
Are Deep Neural Networks the Best Choice
for Modeling Source Code?

Vincent J. Hellendoorn

Computer Science Dept., UC Davis

Davis, CA, USA 95616

vhellendoorn@ucdavis.edu

Premkumar Devanbu

Computer Science Dept., UC Davis

Davis, CA, USA 95616

ptdevanbu@ucdavis.edu

ABSTRACT
Current statistical language modeling techniques, including deep-

learning based models, have proven to be quite effective for source

code. We argue here that the special properties of source code can

be exploited for further improvements. In this work, we enhance

established language modeling approaches to handle the special

challenges of modeling source code, such as: frequent changes,

larger, changing vocabularies, deeply nested scopes, etc. We present

a fast, nested language modeling toolkit specifically designed for

software, with the ability to add & remove text, and mix & swap out

many models. Specifically, we improve upon prior cache-modeling

work and present a model with a much more expansive, multi-level

notion of locality that we show to be well-suited for modeling

software. We present results on varying corpora in comparison

with traditional N -gram, as well as RNN, and LSTM deep-learning

language models, and release all our source code for public use.

Our evaluations suggest that carefully adapting N -gram models for

source code can yield performance that surpasses even RNN and

LSTM based deep-learning models.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS
naturalness, language models, software tools

ACM Reference format:
Vincent J. Hellendoorn and Premkumar Devanbu. 2017. Are Deep Neural

Networks the Best Choice for Modeling Source Code?. In Proceedings of
2017 11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106290

1 INTRODUCTION
There has been much interest in the idea of “naturalness": viz.,mod-

eling and exploiting the repetitive nature of software using statisti-

cal techniques from natural language processing (NLP) [17, 26, 38].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00

https://doi.org/10.1145/3106237.3106290

Statistical models from NLP, estimated over the large volumes of

code available in GitHub, have led to a wide range of applications

in software engineering. High-performance language models are

widely used to improve performance on NLP-related tasks, such as

translation, speech-recognition, and query completion; similarly,

better language models for source code are known to improve per-

formance in tasks such as code completion [15]. Developing models

that can address (and exploit) the special properties of source code

is central to this enterprise.

Language models for NLP have been developed over decades,

and are highly refined; however, many of the design decisions

baked-into modern NLP language models are finely-wrought to

exploit properties of natural language corpora. These properties

aren’t always relevant to source code, so that adapting NLP models

to the special features of source code can be helpful. We discuss 3

important issues and their modeling implications in detail below.

Unlimited VocabularyCode and NL can both have an unbounded

vocabulary; however, in NL corpora, the vocabulary usually sat-

urates quickly: when scanning through a large NL corpus, pretty

soon, one rarely encounters new words. New proper nouns (people

& place names) do pop up–but do so infrequently. Code is different;

while each language only has a fixed set of keywords and operators,

new identifier names tend to proliferate [4].

Modeling Implications: In NLP, it’s de regeur to limit vocabulary

to the most common e.g., 50,000 words in a pre-processing step,

before model estimation. Words outside this vocabulary are treated

as an unknown word, or omitted entirely. This artificially limits

the space of events over which to distribute probability mass. Simi-

larly, numerals and strings are replaced with generic tokens. This

works for NLP, since words outside the dominant vocabulary are

so rare. Virtually all work in modeling of source code borrows this

approach. In source code, given the constant vocabulary innovation,

this approach is not appropriate. We demonstrate that a closed vo-

cabulary (even if large) does indeed negatively affect performance

(Section 5.4), and introduce methods to address this.

Nested, Scoped, LocalityWhile developers do invent new names

for variables, classes and methods, the repeated use of these names

tends to be localized. In Java, e.g., local variables, parameters and

private methods can be introduced & used, repeatedly, in one scope,

and never used elsewhere. The package structures in large systems

can introduce nesting of such vocabulary scopes, with different

identifiers going in and out of use as one traverses the package

hierarchy [7, 24, 34, 36]. Researchers have even noted application-

and developer-specific vocabularies [35].

Modeling Implications: This type of nested, scoped vocabulary inno-

vation is accompanied by corresponding repetition, where certain

763

https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Vincent J. Hellendoorn and Premkumar Devanbu

code structures involving specific local names repeat, locally, within

their own nested scopes. This requires a nested modeling approach,

which captures the local repetition within a scope si , and then

makes it available to scopes si , si+1 . . . nested within si . Further-
more, if such nested models are used within an interactive tool

(such as an IDE) the model would need to be rapidly re-estimated

as the programmer’s working context changes.

Dynamism Evolution is normal for well-used software systems;

bug fixes and new features keep rolling in. NLP corpora evolvemuch

more slowly. Furthermore, during interactive coding, software tools

must quickly adjust to new localities and contexts: in a single coding

session, a developer may open and close many files. As she explores

the code, a language model that works within the IDE (for code

completion [15, 33], defect localization [31], etc.) must rapidly adapt

to the working context.

Modeling Implications: Traditional NLP models cannot handle rapid

re-estimation. Deep-learning models, in particular, are not very

dynamic, and re-estimation is very slow.

In response to the observations and concerns raised above, we

have developed a dynamic, hierarchically scoped, open vocabulary
language model for source code, that achieves best-in-class perfor-
mance when using non-parametric (count-based) language model-

ing. We make the following contributions:

• We introduce mixed, scoped models to handle arbitrary

nesting and mixing of N -gram models.

• We implement these models using a fast datastructure

optimized for dynamic, scoped counting of language events.

• We compare several popular smoothing techniques in re-

lated work and show that a simple approach (not typically

used) works better than others.

• Finally, we evaluate the performance of these models on a

large corpus of Java code in comparison and combination

with implicit (deep-learning based) models. We find that

our model outperforms the RNN and LSTM deep learning

models, achieving unprecedented levels of entropy & also

performance on the code-suggestion task. We also show

that our approach adds value, even to LSTM models.

Our runnable API, code and replication details can be found on

github.com/SLP-Team/SLP-Core

2 BACKGROUND
Wenow review languagemodels, including explicit (or non-parametric,

count-based) models and implicit (here: deep learning) models.

2.1 Language Models & Performance
Language models assign a probability to (or “score") an utterance

(e.g., a phrase, a sentence, or just a word). Models are estimated

on large corpora of natural text. A good language model should

score an utterance high, if it would sound “natural" to a native

speaker, and score low the unnatural (or wrong) sentences. Ac-

curate scoring matters in tasks like machine translation, where

the output sentence should “sound normal" and likewise, also in

speech recognition, summarization and spell checkers. Similarly, in

a source code environment, language migration [20, 27], synthesis

of code from natural language and vice versa [5, 14, 28, 30] as well

as code suggestion engines [15, 33] all need models that score code

fragments accurately.

The usual way to score a code fragment s of length |s | is to
tokenize it into, e.g., t1, t2, . . . and score each next token ti given
the previous tokens, i.e.,:

p(s) =
|s |∏
i=1

p(ti | t0, . . . , ti−1) (1)

This yields both per-token probabilities and a single probability for

the entire phrase. More generally, each token is predicted from its

context c , including its preceding tokens and perhaps additional in-

formation (e.g., from a previous phrase, or the topic of a document).

