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ABSTRACT
TypeScript is a widely used optionally-typed language where de-
velopers can adopt “pay as you go” typing: they can add types as
desired, and benefit from static typing. The “type annotation tax”
or manual effort required to annotate new or existing TypeScript
can be reduced by a variety of automatic methods. Probabilistic
machine-learning (ML) approaches work quite well. ML approaches
use different inductive biases, ranging from simple token sequences
to complex graphical neural network (GNN) models capturing syn-
tax and semantic relations. More sophisticated inductive biases are
hand-engineered to exploit the formal nature of software. Rather
than deploying fancy inductive biases for code, can we just use “big
data” to learn natural patterns relevant to typing? We find evidence
suggesting that this is the case. We present TypeBert, demonstrat-
ing that even with simple token-sequence inductive bias used in
BERT-style models and enough data, type-annotation performance
of the most sophisticated models can be surpassed.

CCS CONCEPTS
• Theory of computation→ Type structures; Type theory; • Com-
puting methodologies→ Machine learning; Transfer learning.
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1 INTRODUCTION
Gradual typing [6, 23, 24] is gaining popularity, in programming
languages like Python and JavaScript. Developers can incrementally
type-annotate identifiers to better document, check, and maintain
code [14]. Type annotation promotes error-detection, [9, 19] while
enabling more optimizations, and better IDE support. However,
with type declarations existing in various library packages and
project-specific locations, migrating dynamically typed software
to gradually-typed paradigms is a non-trivial task, often requiring
considerable human effort.
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TypeScript transpiles type-annotated code into JavaScript (JS)
which provides the benefits of typing wherever traditional JS is used
[5]. A lot of TypeScript annotated code is available; this raises the
opportunity to train probabilistic type annotators to help with type
annotation. This idea of training a type annotator using data from
manually annotated code, has been widely applied [11, 17, 21, 25];
except for Raychev et al [21], most use deep-learning methods. Each
probabilistic annotator features a specific choice of representation,
viz., inductive bias, that characterizes what and how they learn.
Inductive biases are important, consequential, and well-studied. But
do more complex inductive biases help? Do they perform better?

Recently, in NLP [7] and code [8, 12], an alternative paradigm
has emerged, to the ongoing quest for better inductive-biases: let
high-capacity models learn representations on their own which cap-
ture the deeper statistical structure of the data, directly from very
large dataset, using a form of self-supervision. In the case of NLP,
Devlin et al [7] exploit giga-token textual corpora to construct a
vector representation of token sequence patterns, by learning to
reconstruct artificially masked-out tokens. This approach elegantly
bypasses the debates on inductive-bias engineering, and simply
lets high-capacity neural models autonomously learn the statistical
structure of the data via simple, giga-scale self-supervision.

Autonomous representation-learning (aka pre-training) has been
used for code. Feng et al. [8] used pre-training to improve perfor-
mance on code-natural language bi-modal datasets (e.g. code with
comments) and Kanade et al. [12] used pre-training to help with
retrieval-like tasks. Type annotation is of particular interest: types
are a subtle semantic property of code; one might reasonably expect
that complex inductive biases leveraging syntax & semantics would
be very helpful. Prior work has indeed heavily leveraged increas-
ingly sophisticated inductive biases, with better and better results.
But are these really necessary? Can models learn good enough
representations on their own? This motivates our RQs.

RQ1: Does BERT-style pre-training work for type infer-
ence, and how does the performance compare with models
that use sophisticated, custom-designed inductive biases? Pre-
training helps our TypeBert reach 89.51% accuracy on common
(top-100) types compared to the state-of-the-art LambdaNet (66.9%
for the same types). Furthermore, despite the limits of a closed
type vocabulary, TypeBert does surprisingly well on user defined
types. Overall, TypeBert achieved an overall accuracy of 71.12% to
LambdaNet’s 64.2% across both common and user-defined types.

RQ2: Qualitatively, what cues does TypeBert appear to use
for its inferences, and what inferences does it make? Type-
Bert seems to use multiple features for type inferences. Like Type-
Writer [20], it appears to leverage names of identifiers; like Lamb-
daNet etc. [21, 25] it appears to use data and control-flow informa-
tion. Using these cues, TypeBert predicts types with specificity, i.e.
tf.Tensor rather than Tensor. Overall, our qualitative analysis
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suggests that TypeBert implicitly learns complex inductive biases
like data/control flow, even without explicit graph representations.

Our models and datasets are publicly available1.

