
Notes on Z for ECS160∗

Premkumar Devanbu

March 13, 2001

1 Introduction

Z is a language that can be used for formal specifications. It is used to deal
with systems that have states, inputs and outputs You can informally think
of it this way:

system.state = f s(system.input) and

system.output = f o(system.input, system.state)

Z can be used in such situations to describe the behaviour of the system. Z
has been widely accepted in industry, and has been used in a range of different
systems, ranging from transportation to IT (Transaction processing systems
- such as IBM’s CICS) and floating point arithmetic specification for micro
computers. Z offers all the standard advantages of formal specifications:

1. Z specifications provide a precise statement of what the system should
do; the language is designed to make this convenient, easy to under-
stand and express.

2. Since it is a formal language, that can be automatically processed, it
can be checked for correctness, consistency, desired properties etc.

3. Certain kinds of partial completeness can be checked; full completeness
checking is impossible, since we are modeling the real world (how can we
ever be sure we modeled everything in the real world that is relevant?)

∗I’ve checked this carefully for mistakes. But if you find any, please let me know as
soon as possible!! Thank you.

1

4. Doing formal specifications early in the software development process
can help find faults early, and thus save money.

5. Formal specifications can be used to validate continuously throughout
the lifecycle.

Of course, there are some disadvantages:

1. Customers may not be able understand such specifications.

2. There is a fairly level of skill in mathematics that is required.

3. There are some tools but a powerful, integrated environment is lacking
(like say, visual C++ or Symantec Cafe for Java (trademarks both).

2 The Basics

Z specifications clearly state what the operations in a system or subsystem do,
without stating how they are implemented. For example, a student in class
asked if a ”=” in a particular Z schema was an assignment or a conditional.
There are no assignments in Z; it is not a programming language. There
are no conditionals either; ”conditional” only make sense if you were going
to ”do” something in either case. Z specifications just specify; they just say
what will be true about the system, rather than saying how they should be
implemented. This is done abstractly, by talking the system’s behaviour in
terms of sets, relations, types, and other mathematical objects. In this sense,
Z is very similar to set theory; in fact, the language of Z is a logical language.

But, while Z specifications are written a logical language, it uses symbols
that strongly typed, like the language Java. In Java, you cannot say
int i,j;

String x;

j=i + x.
Likewise, in Z you cannot say

aProf : Professor

meaning that aProf is of the type Professor and then say, later on.

primeNumber(aProf)

2

2.1 So what are the types in Z?

Z has some built-in types, just like in most programming languages. So Z
has type NN, which are the natural numbers, and the type ZZ, which is the set
of integers. In addition, Z also has enumerated types, which are called free
types. So we can say this:

DayofWeek ::= mon | tues | wed | thurs | fri | sat | sun

Transaction ::= insert | delete | modify

In addition, Z also has basic types. What are these? These are types that
would correspond to structures, records or other types of constructed types
in languages like C, Pascal and Java. But here in Z, we don’t care about the
actual implementation, so we only use the names of the structures, without
stating their actual implementation. So we might say

[Student][Book][ClassRoster][Professor][AirlineReservation]

to refer to some basic types, which are to be implemented as some non-trivial
datastructures. Z also has power set types, so

PPTransaction

refers to the powerset of the Transaction free type above, and likewise

PPDayofWeek

2.2 Declarations

All variables used in Z must be declared. So, we can have declarations such
as:

thisProf : Professor, aDay : DayofWeek,

We can declare variables like this:

classSize : NN

quizGrade : ZZ

3

2.3 Some Z Expression

Z has the typical expressions from set theory. Now consider the following
declarations

i, j : NN; b : Book; a : Professor

onLoan : PPBook; aProf : Professor; publishedResearchers : PPProfessor

Are the following expressions are well typed:

i {onLoan} ∪ {b}
i ∗ j i + j
{i, j} {a, b}
i = j onLoan ⊆ Book
i ∈ Book b ∈ onLoan
{i, b} onLoan ∪ publishedResearchers

3 What can you say with these Types?

Z describes systems by describing the following:

State which describes the states of the system, including all the relevant
properties that need to be modeled;

Events which can change various aspects of the states of the system, and

Observations which are ways in some variable with is a part of the state
can be read.