Since the probabilities may vary by orders of magnitude, one often

uses the (typically negated) logarithm of the phrase probability, to

arrive at the information-theoretic measure of entropy:

Hp (s) = −
1

|s | log2 p(s) = −
1

|s |

|s |∑
i=1

log
2
p(ti | c)

Entropy reflects the number of bits needed to encode the phrase

(and, analogously, a token) given the languagemodel. An alternative

metric, often seen in NLP literature, is perplexity, which is simply

2
Hp (s)

and accentuates differences between higher entropy scores.

In Equation (1), the probability of a token in a phrase is calcu-

lated given all previous tokens. In general, this isn’t practical, once

the corpus gets big enough. There are two ways to approach this

problem: using explicitly defined rules and using implicit state.

2.2 Explicit Language Models
Explicit modeling requires a restriction of the relevant context; this

approach is quite mature. Three prior classes of models are based on

N -grams, on extracted long-distance Dependencies, and on the use

of Caches. These models generally require smoothing, to account

for rare (or unseen) events in the training data that may behave

differently in the test data. We now discuss these ideas.

N -gram language models: are easily constructed (and popular).

These models simplify Equation (1) with a Markov-assumption:

each token is conditioned on just N − 1 preceding tokens. We can

then score a token using maximum likelihood of its occurrence in

some context. For instance, in source code, the score for “i" given
the context “for (int" is very high, since the former frequently oc-

curs in the latter context. Capturing this information would require

a 4-gram model, to count sequences up to for 4 tokens.

Dependency models: can capture long-distance dependencies

between tokens, rather than dependencies between tokens that

are sequential in the text
1
, which are sometimes more effective

than Markovian dependencies in left-to-right parses of natural

language [9, 10]. Similar models have been proposed in source

code, using dependencies extracted by compilers. Researchers have

modeled API invocations as a graph prediction problem [26], and

code completion by conditioning on identifiers in scope or parent

nodes in the AST [24].

Cachemodels: augmentN -grammodel with an additional (“cache")

N -gram model to track just the local changes. The two models can

1E.g. the dependency from walked to dog in The girl walked the restless yellow dog.

764

Are Deep Neural Networks the Best Choice
for Modeling Source Code? ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

be mixed using the cache’s “confidence" at prediction time (e.g.,
based on how often it has seen the context, as in [36]). These are

distinct from dynamic models, where the trained model is updated

with all information at test time, since caches are strictly local: they

can “forget" events (e.g., because caches are limited in size), or be

swapped out depending on the context (caches are re-initialized

when a new file is encountered). We expand on this notion in this

work (Section 3).

Smoothing N -gram models come with a trade-off: longer N -gram

contexts are more specific, but correspondingly less frequent in the

corpus; thus may occur in the test corpus but not in the training

corpus. Meanwhile, shorter contexts (especially the empty con-

text) occur more often, but lose information. Smoothing methods
[12] in language modeling provide a well-founded way to combine

information from various context-lengths.

A smoothed N -gram model starts at the longest order N for

which the context has been observed in the training corpus. Then,

the model assigning both a probability pN to the observed event
given the context, and a confidence λN to the context per se. The
latter quantifies the amount of information that is present in the

context: a total of λN probability mass is divided among events seen

in this context, while a probability mass 1−λN is recursively passed

to a shorter context. Generally, the recursion halts after the empty

context (which represents the unconditioned token-frequency dis-

tribution in the corpus), where the left-over probability mass is

divided equally across the complete vocabulary.

The above method merges information present at all context

lengths up to any N . The choice of λN has been well-studied the

NLP field, and many smoothing methods have arisen, each with its

own way to compute λN . In this work, we consider four methods:

• Jelinek-Mercer (JM) smoothing uses a fixed confidence in

all contexts (we use 0.5) and requires the least parameters.

• Witten-Bell (WB) assigns confidence to a context based on

the average frequency of events seen in a context (higher

is better).

• Absolute Discounting (AD) subtracts a fixed discount from

the count of each event and re-distributes this to unseen

events, thus penalizing rarely seen events most.

• Kneser-Ney (KN) improves upon AD by considering how

likely a token is to appear in a new context (e.g., “Fransisco"
virtually always appears in the same context: “San") and

represents the state-of-the-art in NLP N -gram models.

Both AD and KN can slightly be improved by using three separate

discounts, for events seen once, twice and more than twice; we use

these versions and refer to them as MKN and ADM (M for Modified).

We refer the reader to [12] for more details on these techniques. As

we shall see, the interpretation of λN as confidence in a context

according to a model will turn out to be a powerful tool in mixing

N -gram models that are trained on different corpora.

Explicit Models & Code The issues of unlimited vocabulary, nested

locality, and dynamism introduced in Section 1 are not fully ad-

dressed by explicit models. N -gram models typically close the vo-

cabulary at test time, which would tend to diminish performance

for locally-used terms. They do not consider scope at all, nested or

otherwise; all text is treated uniformly. Finally, traditional models

assume static estimation & use, since NL text is generally unchang-

ing. Dependency based models also limit vocabulary, for reasons

similar to N -gram models; the range of dependencies tend to be

small, and thus scope outside of the immediate sentence is rarely

considered. So far, to date, the dependencies considered in models of

code are intra-procedural, and do not capture patterns in a nested,

scoped fashion. They are not very good at handling dynamism,

since changes would typically require re-doing the dependency

analysis. Although incremental static analysis has been explored

for code, to our knowledge no one has used it for dependency-

based statistical models thereof. Finally,Cache models do deal with

vocabulary, by accounting for all tokens within a single limited

(un-nested, typically at a single file level) scope. They do not deal

with multiple, nested scopes. There is limited dynamism: a single

file’s N grams are counted, and stored in the cache, and this cache is

flushed when a new file is opened. This approach, however, ignores

the nested scoped context of, e.g., the package structure in Java, and

cannot quickly handle browsing: if a developer closes a file a.java
within a package sales.foo.com and opens another file b.java,
we would like to a) flush the counts of sequences in a.java to the

model of sales.foo.com, b) weight that model more than foo.com,
since it is more appropriate to b.java, and c) start tracking the

counts in b.java —and do all this efficiently, at interactive speeds.

No existing model does this; but we do.

2.3 Implicit Language Models
The above models all rely on explicit counts of actual N -gram fre-

quencies. Neural network models, by contrast, use an optimized

high-dimensional real-valued parameter space to implicitly repre-

sent the co-occurrence patterns of tokens in a large corpus. This

parameter space is estimated using gradient-descent techniques

which propagate loss gradients in entropy-like functions over a

training corpus.

We compare our approach with two popular techniques: Recur-

sive Neural Networks and Long Short-Term Memory networks.

Both have been used to model software [13, 38]. These models have

proven to be quite powerful, but are more computationally expen-

sive to estimate; this limits their dynamism as discussed later. In

most cases, it is best to use them with high-performance GPUs.

Recurrent neural networks (RNN):maintain a hidden state vec-

tor to capture a digested representation of the current context, as

they scan forward, token by token. Learned parameters both read

out this vector (e.g., to predict, score a token) and update this vector
upon seeing the next token. These models are quite effective when

trained with sufficient data (see [25, 38] for more details in a natural

language and source code setting respectively).

