dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

Published on dev2dev (http://dev2dev.bea.com/)
http://dev2dev.bea.com/pub/a/2006/01/ejb-3.html
See this if you're having trouble printing code examples

An Introduction to the Enterprise JavaBeans 3.0 (EJB 3)
Specification

by Vimala Ranganathan and Anurag Pareek
03/29/2006

Abstract

The Enterprise JavaBeans (EJB) technology is a J2EE technology for the development and
deployment of component-based business applications. Applications written using the Enterprise
JavaBeans architecture are scalable, transactional, and multiuser secure.

In spite of the rich features, however, the complexity of the EJB architecture has hindered its
wide adoption. Competing technologies are making inroads in the EJB space. For example, O/R
mapping technologies such as Toplink and the open-source Hibernate framework have overtaken
EJB as the preferred choice for developing persistence solutions. The introduction of the EJB 3.0
specification is a giant step forward and will go a long way toward luring developers back to
EJBs. The goal of the specification is twofold:

e Make it easier for developers to develop EJBs.
e Standardize the persistence framework.

EJB 3.0 brings us closer to the dream of treating enterprise beans like regular JavaBeans. It
decreases the number of programming artifacts for developers to provide, eliminates or minimizes
callback methods required to be implemented, and reduces the complexity of the entity bean
programming model and O/R mapping model. With EJB 3.0, J2EE now seems accessible to a
much wider audience.

In this article, we first briefly discuss the limitations of EJB 2.1. Next, we describe how EJB 3.0
addresses these difficulties by describing the proposed significant changes one by one, including
the impact on types of enterprise beans, the O/R mapping model, the entity-relationship model,
and EJB QL (EJB Query Language). We conclude with code examples using EJB 3.0-based
enterprise beans.

Limitations of EJB 2.1

http://dev2dev.bea.com/Ipt/a/466 Page 1 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

Developing EJBs with EJB 2.1 hasn't been the easiest thing to do. The reasons are easy to find:

To create a single EJB you need to create a multitude of XML deployment descriptors.

A set of three source files must be created.

Multiple callback methods must be implemented that usually are never used.

You have to throw and catch several types of unnecessary exceptions.

Yet another complaint is that the EJBs are completely untestable outside the context of the
container since components like container-managed entity beans are abstract classes.

e Finally, EJB-QL in its current form is limited in functionality and difficult to use. These
limitations force developers to use straight JDBC and SQL, or to use other persistence
frameworks such as Toplink and Hibernate.

The sheer verbosity of the API has been one big annoyance, and EJB 3.0 makes a significant
attempt to address most issues. This article covers the important aspects of this specification.

The End of the Road for Deployment Descriptors

The configuration of XML deployment descriptors was a major bottleneck in the path to
simplifying development of EJBs. Therefore one of the primary goals of the EJB 3.0 specification
was to shield the developer from having to work with XML files. This is accomplished by the use
of metadata annotations that have been added to JDK 5.0 as part of the JSR 175 JCP
specification. Annotations are a kind of attribute-oriented programming and are similar to
XDoclet. However, unlike XDoclet, which requires pre-compilation, annotations are compiled
into the classes by the Java compiler at compile-time. From the developer's point of view,
annotations are modifiers like public/private and can be used in classes, fields, or methods:

import javax.ejb.*;
@Stateless
public class MyAccountBean implements MyAccount

{
@Tx (TxType .REQUIRED)

@MethodPermission({"customer"})
public void deposit(double money) {...}

}

The annotations generally are self-explanatory. The @Stateless annotation indicates that the
bean is stateless. The @Tx attribute specifies the transactional demarcation for the method, and
the @MethodPermission attribute specifies the users who are allowed to access the method.
So this means that there's no longer a need to write XML deployment descriptors to describe
these properties. However, this does not eliminate the use of XML; it just makes it optional. The

http://dev2dev.bea.com/Ipt/a/466 Page 2 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

specification allows the use of XML deployment descriptors to override these annotations.

