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Building things by hand: use tools! Great for scale of 10±2 ×

Building things
Ljubljana Marshes Wheel. 5k years old

Newgrange, Ireland. 5.2k years old

Building tools that build things: specify target object with a computer program

Mariana Ruiz Villarreal

Programming things to build themselves: for building 

in small wet places where our hands or tools can’t reach
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Things that build themselves

Our topic: self-assembling molecules that compute as they build themselves

I want to stick below 
blue & yellow and 
above blue & green
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DNA as a building material

=
TCGGAAATAAAATCGGAC

AGCCTTTATTTTAGCCTG

TAGCGTAATT
ATCGCATTAA

=

DNA strands bind even if only part of strands are complementary:
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scaffold DNA strand

staple DNA strands

folded DNA origami
heat to 90C, cool to 
20C over an hour

(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design 
© Shawn Douglas

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

(+ water + salt)
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DNA origami Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

Atomic force 
microscope images

100 nm
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Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

DNA tiles: grid graph
(tiles bind to each other, each has ≤ 4 neighbors)
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DNA tile self-assembly
monomers (“tiles” made from DNA) bind into a crystal lattice

Source: Programmable disorder in random DNA tilings. Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017

tile lattice
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Practice of DNA tile self-assembly

DNA tile

sticky end

Ned Seeman, Journal of 
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at 
en.wikipedia; Permission: PDB; Released 
under the GNU Free Documentation License.
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Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011

Practice of DNA tile self-assembly

(not the same tile motif in this image)
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Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly

single crossover

double crossover

Figure from Schulman, Winfree, PNAS 2009
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Practice of DNA tile self-assembly

triple-crossover 
tile (LaBean, Yan, 

Kopatsch, Liu, 
Winfree, Reif, 
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein, 

Reif, LaBean, Science 2003)

DNA origami tile (Liu, Zhong, Wang, 

Seeman, Angewandte Chemie 2011)
Tikhomirov, Petersen, Qian, 
Nature Nanotechnology 2017

single-stranded tile (Yin, 

Hariadi, Sahu, Choi, Park, LaBean, 
Reif, Science 2008)

150 nm

double-
crossover tile 
(Winfree, Liu, 
Wenzler, Seeman, 
Nature 1998)
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Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree

14



abstract Tile Assembly Model (aTAM)

• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies 
of each type

• assembly starts as a single 
copy of a special seed tile

• tile can bind to the assembly 
if total binding strength ≥ 2 
(two weak glues or              
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree, Ph.D. thesis, 
Caltech 1998
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Example tile set
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change function to half-adder
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Algorithmic self-assembly in action
raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image
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aTAM simulator (WebTAS by Daniel Hader)
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http://self-assembly.net/software/WebTAS/WebTAS-latest/ 
  

Xgrow by Constantine Evans: https://github.com/DNA-and-Natural-Algorithms-Group/xgrow 
older xgrow (by Erik Winfree) https://www.dna.caltech.edu/Xgrow/ 

Tip: for editing tile types, I find it 
much easier to edit the text files 
directly than to use the GUI, which 
is tedious. You may also consider 
writing code to generate the files.

http://self-assembly.net/software/WebTAS/WebTAS-latest/
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
https://www.dna.caltech.edu/Xgrow/


Tile complexity of squares
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Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher 
when more DNA sequences are present.)

• But due to how modern synthesis technologies work, once a tile type is designed, making 50 
quadrillion copies of the tile is as easy as making one copy.

• So, we ask: how many unique tile types to we need to self-assemble some 
shapes?

• We start with n x n squares as the “simplest” benchmark shape.
• Why not a 1 x n line as an even simpler shape? What is its tile complexity?

• [Note: we have not formally defined the aTAM yet… first let’s build intuition.]
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The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf 
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we 
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

How many tile types does this 
construction need in general 
to assemble an n x n square?

All glues are strength 2
(alternately: all are strength 1 and temperature τ = 1)

n2

23

https://www.dna.caltech.edu/Papers/squares_STOC.pdf


Tile complexity at temperature τ = 1
(i.e., no cooperative binding allowed)

Is n2 optimal? 
Can we do better?

Note all pairs of adjacent tiles 
bind with positive strength:

Theorem: At temperature τ = 1, if all pairs of 
adjacent tiles bind with positive strength, then 
for every positive integer n, n2 tile types are 
necessary to self-assemble an n x n square.

Proof: Suppose for contradiction 
we use the same tile type i at 
positions (x1,y1) and (x2,y2). Then 
they have a path L between them 
with all positive-strength glues, 
and this can happen instead:
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Tile complexity at temperature τ = 1, 
where not all adjacent tiles are bound

Is n2 still optimal? No!

Tile complexity of 
this construction?