Long short-term Memory networks (LSTM): are extensions of
RNNs which can be trained to selectively “forget" information from

the hidden state, thus allowing room to take in more important

information [13, 18]
2
.

Implicit Models & Code Like earlier explicit models, deep-learning

based models also were not designed for the specific vagaries of

code. First, they strongly limit the vocabulary: larger vocabularies

2
For an accessible overview, see also http://colah.github.io/posts/2015-08-

Understanding-LSTMs/

765

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Vincent J. Hellendoorn and Premkumar Devanbu

substantially increase the number of parameters needed for a model,

partly because they require larger hidden state sizes (which quadrat-

ically increases training time) and increase the cost of predictions
3
.

Character-LSTM models [21, 22] deal with this issue by modeling

one character at the time instead and may provide a solution to this

problem in the long term, possibly in a hybrid form, since these

models at present cannot compete with word-level models [19].

Dealing with nested, scoped vocabulary and dynamism with

implicit models is difficult. Counts are not explicitly stored, but

are transformed in opaque, non-linear ways into real-valued vec-

tors. It’s not clear how to quickly update these to deal with code

changes or interactive developer browsing. Dynamically adding ob-

servations to these models can be done with some success [38] but

there is no option for removing observations, capturing localities or

changing contexts. On the other hand, unlike explicit models, these

models effectively, seamlessly and smoothly combine modeling of

local and non-local patterns. LSTM models are specially capable of

capturing relevant long-distance contexts, which N -grams funda-

mentally cannot do. Thus there is a clear opportunity to combine

explicit models together with implicit models.

3 OUR APPROACH
Consider the web-app developer in Figure 1, who is working in a file

named “Bill.java" (in package billing). Her development context

begins with “Bill.java", and then the proximate packages (shipping,
customer) and finally a host of other projects that also include re-

peating code patterns and variable names (e.g., from Github); all

contexts could be captured in models. In Figure 1, the developer

queries the model with “customer . ?", which might be an API

recommendation task. For this, we could start with the longest

context (“customer .") and ask each model for possible comple-

tions, with corresponding (MLE) probabilities. If the global corpus

hasn’t seen this context, it hasn’t any say. Suppose the two local

models (customer+ship and the cache) have, but that the latter

has only seen “bill" in this context, and gives it a high probability,

while the neighboring packages note that “ship" is a possibility as

well, without discrediting “bill" as an option. These probabilities

are mixed; then we consider a shorter context (“ . ") and repeat;

here, the global model may have a contribution, such as the general

prevalence of “get" among API calls.

Algorithm 1 describes how we assign probabilities to possible

completions, while considering all relevant localities, assuming sim-

ple Jelinek-Mercer interpolation (J-M). Although this example has

only three levels of locality, our approach generally improves with

increasing project hierarchy depth; deep hierarchies are common

in our corpus. When more than two models have seen a context,

the assigned probabilities get averaged serially from global to local,

strongly favoring the more local model’s predictions.

The global model is entirely static, and doesn’t have to be an

N -gram model; it could be any combination of models (e.g., LSTM
or RNN). However, the more local models should be highly respon-

sive; e.g., if the developer suddenly switches to “Shipment.java": we

must quickly update the local model hierarchy. These performance

challenges are discussed next. Finally, The confidence scores can be

3
This applies particularly when using normal SoftMax output layers, but also when

using NCE or CNN SoftMax[19]

Bill.java

billing

Web-app

Other projects

Shipment.java

shipping

Customer.java

customer

customer . bill 99%
customer . <unk> 1%

Query:
customer . ?

customer . ship 60%
customer . bill 39%

... . get 20%

... . bill 0.1%

Figure 1: Illustrative example, inwhich a developer interacts
with various localities while working on a file.

derived from various sources, such as the language models them-

selves or even as parameters learned by an LSTM. Their values are

less important than the ordering of models (from global to local), so

simple interpolation appears a good enough choice. In fact, in the

newer implementations
4
each model just computes one probability

and confidence score for the whole sequence, after which we mix

everything (rather than mixing at every context length), with no

significant loss in accuracy.

3.1 Dynamic, Scoped, Counting
Language modeling packages, originally designed for natural lan-

guages, statically estimate N -gram probabilities a priori and store

these in model files that are read when needed. A probability and

interpolation parameter is stored with each sequence, making look-

up relatively fast for known sequences. However, updating these

models on-line is complex and time-consuming. Suppose, when a

new context is entered (or a code-change is made) the observed

frequency of “j" following “for (int" increases (e.g., because
another programmer prefers j over i as a loop counter in one partic-
ular file). Now, changing the probability of one sequence (or adding

a novel event) must affect many other sequences with the same

context. Yet code bases are perpetually evolving and developers

frequently switch files to work on; this can make fine-grained (es-

pecially the above hierarchical) models costly to compute, specially

in interactive settings.

Ideally, we would be able to rapidly alter models to fit our needs

and construct smaller models on the fly, yet not rule out static mod-

els (e.g., N -gram or RNN models pre-estimated on large external

corpora) when available. To do so, we deviate from conventional

approaches that store probabilities and instead store counts. These

allow dynamic updating, by incrementing & decrementing language

event counts. We use a trie-like data-structure, in which each token

is a node in a tree with any number of successors (leafs) allowed.

At each node, we store a number of values, such as how frequently

4
github.com/SLP-team/SLP-Core

766

Are Deep Neural Networks the Best Choice
for Modeling Source Code? ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Algorithm 1 Probability calculation in nested model

Require: global← counts on global corpus (may be empty)

Require: root← root of project

▷ Returns counters (data-structures holding the frequency of all

sequences) nested around a file, from global to local

function get_counters(file)

path ← directories from root (inclusive) to file

counters = [count(dir) for dir in path]
for i ∈ [0, |counters|) do

counters[i] -= counters[i + 1] ▷ remove more local counts

end for
return global ∪ counters ∪ cache(file) ▷ add global & file-cache

end function

▷ Returns the (J-M) probability of a sequence of tokens in a file

function get_jm_probability(file, tokens)

counters← get_counters(file) ▷ retrieve nested counters

probability← 0

for i from |tokens| - 1 to 0 do
seq = tokens[i : |tokens|] ▷ start with shortest sequence

context = tokens[i : |tokens| − 1] ▷ may be empty

p← 0

for all c ∈ counters do
if context < c then continue

end if
p = (p + c.freq(seq)/c.freq(context))/2 †

end for
probability = (probability + p)/2 †

end for
probability += 1/|V | ▷ add vocabulary base-rate

return probability

end function
†
Simple J-M smoothing amounts to averaging with other coun-

ters and context lengths. Technically no averaging is used for

the first model that returns an observation; omitted for brevity

it occurs as a context to other tokens, as well as its successors in a

sorted array. All tokens are pre-translated using a vocabulary that

is either dynamically constructed or pre-computed. As an optimiza-

tion, any sequence of tokens is initially stored as a simple array

with an occurrence; only if multiple successors are observed for the

sequence is it promoted to a full-fledged node. This greatly reduces

the memory footprint of our models (which generally require more

memory than conventional probability-based models) since many

long sequences of tokens are singular appearances in source code

(similar to how many tokens are rarely seen, i.e., Zipf’s law).
With nested scopes, each scope has it’s own set of counts, stored

in a trie. This allows quick switching of scopes, or creation of new

scopes. In most cases, we have between one and 5 nested tries.