POJO Programming Model

The critical point to note is that the above stateless session bean example is complete in itself.
Disregarding the annotations, this file is a JavaBean, also known as a Plain Old Java Object
(POJO). Interfaces are optional for entity beans and required for session beans and message-
driven beans. However, that does not mean that you have to define an interface for your session
bean or message-driven bean. If you do not implement an interface, a bean interface will be
generated for you. The type of generated interface, either local or remote, is dependent on the
annotation you used in the bean class. All the public methods of the bean class will be included as
part of the automatically generated business interface:

public interface ShoppingCart
{

public void purchase(Product product, int quantity);
public void emptyCart();

}

It is recommended that you generate the interface explicitly if you want to pick and choose the
methods of the interface that should be exposed to the client, or want to give the interface a name
different from the automatically generated name.

This interface class is a Plain Old Java Interface (POJI). Both the interface and the bean class do
not have to throw unnecessary exceptions such as RemoteException.

Callback Methods

In the EJB 2.1 specification, the developer had to implement a variety of callback methods in the
bean class, such as ejbActivate (), ejbPassivate(), ejbLoad(), and ejbStore(),
most of which were never used. With 3.0, there is no compulsion to implement any of these
methods. In EJB 3.0, bean developers do not have to implement unnecessary callback methods
and instead can designate any arbitrary method as a callback method to receive notifications for
life cycle events. Any callback method has to be annotated with one of the pre-defined life cycle
event callback annotations. Examples of life cycle event callback method annotations include
PostConstruct, PreDestroy, PostActivate, or PrePassivate. Some of the event
callback methods are common to all types of enterprise beans, while some are specific to bean
types such as PostPersist for entity beans.

http://dev2dev.bea.com/Ipt/a/466 Page 3 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

Callback methods can be defined either in the bean class itself or in a bean listener class. A bean
listener class is denoted using the CallbackListener annotation on the bean class with
which it is associated. The annotations used for callback methods are the same in both cases; only
the method signatures are different. A callback method defined in a listener class must take an
object as a parameter, which is not needed when the callback is in the bean itself. This object
parameter can be used to pass the bean instance to the method in the listener class. Here's an
example of putting a callback method in an entity bean:

@Entity

public class AccountBean{
@PostPersist insertAccountDetails(AccountDetails accountDetails)
public void createAccount(){}

}

Let's look at an example of creating a listener class and adding it to a bean class. The following
code defines the callback listener AccountListener:

/* Adds callback listener to bean class */
@CallbackListener AccountListener

public class AccountBean{

public void createAccount(){}

}

The following code will add the callback listener AccountListener to the Account Bean:

/* Callback method defined inside a Listener class*/
public class AccountListener{
@PostPersist insertAccountDetails(
AccountDetails accountDetails){}

}

Since the @PostPersist is used to register a method to be called on an object that has just
been inserted into the database, in this case, the method insertAccountDetails () will be
invoked every time as soon as an account has been inserted using the createAccount ()
method in the AccountBean.

Configuration by Exception
The "Configuration by Exception" approach is the guiding methodology used in all aspects of
EJB 3.0 to simplify the development effort. The intent is to simplify things for developers by

forcing them to code things only where defaults are not adequate.

http://dev2dev.bea.com/Ipt/a/466 Page 4 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

For instance, in many cases, defaults can be used instead of explicit metadata annotation
elements. In these cases, a developer doesn't have to specify a metadata annotation to obtain the
same result as if the annotation was fully specified. For example, by default, an entity bean
(annotated by @Entity) has a default entity type of CMP, indicating that it has container-
managed persistence. These defaults can make annotating enterprise beans very simple. The
defaults always represent the most common specifications. For example, container-managed
transaction demarcation (where the container, as opposed to the bean, manages the commitment
or rollback of a unit of work to a database) is assumed for an enterprise bean if no annotation is
specified. Similarly a default business interface is generated for session and message-driven beans
which exposes all the public methods of the bean in the interface, since that is the most common
use case.

