens, but that the number of distinct rules is much larger in
English than in Java. Likewise, the Java trees have about half as many terminal tokens.

3.2 Comparing Language Repetition and Predictability

As introduced in section 2.4, we use two general methods for measuring the repetition of
language corpora. The first involves the reporting the entropy per token as described in
section 2.4.1. The details of the modeling and the representation of the results can be found
in section 3.5.

The redundancy of corpora can also be modeled using a variant of the Zipf plot (Zipf,
1949). In a standard Zipf plot, we count all occurrences of a word in a text and assign each
word a rank based on frequency. The x-axis is the rank of the word, and the y-axis is its
frequency. When plotted in log-scale, this relationship appears roughly linear. We modify
this plot in two ways. First, we normalize the frequencies on the y-axis to a percentage to
make different corpora more comparable. Second, we extend the idea of a Zipf plot be-
yond merely individual word frequencies to word sequence frequencies. Counts bigrams,
trigrams, or higher order ngrams, helps make the distribution of phrase usage more appar-
ent. In more repetitive texts the most frequent phrases constitute proportionately more of
the text. On a log-log plot, we can visualize this effect (roughly) as the power law slope of
the data. More repetitive texts begin higher on the y-axis and descend more steeply. Once
normalized, corpora with steeper slopes demonstrate a greater frequency of repetitive phrase
use; those with shallower slopes are show greater innovation.

Using Zipf plots to assess corpus repetition averts some of threats from using language
models. To use an LSTM, the vocabulary size must be limited by removing infrequent
words, which would artificially affect results for these words. There is no such limitation
in the Zipf plots, which increases the robustness of the overall observations.

3.3 Measuring Open Category Words

To test the hypothesis that differences in closed category words account for most differences
between source code and English, we remove the closed vocabulary words from a corpus,
and leave behind just sequences of open vocabulary words. Removed are elements most
closely tied to the language syntax; arguably, what remains are content words. These most
closely model the sequence of ideas expressed by the text.

18 Casey Casalnuovo et al.

How do we determine what tokens qualify? For English, we use a list of 196 words and
contractions, along with a list of 30 punctuation markers, derived from a published NLTK
stop word list (Bird, 2006). For our programming languages, we use the Pygments type cat-
egorization (implemented with regular expressions) to remove non-identifier words, keep-
ing references to types, classes (when applicable), variables, and function names. Specifi-
cally, we labelled as open category tokens that Pygments had marked as Token.Name (but
not the subtype Token.Name.Builtin), Token.Keyword.Type, Token.Literal.String, or To-
ken.Number with a few modifications. These modifications involved some small changes
to keyword lists and are intended to make the closed category words more consistent across
the different programming languages. For example, we classified the boolean (true/false and
null literal values as closed category. We also extended the list of what Pygments consid-
ered keywords in Haskell13, Ruby14, and Clojure15. These labels only approximate the open
category words, but they do remove operators, separators, punctuation, and most keywords.
If these sequences of content words are more repetitive in source code than in natural lan-
guage, this would be consistent with the theory that the repetition in code is not wholly due
to syntactic constraints. Below are examples of what part of these filtered sequences would
look like in Java and English respectively:

... InputStream in FileInputStream file ByteArrayOutputStream out ByteArrayOutput-
Stream byte buf byte 8192 ...

... Now 175 staging centers volunteers coordinating get vote efforts said Obama Georgia
spokeswoman Caroline Adelman ...

One consideration for these open category words in code is the question of how to handle
literal values. In the case of strings, an argument could be made that many of them would
qualify as being natural language, leading to a dual language corpus. We compared the code
corpus open category words both with and without the literal values included, but found
little difference in the overall trends from our language models and Zipf models, though the
exact size of the differences changed. Presented in this paper are the results of the corpora
with the literal values included.

A potential threat to this experiment results from the fact that English open and closed
category words are fairly well defined, but far less so for programming languages. Pygments
provides a good approximation (which we try to further improve), there are some corner
cases. Some language elements are very common and difficult to extend without strictly
being on the official list of reserved words, or could be construed as part of a larger category
that is open category, such as primitive types like int in Java can be seen as belonging to
the larger open category of types16. We argue that these edge cases are infrequent enough
and the size of the effects observed in our experiments are large enough that drawing the
boundaries between open and closed differently would only slightly impact our results17.

13 We add \, proc, forall, mdo, family, data, and type.
14 We add ENCODING , END , FILE , and LINE .
15 We add recur, set!, moniter-enter, moniter-exit, throw, try, catch, finally, and /, along with some operators

Pygments had classified as Token.Names
16 In particular, we called these primitives types open category to be consistent with how other program-

ming languages like Haskell treat their types.
17 Additionally, in our experience, tweaking the boundaries of these categories results only in slight changes

in repetition.

Studying the Difference Between Natural and Programming Language Corpora 19

3.4 Creating Equivalent Parse Trees in Java and English

While the syntax of Java and English strings can be unambiguously represented with a
tree data structure, the trees themselves are quite different. First, Java grammar is explicitly
defined, where as English grammar is at best an imprecise model of an evolving reality.
Second Java parse trees are also abstract, and omit some tokens present in the original text:
punctuations (e.g. l"{ }", ";", ".", "+", "-") and some reserved keywords. In contrast,
the constituency parse trees of English are concrete, comprising all tokens in the original
text. Thus, the vocabulary size differences could confound the interpretation of comparisons
of repetition: lower vocabulary, more chance of repetition. Finally, the syntax trees in Java
and English represent different granularities. In Java a complete AST describes an entire file;
in English, the tree describes a sentence. Thus, the code ASTs are both encompass for tokens
and have longer paths from the root to the leaves.

How can we account for some of these differences and create a more fair comparison?
First, we use a highly reliable English constituency parse – that from the Penn Treebank
(Marcus et al, 1993) (PTB). This includes about 200 files of the 500 file Brown corpus, with
an additional text from the Wall Street Journal. All parses have been manually corrected
by linguists to ensure accuracy; Indeed, PTB is a standard choice for training/evaluating
other automated syntax parsers for English (De Marneffe et al, 2006; Petrov et al, 2006;
Andor et al, 2016). Automated methods for creating parses of English exist (De Marneffe
and Manning, 2008; Petrov, 2016), but they are not always accurate. To focus on the actual
grammatical structure rather than an approximation, we choose the human annotated parse
trees as our corpus.

Second, we modify both trees to make them more comparable. For Java, we modify the
tree to be concrete instead of abstract. We created a new category, called PUNCTTERMINAL
for all terminal tokens typically missing from an AST, giving a total of 81 non-terminal tags.
These new nodes are inserted into the syntax tree such that during preorder traversal, the
terminals will appear in the same order as in the original text – a feature that is already true
of the constituency parse trees. In the English parse trees, we consider the effect of reducing
the size of set of non-terminal tags to be closer in size to the set of Java nonterminals.
The PTB includes tags with multipart labels indicating both constituent and function (for
example NP-2, PP-TMP, ADVP-TMP-PRD18). We reduce this set by retaining only the
grammatical category label, such as ADVP, of an adverbial phrase, leaving out additional
tags such TMP that reflect grammatical function. After this reduction, we have a total of
93 syntactic categories for English. To verify whether this reduction could unfairly penalize
the language models ability to learn the grammar, we consider results on both the original
unmodified tags and on the simplified tags. In our plots, we will refer to the modified English
trees as simplified. That the English trees capture sentences and the Java trees capture files
remains an intrinsic difference between them and a possible threat, but these changes at least
make the trees contain similar organization and content.

Figures 3 and 4 display examples of what each of these trees look like for English and
Java respectively. Note how the changes to the Java tree ensure that both trees produce the
original text in the same left to right order. The tags used for English are described by the
Penn TreeBank (Marcus et al, 1993), and the tags for the Java AST come from the eclipse
ASTNode class.19

18 (e.g. ADVP-TMP reflects that the adverbial phrase serves a temporal function).
19 https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%

2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTParser.html

https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTParser.html
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTParser.html

20 Casey Casalnuovo et al.

Root

S

.

.

VP

NN

time

NP

PRP$

her

PDT

all

VBD

claimed

NP

NN

work

NN

office

DT

the

ADVP

RB

Soon

Fig. 3 A example CPT from one of the sentences from the Penn Treebank along with the reduced tag sets

...

#EnumDeclaration

#PT

}

#ECD

#SimpleName

QUIET

#PT

,

#ECD

#SimpleName

VERBOSE

#PT

{

#SimpleName

JavaDocOutputLevel

#PT

enum

#Modifier

public

Fig. 4 An example of part of a modified AST capturing a single line of Java. The bolded tags correspond
to nodes added to ensure the tree contains all tokens from the original text (PT = PunctTerminal, ECD =
EnumConstantDeclaration)

To measure the entropy of the terminal tokens, we linearize the tree using preorder
traversal; this presents the non-terminals as context for the terminal symbols and also re-
tains the order of the words originally in the text. Then, we apply our language models
to this linearized parse tree. Prior work indicates that LSTMs can capture the syntax of
the grammar in this form(Vinyals et al, 2015). Importantly, by examining only the entropy
values of the terminal tokens, we account for the differences in the complexity of the gram-
mars20. Given the extra information the grammar provides, we can see how the differences
in terminal entropy between Java and English changes. The more the gap reduces, the more
the differences in the language can be attributed to the grammar instead of some other con-
tingent factor. Finally, while the theoretical grounding for capturing the grammar’s of the
trees has only been found with neural models like our LSTM, we also include results from
the simpler ngram and cache models for completeness.