It’s quite efficient: Typically, to close one file, and go to another, it

takes only a few milliseconds. These nested tries allow probabilities

and confidences to be computed by cumulating the various counts

stored. Although this makes modeling slightly slower than using

pre-computed probabilities in the static case, our model is still able

to answer queries in microseconds and delivers all the benefits of

dynamicity. Furthermore, we memoize the top-2n successors at the

most frequently seen nodes for prediction tasks: these are re-scored

to get n ranked suggestions in micro-seconds at prediction time

and the memoization is flushed if a change has been detected to

the trie node (e.g., a context-switch). Finally, this choice of model

achieves two additional benefits:

• Count-based models allow any choice of models after-the-

fact, which means we can switch out smoothing methods

and many other models that can work on counts of data

(e.g., skip-gram models, perhaps even neural networks)

• This model can represent any change granularity. Recent

bug-detection work has built models on snapshots at one

month apart and tested on the ensuing changes until the

next snapshot [31] in order tomake the computation tractable;

the models in this work can be updated with every commit

from a project’s inception and run in the order of minutes

across thousands of commits, which may also be beneficial

for modeling code changes [32] in code reviews [16].

4 EVALUATION METHODOLOGY
We use Allamanis et al.’s Giga-token corpus [4] which collects over

14 thousand popular Java projects from Github
5
(sans forks). We

also use the original partition of this data into train (75% of projects)

and test (25% of projects) sets.

For base-lining, we focus on a 1% subset of the corpus, since

some prior models (specially deep learning) don’t scale well. We

took 1% of train and test projects from the original split, and further

took 1/3% of the projects (from the train-split, non-overlapping) to

a validation corpus for the neural networks. The corpus statistics

are shown in table Table 1.

Table 1: Corpus statistics as reproduced from [4], full corpus
and 1% train/test/validation splits.

Full corpus Train Test Valid
Projects 14,317 107 38 36

Files 2,230,075 13,751 8,269 7,227

Tokens 1,602M 15.98M 5.3M 3.8M

To our knowledge, our 16M token training corpus is the largest

yet used to train deep learning models of source code. To make

training computationally feasible, we fix the vocabulary for the

experiments involving deep learning models (but not in our other

experiments) by removing tokens seen less than 5 times in the

training data and replacing these (and any novel tokens in the val-

idation and test data) with a generic unknown token. This limits

the vocabulary to 74,046 tokens, comparable to prior work using

deep learning [13, 38]. This vocabulary limit is NOT needed for ex-

periments not involving deep learning models; our nested dynamic

counting models can easily handle much larger vocabularies. Later,

on evaluation, we relax the vocabulary limits to show that this limit

falsely inflates modeling performance of all models.

5
Retrieved corpus statistics deviate slightly from those reported in the original work.

767

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Vincent J. Hellendoorn and Premkumar Devanbu

4.1 Metrics
We evaluate both intrinsic (using entropy, Section 2.1) and extrinsic

(using code suggestion) performance of each of our models. In the

suggestion task, the model provides an ordered list of suggestions

for each token in the file given the context; we collect the rank of

the true next token in the file from this list. We also collect the top

10 predictions from each model, and compute the top-k accuracy

(the fraction of times the correct suggestions appears in the top

k suggestions) for k ∈ 1, 5. We mainly report Mean Reciprocal

Ranking (MRR), a summary metric which calculates the average,

over all predication points, of the reciprocal of the correct sugges-

tion’s rank (or 0 if there are no correct suggestions). This metric

balances prediction accuracy across various k , and can intuitively

be interpreted as the inverse of the average expected position in

the rank list. For instance, a MRR value of 0.5 suggests the correct

suggestion can be expected at position 2 in the prediction list on

average. Evaluation on other extrinsic tasks, like bug prediction

[31] or variable renamings [2] is left for future work.

Partially due to the large number of samples, even minor im-

provements (e.g., 0.01 bits) in entropy can be statistically significant

in language modeling. For all of our comparisons we used a paired,

two-tailed t-test; we report when this was not the case. The same

applies to prediction accuracy scores, which are strongly inversely

correlated with entropy. Even if small, improvements in terms of

entropy can help many applications, and shed more light on the

repetitive nature of source code. Improving prediction accuracy

is practically important, and in our case also comes with faster

implementations. Thus we expect that our mixed-scope dynamic

models would be the preferred choice when token-level language

models are needed. We report effect sizes using Cohen’s D.

4.2 Model Configurations
Tu et al.’s cache model is compared with our cache implementa-

tion, as our approach to mixing differs both in terms of choice of

interpolation parameters and in terms of choice of the models to be

mixed. For consistency with prior work, we use Modified Kneser-

Ney 3-gram smoothing for the global model and a 3-gram back-off

cache model, mixed with a dynamically computed concentration

parameters as in [36]. We further vary the N -gram order of both

components from 1 through 6.

White et al. found that Recurrent Neural Network works quite

well for modeling source code [38]. We replicate their experiments

using the Recurrent Neural Network LanguageModel toolkit (RNNLM
6
)

[25], which includes a hidden layer size of 300 and 1,000 direct con-

nections. More recent work has demonstrated that LSTM networks

achieve superior results for source code [13], similar to natural lan-

guage. We adapt Tensorflow’s [1] LSTM code for our purposes, test-

ing two configurations corresponding to the “Small"
7
and “Medium"

configurations reported in both Tensorflow’s implementation
8
and

various other work.

Most notably, the LSTMs embed their vocabulary into a state-

based high-dimensional Euclidean space, whereas RNNLM simply

6
www.fit.vutbr.cz/~imikolov/rnnlm/

7
with two changes, see next paragraph

8
https://goo.gl/Urgrpy

one-hot encodes its vocabulary. Embedding allows faster and po-

tentially more accurate training, as words are encoded in lower-

dimensional, potentially semantically more meaningful vectors. For

this reason, we slightly alter the Small configuration to closely

match White et al.’s RNN configuration, reducing it to a single tier

and increasing its hidden layer size to 300 neurons. This allows us to

interpret the differences in performance between the RNNLM and

the LSTM-300 models as the gain achieved by embedding and using

LSTM units. The Medium configuration is left as is, and uses two

tiers of 650 hidden-layer neurons as well as drop-out regularization

during training. This model was the largest that could be trained on

our corpus in reasonable time (approximately three days), requiring

39 passes over the 16M tokens of training data at an average of ca.,
2,500 words per second on a Tesla K40c GPU.

Finally, for extrinsic evaluation purposes we compare and com-

bine ourmodels with the two LSTM configurations (themost power-

ful benchmarks). Here, we restrict ourselves to the first one million

tokens in the test data, storing the top ten suggestions for each

model in a file and merging the suggestion lists after the fact. We

encountered slight irregularities in Tensorflow’s output that led

it to occasionally skip predicting a token and accommodated our

code accordingly; these events accounted for less than 1% of test

samples and are unlikely to distort the results.

4.3 Test Settings
We evaluate the models in 3 different settings: Static, similar to prior

work; Dynamic, which favours deep learning, and maintenance,
which arguablymost resembles developers’ normal mix of browsing

& coding activities.