3.1 Basic Set Notation

These things are described using formulae that come out of set theory. So
first, you get some notation:

NN Natural Numbers
ZZ Integers
a ∈ S a is an element of S

4

a 6∈ S a is not an element of S
⊆,⊇,
{} ,φ,⋃

,
⋂

A \B Those elements of A that are not in B
PPA powerset of A
#Students Number of elements in the set Students

And there are some logical operators

∨,∧,¬
{D | P • x} set of elements x according to declaration such that P
a ⇒ b b is true whenever a is true
a ⇔ b b is true exactly when a is true

And there are some expressions denoting relationships

x1 ↔ x2 relationship between sets x1 and x2

x1 → x2 total function from x1 to x2

x1 7→ x2 partial function from x1 to x2

Using these notational devices, we can state various things as predicates:

waitList, enRolled : PPStudent

maxClassSize : NN

These declare the variables maxClassSize etc. In Z, declared variables
represent the state of the system. Z describes the effects of actions by talking
about states before and after actions. For this purpose, you can talk about
the state of a variable after an action by using the prime ” ’ ” notation; thus
enrolled′ refers to the set of enrolled students after (some) action.

With these declarations, we can now state predicates such as:

#enRolled ≤ maxClassSize ∧ #enRolled′ ≤ maxClassSize

as an invariant which is always true. We can also describe the effect of an
operations such as enroll(s?) by

waitList′ = waitlist \ {s?} , enRolled′ = enRolled
⋃
{s?}

5

3.2 States

States in Z are described by schemas. Schemas are a combination of a type
declaration, and a property specifications. In Z notation a schema looks like
this:

aSchemaName∣∣∣∣∣∣∣
Declarations (or signatures)

Predicates

For example,

Class∣∣∣∣∣∣∣
enrolled : PPStudent

#enrolled ≤ maxClassSize

It may be helpful to think of schemas by analogy to classes in C++. The
declarations are like private member variable declarations; the predicates
make use of these variables to make assertions. Schema names can refer
to other schema names in the declaration part, as a way of ”importing”
declarations into themselves, and can then make assertions about them. An
initial state is described thus:

Initial∣∣∣∣∣∣∣
Class

enrolled = φ

In Z states after operations are shown with a prime ”’”. Thus, as Class
goes through various operations, it’s ”post-operative” state can be described
as:

Class′∣∣∣∣∣∣∣
enrolled′ : PPStudent

#enrolled′ ≤ maxClassSize

6

3.3 Events

Now we can start describing events (or operations). For every state described
as a schema, we can have a change ∆ operator, defined as follows:

∆Class∣∣∣∣∣∣ Class
Class′

or, we can write this full detail by combining Class and Class′

∆Class∣∣∣∣∣∣∣∣∣∣∣∣

enrolled : PPStudent
enrolled′ : PPStudent

#enrolled ≤ maxClassSize
#enrolled′ ≤ maxClassSize

Thus, we can now describe the operation of adding a student to a class:

AddClass0∣∣∣∣∣∣∣∣∣∣∣∣

∆Class
s? : Student

#enrolled < maxClassSize
enrolled′ = enrolled

⋃{s?}
LIkewise, we can have DropClass0:

DropClass0∣∣∣∣∣∣∣∣∣∣∣∣

∆Class
s? : Student

s? ∈ enrolled
enrolled′ = enrolled \ {s?}

7

3.4 Observations

Z also has a facility for observing schemas, i.e., checking out the values. Thus
for the Class schema, we can define an observation schema:

ΞClass∣∣∣∣∣∣∣∣∣∣∣∣∣∣

enrolled : PPStudent
enrolled′ : PPStudent

#enrolled ≤ maxClassSize
#enrolled′ ≤ maxClassSize
enrolled = enrolled′

Now we can ”import” this schema into other observations which have
some interesting properties?