Object-relational Mapping

The O/R mapping or persistence model has significantly changed from the abstract-persistence-
schema-based approach, to one inspired by the various POJO-related approaches en vogue today.
The O/R mapping is specified using annotations. The O/R mapping metadata expresses
requirements and expectations of the application to map entities and relationship of the application
domain to the database.

In EJB 2.1, developers used their own mechanisms to do certain database-specific operations like
primary key generation. With EJB 3.0, support for several database-specific operations has been
provided. The O/R mapping model has intrinsic support for native SQL. In this article, we do not
provide details on the persistence framework, although we do provide an outline while discussing
the changes in entity beans. For details check the EJIB 3.0 API specification and download the
EJB 3.0 persistence documentation.

Encapsulation of JNDI Lookups Using Annotations

EJB 3.0 addresses the encapsulation of environmental dependencies and JNDI access through the
use of annotations, dependency injection mechanisms, and simple lookup mechanisms.

The enterprise bean's context comprises its container context and its resource and environment
context. The bean may gain access to its resource references and other environment entries in its
context in two ways:

1. Having the container supply it with those references such as using injections; for instance,
@EJB public AddressHome addressHome; automatically looks up the EJB with
the JNDI name "AddressHome."

http://dev2dev.bea.com/Ipt/a/466 Page 5 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

2. Use the method Object lookup(String name) that is added to the
javax.ejb.EJBContext interface. This method can be used to look up resources and
other environment entries bound in the bean's JNDI environment naming context.

Dependency Injections

A bean declares a dependency upon a resource or other entry in its environment context through a
dependency annotation. A dependency annotation specifies the type of object or resource on
which the bean is dependent, its characteristics, and the name through which it is to be accessed.
The following are examples of dependency annotations:

@EJB(name="mySessionBean", beanInterface=MySessionIF.class)
@Resource(name="myDB", type="javax.sql.DataSource.class")

Dependency annotations may be attached to the bean class or to its instance variables or methods.
The amount of information that needs to be specified for a dependency annotation depends upon
its usage context and how much information can be inferred from that context.

Injecting arbitrary resources with @Resource

The @EJB annotation only injects EJB stubs. A more generic dependency injection annotation 1s
@Resource. Using the @Resource annotation, you can inject any service object from the
JNDI using the object's INDI name. Both global (java:/) and local (java:comp/env) JNDI trees are
searched. The following examples inject a messaging connection factory and a messaging queue:

@Resource (name="ConnectionFactory") QueueConnectionFactory
factory;

@Resource (name="queue/A") Queue queue;

For "well-known" objects such as TimerService and SessionContext, the JNDI names
are standard, and therefore the @Resource annotation can inject these objects without an
explicit specification of the "name" attribute:

@Resource TimerService tms;
@Resource SessionContext ctx;

Similar to the @EJB annotation, the @Resource annotation can be applied to setter methods,

http://dev2dev.bea.com/Ipt/a/466 Page 6 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

and the @Resources annotation can be applied to arrays. Both the @EJB and @Resource
annotations are specifically tailored to the resources they inject. They simplify the developer's
work.

Code sample

In the example below, the variable customerDB will be assigned a DataSource object with
JNDI name myDB. The "name" attribute needs to be specified because the name of the variable
we have chosen, customerDB, is different from the JNDI name myDB. The "type" attribute
does not need to be specified because it can be derived from the type of the variable (for example,
DataSource):

@Stateless public class MySessionBean implements MySession {

//type is inferred from variable
@Resource(name="myDB") public DataSource customerDB;

public void myMethodl (String myString){

try {
Connection conn = customerDB.getConnection();

catch (Exception ex)
}
}

Changes to the Four Types of Enterprise Beans

As we all know, there are four kinds of EJBs, and needless to say, EJB 3.0 made some changes
to each type of EJB. In this section, we will look at the changes proposed for each type of EJB.
One of the main advantages is that in EJB 3.0, all the managed service objects are POJOs (for
example, session beans) or very lightweight components (such as message-driven beans). As
you'll see, EJB 3.0 has made the development of EJBs much easier and simpler.