20 Indeed, when running LSTMs over just the nonterminals, we see that the Java grammar is more pre-
dictable than the English grammar.

Studying the Difference Between Natural and Programming Language Corpora 21

3.5 Modeling Details

Our ngram models were estimated using KenLM (Heafield, 2011) with modified Kneyser-
Ney smoothing (Kneser and Ney, 1995), based off of the code used by Tu et al. (Tu et al,
2014). For the raw texts of all English and programming language corpora, we use a tri-
gram model as the base. When comparing the parse trees, we use instead a 7-gram model
to capture more information about the sparser context. This was determined empirically by
modeling parse trees with ngram models from 2 to 9-grams, and observing no further im-
provement after the 7-gram level. In our cache models, we use a 5000 token window cache
with 10 tokens of context. Our LSTM models are implemented in Tensorflow (Abadi et al,
2016), with a mini-batch size of 20, 1 hidden layer of 300 units, a maximum of 13 training
epochs, no dropout, and a learning rate of 1.0. Additionally, to see the effect of scaling the
LSTM models to a larger one for our parse tree experiment, we also used a model with 2
hidden layers of size 650, a dropout rate of .5, and a maximum of 39 training epochs. We
will prefer to these models as the small and medium sized LSTM models going forward.
These settings are similar to those used by Hellendoorn et al (Hellendoorn and Devanbu,
2017).

Our corpora tend to have large vocabularies, which need to be limited in order for the
LSTM models to complete within a reasonable timeframe. Likewise, new unseen tokens
can always appear in the test set. This is especially true in source code, where new variable
names can be easily created and used in new localized contexts (Tu et al, 2014). Theefore,
ngram language models use smoothing (Chen and Goodman, 1998), which reserves some
probability mass for unseen words. We limit our vocabulary size to the most frequent 75000
distinct tokens, replacing the least frequent words with with a special “unknown” token
(UNK).

For the LSTM models, we split each code corpus at the file level with 70% of files in
the training set, and 15% each in the validation and test sets. We do that same for the natural
language corpora if they come with files; otherwise, we divide them into small chunks which
are combined into training, validation, and test sets with the same splits. The ngram models
do not use a validation set, so we combine the validation and training sets when training
them. While we tried to use consistent training and testing sets across our language mod-
els, we had a few instances where Kenlm crashed during training due to errors estimating
the smoothing discounts. In the open category experiment, we had to select subsets of the
training data for Ruby and Haskell in order for the models to train correctly. We selected
the largest continuous segments of the training data that completed successfully, ending up
with 5.7 million tokens and 8.1 million tokens for Ruby and Haskell respectively. The test
sets for these corpora were unaffected. The other exception was that giving the vocabulary
capped version of the Java parse tree to the KenLM model caused an error. Therefore, the
training and test sets for the LSTM and ngram models for the Java parse tree are not exactly
comparable. As we are primarily concerned with the LSTM results and cross language com-
parison, this is does not have an impact on our results. The English parse tree did not need
to be capped as its vocabulary was below 75000, so these comparisons are unaffected.

When comparing the results of the language models, we report the per-token estimated
entropy values. This forms a distribution of entropy values, which we compare visually with
box plots and quantitatively with two sample statistical tests. The distributions of entropy are
often long tailed, violating the assumptions of the t-test, so we instead us the non-parametric
Mann Whitney U Test (also commonly referred to as a Wilcox test), to compare the distri-
butions. We report the significance of the test, a 99% confidence interval for the true differ-
ence in the median value of the distributions, and a effect size r, which can be interpreted

22 Casey Casalnuovo et al.

similarly to a Cohen’s-d value (Field, 2009). These tests and confidence intervals where im-
plemented in R using the coin(Hothorn et al, 2006) package, and plots were created using
ggplot(Wickham, 2009).

There are several potential threats to the validity to consider in our modeling choices.
While we have used several language models and tried to use random sampling to make
each corpora comparable, we cannot say how the results might change with a much larger
corpus. For some corpora, like general Java or English, one can easily get billion token cor-
pora. But for more specialized corpora or less popular programming languages, the pool of
what is available is much smaller, and limits how much we can use from the larger corpora.
Otherwise, the effects observed in the models could simply result from larger amounts of
training data. We selected training, validation, and test sets randomly, but a different split
could produce different results. A more robust method would be to use 10-fold cross val-
idation, but given the large number of corpora and the training time necessary to train the
LSTM models, this was not feasible.

4 Results

We now present results, structured as follows.

(i) We examine if the Java-English difference is consistent in other programming languages
and natural languages.

(ii) We compare the repetitiveness of open-category words of each programming language
with those in English.

(iii) We explore the syntactic structure of Java and English to see what parts of the structure
of each contributes to differences in repetition.

(iv) Finally, we compare source code with English language learner and technical corpora to
see if the expected characteristics of each make them more code-like.

4.1 Repetition in Natural Languages and Various Programming Languages

Table 4 Summary of non-parametric effect sizes and 99% confidence intervals (in bits) comparing each code
and natural language corpus with English a baseline. Numbers are marked with * if p < .05, ** if p < .01,
*** if p < .001 from a Mann Whitney U test

Language <English Ngram Cache LSTM

German (-0.921, -0.897) (-1.585, -1.56) (-0.182, -0.161)
0.088∗∗∗ 0.145∗∗∗ 0.02∗∗∗

Spanish (-0.662, -0.639) (-1.38, -1.355) (-0.055, -0.035)
0.064∗∗∗ 0.127∗∗∗ 0.005∗∗∗

Java (-2.974, -2.951) (-5.422, -5.398) (-4.292, -4.272)
0.285∗∗∗ 0.562∗∗∗ 0.564∗∗∗

C (-2.586, -2.559) (-4.93, -4.901) (-3.581, -3.557)
0.242∗∗∗ 0.488∗∗∗ 0.44∗∗∗

Clojure (-2.138, -2.115) (-4.755, -4.728) (-3.075, -3.053)
0.203∗∗∗ 0.479∗∗∗ 0.372∗∗∗

Ruby (-2.338, -2.314) (-5.12, -5.095) (-3.691, -3.671)
0.219∗∗∗ 0.516∗∗∗ 0.469∗∗∗

Haskell (-2.059, -2.036) (-4.148, -4.139) (-3.443, -3.423)
0.191∗∗∗ 0.405∗∗∗ 0.431∗∗∗

Studying the Difference Between Natural and Programming Language Corpora 23

(a) 3 grams (b) 3 grams with cache

(c) LSTM (Small)

Fig. 5 Entropy score distributions for each of our programming and natural language corpora, using ngram,
ngram-cache, and lstm models. Each data point used in the box plot is the entropy score for one of the tokens
in the test set

Fig. 5 shows entropy distributions over all tokens from various language models for
Java, Haskell, Ruby, Clojure, C, English, German, and Spanish. First, we clearly replicate
the prior results comparing Java to English (e.g. (Hindle et al, 2012)), across many program-
ming and natural languages. Regardless of the language model used, all of the programming
languages are more predictable than English and the other natural language corpora. Sec-
ond, Table 4, shows that these differences are significant. Indeed, programming languages
are usually several bits more predictable than English. The other natural languages, German
and Spanish, are somewhat more predictable than English with ngram models, but about
the same with the LSTM model. The non-parametric effect sizes of the differences between
programming languages and English vary from small to medium.

Tab. 5 also shows the improvement when a cache model is used to capture the locality of
the corpus. As expected, the basic trigram models perform the worst on all the code corpora.
The cache improves all of the programming languages, albeit to various degrees. For natural
language, the cache has no effect in English, as previously reported (Tu et al, 2014). How-
ever, in German and Spanish, there is a small cache effect, much smaller than seen in any
programming language. Our small 1-layer LSTM model dominates the basic ngram models
significantly, but their improvement over the cache models are variable. The LSTM is better
for English, but not for German or Spanish, and among the programming languages Ruby
and Clojure see almost no difference. Haskell, gains the most from the longer context of the

24 Casey Casalnuovo et al.

Table 5 Summary of non-parametric effect sizes and 99% confidence intervals of the difference (in bits) of
language. The columns compare how many bits higher the entropy of model on the left is from the one on the
right. Numbers are marked with * if p < .05, ** if p < .01, *** if p < .001 from a Mann Whitney U test

Language Ngram > Cache Cache > LSTM

English (-0.218, -0.193) (1.459, 1.484)
0.020∗∗∗ 0.140∗∗∗

German (0.488, 0.511) (-0.01, 0.003)
0.051∗∗∗ 0.001

Spanish (0.582, 0.604) (-0.049, -0.027)
. 0.060∗∗∗ 0.004∗∗∗

Java (1.240,1.255) (0.148, 0.152)
.275∗∗∗ .178∗∗∗

Haskell (1.484, 1.504) (.265, .272)
.220∗∗∗ .158∗∗∗

Ruby (1.770, 1.795) (0.004, 0.005)
0.327∗∗∗ 0.033∗∗∗

Clojure (2.006, 2.023) (-0.038, -0.032)
.318∗∗∗ .024∗∗∗

C (1.418, 1.442) (0.091, 0.096)
.271∗∗∗ .082∗∗∗

LSTM model, suggesting that its syntax may have less localized repetitiveness compared to
the other languages, which lines with common beliefs about the language’s conciseness. We
note however, that these are smaller LSTM models - larger more expensive models would
likely perform better. However, this is not the focus of our paper, and a detailed look at the
question of deep models versus ngram cache models in Java was performed by Hellendoorn
and Devanbu (Hellendoorn and Devanbu, 2017).

