
ECS 160—Devanbu-Programming

Defensive Programming–Outline

1. Asserts, and their use

2. What is an assert?

3. How does it work?

4. Examples of use

5. Where not to use asserts

6. General Tips on defensive programming

– Typeset by FoilTEX – c©, P. Devanbu 1

ECS 160—Devanbu-Programming

What is an assert?
An assert is a way of specifying something that should be
true at a certain point in a program.

Example: What can go wrong?

void strlen(char *inp) {
int i=0;
while(inp[i] != 0) i++;
return (i);

}

Example: Is this a good fix??

void strlen(char *inp) {
int i=0;
if (inp == (char *) NULL) {

fprintf(stderr,’’ NULL pointer argument!’’);
exit(1);

}
while(inp[i] != 0) i++;
return (i);

}

So how about?

1. Run Time efficiency?
2. Malformed strings (no null termination?)

– Typeset by FoilTEX – c©, P. Devanbu 2

ECS 160—Devanbu-Programming

Another Fix

void strlen(char *inp) {
int i=0;

#ifdef DEBUG
if (inp == (char *) NULL) {

fprintf(stderr,’’ NULL pointer argument!’’);
exit(1);

}
#endif

while(inp[i] != 0)
#ifdef DEBUG

if (i > MAXSTRINGSIZE) {
fprintf(stderr, ‘‘String is too long’’);
exit(1);

}
#endif

i++;
return (i);

}

If something goes wrong, will these messages be
helpful?

What additional information would be helpful?

– Typeset by FoilTEX – c©, P. Devanbu 3

ECS 160—Devanbu-Programming

Typical definition of assert:
#ifdef DEBUG
#define asssert(EXP) \

(void)((EXP) || (assert(#EXP, FILE , \
LINE), \

0))
#else
#define assert(EXP) ((void) 0)
#endif
void assert(const char *cond, const char *fn,

int ln) {
fflush(stdout);
fprintf(stderr,‘‘%s failed at File: %s, Line: %d’’,

cond, fn, ln);
fflush(stderr);
exit(1);
}

/* —Version of strlen with assert— */
void strlen(char *inp) {

int i=0;
assert(inp != (char *) NULL);
while (inp [i] != 0) {

i++;
assert(i <= MAXSTRINGSIZE);

}
assert(inp[i] == 0);
return (i);

}

– Typeset by FoilTEX – c©, P. Devanbu 4

ECS 160—Devanbu-Programming

Where to use asserts

To validate arguments in subroutines: either invalid arguments,
or cases where behaviour is undefined

RETURNTYPE myFun(TYPE1 arg1, ...TYPEn argn) {
assert (. . .some condition about arg1. . . argn);
. . .
. . .
. . .

}

To validate return value from subroutines

RETURNTYPE myFun(TYPE1 arg1, . . . TYPEn argn) {
. . .
. . .
. . .
assert (. . . some condition about EXP);
return ((RETURNTYPE) EXP);

}

Use asserts in loop bodies to avoid possible pointer overflow

Use asserts at the bottom of loops to ensure correct termination
of loops Why?

Use asserts to catch incomplete switch statements How?

– Typeset by FoilTEX – c©, P. Devanbu 5

ECS 160—Devanbu-Programming

asserts are not the same as ERRORS!!

Some run time errors have to be explicitly handled, and are not
good candidates for asserts. Are these good uses of asserts?

char *strdup(char *str) {
assert(str != NULL); /* USE 1 */
strNew = (char *) malloc(strlen(str) +1);
assert(strNew != NULL); /* USE 2 */
strcpy(strNew, str);
return(strNew);

}

FILE *safeOpen4Write(char *fileName) {
FILE *newFile;
assert(fileName != NULL); /* USE 3 */
newFile = fopen(fileName, ‘‘w’’);
assert(newFile != NULL); /* USE 4 */
return(newFile);

}

void getLine(char *bufPtr) {
int ch;
do

assert((ch =getchar()) != EOF); /* USE 6 */
while ((*bufPtr++ = ch) != ’\n’);

}

How do we decide what is an assert and what is an error to be

handled?

– Typeset by FoilTEX – c©, P. Devanbu 6

ECS 160—Devanbu-Programming

Asserts in Java

Form 1: assert Expression1

Form 2: assert Expression1 Expression2

Run Like this:

java -ea:class1 -da:class2 mainclass

Recommended uses:

1. Internal/Class Invariants (e.g., doubly-linked list,
balanced tree)

2. Post conditions of public or private methods

3. Pre-conditions of private methods

4. Necessarily unreachable

5. Termination Condition

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

– Typeset by FoilTEX – c©, P. Devanbu 7

ECS 160—Devanbu-Programming

More tips on defensive Coding

1. Give code lots of opportunities to fail. Example:
before freeing memory, put trash in it. Likewise
right after mallocing, or reallocing. What kind of
trash??

2. Force infrequent occurrences to happen frequently in
your code. Example: Throw in artificial operations
that force data structures into strange states, and
cancel them out if necessary.

3. Inspect, inspect, inspect!!! Inspect every path! And
don’t forget “||” and “&&” short cuts.

4. Read code a lot even before compiling Your goal
should be to write code that compiles first time
without errors.

– Typeset by FoilTEX – c©, P. Devanbu 8

ECS 160—Devanbu-Programming

More Tips

For proper information hiding, and abstractness, a
function interface should deal with error conditions
and normal functioning distinctly

1. For C++, use exceptions. Don’t return -1, NULL etc, throw
an exception.

2. In C, use return code to indicate status of processing. Use
a reference or pointer value to return actual argument. how
would malloc be done right?

Use the simplest algorithm adequate for the job many
of the searches can be linear search (rather than
binary).

Don’t use “fancy tricks”. Such as using memset(&i,
0, 3*sizeof(int)) to clear a set of variables,
obscure initialization tricks, etc.

– Typeset by FoilTEX – c©, P. Devanbu 9

ECS 160—Devanbu-Programming

Conclusion: “Attitude”s of a super
programmer

1. Bugs don’t go away nicely. Which is it: Not a bug?
Already fixed? Still exists? Not reproduced?

2. Bugs are very patient. Postponing bug fixes always
costs more money.

3. Root them bugs OUT! Always ask “why is this bad
value being passed here?” Keep chasing back.

4. Don’t let them hide! Always ask, “Can I rewrite my
code so that compiler could have caught this bug
?”

5. Being Assertive Always ask, “what assert would
have caught this bug?”

6. Be a Couch Potatoe- Use a tool! If you are building
some assumptions into your code, try to build tools
(like lint) that can check for them automatically;

– Typeset by FoilTEX – c©, P. Devanbu 10

ECS 160—Devanbu-Programming

or comment it liberally, and use asserts if possible.
Examples of tools: MIcrosoft SLAM, Association
rule mining, clone detection, etc.

– Typeset by FoilTEX – c©, P. Devanbu 11