Stateless Session Beans

An EJB 3.0 session bean is a POJO managed by the EJB container.

The functionality of a session bean is defined by its service interface (a.k.a. business interface),
which is a plain old Java interface. Using the interface class name, the session bean client
retrieves a stub object of the bean from the server's INDI. The stub object implements the bean's

http://dev2dev.bea.com/Ipt/a/466 Page 7 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

service interface. The client can then make calls to the bean interface methods against the stub
object. The stub object simply passes the calls to the actual bean instance objects in the container,
which have the implementations of those methods and do the actual work. The stub object is
automatically generated by the EJB container, and it knows how to route the bean method calls to
the container—you do not need to provide an implementation for the stub object. In a stateless
session bean, the client-side stub object can route your method call to any bean instance that
happens to be available in the container-managed object pool. Therefore, you should not have any
field variables to store the bean state in the bean class.

Business interfaces

Business interfaces are required for stateless session beans. It is not always necessary to define
one. When undefined, they will be automatically generated for you. The type of generated
interface, either local or remote, is dependent on the annotation you used in the bean class and
will be a local interface if there is no annotation. All the public methods of the bean class will be
included as part of the automatically generated business interface.

Home interfaces

Stateless session beans do not need home interfaces. The client may acquire a reference to a
stateless session bean by means of injection or annotation of variables.

Bean class

A stateless session bean must be annotated with the stateless annotation or denoted in the
deployment descriptor as a stateless session bean. The bean class need not implement the
javax.ejb.SessionBean interface. The @Stateless annotation indicates that this bean
is a stateless session bean:

@Stateless

public class TraderBean implements Trader {

public void buy (String symbol, int quantity)({
System.out.println("Buying "+quantity+ " of "+ symbol);
}

public void sell (String symbol, int quantity);{
System.out.println("Selling "+quantity+ " of "+ symbol);
}

}

The session bean client

http://dev2dev.bea.com/Ipt/a/466 Page 8 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

Once the session bean is deployed into the EJIB 3.0 container, a stub object is created, and it 1s
registered in the server's JNDI registry. The client code obtains a stub of the bean using the class
name of the interface in the JNDI. Below is an example on how to retrieve a stub instance of the
TraderBean for this JSP page. You can make method calls against the stub object, and the call
is transparently delegated to the bean instance in the EJB 3.0 container:

private Trader tr = null;
public void initialize () {
try {
InitialContext ctx = new InitialContext();
tr = (Trader) ctx.lookup(
Trader.class.getName());
}catch (Exception e) {
e.printStackTrace ();

}

}

/] eee ..

public void service (Request req, Response rep) {
// e o o e o o
double res = tr.buy("SNPS",1000);

}

Callbacks for stateless session beans

The following life cycle event callbacks are supported for stateless session beans:

e PostConstruct
e PreDestroy

The PostConstruct callback occurs after any dependency injection has been performed by
the container and before the first business method invocation on the bean. The PostConstruct
method is invoked in an unspecified transaction context and security context.

The PreDestroy callback occurs at the time the bean instance is destroyed. The PreDestroy
method executes in an unspecified transaction and security context.

Remote and local interfaces

A session bean can also implement multiple interfaces, each interface targeting a different type of

http://dev2dev.bea.com/Ipt/a/466 Page 9 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

client. By default, the interface is for a "local" client that runs in the same JVM as the EJB 3.0
container. Method call invocations over Java references are fast and efficient. Another type of
session bean interface, the remote interface, is for remote clients. When a client looks up the
session bean stub via the remote interface, the container returns a serialized stub object that
implements the remote interface. The remote stub knows how to pass remote procedure calls
(RPCs) to the server, even in a clustered environment. The remote interface is also a plain old
Java interface.

Note that using the remote interface involves the serialization and deserialization of the stub, and
all calls to the bean instance are made over the network. This approach is considerably less
efficient than using the local interface. You should avoid looking up a remote interface from a
local client.