Fig. 6 contains Zipf curves for only Java and English for unigrams, bigrams, and tri-
grams. The increased repetition of source code over English widens the gap between the
slopes as the length of the n-gram increases; longer sequences are repeated even more in
Java than in English. However, the English curve exhibits a noticeable bend that the Java
unigram curve lacks. This behavior agrees with past studies of such curves in English (Fer-
rer i Cancho and Solé, 2001; Gerlach and Altmann, 2013; Piantadosi, 2014; Mitzenmacher,
2004), as is better modeled with a bipartite double pareto curve as previously described in
2.4.2. Theoretically, this bend results from a decreasing need for new vocabulary in English,
whereas in code new identifiers can be created with every file - the basis of the effectiveness
of cache models (Tu et al, 2014). However, this double-pareto behavior is not pertinent to
our main experimental question of comparing repetitiveness, so we do not delve into it here.

We extend the Fig. 6 Zipf plots to cover all our programming and natural languages
in Fig. 7, and a range of behaviors are observed. All of the programming languages have
steeper slopes than the natural language corpora, but not all exhibit the same level of repe-
tition. Of the source code corpora, the Haskell bigrams and trigrams fall midway between
the natural languages and the other source code languages. This aligns with the behavior
we saw in the cache models - suggesting that Haskell’s syntax may have less local repeti-
tion that other programming languages. The other programming languages are more closely
grouped together, with no clear distinction between them. From here on, while comparing
programming vs natural languages, we use English as a proxy for other natural languages.

Studying the Difference Between Natural and Programming Language Corpora 25

(a) Unigrams (b) Bigrams

(c) Trigrams

Fig. 6 Comparison of slopes for Zipf plots of Java and English unigrams, bigrams, and trigrams. The axes
are in log scale. Higher percentages in low ranks indicate a more repetitive corpus, as can be seen by the
diverging slopes between Java and English

4.2 Modeling just the Open Vocabulary Words

Table 6 shows the size of two corpora after tokenization before and after closed category
word removal. Three of the programming language corpora (Haskell, Ruby, and Clojure)
exhibit a similar amount of closed category word usage as English, with C and Java having
about 10-12% less proportionately. Existing work by Allamanis et al. has shown closed
category tokens in code to be much more predictable than identifiers (Allamanis and Sutton,
2013), But since English does not have proportionately more open category words than
code, we cannot attribute the additional ease of predicting programming languages simply
to an increased amount of closed category tokens. However, the difference could still result
if these closed category tokens are far more predictable in code than in English. As we shall
see shortly, this is not the case.

Fig. 8 shows the Zipf slopes of the of the open category-only unigrams, bigrams, and
trigrams. The unigrams in code are roughly equivalent to that of English, except for the
curved nature of the Zipf line. This is again explained by the theory of kernel and unlimited
lexicons discussed in section 2.4.2 - natural language open category words appear in both
the kernel and unlimited lexicon in English but there is a decreasing need for them as the
vocabulary grows. As we move from unigrams to bigrams and then trigrams, we see a similar
separation in the Zipf plots lines as was seen in the full texts. In all programming languages,

26 Casey Casalnuovo et al.

(a) Unigrams (b) Bigrams

(c) Trigrams

Fig. 7 Unigram, bigram, and trigram Zipf Slopes for all 5 of our different programming languages as com-
pared to our 3 natural language corpora. The other programming and natural languages exhibit similar be-
havior to Java and English

Table 6 Summary of the fraction of open category tokens to all tokens in English and programming languages

All Tokens Open Category Tokens
English 16444921 8340320 (50.7%)
Java 16797357 6469474 (38.5%)
Haskell 19113708 10803544 (56.5%)
Ruby 17187917 8992955 (52.3%)
Clojure 12553943 6286549 (50.1%)
C 14172588 5846097 (41.2%)

the open category word-sequences are more repetitive than English, though the amount of
repetition varies.

Fig. 9 confirms this intuition of content word repetition in source code; the open cate-
gory words of English are more predictable than those in programming languages. Table 7
quantifies these differences with Wilcox tests, showing that the difference for all distribu-
tions is significant and varies from a few small to mostly medium effect sizes. Java, Haskell,
and Ruby open category words tend to be more predictable, while C and Clojure names are
more difficult to predict.

When contrasting the median difference in entropy, all of the programming language
open category words are at least 4 bits more predictable than the English ones, and the
difference is often substantially higher. In fact, the median difference between the program-

Studying the Difference Between Natural and Programming Language Corpora 27

(a) Unigrams (b) Bigrams

(c) Trigrams

Fig. 8 Unigram, bigram, and trigram Zipf plots comparing English open category words with programming
language open category words

Table 7 Summary of non-parametric effect sizes and 99% confidence intervals (in bits) comparing the me-
dian of the entropy distribution of open category English words with those of several programming languages.
Numbers are marked with * if p < .05, ** if p < .01, *** if p < .001 from a Mann Whitney U test

Language <English Ngram Cache LSTM

Java (-5.507, -5.462) (-7.377, -7.335) (-6.618, -6.58)
0.403∗∗∗ 0.5∗∗∗ 0.505∗∗∗

C (-4.715, -4.673) (-6.858, -6.811) (-5.826, -5.784)
0.335∗∗∗ 0.446∗∗∗ 0.435∗∗∗

Clojure (-4.112, -4.065) (-6.641, -6.594) (-5.463, -5.42)
0.306∗∗∗ 0.444∗∗∗ 0.397∗∗∗

Ruby (-6.021, -5.98) (-8.543, -8.507) (-7.518, -7.485)
0.437∗∗∗ 0.57∗∗∗ 0.567∗∗∗

Haskell (-6.823, -6.785) (-8.427, -8.392) (-7.555, -7.522)
0.463∗∗∗ 0.552∗∗∗ 0.557∗∗∗

ming languages content words and English context words is larger than when considering
all tokens, though the size of this increase varies. Note that when compared to the distri-
butions of entropy of the full corpora seen in Fig 1, the the open category words are less
predictable, as expected from existing research (Allamanis and Sutton, 2013). Finally, if we
exclude the literal values in the code corpora from open category words, we get similar re-

28 Casey Casalnuovo et al.

(a) 3 grams (b) 3 grams with cache

(c) LSTM (Small)

Fig. 9 Entropy distribution comparisons of English and the programming language open category words
from an ngram, cache, and LSTM model

sults21. Therefore, in answering RQ 1, we see that while content words are in general less
predictable, code content words not only easier to predict than English content words, but
also the difference in predictability is accentuated!

4.3 Parse Tree Results

Fig. 10 shows the entropy comparisons of the terminal token distribution for both Java and
English when parse trees are taken into account. Though we focus primarily on the entropy
distributions of the LSTM models, as they can capture well the linearized tree structure, we
will mention the ngram and cache model results briefly. With the ngram model the differ-
ence between Java and English drops substantially, albeit not completely. In contrast, the
cache model is able to capture proportionally more of the grammar of Java. However, neural
models are better able to learn the grammar, and in both the smaller 1 layer LSTM and in
the larger 2 layer LSTM Java remains more predictable than English.

We confirm the intuition provided in the box plots in the upper part of Table 8. Each
of the differences between the English and Java terminals are significant, and have a small
effect size in the more capable LSTM and cache models. The effect size in the ngram model

21 The size of the entropy difference between English and Code open category words is less, though still
larger than between all tokens

Studying the Difference Between Natural and Programming Language Corpora 29

(a) 7 grams (b) 7 grams with cache

(c) LSTM (Small) (d) LSTM (Medium)

Fig. 10 Entropy comparisons of the terminal tokens in the parse trees using ngram and LSTM models

is very small, but it is questionable how well such a simple model can capture the tree
syntax; the LSTM results are the most reliable. The median difference between Java and
English is roughly 1.5 or 1.6 bits for the cache model, and 0.6 or 0.7 in our LSTM models.
The concerns about the effect of simplifying the types effecting the comparison of grammar
were unfounded. Using Wilcox tests to compare the simplified and the full non-terminal set
revealed no significant difference in the more reliable LSTM models, and a significant but
extremely small effect in the ngram and cache models. Finally, to ensure a fair comparison
between these languages as parse trees and them as raw text, Table 8 has a column Original
Text. These are the same set as the terminal tokens in the parse tree22, but with all tree
information removed before language model processing. We see that in the original text,
the effect sizes and confidence intervals are all larger, with almost medium effect sizes and
gaps far greater than 1 bit of difference. Therefore, we can conclude that eliminating the
ambiguity of English grammar explains some, but not all of the difference in repetition of
the language compared to Java.