2 RELATEDWORK
LambdaNet [25] (like other recent works) used sophisticated in-
ductive biases [3, 4, 10] to achieve state-of-the-art (SOTA) type
inference, improving substantially upon earlier approaches like
Hellendoorn [11] and Malik et al. [17]. LambdaNet uses graph
neural networks (GNN) to model abstract dependency graphs, de-
rived by analysis of the code. Typilus [4] also uses GNNs, but in-
cludes vector embeddings to allow an open type vocabulary (for
Python). Pradel [20] combines a probabilistic guessing component
with a typechecker that verifies the proposed annotations. OPT-
Typer [18] achieves performance close to LambdaNet, by optimizing
formal type constraints that are first “slackened” into numerical con-
straints; however OPTTyper is limited to the top 100 most frequent
types ignoring the challenge of annotating user defined types.

Related to this work are highly parametrized pre-trained trans-
former models like CodeBert [8] and PLBART [1]. These models
have successfully achieved SOTA on code-related tasks by pre-
training on large code corpora and fine-tuning on the specific tasks.
CodeBert’s effectiveness suggests that self-supervised pre-training
followed by fine-tuning may also work for type inference. Our ap-
proach differs in that our pre-training is mono-lingual; we don’t
use any natural language, and is pretrained on a type-free dialect
(JavaScript) of the target language (TypeScript). Our goal was also
to evaluate if pre-training could learn representations powerful
enough for type inference.

3 TYPEBERT
TypeBert uses pre-training to learn JavaScript syntax and semantics
by modeling token co-occurrences.

3.1 Pre-Training TypeBert
Pre-Training Corpus TypeBert is pre-trained on a large corpus of
JavaScript. We collected the most-starred 25,000 Github JavaScript
projects, using the GraphQL2. To avoid bias, we remove duplicate
snippets using Allamanis’s method [2].We remove non-code related
entities like block comments and copyright blocks. The corpus is
tokenized with a SentencePiece model [16] with a vocabulary of 16k
subtokens. Tokenizing with Byte Pair Encoding (BPE)[22] or with
a unigram language model like SentencePiece [15] is a common
approach to manage large code vocabularies [13].
ArchitectureTypeBert uses the same architecture as BERT𝑙𝑎𝑟𝑔𝑒 [7].
TypeBert has 24 layers of encoder withmodel dimension of 1024 and
16 attention heads ( 340M parameters). Finally, we add an output
classification layer for the type inference task (after pre-training).
Noise functions Pre-training is self-supervised; the task is recon-
structing noised-up text sequences. By training on this task, the
model learns prevalent syntactic and semantic forms. TypeBert
follows BERT [7] where “noising" consists of randomly masking, re-
placing, or retaining sub-tokens. We uniformly sample (sub)tokens
with a 15% probability and perform noising. Noising operations are

1https://github.com/typebert/typebert
2https://graphql.org

Table 1: Type Annotation Datasets

Dataset Projects Files

TypeBert 20,860 1,473,418
LambdaNet | OPTTyper 275 91,228

Number of type annotated projects and files extracted for TypeBert. Lamb-
daNet / OptTyper parsed projects and files for comparison.

weighted thus: 80% are masked, 10% are replaced with a random
token, 10% are left alone. We allow up to 20 noise operations per
token sequence. The noise function performs whole-word masking
(viz., all subtokens of a particular word are all masked if one subto-
ken is selected) so as to not provide too easy hints to the model.
TypeBert is jointly pre-trained with a next sentence prediction
(NSP) task which is to predict if a code sequence 𝑏 follows another
code sequence 𝑎. For this, we select in-order or random pairs (in
equal proportion) and train the model to label them correctly.
Input/Output Format The input format for the pre-training step
is two concatenated, randomly sampled, code sequences with a
separator token [CLS], a1, a2, . . . ,an , [SEP], b1, b2, . . . , bn, [SEP].
Sometimes the 𝑎 and 𝑏 code sequences are contiguous, sometimes
not; the NSP task is to distinguish these cases. For the random
masking, any ai or bi may be noised. The [CLS] token’s embedding
is used as an aggregated sequence representation for tasks at the
sequence level. As in BERT [7] the two sequences are separated by
a [SEP] token.
OptimizationWe train TypeBert on 6 Nvidia Titan RTX GPUs for
200K steps. We use Adam with polynomial weight decay starting
at 5e-5 and 10K warm-up. We use a dropout of 0.1 on hidden and
attention layers. Pre-training takes about 160 hours (6.33 days) and
was done using a modified version of Tensorflow’s Model Garden.
This pre-training is a one-time cost, followed by on-task fine-tuning.