ClassSize∣∣∣∣∣∣∣∣∣
ΞClass
numberInClass! : NN

numberInClass! = #enrolled

Here’s another one:

StudentInClass∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΞClass
response! : yes | no
s? : Student

(s? ∈ enrolled ∧ response! = yes)
∨
(s? 6∈ enrolled ∧ response! = no)

3.5 Exceptions

We can handle error conditions in this way:

Message ::= ok | alreadyInClass | Full | notInClass |

8

okMessage∣∣∣∣∣∣∣
output! : Message

output! = ok

One possible error schema:

AddClassError∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΞClass
s? : Student
output! : Message

(s? 6∈ enrolled ∧#enrolled = maxClassSize ∧ output! = Full)
∨(s? ∈ enrolled ∧ output! = alreadyInClass)

So the complete AddClass:

AddClass=̂(AddClass0 ∧ okMessage) ∨ AddClassError

Likewise DropClass:

DropClassError∣∣∣∣∣∣∣∣∣∣∣∣

ΞClass
s? : Student
output! : Message

(s? 6∈ enrolled ∧ output! = notInClass)

and the full DropClass:

DropClass=̂(DropClass0 ∧ okMessage) ∨DropClassError

4 Relations and Functions

So far we’ve been talking about sets such as Class and Student, and indi-
vidual members of such sets. Z has special notations for talking about pairs
of things. FOr example, consider the following sets.

[Student][Class][Faculty][GradStudent][ClassRoom]

9

Now in Z, you can define a cross product like this:

Student× Class

and thus set of all possible subsets of this relation:

PP(Student× Class)

This is also denoted in Z

Student ↔ Class

and thus we can declare the Enrollment relation as:

Enrollment : Student ↔ Class

Z also has total functions which are denoted by →, and partial functions,
which are denoted by 7→. These can be used to denote the Instructs function
(every course has one specific instructor, and V enue partial function (some
courses may not meet)

Instructs : Class → Faculty, V enue : Class 7→ ClassRoom

Additionally, in relations, you can have a particular instance of a relation,
called a maplet. Here’s an example maplet of type Instructs:

ECS160 7→ prem

(oops, is above right?) Z has notation for updating relations with maplets, for
example, to change the instructor for ECS160, I can do the following:

Instructs⊕ {ECS160 7→ BillClinton}

The Instruct behaves exactly the same as before for every Class, except
ECS160, which is now maps to BillClinton. You can also specify the domain
and range of functions (or relations), which corresponds to

dom Instructs, ran V enue

What can we say about the domain of Instructs and the Range of V enue Now, let us
define a simple transaction processing system for accounts payable.

10

Accounts Payable Example First we have two types:

[Firms][Dollars]

Here’s the basic schema.

AccountsPayable∣∣∣∣∣∣∣∣∣
suppliers : PPFirms
amountDue : Firms 7→ Dollars

dom amountDue ⊆ suppliers

This says that only people you owe money to are your suppliers. We’ll see
that you can only purchase things from authorized suppliers. amountsDue
is a partial function; it’s a partial function from Firms to Dollars. Why is
this? becuase we can only owe money to firms who are suppliers, and not all
firms are suppliers. However, once a firm gets into our list of suppliers, then
each of those must have an amount that we owe to that firm. In the initial
state below, we have 3 firms, and we owe no money to each of them.

Initial∣∣∣∣∣∣∣∣∣
AccountsPayable

amountsDue = {Akai 7→ 0, Midori 7→ 0, Kinka 7→ 0}
suppliers = {Akai, Midori, Kinka}

(Ooops, is the specification the dom of amountDue correct? Should it be a ⊆ of
suppliers, or equal to it?) Now we consider a purchase transaction:

PurchaseTransaction∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆AccountsPayable
supplier? : Firm
amount? : Dollar

supplier? ∈ suppliers
amountsDue′ = amountsDue⊕

{supplier? 7→ ((amountsDue supplier?) + amount?)}

11

and a payment transaction

PaymentTransaction∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆AccountsPayable
supplier? : Firm
amount? : Dollar

supplier? ∈ suppliers
amountsDue′ = amountsDue⊕

{supplier? 7→ ((amountsDue supplier?)− payment?)}

We can also have a way to add suppliers

AddSupplier∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆AccountsPayable
supplier? : Firm

amountDue′ = amountDue
⋃{supplier? 7→ 0}

suppliers′ = suppliers
⋃{supplier?}

And an observation about how much money we owe anybody?