Additionally, with our medium LSTM 23.4% (small LSTM had 9.9%) of Java terminals
had entropy 0, meaning the choice was completely determined by the grammar. In contrast,
in the medium LSTMs only about 5.1/5.0% (for the simplified and unsimplified tree) of En-
glish terminals had 0 entropy. The small LSTMs had .9%/1.7% tokens that were completely
predictable in the English simplified/unsimplified trees. These tokens primarily consisted of

22 In the simplified parse tree in the case of English.

30 Casey Casalnuovo et al.

Table 8 Summary of non-parametric effect sizes and 99% confidence intervals (in bits) comparing the dif-
ference in the median of the entropy distributions of the terminal tokens in parse trees from Java and the Penn
Treebank. The differences indicate how much smaller the Java distributions are compared to English. Rows
labelled with simplified are comparing English trees with simplified non-terminals to the Java trees, and rows
without it use the original Treebank tags. Numbers are marked with * if p< .05, ** if p< .01, *** if p< .001
from a Mann Whitney U test

Model Terminal Tokens in Tree Original Text

Ngram Simplified (-0.351, -0.293) (-3.411, -3.336)
0.078∗∗∗ 0.316∗∗∗

Ngram (-0.440, -0.400)
0.088∗∗∗

Cache Simplified (-1.557, -1.499) (-5.200, -5.116)
0.264∗∗∗ 0.479∗∗∗

Cache (-1.654, -1.586)
0.277∗∗∗

LSTM Simplified (Small) (-0.621, -0.574) (-4.0680, -3.985)
0.248∗∗∗ 0.413∗∗∗

LSTM (Small) (-0.616, -0.581)
0.257∗∗∗

LSTM Simplified (Medium) (-0.746, -0.695) (-3.441, -3.375)
0.320∗∗∗ 0.414∗∗∗

LSTM (Medium) (-0.706, -0.661)
0.328∗∗∗

the punctuation of each language, with occasionally stop words or reserved words in Java. In
English, the largest contributor to low-entropy tokens were commas, and in Java it was open
parentheses, the dot operator, open brackets, and closing parentheses in decreasing order.
The other tokens only made much smaller portions of the 0 entropy tokens.

Thus, we answer RQ 2 somewhat positively - the ambiguity accounted for in the gram-
mar by parse trees does explain some but not all of the difference between natural language
and source code. Both this experiment and the previous one suggest that the differences
seen between source code and English consist of more than simply syntactic differences.
This leaves the possibility that at least some of the difference comes from human choices
independent from the grammar.

4.4 Comparing Code with Effortful English Corpora

While humans may choose to write more repetitively for various reasons, we present find
evidence that greater repetition arises when a) the text more effortful for the writer, or b)
when the cost of miscommunication is higher. For the former we focus on English language
learner texts, and for the latter we use various technical corpora combined with some non-
technical corpora to control for effects of domain specificity. We limit the presentation of our
results from these corpora to Java, but we found similar results were found when comparing
the other programming language corpora as well.

4.4.1 Comparing English Language Learner Corpora to Code

Fig. 11 shows Zipf plots comparing English with our ESL (English as a second language)
corpora and Java. ESL is certainly more repetitive than general purpose English; however,
it is not as repetitive as source code. This behavior is confirmed with the language models

Studying the Difference Between Natural and Programming Language Corpora 31

Table 9 Summary of non-parametric effect sizes and 99% confidence intervals (in bits) of the median en-
tropy comparing the English Language Learner corpora with Java and the balanced English Brown corpus.
Numbers are marked with * if p < .05, ** if p < .01, *** if p < .001 from a Mann Whitney U test

Brown >Language Ngram Cache LSTM

Gachon (-1.729, -1.657) (-1.643, -1.564) (-4.194, -4.106)
0.147∗∗∗ 0.132∗∗∗ 0.309∗∗∗

TECCL (-1.673, -1.595) (-1.558, -1.475) (-3.767, -3.674)
0.152∗∗∗ 0.133∗∗∗ 0.294∗∗∗

Language >Java (Small)

Gachon (-1.501, -1.429) (-4.046, -3.972) (-2.043, -1.988)
0.138∗∗∗ 0.403∗∗∗ 0.296∗∗∗

TECCL (-1.575, -1.501) (-4.079, -4.004) (-2.461, -2.398)
0.153∗∗∗ 0.434∗∗∗ 0.341∗∗∗

displayed in Fig 12. Regardless of where the more basic trigram model or the increasing the
context with the LSTM model, the entropy, like the Zipf slope lines, fall in between source
code and general native language written corpora. Table 9 reports p-values, confidence inter-
vals, and effect sizes and confirms that the english language learner texts fall fairly evenly
between native English and Java. The one exception is the when using the cache model,
where code gains comparatively over both fluent and learner english. Neither exhibits the
locality needed to benefit from this model’s assumptions.

Thus, we can answer RQ 3 positively. The language learner corpora more closely re-
semble the repetition in code than does general English. This is consistent with the the
hypothesis that less fluency and therefore greater difficulty for writers would result in more
repetitive corpora.

4.4.2 Comparing Technical and Non-Technical Corpora to Code

Now, we compare technical and imperative English (such as law, recipes, or high-level re-
quirements) with non-technical English such as novels and plays. We expect our technical
and imperative English to be more code-like due to the greater need for precision, and con-
sequently the potentially higher cost of a miscommunication. Fig. 13 displays the unigram,
bigram, and trigram Zipf curves for all of these corpora, the Brown corpus balanced from
diverse English sources, and our smaller sample of the Java corpus. Interestingly, in the
unigram plots, while Brown exhibits the expected curvature, while the specialized English
corpora do not curve to the same degree. As the ngram length increases the slopes of the
Java corpus, the technical corpora, and the non-technical corpora separate. The science fic-
tion novels and Shakespeare’s plays behave very similarly to the balanced Brown corpus.
The technical corpora fall between these nontechnical English corpora and the Java code
corpus, as expected from our hypothesis.

We note that of the technical corpora, the commit messages written by developers have
some divergent behavior in their most frequent trigrams. While we filtered this corpus for
obviously automated patterns, we note that in several projects commit messages follow a
strong template. This leads to a couple extremely frequent patterns (pull request # and Merge
pull request being the two outlying trigram patterns). However, once outside these few most
frequent ngrams, the repetition in the corpus drops off much more sharply than in code. The
technical and imperative corpora of NASA directives, recipes, and US Code corpora exhibit
more code-like behavior than the Shakespeare, Science Fiction, and Brown corpora.

32 Casey Casalnuovo et al.

(a) Unigrams (b) Bigrams

(c) Trigrams

Fig. 11 Zipf plots for the unigrams, bigrams, and trigrams of the general English, Java, and English language
learner corpora

In Fig. 14, we verify these results with the ease of prediction via language model. With
the exception of commit messages 23, the technical corpora are easier to predict than the
non-technical corpora, but not as easy as the Java corpus, regardless of which language
model is used. We validate these distributions with Wilcox tests and effect sizes, shown in
Table 10, which compare the effect size between brown and our other corpora, and Java
and our other corpora. We see that all corpora are more predictable than Brown, but that
the commit messages and the non-technical corpora are proportionately much closer to the
balanced Brown corpus than the other technical and imperative corpora.

To understand why the commit message entropy might behave more closely to non-
technical English, we note that previous studies have pointed out the often poor quality
of software documentation (Bachmann and Bernstein, 2009), and which has long been a
concern in the software community(Zhi et al, 2015). That software documentation is often
of poor quality conflicts with previously theorized need for more repetition in technical
corpora - that when greater precision is needed and the cost of miscommunication is higher,
more repetitive language is used. However, if developers do not consistently treat commit
messages as an environment for precise communication, this may explain why its behavior
diverges from the other technical corpora.

23 We note that an independent study on commit message entropy and build failure found similar ranges
(Santos and Hindle, 2016)

Studying the Difference Between Natural and Programming Language Corpora 33

(a) 3 grams (b) 3 grams with cache

(c) LSTM (Small)

Fig. 12 Entropy comparisons of the of the English language learners corpora with Java and English Corpora
using the LSTM and best trigram models

Likewise, the entropy of Java is significantly smaller than all corpora, but this effect size
of this difference is sometimes small between it and the technical english corpora. In fact,
with the best language models, the size of the difference between the median entropy of
Java and both the corpus of US law and the corpus of recipes is only slightly over 1 bit. In
terms of confidence intervals, when using a cache or LSTM model, Java is about as twice as
predictable as the these corpora.

We also checked to see if there was any effect of a cache for the technical and non-
technical corpora. If technical language behaves like code, we would expect more local
repetition, and hence improvements when moving from an ngram to an ngram-cache model.
Table 11, demonstrates confidence intervals and effect sizes for the cache improvements,
with positive confidence intervals indicating an improvement over a basic ngram model.
For our non-technical corpora, there is a extremely small negative effect on predictability
when using a cache, and no significant effect on the Brown corpus. In comparison, the small
Java corpus, commit messages, the legal language corpus, and the NASA directive corpus
all have significant increases in entropy when not including the cache, though there is no
cache effect in the recipe corpus. The effect size is extremely tiny in the NASA corpus,
but somewhat larger for the US code. This agrees with the notion of the restrictiveness of
technical language, and especially that of legal language as the most restrictive technical
language, as its local repetitiveness allows a cache to improve about twice as much over the
raw ngram score. However, the cache effect in the legal corpus is still not as large as with

34 Casey Casalnuovo et al.

(a) Unigrams (b) Bigrams

(c) Trigrams

Fig. 13 Unigram, bigram, and trigram Zipf plot comparisons between the technical and imperative English
corpora in comparison to the non technical English corpora and Java

the Java corpus. In commits, the cache effect may be strengthened by temporal locality -
commits close in time could involve similar changes.