3.2 Fine-Tuning TypeBert
Type Inference DatasetWe collected 20,860 most-starred Github
TypeScript projects (Table 1). This code contains human-annotated
types within variable, parameter, function and method declarations.
These types range from frequent types like int and string to li-
brary and user-defined types like tf.Tensor and CoffeeFlavor.
We use LambdaNet’s type parser to process type annotations, gath-
ering both human annotated and compiler-inferred types. Following
LambdaNet[25] and OPTTyper, we only use the human annotated
locations for evaluation but include the compiler-inferred types in
training data. Furthermore, as in prior work, we ignore locations
with the uninformative “any” type. Of LambdaNet’s full 300 project
dataset, 275 could be found on Github. From these, we sample 60
projects for testing, and just add the other 215 to our training set.
This results in a total of 20,384 projects for training, 416 for vali-
dation (2%) and 60 projects for test. We report results on these 60
projects from the original LambdaNet/OPTTyper dataset.
Type Inference We add a dense, softmax layer for the most fre-
quent 40k TypeScript types and the UNK type for all types greater
than rank 40k. The type vocabulary is closed, and restricted to these
40,001 types. TypeBert does not handle a open vocabulary, but UNK
occurs <8% in the test set see Figure 1. TypeBert is fine-tuned on
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Figure 1: Frequency of types in bins. Types that exceed the Top
40,000 are marked UNK and scored incorrect in metrics.

Table 2: Accuracy Comparison across Various Sets of Types.

Model Top 1 Acc % Top 5 Acc %
User Def Other Top 100 Overall User Def Other Top 100 Overall

LambdaNet [25] 53.4 N/R 66.9 64.2 77.7 N/R 86.2 84.5
OPTTyper [18] N/R N/R 76 N/R N/R N/R N/R N/R

TypeBert 41.40 50.49 89.51 71.12 55.02 70.34 98.51 81.88

* UNK (OOV) annotations are always counted incorrect for TypeBert. Overall includes User
Def and Top 100 and reported directly from [25] and [18]. N/R→Not Reported in the orig-
inal paper. Allamanis [2] deduplicationmethod applied on train and test sets for TypeBert
results.

our data set consisting of > 2 million type annotations. We use
de-duplication [2] to avoid risk of leakage from training to test.

4 EVALUATION METRICS
We report Top 1 Accuracy (Exact Match) and Top 5 Accuracy (cor-
rect prediction in top 5 guesses) for several subsets of types exactly
as with previous works.
User Defined Types are type labels corressponding to class, enum,
or type interface, where the type was defined within the same
project scope (as in [25]). A class defined within the project would
be considered a user-defined type; an imported library would not.
Top 100 Types are highly frequent types (such as int and string)
that are not user-defined, and are within the top 100 ranks [18, 25].
Other Types are types occurrences that do not occur within the
top 100 most frequent types and are not user defined. Examples
would be library functions like tf.Tensor4D. This set of locations
were ignored in previous works [18, 25] and are not included in
their reported results. We consider them, and report it separately.
Overall is a weighted average of user-defined type occurrences
and top 100; this is calculated exactly as in [25], and is strictly
comparable (See Table 2).
Unknown (OOV) type occurrences which are types with rank <
40,000. We score occurrences of UNK (<8%) as incorrect predictions.
UNK locations are comprised of a mixture of user-defined and other
non user-defined types. Counting UNK occurrences as wrong for
user definition, other, and overall is conservative but appropriate.

5 RESULTS

RQ1: Comparing TypeBert’s type inference accuracy to SOTA.
Table 2 shows results on the test set of projects in LambdaNet/OPT-
Typer dataset. LambdaNet [25] serves as our baseline because it
is evaluated on both the top-100 most frequent types and on user-
defined types. Its use of a sophisticated graph inductive bias makes
it a good contrast for our pre-training/fine-tuning approach, with
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Figure 2: Recall vs. Precision of TypeBert on test data subject to
probability thresholds reflecting the models confidence.

a very simple token-sequence basis. TypeBert betters LambdaNet
on the top-100 (89.51% Top 1 vs 66.9%), despite the disadvantage
of a much simpler inductive bias. This suggests that large scale
pre-training helps TypeBert autonomously learn nuanced, rich
contextual representations that rival LambdaNet’s complex hand-
engineered hyper-edges. LambdaNet’s does excel on user defined
types; still, TypeBert (even without any mechanism for user defi-
nitions) achieves a higher Top 1 overall accuracy (71.3% vs 64.2%).
TypeBert’s Top 5 accuracy on the top 100 types (98.5%), compared
to LambdaNet’s (86.2%) is significantly better demonstrating more
relevant predictions across a set of five recommendations; for de-
velopers this means more relevant choices to choose from.