Static tests: By static we mean training on a fixed training corpus,

and then evaluating the performance on a separate test dataset.

Prior work evaluated models in intra-project and cross-project

settings [4, 17, 26, 36, 37]. We begin in a setting similar to Allama-

nis et al., on our 1% sub-sets, training on one set of projects and

testing on a disjoint part of the corpus. Here we demonstrate the

performance of our cache model in comparison to Tu et al., and the
baseline performance of the recurrent neural networks. We later

refer back to this setting when we discuss the impact of vocabulary

constraints that were frequently used in prior work.

Dynamic tests: While our static tests are strictly cross-project, in

practice, source code files are rarely modified in isolation. Our study

subject projects comprise many nested directories. We use a cache

to exploit the nested context, at test time, in a rather limited way: if

the cache grows too large, performance can actually decrease [36],

as the cached information becomes less locally relevant. Dynamic
models deal with this problem differently: they update with all

information available at test time, without any cache-model-type

“forgetting". This provides considerable gains for neural network

models [38]. This approach does not suffer from the too-large cache

problem discussed above, because they do not mix a local and

global model – information is added to the global model directly;

however, these models don’t truly leverage the full potential of

scoped locality, as we shall see.

Our second test setting models projects in a dynamic fashion,

allowing the models to observe the testing corpus left-to-right,

and absorb information to their training data as encountered. The

768

www.fit.vutbr.cz/~imikolov/rnnlm/
https://goo.gl/Urgrpy

Are Deep Neural Networks the Best Choice
for Modeling Source Code? ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

RNN/LSTM models are dynamically updated by training once on

each new sample with a learning rate fixed to 0.1 for the RNN and

0.05 for the LSTM models (this yielded slightly better results than

0.1). The neural network models do not at present have the ability

to cache.

Software maintenance tests: Finally, we evaluate the model

performance in a software maintenance setting, where a developer

explores code as she does her work. In this “maintenance" setting,

the full test project is available for training minus only the file to

be modeled. The neural networks cannot take full advantage of this

situation without constructingmanymodels, neither can traditional

language modeling tool-kits. Our dynamic models can however,

quickly update nested counts on-the-fly. Thus, our nested models

recursively accumulate the local repetitions from all nested levels

of the project, down to the target file. As we shall see, performance

in this final setting is best-in-class, and has ramifications for code

synthesis [14, 30], fault localization [8, 31], code naturalization [2]

and many real-world code suggestions settings [15, 29].

5 RESULTS
Our first experiments clarify our choice of base N -gram model

design, including a replication of the Tu et al. [36] cache. Then,
we compare the Tu et al. cache with our nested cache models in

both an intrinsic and extrinsic setting. We next compare our static

and dynamic models with RNN and LSTM models, first in a closed-

vocabulary setting and then, following an analysis of the impact

of such a constraint, in an unbounded vocabulary setting. We fur-

thermore show mixture results between these classes of models, in

which we demonstrate the mutual performance and complementar-

ity of LSTM and N -gram models, particularly in terms of entropy.

Our LSTM models were trained using Tensorflow[1] on a Tesla

K40c GPU with 12GB graphics memory; the RNN was trained using

a single core of an Intel Xeon CPU and all other evaluations were

run on an Intel i7-4710MQ processor with up to 24GB of RAM.

5.1 Initial Experiments
We implemented the three smoothing methods described in Sec-

tion 2.2, JM, WB and ADM, also using Tu et al.’s code to evaluate

MKN. Of these, MKN is best suited for natural language, followed

by ADM which we found performed nearly as well as MKN on

a one-billion token corpus from [11], as well as on several small

corpora. MKN (and sometimes WB) have been used in most prior

work. We tried various lengths of N -grams for our models and

the JM model at n = 6 yielded a durable optimum for both the

plain and cache models, as shown in Figure 2, with higher orders

yielding little to no gain past this point. Thus, we use JM-6 models

in our experiments. Unfortunately, the SRILM toolkit used by Tu

et al. [36] did not work for orders 7 or higher, due to problems in

the discounting. Nonetheless, the trend from 4 through 6-grams

suggests that we should expect little to no improvement beyond

the 6-gram level.

There are some notable patterns. For one, with natural language,

cache-less N -gram models beyond the 3 or 4-gram level achieve

minimal gains, and only with highly aggressive smoothing to lower

orders; MKN is typically capped at 5-grams where it can achieve

minor improvements over 3-grams with large training corpora. For

JM

WB
ADM

MKN

JM

ADM
WB

MKN

3

4

5

6

7

8

9

10

1 3 5 7 9

En
tr

op
y

(b
it

s)

Order

Figure 2: Modeling performance (entropy) obtained with
various smoothers for N -grams plotted against order of N .
Models without cache (top) and with cache (bottom) largely
follow the same pattern, with Jelinek-Mercer smoothing
outperforming more refined alternatives.

source code MKN behaves likewise, with both unbounded (as used

here), or restricted vocabularies (as in White et al. [38]). Cache
performance degrades notably with higher orders.

This pattern does not obtain with less aggressive smoothers,

especially JM. PerhapsMKN is too aggressive for source code, where

longer contexts seem to contain more useful information. Prior

work has used 3-gram Kneser-Ney smoothed models for source

code: but this model scores about 0.56 bits of entropy worse than JM-

6 in our experiments (0.40 bits for the cachemodel). Interestingly, JM

is very simple smoothing approach; perhaps further improvements

could arise from more software-appropriate smoothing methods.

Many previous approaches report reductions in entropy by using

some measure of local state (hidden, explicit or both) into their mod-

els, reporting improvements over simple N -gram models. Tu et al.’s
cache model [36] provides an elegant way of incorporating local

state, but has unfortunately not usually been explicitly compared.

We hope that the availability of our tool, with implementations, can

help set the standard for N -gram baselines in work on modeling

of source code. Finally, we briefly note that all these results did

replicate in the restricted vocabulary setting that we explore in

section Section 5.3, which was used in most related work.

5.2 Cache Models
We now expand the idea of caching, extending it to nested scopes,
mixed as described in Section 3. Nested models only apply when the

models have a view of the context of the file to be modeled, either

incremental or full. Thus, we demonstrate results in two settings:

dynamically updated models, which add each file to their training

corpus after modeling it, and software maintenance models, which

are allowed to see each file in the project excluding the one to be

modeled, as well as the nested, scoped directory hierarchy in which

the test file occurs.

In Figure 3 we show the results. The “Flat" models (without

and with cache) treat all seen files as a single (“flat") corpus. They

show higher entropies of 5.3-5.5 bits and 3.3-3.4 respectively; MRR

performance is around 0.6 without cache, and rises to 0.7 with cache.