So the locality effects in specialized technical and imperative corpora are mixed. The
technical corpora appear more code-like, but the imperatively styled recipe corpus does not.
However, a more focused study would be needed to better establish the role of locality in
technical language. Nevertheless, overall, we can answer RQ 4 mostly positively. Other than
the commit message corpus which exhibits unique behavior in the Zipf plots and entropy
distributions, the technical and imperative corpora resemble code more closely than other
domain limited non-technical corpora.

5 Discussion

5.1 Practical Impacts

We note that Naturalness per se has tremendous practical impact; and has proven to be highly
actionable. Hundreds of papers from dozens of different authors have explored applications
ranging from code suggestion, to defect finding, to software porting, to automatic repair
synthesis24. The wealth of applications of this phenomenon begs the question: Why is code

24 Allamanis et al (2017) have extensively surveyed such applications.

Studying the Difference Between Natural and Programming Language Corpora 35

(a) 3 grams (b) 3 grams with cache

(c) LSTM (Small)

Fig. 14 Box plots of the distribution of entropy of the technical and imperative English corpora in comparison
to the non technical English corpora and Java

natural? This question, to our knowledge, has not been explored before this work. Although
scientific investigation of phenomena often precedes practical application, there are numer-
ous examples where it works in reverse. Lithium e.g., has been used to treat depression for
generations; however, the exact bio-chemical mechanisms are only recently becoming clear.
This purely scientific advance opens a pathway to “the development of safer, cheaper, or
more effective pharmacotherapeutics”25.

Likewise, while our study is primarily scientific in nature, and succeeded the practical
impacts; still even this post-hoc scientific investigation has some practical consequences.
We note that in code completion, we can expect that developers find completions on open
category tokens most helpful; closed category tokens are shorter, and easier to remember.
Indeed, most current completion tools (e.g., in Eclipse) are designed for method/member
completions - classes of open category tokens. However, these tokens are also the hardest
to predict for language models. As we shall see below, our investigations suggest a way to
improve the performance for in predicting open category tokens.

Recall that our results indicate that open category tokens in code are still more repetitive
than in natural language (See Fig. 8 and Fig. 9). While the repetition persists in the open
category tokens, it is clear that the precise n-gram patterns would be different. Thus, it
is quite possible that the open category n-grams would suggest different completions than

25 See Tobe et al, PNAS, 144(22), May 2017

36 Casey Casalnuovo et al.

Table 10 Summary of non-parametric effect sizes and 99% confidence intervals (in bits) comparing the
tokens for each technical and non-technical corpus with Brown and then Java. Numbers are marked with * if
p < .05, ** if p < .01, *** if p < .001 from a Mann Whitney U test

Brown >Language Ngram Cache LSTM

NASA (-2.514, -2.39) (-2.96, -2.826) (-3.374, -3.207)
0.197∗∗∗ 0.224∗∗∗ 0.216∗∗∗

Science Fiction (-0.514, -0.421) (-0.396, -0.295) (-2.065, -1.949)
0.045∗∗∗ 0.031∗∗∗ 0.158∗∗∗

US Code (-2.532, -2.456) (-3.736, -3.655) (-4.55, -4.457)
0.219∗∗∗ 0.323∗∗∗ 0.343∗∗∗

Shakespeare (-0.592, -0.498) (-0.391, -0.287) (-2.157, -2.038)
0.053∗∗∗ 0.031∗∗∗ 0.166∗∗∗

Recipes (-2.763, -2.683) (-2.737, -2.651) (-5.127, -5.028)
0.268∗∗∗ 0.254∗∗∗ 0.426∗∗∗

Commits (-0.169, -0.039) (-0.918, -0.789) (-1.841, -1.697)
0.008∗∗∗ 0.068∗∗∗ 0.13∗∗∗

Language >Java (Small) Ngram Cache LSTM

NASA (-0.636, -0.529) (-2.237, -2.101) (-2.478, -2.332)
0.06∗∗∗ 0.253∗∗∗ 0.249∗∗∗

Science Fiction (-2.754, -2.67) (-5.35, -5.257) (-4.121, -4.037)
0.247∗∗∗ 0.523∗∗∗ 0.457∗∗∗

US Code (-0.532, -0.468) (-0.9, -0.868) (-1.152, -1.09)
0.061∗∗∗ 0.21∗∗∗ 0.204∗∗∗

Shakespeare (-2.801, -2.711) (-5.651, -5.56) (-4.202, -4.117)
0.24∗∗∗ 0.519∗∗∗ 0.446∗∗∗

Recipes (-0.493, -0.431) (-2.676, -2.603) (-1.135, -1.085)
0.063∗∗∗ 0.388∗∗∗ 0.255∗∗∗

Commits (-3.355, -3.203) (-5.249, -5.091) (-4.635, -4.508)
0.226∗∗∗ 0.377∗∗∗ 0.374∗∗∗

language models that incorporate all the tokens. Therefore, as an example of applying this
paper’s theory to a real world application we ask

RQ5. Does using a language model with only open category tokens improve on the state-of-
the-art for the code suggestion task for these most relevant tokens?

For this sample application experiment, we adapt the framework of Hellendoorn and
Devanbu, SLP-Core(Hellendoorn and Devanbu, 2017)26, which is to our knowledge the cur-
rent best published performer in the Java code completion task. This model extends the ba-
sic cache model, using the inherently hierarchical namespace scope of code—with several
nested caches to get fast and accurate code completion results over nested scopes.

In this experiment we duplicate our Java code corpus, and lex all the files in place in each
copy - retaining the directory structure information so the SLP-core model can leverage the
power of its nested model. In one copy, we retain all tokens; in the other copy, we retain just
the open category tokens. We train the model on each corpus, and then using a leave one out
approach we iterate over each file in turn - removing it from the training corpus, then using
the rest of the files to create a suggestion list for the tokens in this “test” file. For each token
and suggestion list, we calculate the Mean Reciprocal Rank (MRR). We then take the two
lists of just the open category word MRR predictions and average them across each test file.

In Fig. 15 we see the results of this experiment. The box plots show a visible improve-
ment in the average file MRR over the open category tokens when using the model that
excludes the closed category words as context. To quantify these effects we use paired t-test

26 This framework can be found at https://github.com/SLP-team/SLP-Core.

https://github.com/SLP-team/SLP-Core

Studying the Difference Between Natural and Programming Language Corpora 37

Table 11 Summary of non-parametric effect sizes and 99% confidence intervals (in bits) comparing the
locality effects of the cache in Java and the various English corpora. Positive values in the intervals indicate
an improvement due to the cache, and negative values indicate worse performance compared to the pure
ngram model. Numbers are marked with * if p < .05, ** if p < .01, *** if p < .001 from a paired Mann
Whitney U test

Language Ngram > Cache

Brown (-0.021, 0.049)
0.001

Java (1.570, 1.631)
0.269∗∗∗

NASA (0.375, 0.523)
0.0566∗∗∗

Recipes (-0.030, 0.030)
0

Commits (0.676, 0.829)
.069∗∗∗

Science Fiction (-0.129, -0.028)
0.008∗∗∗

US Code (1.123, 1.180)
0.138∗∗∗

Shakespeare (-0.255, -0.155)
0.021∗∗∗

and Cohen’s-d effect size (as the distributions of MRR are relatively normal), and see that
this effect is statistically significant with medium effect size (Cohen’s-d for paired samples
= 0.611). These results indicate a definite improvement, and are actionable for further im-
provements in code suggestion. Further improvements may be possible through judicious
blends of full and open category-only cache models, and is left for future work.

Although we do not pursue them here, there are other possible applications. Our results
suggest that the low entropy of source code is contingent, viz., a matter of choice, rather than
a syntactic necessity; and furthermore, this low-entropy preference recapitulates similar low-
entropy preference exhibited in domains where reading/writing are effortful. This suggests
a couple of applications.

(a) Boxplot

Fig. 15 Boxplots comparing the average file MRR of the open category code completion model against the
full standard model

38 Casey Casalnuovo et al.

First, if lower entropy is a matter of preference, then it is possible that tools that lower
the entropy of code (without changing the meaning) would be useful to developers. This
could be accomplished by applying sequences of meaning-preserving transforms, observing
the changes in entropy, and seeking out entropy low-points. Existing work (Liu et al, 2017)
has used similar approaches to increase entropy, as an effective way to confound code de-
obfuscators. Second, higher-entropy regions of code might potentially indicate regions that
could be restructured, using meaning-preserving transforms, for easier readability; these
regions could also be fruitfully suggested to code reviewers as areas worthy of critical atten-
tion. This type of entropy-based restructuring or editing is also motivated by prior work in
psycholinguistics, that suggests that text with lower entropy is easier to understand (Levy,
2008; Demberg and Keller, 2008; Frank, 2013). Moreover, given that entropy differences
appear to capture more than just syntax in code, it would be interesting to see how en-
tropy measures from different and improved language models of code correlate with recent
work on confusing code (Gopstein et al, 2017, 2018), and measures of code understandabil-
ity, where recent work has shown existing metrics may not correlate strongly with human
judgement (Scalabrino et al, 2017; Trockman et al, 2018).

