
1

1 1

Copyright �1999 P. Devanbu 1

Design Formalisms--Petri Nets

1. Why design formalisms.
2. Background---Finite State Machines.
3. Limitations of FSM
4. Petri Nets
5. Using Petri Nets.

2

2 2

Copyright �1999 P. Devanbu 2

Why design formalisms?

• Designers need to communicate with other designers
• Designers need to communicate with requirements

writers, and with customers.
• Formal representations of design can be

– Automatically Analyzed: Does this design have
any performance bottlenecks? Can it lead to
deadlocks?

– Manually Inspected (as discussed earlier).
– Measured. Measures like coupling and cohesion

can be derived from designs.
– Verified. Formal properties (such as if/how it

meets customer requirements) can be verified
from the design.

– Used for Testing. Design representations can be
used to create test scripts, etc.

Petri Nets are for modeling concurrent systems.

3

3 3

Copyright �1999 P. Devanbu 3

Finite State Machines
Example 1:

“A Print Spooler will first be initialized; it will then process
any number print requests until a “quit” command is
reached, then it will halt”.

init

print

quit

Example 2:
“When the button has been pushed an odd number of times,
the light is on; otherwise it is off. ”.

Example 3:
“When the number of times the button has been pushed is a
prime number, the light will be on”.

Example 4:
“After the init button is pushed, if the red button has been
pushed twice as many times as the blue button, when the
stop button is pushed, the light should be on. Otherwise
off”.

init

red,r=r+1

blue,b=b+1

stop

r==2*b

r!=
2*

b

off

on

4

4 4

Copyright �1999 P. Devanbu 4

Double Buffer Example.

Producer and consumer are two asynchronous processes.
producer puts messages into a 2 slot buffer. A consumer
reads messages from this buffer. If the buffer is empty, the
consumer waits; if full the producer waits.

• How does this work? (How can I grow more fingers?)
• Can these machines be combined?

• What will the resulting machine look like?
• Will it be an accurate model of reality?

read read

write write

0 1 2

write

produce

P WW

consume

read

RW C

Buffer

Producer Consumer

5

5 5

Copyright �1999 P. Devanbu 5

Kids and Dad.

Hungry Eating

Cooking Resting

Play, Eat

Serve Food

Start to Eat

Observe Crankiness

6

6 6

Copyright �1999 P. Devanbu 6

Petri Nets
Consists of:

a) Finite set of places,
b) finite set of transitions,
c) finite set of arrows connecting places to transitions or
transitions to places.

A petri net is given a state by marking its places with a token.
A place with a token is marked.

p1

p2

p3 p6

p5

p4

t1

t2

t3 t4

t5

t6p7

7

7 7

Copyright �1999 P. Devanbu 7

How it works.

If an arrow comes into a place p from a transition t, p is t’s
output place; If to t from p, it is t’s input place.

If all of a transition t’s input places have a token, the transiton
fires, removes these tokens, and puts a token in each of t’s
output places.

A firing sequence is a sequence of possible firings, starting
with an initial marking.

Note:
1) Several transitions may be enabled simultaneously.
2) They may happen in any order.
3) One transition may “compete” with another.

p1

p2

p3 p6

p5

p4

t1

t2

t3
t4

t5

t6p7

8

8 8

Copyright �1999 P. Devanbu 8

Petri net working example.

• What transitions (firing sequences) are possible?
• Will all of them happen?
• What transitions can happen together (concurrent)
• What transitions cannot (conflict)
• Can some transitions be prevented for ever

(starvation?)
• What real world phenomena are being modeled here?

p1

p2

p3 p6

p5

p4

t1

t2

t3
t4

t5

t6

9

9 9

Copyright �1999 P. Devanbu 9

A bad, really bad, Petri Net

p1

p2

p3

p4

p5

p6

p7

p8

p9

t1

t2

t3

t4 t5

t6

t7

t8

10

10 10

Copyright �1999 P. Devanbu 10

Fix

p1

p2

p3

p4

p5

p6

p7

p8

p9

t1

t2

t3

t4 t5

t6

t7

t8

11

11 11

Copyright �1999 P. Devanbu 11

The Buffer Problem as Petri Net

read

write

produce

consume

read

write

CRW

P WW

0 1 2

Important: Study this carefully and convince
yourself it really works!

12

12 12

Copyright �1999 P. Devanbu 12

Conclusions

Design formalisms are a helpful medium for
communication between stakeholders.

They can also be used to analyze, measure, and verify
designs.

Finite state machines are easy to understand, and well-
known.

However, they cannot model certain types of situations
that arise in concurrent systems.

Petri Nets are useful in such situations: they consist of
places and transitions, with arrows connecting
places to transitions.

Petri nets represent a group of finite state machine states
via markings

Petri net transitions are nondeteministic, and potentially
concurrent.

Petri nets can model concurrency, resource contention,
deadlock, and starvation.