However, hierarchy-aware nested models substantially boost model

& prediction performance: Entropy decreases by about 2 bits for

the cache-less model, and about 1 bit otherwise, with concomitant

769

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Vincent J. Hellendoorn and Premkumar Devanbu

5.54

3.65
3.43

2.57

5.30

2.94
3.32

2.23

0

1

2

3

4

5

6

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Flat Nested Flat Nested

No Cache With Cache

En
tr

o
p

y
(b

it
s)

A
cc

u
ra

cy
 (

%
 M

R
R

)

MRR (dynamic) MRR (maintenance)

Entropy (dynamic) Entropy (maintenance)

Figure 3: Entropy and MRR prediction performance in a
dynamic and software maintenance setting for both non-
nested and nested models. Each model is shown with and
without a cache component.

increases in MRR. Remarkably, the nested model without a local

file cache outperforms the non-nested model with cache in the

maintenance setting. This suggests that information in nearby files

is almost as useful as information from the same file. Prediction

accuracy also increases with nested models, boosting maintenance

setting MRR to a best-in-classs 78.8% (and 76.2% in a dynamic

setting); again, with very good (timing) performance. Again, we

emphasize that improvements are statistically significant (p ≪
1e−10, small effect sizes in general, e.g., 0.18 between cache and

nested cache and 0.29 between plain and nested plain).

5.3 Implicit Models
BaselineWe compare our baseline JM-6 smoothed N -gram models

(with and without cache) with the RNNLM, and LSTM implementa-

tions in table Table 2. Please note, in this section only, we restrict the

vocabulary to 74,064 words as specified in Section 4. Consequently,

the overall entropy scores are deceptively lower than in previous

sections, even for the N -gram model; we shall revisit this result

later. The RNN/LSTM models outperform the Plain N -gram model

in the static setting by upto a bit (and, (See section Section 5.1), the

KN-3 baseline used in most prior work by well over a bit). Further-

more, the LSTM/300 model outperforms the RNN baseline, despite

their similar configuration, which can be attributed to the use of

LSTM units and word embeddings in this class of model. This is

in line with prior work [13, 38]. Finally, the largest LSTM model,

which was stacked and trained with drop-out, achieves best results

in this cross-project setting. Nonetheless, the (non-nested) cache

model outperforms all of these by a margin by only incorporating

a small amount of local information (p ≪ 1e−10, Cohen’s D: 0.21
compared with LSTM/650).

The comparison between the LSTMs and cache model is com-

plicated, since both model local information at test time; the cache

model does so explicitly while the LSTM represents local state im-

plicitly in its hidden state vector. In the second setting (“Dynamic"

column), both models are allowed to dynamically update with any

content seen after modeling, making a more fair comparison. In

this setting, the plain cache model is somewhat worse than the

best LSTM (300
9
). The nested cache model, however, decisively out-

performs all other models (p ≪ 1e−10, Cohen’s D: 0.05 compared

LSTM/300).

Finally, in themaintenance setting our best model (nested cache),

scores 1.41 bits (p ≪ 0.001, Cohen’s D: 0.14 compared with dynamic

LSTM/300, the best dynamic LSTM). The deep learning models are

not applicable in the maintenance setting; testing on each file given

all other files in the nested directories of tested project would be

intractable even on this small corpus.

Table 2: Modeling results for our various baselines. The
nested models are not applicable in a cross-project setting,
and the deep models cannot at present accommodate soft-
ware maintenance settings in any tractable manner.

Model
Setting

Static Dynamic Maintenance

Plain 3.94 2.64 2.32

Cache 2.45 1.89 1.73

Nested plain – 2.28 1.85

Nested cache – 1.70 1.41

RNN/300 3.66 1.93 –

LSTM/300 3.22 1.84 –

LSTM/650 3.03 1.91 –

Mixing resultsWe now report prediction accuracy for our (nested)

N -gram models and LSTMs in isolation and, importantly, when

mixed together. First, as in prior work, we credit models for predict-

ing out-of-vocabulary words as unknown, since we use a restricted

vocabulary, and then, in the next section, report an alternative. The

mixing procedure is a simple interpolation of probability scores,

since the LSTMs do not report a confidence score with their predic-

tions (future work may investigate methods to do so). We compare

with the LSTMs, as these performed best in our previous experi-

ment, focusing specifically on the first one million tokens in the

test set for timing purposes. Each LSTM model required on average

30 hours of run-time on a Tesla K40c to generate top-10 predictions

for these test sets; our models are much, much faster.

As expected from the entropy results, (see Table 3) in the static

setting the two LSTM models beat the plain N -gram model but are

beaten by the cache model. Mixing these models yields small but

significant gain for the cache model in both intrinsic and extrinsic

terms. Our best performing models, JM-6 cache and LSTM/650 mix

best, yielding the best entropy score in a static setting (2.20 bits)

and boosting the cache’s MRR from 75% to 77% (p ≪ 1e−10 either
way, Cohen’s D: 0.04 vs., cache, 0.24 vs LSTM/650). Mixing LSTMs

and plain models all yielded significant improvements in terms of

entropy, but not in terms of prediction accuracy, suggesting the

plain model is too weak to complement the LSTMs.

In the dynamic setting, mixing the best performing models (dy-

namic LSTM/300 @ 1.73 bits and nested cache N -gram @ 1.31 bits),

gives the best combined score of 1.17 bits of entropy (p ≪ 1e−10
either way, Cohen’s D: 0.06 vs., nested cache, 0.19 vs dynamic

LSTM/300), yielding a best-in-class, token-level model for source

9
The LSTM-300 model proved more amenable to dynamic updating, possibly because

the larger model would need several passes over each new observation to update its

larger number of parameters.

770

Are Deep Neural Networks the Best Choice
for Modeling Source Code? ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 3: Isolated (first row and column) and mixture (inter-
section of models) MRR prediction results for various cross-
combinations of models from two categories: deep learning
networks and n-gram networks.

Static setting

LSTM
n-gram

– Plain Cache

– 58.0% 75.7%

LSTM/300 66.1% 65.9% 76.1%

LSTM/650 67.9% 67.3% 77.3%

Dynamic setting

LSTM
n-gram

– Plain Cache

– 81.8% 86.2%
LSTM/300 82.0% 84.6% 85.7%

LSTM/650 80.0% 83.3% 84.8%

code, suppressing the information content of source code to around

1 bit per token! Notably, unlike [6, 24, 29, 33] our approach is

language-agnostic. However, the prediction scores don’t improve

as expected; the cache model appears to dominate the LSTM so that

simple mixing does not help. In the next section, we will see how a

more realistic scenario actually shows beneficial mixing.

5.4 Vocabulary Use for Source Code
The excellent model combinations above (with single-bit entropy

scores, and unprecedented prediction accuracy) come with a big

caveat (also applicable to prior work): this is due to closed, limited
vocabularies. This arises from a convention in natural language to

train using a finite vocabulary on a training corpus and close this

vocabulary at test time. Oddly enough, the term “open vocabulary"

refers to the practice of closing the vocabulary at test time, but

treating new tokens as unknown tokens rather than skipping them

entirely. In source code, limiting vocabulary on training data is

arguably inappropriate. Developers introduce new vocabulary in

new scopes and use them in contained scopes. Code models must

capture this.

Consider Figure 4, showing the (misleading) lift in performance

(y-axis) with artificially limited vocabularies, which “cuts off" events

seen just a given number of times (x-axis) in the training data (solid

lines) and are closed at test time (replacing all unseen events in

the test data with the same generic unknown token), compared to

the best estimate of the “true" performance (flat dashed lines), in

which the vocabulary is never closed. For many settings, including

code suggestion, only the latter curve matters: predicting tokens as

“unknown" at test time is unhelpful.