In the session bean implementation, you can use the @Local and @Remote annotations to
specify the local and remote interfaces for this bean. Here is an example bean that implements
both a local and remote interface:

@Stateless

@Local ({Trader.class})

@Remote ({RemoteTrader.class})

public class TraderBean implements Trader, RemoteTrader {

public void buy (String symbol, int quantity){

System.out.println("Buying "+quantity+ " of "+ symbol);

public void sell (String symbol, int quantity);{
System.out.println("Selling "+quantity+ " of "+ symbol);

}

The @Local and @Remote annotations can also be used to tag session bean interfaces instead
of the bean implementation class. For instance, the following code snippet specifies that the
RemoteTrader is a remote interface. With that, you no longer need the @Remote tag on
TraderBean.

Stateful Session Beans
The stateful session bean i1s a session bean that maintains its internal states. If the client invokes

http://dev2dev.bea.com/Ipt/a/466 Page 10 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

method calls against the same bean stub, the calls are always tunneled to the same bean instance
in the container. So, all field variables in the bean instance retain their values as long as the client
application retains the bean stub (or reference for a local client).

Business interface

The business interface of a stateful session bean on the EJB 3.0 API is also a plain Java interface.
Business interfaces are required for stateful session beans. It is not always necessary to define
one. When undefined they will be automatically generated for you. The type of generated
interface, either local or remote, is dependent on the annotation you used in the bean class and
will be a local interface if there is no annotation. All the public methods of the bean class will be
included as part of the automatically generated business interface.

Home interface
Stateful session beans do not need home interfaces.
Bean class

A stateful session bean must be annotated with the stateful annotation or denoted in the
deployment descriptor as a stateful session bean. The bean class does not need to implement the
javax.ejb.Session Bean interface. A stateful session bean may implement the
SessionSynchronization interface.

The implementation of the stateful TraderBean is straightforward. We annotated the
implementation class as @Stateful and used Java objects (like Integer, String) to back up the
bean properties defined in the session bean interface. The Java objects are initialized for each
bean instance when it is created, at the beginning of a client session. Below is the complete code
for the TraderBean class. It is important to note that the stateful session bean class must
implement the serializable interface so that the container can serialize the bean instances and store
them to preserve the state information when the instances are not in use.

@stateful
public class TraderBean implements Trader, Serializable {

public String symbol = ;
public int quantity = 0;

public void buy (String symbol, int quantity){
System.out.println("Buying "+quantity+ " of "+ symbol);

http://dev2dev.bea.com/Ipt/a/466 Page 11 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

}
public void sell (String symbol, int quantity);{
System.out.println("Selling "+quantity+ " of "+ symbol);
}
public String getSymbol () {
return symbol;

}
public int getQuantity() {

return quantity;

}
// Other getter methods for the attributes ...

The Session Bean Client

Here is a sample client:

Trader tr = null;
if (tr == null) {
try {
InitialContext ctx = new InitialContext();
tr = (Trader) ctx.lookup(
Trader.class.getName());

} catch (Exception e) {
e.printStackTrace ();

}
}

// Make use of the tr object
Callbacks for stateful session beans

Stateful session beans support callbacks for the following life cycle events: construction,
destruction, activation, and passivation. The EJB 3.0 specification defines several annotations the
bean can use to specify callback methods during the life cycle of the bean. The container
automatically calls the annotated methods at different stages of the session bean life cycle. You
can use the following annotations to tag any method in the bean class:

e @PostConstruct: The annotated method is called by the container immediately after a
bean instance is instantiated. This annotation is applicable to both stateless and stateful

http://dev2dev.bea.com/Ipt/a/466 Page 12 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

session beans.

e @PreDestroy: The annotated method is called before the container destroys an unused or
expired bean instance from its object pool. This annotation is applicable to both stateless
and stateful session beans.

e @PrePassivate: If a stateful session bean instance is idle for too long, the container
may passivate it and store its state to a cache. The method tagged by this annotation is
called before the container passivates the bean instance. This annotation is applicable only
to stateful session beans.

e @PostActivate: When the client uses the passivated stateful session bean again, a new
instance is created and the bean state is restored. The method that tagged this annotation is
called when the activated bean instance is ready. This annotation is only applicable to
stateful session beans.

e @Init: This annotation designates initialization methods for a stateful session bean. It is
different from the @PostConstruct annotation in that multiple methods can be tagged
with @Init in a stateful session bean. However, each bean instance can have only one
@Init method invoked. The EJB 3.0 container determines which @ Init method to invoke
depending on how the bean is created (see the EJB 3.0 specification for details). The
@PostConstruct method is called after the @Init method.