WhatDue∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΞAccountsPayable
supplier? : Firm
amount! : Dollars

supplier? ∈ suppliers
amount! = (amountDue supplier?)

5 Sequences, and some datastructures

Z can be used to model abstract datastructures (Stacks of anything, Double-
ended queues of anything, binary trees of anything that has a total order,

12

etc). We’ll look at stacks. First, what is a sequence in Z? A sequence is
declared thus:

x : seq T

where T is any of types in Z. This is actually equivalent to the declaration:

x : NN1 7→ T, where dom x = 1 . . . #x

where “# x is the length of the sequence. NN1 refers to the natural numbers
≥ 1. Sequences are shown within angle brackets, or as relations:

< 9, 14, 23, 33 > or as

{1 7→ 9, 2 7→ 14, 3 7→ 23, 4 7→ 33}
and Empty sequences are shown as

<>

Sequences support several operations:

selection

< mon, tues, wed, thurs, fri, sat, sun > 4 = thurs

concatenation

< mon, tues > _ < wed, thurs >=< mon, tues, wed, thurs >

head

head < mon, tues, wed >= mon

last

last < mon, tues, wed >= wed

tail

tail < mon, tues, wed >=< tues, wed >

front

front < mon, tues, wed >=< mon, tues >

13

5.1 Stack Example

Stack[T]∣∣∣∣ st : seqT

StackInit∣∣∣∣∣∣∣
Stack[T]

st =<>

push[T]∣∣∣∣∣∣∣∣∣
∆stack
item? : T

st′ =< item? > _st

pop[T]∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆stack
item! : T

item! = head st
st′ = tail st

What’s missing? errors, of course. How would I describe stack underflow?
How can describe the size of the stack etc? (Hint: add another variable of
type NN to the stack)

5.2 A Sequential File

Such a file is a Sequence of records stored one after another on an external
storage device. A file can be either an input or an output file, but not both at
the same time. In a sequential file, access to the nth record is only possible if
n−1 records are first read in order. T is the type of the record (an unspecified

14

basic type)

seqF ile[T]∣∣∣∣∣∣∣∣∣∣∣∣∣∣

file : seq T
unread : seq T
alreadyread : seq T
mode : FileMode

alreadyread_unread = file

F ileMode ::= input | output

Keep in mind here that read and write are incompatible. In this example,
a File cannot be open for read and write at the same time. That simplifies
matters for the purposes of this example. Now let’s open a file for input:

openRead[T]∣∣∣∣∣∣∣∣∣∣∣∣

∆seqF ile[T]

mode′ = input
unread′ = file
file′ = file

why is unread’ = file? and file’ the same as file? Now let’s do a read:

Read[T]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆seqF ile[T]
x! : T

mode = input
unread 6=<>
< x! > _unread′ = unread
alreadyread′ = alreadyread_ < x! >
mode′ = mode
file′ = file

15

Let’s open a file for output:

openWrite[T]∣∣∣∣∣∣∣∣∣∣∣∣

∆seqF ile

mode′ = output
file′ = file

Now let’s write to this file:

Write[T]∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆seqF ile[T]
x? : T

mode = output
file′ = file_ < x? >
mode′ = mode

We can also test of end of file?

Boolean ::= yes | no

eof [T]∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΞseqF ile[T]
answer! : Boolean

((unread =<>) ∧ (answer! = yes))
∨
((unread 6=<>) ∧ (answer! = no))

6 Finally...

Now you should be able to specify other datastructures in Z. Try Queues.
Stack is last in first out, queue is first in, first out. So you should do enque
(add item to queue) deque (remove item) as events, and length of queue as
an observation. Plus consider error conditions.

16