Several patterns stand out from Figure 4: the plain model jumps

substantially in performance when the vocabulary size decreases

even just a little. A similar effect can be observed for the cachemodel

from just closing a vocabulary at test time. Crucially, however, the

plain model cannot attain the performance of the (dotted) cache

baseline, even with a closed vocabulary and a count cut-off that

reduces the vocabulary size by two-thirds (i.e., cutoff ≤ 5). We thus

conclude two things: 1.) reducing vocabulary size and/or closing it

1
2
3
4
5
6
7

0 1 2 3 4 5

En
tr

o
p

y
(b

it
s)

Unknown cutoff

Baseline Plain Baseline Cache

Closed Plain Closed Cache

50%

60%

70%

80%

0 1 2 3 4 5

M
R

R
 (

%
)

Vocabulary Cut-off

Open Plain Open Cache

Closed Plain Closed Cache

Figure 4: Vocabulary cut-off (minimum number of times an
event must be seen in training data to be included in the
vocabulary) vs., performance on two mainstream metrics
(solid lines), as well as truly open vocabulary at test time
(dashed lines).

at test time causes substantial, but misleading inflation in modeling

and prediction performance, and 2.) a cache component elegantly

deal with the vocabulary innovation problem while requiring no

artificial limits.

Ramifications for Deep Learning: the LSTM and RNN models

struggle with vocabularies larger than those we used. A recent

investigation of natural language which heavily optimized perfor-

mance of LSTM models required over one Tesla K40c GPU year to

achieve optimal performance with a vocabulary of less than 800K;

although our 1% subset has a vocabulary of 200K, the full dataset’s

vocabulary exceeds 12M. Training our biggest LSTM models with

just 76K vocabulary took many days (compared to ca., 15 seconds
for the explicit models). Furthermore, without using character-level

models (which so far don’t work as well as word-level models in

NLP), opening the vocabulary remains impractical.

Next, we repeat the experiments in Section 5.3, but without

giving credit to the LSTM models for predicting an unknown token.

For entropy, the LSTM models are assigned the vocabulary base-

rate score (corresponding to 17.63 bits of entropy in this setting)

for each encountered unknown token, exactly as the plain N -gram

model (with our smoothing approach). TheN -grammodels here are

trained with no vocabulary constraints and tested similarly, thus

never predicting an unknown token. This setting can be interpreted

as one in which the LSTM models are trained as an aide to N -

gram models; where the former have the upper-hand in terms of

static modeling capacity, the latter contribute dynamic insights

that can be rapidly obtained and integrated at test time, as well

as greater vocabulary range at training time to account for less

common events. The mixture works as before, only defaulting to

the N -gram model when the LSTM predicts the unknown token.

The prediction results are shown in Table 4. As can be seen, the

LSTM model’s numbers are much worse, as are the plain n-gram

771

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Vincent J. Hellendoorn and Premkumar Devanbu

model’s. This does not apply to the cache-based n-gram model (in

the static setting) or to the nestedmodel (in the dynamic setting): the

nested cache model loses only 4.4% points, still achieving an MRR

of 81.8% (and top-1 accuracy of 75.9%)! Interestingly, the mixtures

no longer improve each others performance in all but the static,

plain model. In terms of entropy performance, however, we still find

substantial gain: the best models prove remarkably complementary,

decreasing each other’s entropy scores from 1.92 (nested cache)

and 3.93 (dynamic LSTM/300) to 1.25 bits per token (p ≪ 1e−10
either way, Cohen’s D: 0.21 vs., nested cache, 0.62 vs dynamic

LSTM/300). This is not only the best ever-reported entropy score

without vocabulary limit, but also astonishingly close to themixture

of these same models with vocabulary limits! This due to a high

degree of complimentarity: while the LSTM predicts the unknown

token (costing it 17.63 bits), the nested cache has an average entropy

of about 0.72 bits, well below its own average. Contrariwise, on the

other tokens the LSTM outperforms the nested cache by ∼0.23 bits
(and by over 1 bit on tokens that the nested cache assigns 4 bits

or less). These models excel in different contexts and contribute

mutual robustness. This complementary potential is reflected in

the standard deviations of entropy scores for the LSTM (6.28 bits),

nested cache (s.d.: 3.78 bits) and themixture (2.37 bits) which has the

most narrow range of all. Thus, we see substantial complementarity

in terms of intrinsic, modeling performance.

Table 4: Isolated (first row and column) and mixture (inter-
section of models) MRR prediction results for various cross-
combinations of models from two categories: deep learning
networks and n-gram networks.

Static setting

LSTM
n-gram

– Plain Cache

– 51.1% 69.3%
LSTM/300 56.0% 64.3% 67.5%

LSTM/650 57.4% 65.4% 68.2%

Dynamic setting

LSTM
n-gram

– Plain Cache

– 77.1% 81.8%
LSTM/300 63.8% 78.7% 78.7%

LSTM/650 62.1% 77.0% 77.2%

6 DISCUSSION
Deep Learning vs. Count Models DL models are now used ev-

erywhere, including for modeling of source code [3, 37]. However,

DL models use a great many parameters, require extensive configu-

ration and are also often heavily tuned on the task at hand.
10

In addition, they are often compared with rather simple baslines,

which casts doubt upon any (often minor) improvements observed.

In the NLP community, Omer et al. conducted various investiga-

tions into word-embeddings (semantic representations of words)

and found that state-of-the-art neural-network models perform

similarly to simple matrix-factorization models provided the latter

10
See also http://blog.dennybritz.com/2017/01/17/engineering-is-the-bottleneck-in-

deep-learning-research/ for a discussion of this phenomenon.

were enriched with just a few hyper-parameters [23]. Our work

paints a similar picture: RNN/LSTM fail to beat a well-calibrated

cache model (even sans tuning on validation data).

We do find, however, that RNN & LSTM complement our dy-

namic mixed-scope model! While high training costs and the diffi-

culty of incorporating local information make DL insufficient on its

own, it can provide semantic insights beyond the reach of simpler

models. We encourage future work to focus on fair comparisons

between deep and simpler models and optimize both in conjunction.

LSTM probabilities: We found LSTM model predictions to be

often quite polarized: the correct next tokens often scored very

high or very low. This might arise from the SoftMax output layer,

which can accentuate differences. This partially explains the posi-

tive mixture results; the n-gram models are more conservative in

their estimates, rarely either ruling out events entirely or having

high confidence in an observation.

We studied the ca., 5.5% of cases in which the LSTM-300 assigned

100% probability to its prediction and found that 99.93% of these

were correct. This may help when applying neural networks to

study program properties: in this line of work, soundness is often a

strong requirement and neural networks cannot as yet guarantee

this. However, the LSTM’s inclination to assign high probabilities

only in cases of great certainty can prove a very helpful property

in generating samples for search-based (SBSE) methods.

Training corpus size: Current LSTM models can’t manage the

largest corpus [4] (Size exceeding 1B tokens), but our N -gram mod-

els can do so handily. We trained a 6-gram model on the full 75%

training data of the corpus from Table 1, requiring ca., 3 hours and
12GB of RAM, and tested it on the same test data. The nested cache

model on this corpus shows a small but significant gain of 0.06 bits

and 0.4% MRR.