Another life cycle method annotation for a stateful session bean is the @Remove tag. It is not a
callback method since the application, not the container, calls the @Remove method on the bean
stub to remove the bean instance in the container object pool.

Entity Beans

An EJB 3.0 entity is a lightweight persistent domain object. Entity beans are marked with the
@Entity annotation, and all properties/fields in the entity bean class not marked with the
@Transient annotation are considered persistent. Entity bean persistent fields are exposed
through JavaBean-style properties or just as public/protected Java class fields.

Entity beans can use helper classes for representing entity bean state, but instances of these
classes don't have a persistent identity. Instead, their existence is tied strongly to the owning
entity bean instance; also these objects are not shareable across entities.

Home interface

Entity beans do not need home interfaces.

http://dev2dev.bea.com/Ipt/a/466 Page 13 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

Business interface
Entity beans do not need business interfaces. They are optional.
Entity class

e The entity class must be annotated with the entity annotation or denoted in the XML
descriptor as an entity.

e The entity class must have a no-arg constructor. The entity class may have other
constructors as well.

e The no-arg constructor must be public or protected.

Persistent fields and properties

For single-valued persistent properties, the method signatures are:

e T getProperty()
e void setProperty(T t)

Code sample

As you can see from the following code sample, an entity bean is annotated with a @Entity tag.
In the sample, we have some member variables and their corresponding getters and setters. Also
the code sample shows how to annotate the CMR relationship.

A one-to-many relationship is shown using the @OneToMany tag. In this example, the
Customer bean has a one-to-many relationship with the Orderscode> bean (one customer can
have multiple orders).

Similarly, Customercode> has a many-to-many relationship with the Phonescode> bean.
Some business methods will be defined in the business interface and implemented in the bean,
for example, addPhone () which adds a phone record and associates it with the customer:

@Entity

public class Customer implements Serializable {
private Long id;
private String name;
private Address address;
private Collection orders = new HashSet();
private Set phones = new HashSet();

http://dev2dev.bea.com/Ipt/a/466 Page 14 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

// No-arg constructor

public Customer() {}

@Id

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

@OneToMany

public Collection getOrders() {
return orders;

}

public void setOrders(Collection orders) {
this.orders = orders;

}

@ManyToMany

public Set getPhones() {
return phones;

}

public void setPhones(Set phones) {
this.phones = phones;

}

// Business method to add a phone number to the customer

public void addPhone(PhoneNumber phone) {
this.getPhones () .add(phone);
// Set the phone's ref to this customer
phone.setCustomer (this);

}

http://dev2dev.bea.com/Ipt/a/466 Page 15 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

}

Message-driven Beans

Let's now look at the final type of EJB: message-driven beans.
Business interface

The business interface of a message-driven bean (MDB) is the message-listener interface that is
determined by the messaging type in use for the bean. The interface is
javax.jms.MessageListener. The message-driven bean must implement the appropriate
message listener interface for the messaging type that the message-driven bean supports or must
designate its message-listener interface using the @MessageDriven annotation or the
deployment descriptor.

Bean class

In EJB 3.0, the MDB bean class is annotated with the @MessageDriven annotation, which
specifies the message queue this MDB monitors (such as queue/mdb).

The bean class needs to implement the MessageListener interface, which defines only one
method, onMessage (). When a message arrives in the queue monitored by this MDB, the
container calls the bean class's onMessage () method and passes the incoming message in as
the call parameter.