While TypeBert demonstrates high Top 1 and Top 5 accuracy, it
also performs well with high confidence. Figure 2 shows the trade-
off in precision and recall when varying the confidence threshold.
Precision exceeds 92.72% with a threshold of 90% with a recall of
58%. At a threshold of 99%, precision exceeds 98% with a recall rate
of 38%. TypeBert could add ca. 22,000 of the ca. 58,000 annotations
across the 60 test projects with very high precision. TypeBert is
quite fast: on a single Nvidia Titan RTX can perform type inference
on 16,384 locations in a batch of 64 sequences of length 256 in
just 1.28s or .02s per sequence. LambdaNet, we note, requires a
dependency hypergraph: computing which correctly is limited by
missing dependencies, libraries, and type definitions; thus it cannot
perform accurately at such locations. This is not a problem for
TypeBert. It’s important to note that TypeBert performs creditably
on "Other" types, (50.5% for Top 1, 70.3% Top 5); this category is not
dealt with by LambdaNet. Finally, we note that OPTTyper works
only for for top-100 types, and we improve upon it as well.
RQ2: Qualitative analysis of TypeBert.
What evidence does TypeBert use to make type predictions? We ex-
amine this with an example. Figure 3 shows a function signature
(top), with correct annotations; inferences from TypeBert and Lamb-
daNet below (correct inferences shown in yellow ). This file im-
ports tfjs-core with import * as tf. Thus syntactically correct
types from @tensorflow/tfjs-core must have a prefix of “tf.”.
TypeBert recognizes this context and correctly infers Tensor4D
with the appropriate prefix i.e tf.Tensor4D. TypeBert maintains
consistency in this example and types variable x as tf.Tensor4D;
the same type and appropriate prefix. As another example, to infer
boolean type for withRelu, TypeBert appears to take cues from
the return statement; to get array type for strides, it appears to
be using the call to convLayer within conv. These control and
data-flow oriented semantic cues are being learned implicitly from
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Figure 3: Qualitative evaluation of TypeBert and LambdaNet.

lexical sequences. LambdaNet fails to infer the return value type
and cannot provide type recommendations for 4 other locations;
this is likely the result of types existing outside of LambdaNet’s
prediction space both top 100 and its pointer mechanism.
What kinds of inferences does TypeBert make? A characteristic of
TypeBert’s top-k type guesses for an annotation are lexical and
semantic similarities (Figure 3). This is due to the contextual usage
of similar types i.e tf.Tensor4D and tf.Tensor2D and an align-
ment of meaning representation i.e array and Set. While TypeBert
seems highly confident when it is correct, the other alternatives
tend to be relevant, and sometimes even partially-correct e.g. Array
(.39%) and Boolean (.0095%) for array and boolean.

Finally, TypeBert is strongly confident when the answer is out-
side its closed vocabulary (UNK). This confident UNK prediction
has value: in future work, we hope to use open vocabulary mecha-
nisms such as pointer networks or metric similarity functions to
search for a better answer in such cases. This example (Figure 3) is
typical; most often, TypeBert’s offers correct inferences with high
confidence and with highly similar alternatives.

6 CONCLUSION
We present a “big-data" alternative to the type inference prob-
lem: we use a pre-trained BERT-style model rather than custom-
engineering a complex, specialized inductive bias and training
dataset. TypeBert uses the simplest inductive bias: considering
code as a sequence of tokens. The lack of input structure is over-
come by increased learning capacity of the BERT-style approach.
TypeBert leverages pre-training on 25,000 JavaScript projects, and
fine-tuning on 20,800 TypeScript projects. We find that TypeBert
is competitive with SOTA approaches which use much fancier in-
ductive biases. It infers the exact type in common locations almost
90% of the time beating the SOTA models by a significant margin.
Additionally, TypeBert’s Top 1 accuracy overall is better than the
the SOTA, at 71.12%. Our findings suggest that TypeBert implicitly
learns the statistics of the semantic relationships, relevant to typing,

that are made explicit in the graph-based static analysis products
(e.g., those used by LambdaNet). It is intriguing to contemplate that
generic, automated methods can utilize additional model capacity
to “learn" to do some sort of static analysis.
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