7 CONCLUSION
We have made the following contributions.

• We introduce a dynamically updatable, nested scope, un-
limited vocabulary count-based N -gram model that signifi-

cantly outperforms all existing token-level models, includ-

ing very powerful ones based on deep learning. Our model

is far faster than the deep learning models. Our nested

cache model achieves an MRR performance of 0.818, with

unlimited vocabulary (0.85 with limited vocabulary) which

is best-in-class.. Our work illustrates that traditional ap-

proaches, with some careful engineering, can beat deep
learning models.

• We show that our count-based approach “plays well" with

LSTM models, and yields even better performance in com-

bination, particularly in terms of entropy scores where

the best mixture achieving 1.25 bits of entropy per token

without constraining the vocabulary.
• Our detailed evaluations reveal some new observations:

(1) Jelinek-Mercer smoothing outperforms smoothing ap-

proaches used in prior work.

(2) Limiting vocabularies artificially and misleadingly

boosts intrinsic performance, without boosting actual

performance on the suggestion task.

772

Are Deep Neural Networks the Best Choice
for Modeling Source Code? ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). http://tensorflow.org/ Software available from tensorflow.org.

[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ACM, 281–293.

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional

Attention Network for Extreme Summarization of Source Code. In Proceedings
of The 33rd International Conference on Machine Learning. 2091–2100.

[4] Miltiadis Allamanis and Charles Sutton. 2013. Mining source code repositories

at massive scale using language modeling. In Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 207–216.

[5] Miltiadis Allamanis, Daniel Tarlow, AndrewDGordon, and YiWei. 2015. Bimodal

Modelling of Source Code and Natural Language.. In ICML, Vol. 37. 2123–2132.
[6] Pavol Bielik, Veselin Raychev, and Martin T Vechev. 2016. PHOG: probabilistic

model for code. In Proceedings of the 33nd International Conference on Machine
Learning, ICML. 19–24.

[7] Marcel Bruch,MartinMonperrus, andMiraMezini. 2009. Learning from examples

to improve code completion systems. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. ACM, 213–222.

[8] Joshua Charles Campbell, Abram Hindle, and José Nelson Amaral. 2014. Syntax

errors just aren’t natural: improving error reporting with language models. In

Proceedings of the 11th Working Conference on Mining Software Repositories. ACM,

252–261.

[9] Ciprian Chelba, David Engle, Frederick Jelinek, Victor Jimenez, Sanjeev Khudan-

pur, Lidia Mangu, Harry Printz, Eric Ristad, Ronald Rosenfeld, Andreas Stolcke,

and others. 1997. Structure and performance of a dependency language model..

In EUROSPEECH.
[10] Ciprian Chelba and Frederick Jelinek. 1998. Exploiting syntactic structure for

language modeling. In Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational
Linguistics-Volume 1. Association for Computational Linguistics, 225–231.

[11] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp

Koehn, and Tony Robinson. 2013. One billion word benchmark for measuring

progress in statistical language modeling. arXiv preprint arXiv:1312.3005 (2013).
[12] Stanley F. Chen and Joshua Goodman. 1996. An Empirical Study of Smooth-

ing Techniques for Language Modeling. In Proceedings of the 34th Annual
Meeting on Association for Computational Linguistics (ACL ’96). Association
for Computational Linguistics, Stroudsburg, PA, USA, 310–318. DOI:http:
//dx.doi.org/10.3115/981863.981904

[13] Hoa Khanh Dam, Truyen Tran, and Trang Pham. 2016. A deep language model

for software code. arXiv preprint arXiv:1608.02715 (2016).
[14] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark

Marron, Subhajit Roy, and others. 2016. Program synthesis using natural lan-

guage. In Proceedings of the 38th International Conference on Software Engineering.
ACM, 345–356.

[15] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn.

2015. Cacheca: A cache languagemodel based code suggestion tool. In Proceedings
of the 37th International Conference on Software Engineering-Volume 2. IEEE Press,

705–708.

[16] Vincent J Hellendoorn, Premkumar T Devanbu, and Alberto Bacchelli. 2015.

Will they like this?: evaluating code contributions with language models. In

Proceedings of the 12th Working Conference on Mining Software Repositories. IEEE
Press, 157–167.

[17] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

2012. On the naturalness of software. In Software Engineering (ICSE), 2012 34th

International Conference on. IEEE, 837–847.
[18] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.

[19] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.

2016. Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410
(2016).

[20] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-based

statistical translation of programming languages. In Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software. ACM, 173–184.

[21] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015. Visualizing and Under-

standing Recurrent Networks. arXiv preprint arXiv:1506.02078 (2015).
[22] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2015. Character-

aware neural language models. arXiv preprint arXiv:1508.06615 (2015).
[23] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix

factorization. In Advances in neural information processing systems. 2177–2185.
[24] Chris J Maddison and Daniel Tarlow. 2014. Structured Generative Models of

Natural Source Code.. In ICML. 649–657.
[25] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-

danpur. 2010. Recurrent neural network based language model.. In Interspeech,
Vol. 2. 3.

[26] Anh Tuan Nguyen and Tien N Nguyen. 2015. Graph-based statistical language

model for code. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE Inter-
national Conference on, Vol. 1. IEEE, 858–868.

[27] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical

statistical machine translation for language migration. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering. ACM, 651–654.

[28] Thanh Nguyen, Peter C Rigby, Anh Tuan Nguyen, Mark Karanfil, and Tien N

Nguyen. 2016. T2API: synthesizing API code usage templates from English

texts with statistical translation. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 1013–

1017.

[29] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.

2013. A statistical semantic language model for source code. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 532–542.

[30] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: synthesizing

what I mean: code search and idiomatic snippet synthesis. In Proceedings of the
38th International Conference on Software Engineering. ACM, 357–367.

[31] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto

Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In

Proceedings of the 38th International Conference on Software Engineering. ACM,

428–439.

[32] Baishakhi Ray, Meiyappan Nagappan, Christian Bird, Nachiappan Nagappan,

and Thomas Zimmermann. 2014. The Uniqueness of Changes: Characteristics and
Applications. Technical Report. Microsoft Research Technical Report.

[33] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with

statistical language models. In ACM SIGPLAN Notices, Vol. 49. ACM, 419–428.

[34] Romain Robbes andMichele Lanza. 2008. How program history can improve code

completion. In Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering. IEEE Computer Society, 317–326.

[35] Juliana Saraiva, Christian Bird, and Thomas Zimmermann. 2015. Products,

developers, and milestones: how should I build my N-Gram language model. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 998–1001.

[36] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the localness

of software. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 269–280.

[37] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.

2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[38] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshy-

vanyk. 2015. Toward deep learning software repositories. In Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE, 334–345.

773

http://tensorflow.org/
http://dx.doi.org/10.3115/981863.981904
http://dx.doi.org/10.3115/981863.981904

	Abstract
	1 Introduction
	2 Background
	2.1 Language Models & Performance
	2.2 Explicit Language Models
	2.3 Implicit Language Models

	3 Our Approach
	3.1 Dynamic, Scoped, Counting

	4 Evaluation Methodology
	4.1 Metrics
	4.2 Model Configurations
	4.3 Test Settings

	5 Results
	5.1 Initial Experiments
	5.2 Cache Models
	5.3 Implicit Models
	5.4 Vocabulary Use for Source Code

	6 Discussion
	7 Conclusion
	References