In our example, the TraderBean.onMessage () method retrieves the message body, parses
out the parameters, performs the trade, and saves the result to a static data manager class. The
"sent" timestamp on the service request message serves as the unique ID for the calculation record
(it works well for low-volume Web sites). A check. jsp JSP page picks up and displays the
calculation record based on the message ID:

@MessageDriven(activateConfig =
{
@ActivationConfigProperty(propertyName="destinationType",
propertyValue="javax.jms.Queue"),
@ActivationConfigProperty(propertyName="destination",
propertyValue="queue/mdb")

http://dev2dev.bea.com/Ipt/a/466 Page 16 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

})

public class TraderBean implements MessageListener {

public void onMessage (Message msg) {

try {
TextMessage tmsg = (TextMessage) msg;

Timestamp sent =

new Timestamp(tmsg.getLongProperty("sent"));
StringTokenizer st =

new StringTokenizer (tmsg.getText(), ",");

buy ("SNPS",1000);
RecordManager .addRecord (sent, "BUY SUCCESSFUL");

} catch (Exception e) {
e.printStackTrace ();

Sending a message

To use the message-driven bean, the client (such as the JSP page, trader.jsp, in this case) uses the
standard JMS API to obtain the target message queue to the MDB by way of the queue name
(queue/mdb), and then it sends the message to the queue:

try {
InitialContext ctx = new InitialContext();
queue = (Queue) ctx.lookup("queue/mdb");

QueueConnectionFactory factory =
(QueueConnectionFactory) ctx.lookup("ConnectionFactory");
cnn = factory.createQueueConnection();
sess = cnn.createQueueSession
false,QueueSession.AUTO ACKNOWLEDGE) ;
} catch (Exception e) {
e.printStackTrace ();
}
TextMessage msg = sess.createTextMessage("SNPS",1000);
sender = sess.createSender (queue);

http://dev2dev.bea.com/Ipt/a/466 Page 17 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

sender.send(msg) ;
Callbacks for message-driven beans

The following life cycle event callbacks are supported for message-driven beans:

e PostConstruct
e PreDestroy

What Happens to the Old Entity Model?

The old entity model is still going to remain a part of EJB, and it always will be a part of EJB,
for compatibility reasons. The Expert Group is currently looking at a number of the new features
in EJB 3.0, which would potentially be useful for people using the old programming model, and
thinking about making those available for people using the older programming model. EJB 3.0
plans to extend the EJB-QL for the EJB 2.1-style CMP entity beans. So if you want to stick to
the old programming model for a while, you will be able to do that and still use some of the new
functionality.

Conclusion

EJB 3.0 goes a long way toward making the EJB programming experience a pleasant one by
simplifying development, facilitating test-driven development, and focusing more on plain Java
objects (POJOs) rather than on complex APIs. One of the important aspects that we have not
covered in detail in this article is the new persistence framework defined in the specification. For
details, check the EJB 3.0 API specification, and download the EJB 3.0 persistence
documentation.

BEA Systems is working actively on its EJB3 implementation strategy in BEA WebLogic Server.
Details on the implementation and the timeline will be provided on this Web site when they are
finalized.

Additional Reading

The JSR 220 - Enterprise JavaBeans 3.0 specification (JCP)
EJB 3.0 API specification download (JCP)

JSR 175 - Metadata for the Java language (JCP)
SDO vs. EJB3 Persistence (Michael Rowley's dev2dev blog, August 2005)

Tech Talk: EJB 3 (dev2dev live!)
Visit the dev2dev EJB Technology Center

http://dev2dev.bea.com/Ipt/a/466 Page 18 of 19

dev2dev: An Introduction to the Enterprise JavaBeans 3.0 (EJB 3) Specification 01/16/2007 09:17 AM

Vimala Ranganathan is a QA engineer on the workshop team. She has over eight years of
experience in Java SE/Java EE technologies.

Anurag Pareek is an Escalation Engineer working for BEA Systems. He has extensive experience
in implementing, tuning and troubleshooting mission-critical, high-availability applications.

Return to dev2dev.

http://dev2dev.bea.com/Ipt/a/466 Page 19 of 19