5.2 Limitations & Future Work

Given the nature of the cognitive questions this paper seeks to answer from a corpus-based
perspective there are several threats we have attempted to minimize. As discussed through-
out the paper, natural language differs in domain usage, grammatical constraints, vocabu-
lary creation, in many other ways from programming language. More specifically, for our
open and closed category word experiment, these groups are more clearly defined in natural
language than source code. We mitigated this threat as much as possible by developing a
shared classification across several different languages, and changes along the boundary of
this classification resulted in little difference in the results. Likewise, syntax trees for code
and English serve different roles and represent different granularities (a file as a unit vs a
sentence); nevertheless, we have applied what controls we can to ensure the trees are both
concrete, as accurate as possible, and modeled equivalently. Corpora with different con-
straints and data availability are challenging to model equivalently, but we hope that random
sampling and the use of multiple language modeling techniques increases confidence in the
validly of our results.

Our studies have focused most heavily on Java and English. While there are good rea-
sons to believe that our findings generalize to other languages, further data analysis would
shed a definitive light. In particular, there are indications in our data that Haskell corpora are
somewhat different from other languages. The reasons remain unclear; it may be a factor of
the language itself–Haskell is a functional higher-order, polymorphic, lazy language, unlike
the others we have studied—or it may be a cultural effect. Haskell programmers tend to be
very highly trained computer scientists and (in our experience) passionately committed to
the power and elegance of lazy, higher-order, polymorphic functional programming. A com-
parative study of programming language features, and their effects on repetition in software
corpora, remains a worthy subject of future study.

Our comparative corpora studies demonstrate English’s similarity to code in situations
where the language is more challenging to the writer or uses more imperative and technical
language. However, given that we have established that some of the additional repetition in
code is the result of human choice, more work is still necessary to explore the ways how
and reasons why humans choose to write code more repetitively. Below, we highlight a few

Studying the Difference Between Natural and Programming Language Corpora 39

confounds that can influence these choices, along with avenues to pursue with greater focus
on particular factors.

First, our studies suggest that the greater repetition in code may arise from the effort
required to read and write code. Some of the tactics used by programmers may certainly
contribute this. For example, programmers adopt coding standards to make code easier to
read. Programmers often cut and paste code. They prefer familiar ways of coding (e.g., code
idioms (Allamanis and Sutton, 2014)). Furthermore, Social Q&A sites like Stack Overflow
have become influential stores of coding knowledge, from whence a lot of coding patterns
and idioms are disseminated. All these practices certainly contribute to repetitiveness, and
the relative degree of influence of these various practices, and the effects on quality and
productivity, remains a subject of future study.

Secondly, while our study focuses on static corpora, some elements of human choice
may become more apparent in corpora that change over time. In natural language, though
studies on how natural language changes over time exist (e.g. Petersen et al, 2012), records
of documents changed in a manner similar to software versioning are sparse.

However, one of the most compelling aspects of linguistic studies of software is the
availability of change histories, which afford the opportunity to conduct time-series studies
of software linguistic evolution. Software content changes in response to various pressures,
including customer demand, changes in platforms and APIs, and social and organizational
pressures such as coding standards and code reviews. Our studies were conducted on fairly
mature projects, at a fairly advanced stage in the life-cycles. The effects of API change (Dig
and Johnson, 2005; Kim et al, 2011) and requirements on software evolution (Harker et al,
1993; Lehman, 1996) have been studied in the past; however, the relationship between soft-
ware evolution and the linguistic changes arising from time and social factors remain largely
unexplored. Some of the questions we would like to explore further include whether each
individual’s coding patterns change with time, and whether a team’s coding patterns start
out with greater diversity, and converge over time. Communal discussion patterns and con-
vergence have been studied in open source projects, but only in the natural language of the
issue discussion on these projects (Kavaler et al, 2017).

Moreover, social aspects of linguistic changes have been explored in the study of natural
language evolution and change (e.g. Bright, 2017; Michael, 2014), and it would be interest-
ing to explore such issues with code. For example, while the way an individual generates
source code is certainly shaped by cognitive constraints, there are other factors to consider,
such as education, past experience, interaction with other developers, and membership in
specific communities. Experience in software development in particular is a complex and
nuanced issue, involving not only experience in the programming language, but also in the
domain and project to fulfill community expectations. Interestingly, these same factors shape
an individual’s use of natural language; these are nontrivial issues that are central to the field
of sociolinguistics. Just as natural language is shaped at least by both cognitive and social
factors, we expect that a sociolinguistic analysis of code would be an interesting direction
for future work.

6 Conclusions

Our study starts with the discovery first reported in (Hindle et al, 2012), that software is
highly repetitive and predictable. While this is surprising in itself, the real surprise is that
it is far more predictable than natural language; indeed, using the perplexity measure, it is
about 8 to 16 times more predictable. Why is this the case? Is it vocabulary? Syntax? Or

40 Casey Casalnuovo et al.

something else? Does it depend on programming language? Natural language? The type of
corpora? While this paper does not provide a definitive identification of the exact reasons
for why code is so much more predictable than English, we describe a series of experiments
that points away from necessary language-based constraints, and more towards deliberate
human choice, as the casual factor.

In this paper we first show that the differences observed between English and Java gener-
alize to other natural and programming languages. Programming language corpora in gen-
eral are more repetitive than natural language corpora. Next we address the question of
whether the greater repetitiveness of code arises mainly from the simpler syntax of code.
To begin with, we remove the keywords operators and punctuation from code, and likewise
the closed-category words and punctuation from English, and compare the repetitiveness of
the remaining content vocabulary, and find that in fact code gets more repetitive when these
syntactic markers are eliminated; thus suggesting that the additional repetitiveness is not
exclusively syntax-based.

Diving deeper and examining the parse tree structure, we do find that some of the dif-
ferences in predictability derive from differences between programming language and nat-
ural language syntax. Once normalized for the number of expansions the grammar allows,
writers of English and code choose among their immediate options equivalently in each lan-
guage. However, when accounting for all the available terminal choices and the long term
operations, code still remains more predictable than English. Thus, it seems while a sig-
nificant portion of the difference between English and Java is determined by grammatical
restrictions, these restrictions do not account for all of the difference.

We surmise that the residual differences between Code and English may arise from the
greater difficulty of reading and writing code or from a potentially higher cost of miscommu-
nication. Therefore, we compare code with several specialized English corpora that might
require greater effort: ESL (english as a second language) corpora, legal corpora, NASA di-
rectives, cooking recipes, and developer communication of changes via commit messages.
We find most of these corpora are still less predictable than code, but also exhibit more
code-like behavior than English, thus constituting an intermediate level of predictability, as
expected. Code is a unique form of human expression; as Allamanis et al (2017) observe, it
comprises two channels; one from human to human and the other from human to code. This
dual-channel nature places special demands on readers and writers. The behavior of these
specialized technical and imperative English texts, where the style imposes greater effort
and the cost of miscommunication is higher, is consistent with the theory that humans use
repetitive but familiar structures to communicate more clearly when under such constraints.
This is not conclusive proof nor does it eliminate all other reasons why humans may write
code more repetitively, but the lack of such behavior in non-technical domain constrained
English is suggestive.

Finally, the experiments in this paper can provide theoretical grounding to choices when
designing new languages and finding the right degree of expressiveness. After all, if humans
mostly choose from a limited set of possible available constructs in code, then these choices
should impact how languages are created, documented, and taught. Highlighting or includ-
ing language options that are never used may be increase confusion and the potential for
mistakes. Likewise, this theory supports the notion that the limitations imposed by style are
important for clear communication. For example, existing research shows that pull requests
that conform to project style are more readily accepted (Hellendoorn et al, 2015). Our the-
ory can be leveraged to improve code suggestions, as we demonstrated, and further, perhaps
also for tools that perform code restructuring, or support code review.

Studying the Difference Between Natural and Programming Language Corpora 41

As Knuth observed, code is not merely for the machines (Knuth, 1984); while written in
an artificial language, it is meant to be read by humans, and thus, exhibits properties inherent
to other, naturally-occurring varieties of human-human communication.

Acknowledgements We would like to thank Professors C. Sutton, Z. Su, V. Filkov, and R. Aranovich, along
with the UC Davis DECAL and NLP Reading groups for comments and feedback on this research. We
also would like to especially thank V. Hellendoorn for his feedback and input on our experiment between
parse trees in Java and English. We also acknowledge support from NSF Grant #1414172, Exploiting the
Naturalness of Software. Finally we are grateful to the reviewers and editors of this journal for their thoughtful
comments, which were very helpful in improving the work presented in this paper.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G,
Isard M, et al (2016) Tensorflow: A system for large-scale machine learning. In: OSDI,
vol 16, pp 265–283

Allamanis M, Sutton C (2013) Mining source code repositories at massive scale using lan-
guage modeling. In: Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on, pp 207–216, DOI 10.1109/MSR.2013.6624029

Allamanis M, Sutton C (2014) Mining idioms from source code. In: Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, New York, NY, USA, FSE 2014, pp 472–483, DOI 10.1145/2635868.2635901,
URL http://doi.acm.org/10.1145/2635868.2635901

Allamanis M, Barr ET, Devanbu P, Sutton C (2017) A survey of machine learning for big
code and naturalness. arXiv preprint arXiv:170906182

Andor D, Alberti C, Weiss D, Severyn A, Presta A, Ganchev K, Petrov S, Collins M (2016)
Globally normalized transition-based neural networks. arXiv preprint arXiv:160306042

Bachmann A, Bernstein A (2009) Software process data quality and characteristics: A his-
torical view on open and closed source projects. In: Proceedings of the Joint Interna-
tional and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops, ACM, New York, NY, USA, IWPSE-Evol ’09,
pp 119–128, DOI 10.1145/1595808.1595830, URL http://doi.acm.org/10.1145/

1595808.1595830

Baxter G, Frean M, Noble J, Rickerby M, Smith H, Visser M, Melton H, Tempero E (2006)
Understanding the shape of java software. In: ACM Sigplan Notices, ACM, vol 41, pp
397–412

Bird S (2006) Nltk: the natural language toolkit. In: Proceedings of the COLING/ACL on
Interactive presentation sessions, Association for Computational Linguistics, pp 69–72

Bradley DC (1978) Computational distinctions of vocabulary type. PhD thesis, Mas-
sachusetts Institute of Technology

Bright W (2017) Social factors in language change. In: The Handbook of Sociolinguistics,
Wiley-Blackwell, chap 5, pp 81–91, DOI 10.1002/9781405166256.ch5, URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/9781405166256.ch5

Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm S
(2015) Eye movements in code reading: Relaxing the linear order. In: Program Compre-
hension (ICPC), 2015 IEEE 23rd International Conference on, IEEE, pp 255–265

Ferrer i Cancho R, Solé RV (2001) Two regimes in the frequency of words and the origins of
complex lexicons: Zipf’s law revisited? Journal of Quantitative Linguistics 8(3):165–173

Carlstrom B, Price N (2013) Gachon learner corpus

http://doi.acm.org/10.1145/2635868.2635901
http://doi.acm.org/10.1145/1595808.1595830
http://doi.acm.org/10.1145/1595808.1595830
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405166256.ch5
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405166256.ch5

42 Casey Casalnuovo et al.

Chelba C, Mikolov T, Schuster M, Ge Q, Brants T, Koehn P (2013) One billion word bench-
mark for measuring progress in statistical language modeling. CoRR abs/1312.3005, URL
http://arxiv.org/abs/1312.3005

Chen SF, Goodman J (1998) An empirical study of smoothing techniques for language mod-
eling. In: Harvard Computer Science Group Technical Report TR-10-98

Chomsky N, Belletti A, Rizzi L (2002) An interview on minimalism. N Chomsky, On Nature
and Language pp 92–161

Concas G, Marchesi M, Pinna S, Serra N (2007) Power-laws in a large object-oriented soft-
ware system. IEEE Transactions on Software Engineering 33(10):687–708

Conklin K, Schmitt N (2008) Formulaic sequences: Are they processed more
quickly than nonformulaic language by native and nonnative speakers? Ap-
plied Linguistics 29(1):72–89, DOI 10.1093/applin/amm022, URL +http://dx.

doi.org/10.1093/applin/amm022, /oup/backfile/content_public/journal/

applij/29/1/10.1093_applin_amm022/1/amm022.pdf

Danet B (1980) Language in the legal process. Law and Society Review pp 445–564
De Cock S (2000) Repetitive phrasal chunkiness and advanced efl speech and writing. Lan-

guage and Computers 33:51–68
De Marneffe MC, Manning CD (2008) The stanford typed dependencies representation. In:

Coling 2008: proceedings of the workshop on cross-framework and cross-domain parser
evaluation, Association for Computational Linguistics, pp 1–8

De Marneffe MC, MacCartney B, Manning CD, et al (2006) Generating typed dependency
parses from phrase structure parses. In: Proceedings of LREC, Genoa Italy, vol 6, pp
449–454

Demberg V, Keller F (2008) Data from eye-tracking corpora as evidence for theories of syn-
tactic processing complexity. Cognition 109(2):193 – 210, DOI https://doi.org/10.1016/j.
cognition.2008.07.008, URL http://www.sciencedirect.com/science/article/

pii/S0010027708001741

Dig D, Johnson R (2005) The role of refactorings in api evolution. In: null, IEEE, pp 389–
398

Field A (2009) Discovering statistics using SPSS. Sage publications
Frank S (2013) Uncertainty reduction as a measure of cognitive load in sentence compre-

hension. Topics in Cognitive Science 5(3):475–494
Gerlach M, Altmann EG (2013) Stochastic model for the vocabulary growth in natural lan-

guages. Physical Review X 3(2):021006
Ginter F, Hajič J, Luotolahti J, Straka M, Zeman D (2017) CoNLL 2017 shared task - auto-

matically annotated raw texts and word embeddings. URL http://hdl.handle.net/

11234/1-1989, LINDAT/CLARIN digital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University

Gopstein D, Iannacone J, Yan Y, Delong LA, Zhuang Y, Yeh MKC, Cappos J (2017) Un-
derstanding misunderstandings in source code. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ACM, pp 129–139

Gopstein D, Zhou HH, Frankl P, Cappos J (2018) Prevalence of confusing code in soft-
ware projects: Atoms of confusion in the wild. In: Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories, ACM, pp 281–291, DOI https:
//doi.org/10.1145/3196398.3196432

Gotti M (2011) Investigating specialized discourse. Peter Lang
Gousios G, Spinellis D (2012) GHTorrent: Github’s data from a firehose. In: MSR, IEEE,

pp 12–21

http://arxiv.org/abs/1312.3005
+ http://dx.doi.org/10.1093/applin/amm022
+ http://dx.doi.org/10.1093/applin/amm022
/oup/backfile/content_public/journal/applij/29/1/10.1093_applin_amm022/1/amm022.pdf
/oup/backfile/content_public/journal/applij/29/1/10.1093_applin_amm022/1/amm022.pdf
http://www.sciencedirect.com/science/article/pii/S0010027708001741
http://www.sciencedirect.com/science/article/pii/S0010027708001741
http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989

Studying the Difference Between Natural and Programming Language Corpora 43

Hale J (2003) The information conveyed by words in sentences. Journal of Psycholinguistic
Research 32(2):101–123

Harker SD, Eason KD, Dobson JE (1993) The change and evolution of requirements as a
challenge to the practice of software engineering. In: Requirements Engineering, 1993.,
Proceedings of IEEE International Symposium on, IEEE, pp 266–272

Hathhorn C, Ellison C, Roşu G (2015) Defining the undefinedness of c. In: ACM SIGPLAN
Notices, ACM, vol 50, pp 336–345

Hayes JH, Dekhtyar A, Sundaram SK (2005) Improving after-the-fact tracing and mapping:
Supporting software quality predictions. IEEE software 22(6):30–37

Heafield K (2011) Kenlm: Faster and smaller language model queries. In: Proceedings of
the Sixth Workshop on Statistical Machine Translation, Association for Computational
Linguistics, pp 187–197

Hellendoorn VJ, Devanbu P (2017) Are deep neural networks the best choice for modeling
source code? In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE, pp 763–773

Hellendoorn VJ, Devanbu PT, Bacchelli A (2015) Will they like this?: Evaluating code con-
tributions with language models. In: Proceedings of the 12th Working Conference on
Mining Software Repositories, IEEE Press, Piscataway, NJ, USA, MSR ’15, pp 157–167,
URL http://dl.acm.org/citation.cfm?id=2820518.2820539

Hindle A, Barr ET, Su Z, Gabel M, Devanbu P (2012) On the naturalness of software. In:
Proceedings of the 34th International Conference on Software Engineering, IEEE Press,
Piscataway, NJ, USA, ICSE ’12, pp 837–847, URL http://dl.acm.org/citation.

cfm?id=2337223.2337322

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural computation
9(8):1735–1780

Hoffmann L (1984) Seven roads to lsp. Fachsprache 6:1–2
Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2006) A lego system for conditional

inference. The American Statistician 60(3):257–263
Jbara A, Feitelson DG (2017) How programmers read regular code: a controlled experiment

using eye tracking. Empirical Software Engineering 22(3):1440–1477
Kavaler D, Sirovica S, Hellendoorn V, Aranovich R, Filkov V (2017) Perceived language

complexity in github issue discussions and their effect on issue resolution. In: Proceedings
of the 32Nd IEEE/ACM International Conference on Automated Software Engineering,
IEEE Press, Piscataway, NJ, USA, ASE 2017, pp 72–83, URL http://dl.acm.org/

citation.cfm?id=3155562.3155576

Khanh Dam H, Tran T, Pham T (2016) A deep language model for software code. arXiv
preprint arXiv:160802715

Kim M, Cai D, Kim S (2011) An empirical investigation into the role of api-level refactor-
ings during software evolution. In: Proceedings of the 33rd International Conference on
Software Engineering, ACM, pp 151–160

Kneser R, Ney H (1995) Improved backing-off for m-gram language modeling. In: Acous-
tics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference
on, IEEE, vol 1, pp 181–184

Knuth DE (1984) Literate programming. The Computer Journal 27(2):97–111
Kučera H, Francis WN (1967) Computational analysis of present-day American English.

Dartmouth Publishing Group
Lehman MM (1980) Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE 68(9):1060–1076, DOI 10.1109/PROC.1980.11805

http://dl.acm.org/citation.cfm?id=2820518.2820539
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=3155562.3155576
http://dl.acm.org/citation.cfm?id=3155562.3155576

44 Casey Casalnuovo et al.

Lehman MM (1996) Laws of software evolution revisited. In: European Workshop on Soft-
ware Process Technology, Springer, pp 108–124

Levy R (2008) Expectation-based syntactic comprehension. Cognition 106(3):1126
– 1177, DOI https://doi.org/10.1016/j.cognition.2007.05.006, URL http://www.

sciencedirect.com/science/article/pii/S0010027707001436

Liu H, Sun C, Su Z, Jiang Y, Gu M, Sun J (2017) Stochastic optimization of program ob-
fuscation. In: Proceedings of the 39th International Conference on Software Engineering,
IEEE Press, pp 221–231

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Transactions on
Software Engineering and Methodology (TOSEM) 18(1):2

Mandelbrot B (1953) An informational theory of the statistical structure of language. Com-
munication theory 84:486–502

Manning CD, Schütze H (1999) Foundations of statistical natural language processing. MIT
press

Marcus MP, Marcinkiewicz MA, Santorini B (1993) Building a large annotated corpus of
english: The penn treebank. Comput Linguist 19(2):313–330, URL http://dl.acm.

org/citation.cfm?id=972470.972475

Michael L (2014) Social dimensions of language change. In: The Routledge Handbook
of Historical Linguistics, Routledge, chap 22, DOI 10.4324/9781315794013.ch22, URL
https://www.routledgehandbooks.com/doi/10.4324/9781315794013.ch22

Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S (2010) Recurrent neural net-
work based language model. In: Interspeech, vol 2, p 3

Mitzenmacher M (2004) A brief history of generative models for power law and lognormal
distributions. Internet mathematics 1(2):226–251

Norvig P (2009) Natural language corpus data. Beautiful Data pp 219–242
Paquot M, Granger S (2012) Formulaic language in learner corpora. Annual Review of

Applied Linguistics 32:130–149, URL https://search.proquest.com/docview/

1289774805?accountid=14505, copyright - Copyright Cambridge University Press
2012; Last updated - 2015-05-30

Petersen AM, Tenenbaum JN, Havlin S, Stanley HE, Perc M (2012) Languages cool as they
expand: Allometric scaling and the decreasing need for new words. Scientific reports
2:943

Petrov S (2016) Announcing syntaxnet: The world’s most accurate parser goes open source.
Google Research Blog

Petrov S, Barrett L, Thibaux R, Klein D (2006) Learning accurate, compact, and inter-
pretable tree annotation. In: Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, pp 433–440

Piantadosi ST (2014) Zipf’s word frequency law in natural language: A critical review and
future directions. Psychonomic bulletin & review 21(5):1112–1130

Piantadosi ST, Tily H, Gibson E (2012) The communicative function of ambiguity in lan-
guage. Cognition 122(3):280–291

Pierret D, Poshyvanyk D (2009) An empirical exploration of regularities in open-source
software lexicons. In: Program Comprehension, 2009. ICPC’09. IEEE 17th International
Conference on, IEEE, pp 228–232

Salager F (1983) Compound Nominal Phrases in Scientific-Technical Literature: Proportion
and Rationale. ERIC

Salvador A, Hynes N, Aytar Y, Marin J, Ofli F, Weber I, Torralba A (2017) Learning cross-
modal embeddings for cooking recipes and food images. In: Proceedings of the IEEE

http://www.sciencedirect.com/science/article/pii/S0010027707001436
http://www.sciencedirect.com/science/article/pii/S0010027707001436
http://dl.acm.org/citation.cfm?id=972470.972475
http://dl.acm.org/citation.cfm?id=972470.972475
https://www.routledgehandbooks.com/doi/10.4324/9781315794013.ch22
https://search.proquest.com/docview/1289774805?accountid=14505
https://search.proquest.com/docview/1289774805?accountid=14505

Studying the Difference Between Natural and Programming Language Corpora 45

Conference on Computer Vision and Pattern Recognition
Santos EA, Hindle A (2016) Judging a commit by its cover: Correlating commit mes-

sage entropy with build status on travis-ci. In: Proceedings of the 13th International
Conference on Mining Software Repositories, ACM, New York, NY, USA, MSR ’16,
pp 504–507, DOI 10.1145/2901739.2903493, URL http://doi.acm.org/10.1145/

2901739.2903493

Scalabrino S, Bavota G, Vendome C, Linares-Vásquez M, Poshyvanyk D, Oliveto R (2017)
Automatically assessing code understandability: how far are we? In: Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering, IEEE
Press, pp 417–427

Schmitt N, Carter R (2004) Formulaic sequences in action. Formulaic sequences: Acquisi-
tion, processing and use pp 1–22

Shannon CE (1948) A mathematical theory of communication, part i, part ii. Bell Syst Tech
J 27:623–656

Shannon CE (1951) Prediction and entropy of printed english. Bell Labs Technical Journal
30(1):50–64

Siegmund J, Kästner C, Apel S, Parnin C, Bethmann A, Leich T, Saake G, Brechmann
A (2014) Understanding understanding source code with functional magnetic resonance
imaging. In: Proceedings of the 36th International Conference on Software Engineering,
ACM, pp 378–389

Stefik A, Ladner R (2017) The quorum programming language. In: Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education, ACM, pp 641–
641

Stefik A, Siebert S (2013) An empirical investigation into programming language syntax.
ACM Transactions on Computing Education (TOCE) 13(4):19

Sundaram SK, Hayes JH, Dekhtyar A (2005) Baselines in requirements tracing. In: ACM
SIGSOFT Software Engineering Notes, ACM, vol 30, pp 1–6

Sundermeyer M, Schlüter R, Ney H (2012) Lstm neural networks for language modeling. In:
Thirteenth Annual Conference of the International Speech Communication Association

Trockman A, Cates K, Mozina M, Nguyen T, Kästner C, Vasilescu B (2018) ”automatically
assessing code understandability” reanalyzed: Combined metrics matter

Tsay J, Dabbish L, Herbsleb J (2014) Influence of social and technical factors for evaluating
contribution in github. In: Proceedings of the 36th international conference on Software
engineering, ACM, pp 356–366

Tu Z, Su Z, Devanbu P (2014) On the localness of software. In: Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, New York, NY, USA, FSE 2014, pp 269–280, DOI 10.1145/2635868.2635875,
URL http://doi.acm.org/10.1145/2635868.2635875

Varantola K (1986) Special language and general language: Linguistic and didactic aspects.
Unesco Alsed-LSP Newsletter (1977-2000) 9(2)

Vinyals O, Kaiser Ł, Koo T, Petrov S, Sutskever I, Hinton G (2015) Grammar as a foreign
language. In: Advances in Neural Information Processing Systems, pp 2773–2781

Wasow T, Perfors A, Beaver D (2005) The puzzle of ambiguity. Morphology and the web
of grammar: Essays in memory of Steven G Lapointe pp 265–282

Weintrop D, Wilensky U (2015) Using commutative assessments to compare conceptual
understanding in blocks-based and text-based programs. In: Proceedings of the Eleventh
Annual International Conference on International Computing Education Research, ACM,
New York, NY, USA, ICER ’15, pp 101–110, DOI 10.1145/2787622.2787721, URL
http://doi.acm.org/10.1145/2787622.2787721

http://doi.acm.org/10.1145/2901739.2903493
http://doi.acm.org/10.1145/2901739.2903493
http://doi.acm.org/10.1145/2635868.2635875
http://doi.acm.org/10.1145/2787622.2787721

46 Casey Casalnuovo et al.

White M, Vendome C, Linares-Vásquez M, Poshyvanyk D (2015) Toward deep learning
software repositories. In: Mining Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on, IEEE, pp 334–345

Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York, URL http://ggplot2.org

Xue X (2015) Ten thousand english compositions of chinese learners (the teccl corpus),
version 1.1

Zhang H (2008) Exploring regularity in source code: Software science and zipf’s law. In:
Reverse Engineering, 2008. WCRE’08. 15th Working Conference on, IEEE, pp 101–110

Zhi J, Garousi-Yusifoğlu V, Sun B, Garousi G, Shahnewaz S, Ruhe G (2015) Cost, benefits
and quality of software development documentation: A systematic mapping. Journal of
Systems and Software 99:175–198

Zipf G (1949) Human behavior and the principle of least effort. Addison-Wesley, Cambody
Mus Am Arch and Ethnol(Harvard Univ), Papers 19:1–125

http://ggplot2.org

	Introduction
	Theory
	Materials and methods
	Results
	Discussion
	Conclusions