2n – 1 = O(n)

strength-0 glues

Conjecture: The temperature 
τ = 1 tile complexity of an n x n 
square is Ω(n).
(most recent progress:
https://arxiv.org/abs/1902.02253 
https://arxiv.org/abs/2002.04012 )
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https://arxiv.org/abs/1902.02253
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Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

Tile complexity = 2n

strength-1 glues (with no other 
glues to cooperate with)This tile completes an n x n “L shape” 

into an n x n square.
26

these glues should all 
be different



Tile complexity at temperature τ = 2

Goal: complete a 1 x n line 
into an n x n square Tile complexity = n + 4

How to get sublinear 
tile complexity?
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Logarithmic tile complexity 
at temperature τ = 2

Goal: rectangle of height n 
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

copy row
increment tiles

copy tiles

increment row

28

“zig-zag counter”

for width of k bits, stops 
when it reaches what value?

Unique glues 
(not shown)



Logarithmic tile complexity at temperature τ = 2

A few more “filler” tiles 
complete the ≈n x log n 
rectangle into an n x n square. 

tile complexity =
log n  +  23

29

What number should 
this encode?



Ω(log n / log log n) tile complexity lower 
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound 

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument: 
• Count number of (functionally distinct) tile systems with fewer than ¼ log p / log log p tile types.

• We’ll show that it’s fewer than p.

• There are p squares with width n between p+1 and 2p; each needs a different tile system.

• By pigeonhole, some n x n square cannot be assembled with < ¼ log p / log log p tile types.

• Since p ≤ n/2, we have ¼ log p / log log p ≤ ¼ log n / log log n.

• Since we can do this for every positive integer p, there are infinitely many n that require more than 
¼ log n / log log n tile types (a stronger result holds: “most” values of n require that many)
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• Goal: show that there are fewer than p (“functionally distinct”) tile 
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define 
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

d) How many ways to choose the seed tile?

• How many tile systems?

k

4k

a4 = (4k)4

bk = (4k)4k

c∙d = k(4k)4k

How many tile systems with k tile types?
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How many tile systems with k tile types?

• Number of tile systems with exactly k tile types: 

• Number of tile systems with at most k tile types: 

• Recall k = ¼ log p / log log p; by algebra (see notes), k2(4k)4k < p.

• By pigeonhole principle, for some width n with p < n ≤ 2p, the n x n 
square is not self-assembled by one of these k2(4k)4k tile systems. 
Since those are all the tile systems with at most k tile types, the n x n 
square requires more than ¼ log p / log log p tile types to self-
assemble. QED

≤ k(4k)4k

≤ k2(4k)4k
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“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity 

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?
• log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

• 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)

• 4k log(4k) to describe all k tile types, plus log k to give index of the seed.

• So O(k log k) bits total. 

• For any n in the Fact, log n = O(k log k), i.e., k = Ω(log n / log log n).

Fact: “most” integers 
n require ≥ log n bits 
to “describe”. 
(Though some require fewer: 
1111111111111111111111
can be described by its length 
22 in binary: 10110)

33

Note: we’re ignoring glue strengths here; adds 2 bits per glue to describe at temperature 2. 
(since there are 3 possible strengths 0, 1, 2);
see http://doi.org/10.1007/s00453-014-9879-3  for handling higher-temperature systems.

https://en.wikipedia.org/wiki/Kolmogorov_complexity
http://doi.org/10.1007/s00453-014-9879-3


Which bound is tight?
1. All n x n squares can be assembled with O(log n) tile types; can we get it down 

to O(log n / log log n)?

2. Or do we need Ω(log n) tile types to assemble infinitely many n x n squares?
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Improved upper bound: self-assembling an    
n x n square with O(log n / log log n) tile types 

tile complexity =
O(log n)  +  23

Recall: Idea: 
1) Use same 23 tiles that 
turn the seed row 
encoding a binary 
integer n’ (related to n) 
into an n x n square.

2) Create the binary 
seed row from only     
log n / log log n tiles.
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Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n 
using O(log n / log log n) tile types

• Key idea: choose larger power-of-two base b = 2k, with                             
b ≈ log n / log log n, and convert from base b to base 2.

• How many base-b digits needed to represent a log(n)-bit integer?

• Each base-b digit is k bits
• e.g., if b=23=8, then 0=000  1=001  2=010  3=011  4=100  5=101  6=110  7=111

• e.g., the octal number 71258 in binary is 1110010101012

• need log(n) / k = log(n) / log (log n / log log n) = log(n) / (log log n – log log log n) 
≈ log(n) / log log n base-b digits.
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Creating a row of log n glues with arbitrary bit 
string s ∈ {0,1}* using log n / log log n tile types 
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

1

1

0

0

0

0

1

1

0

0

0

0

11 110
0

1 11
1

1
1

110110110110110110110110110110110110
n

110110110110110110

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

“almost” works… what’s missing? mark glues of most and least significant bit

mmmmmmmmmmmmmmmmmmmmmmmm

m

m

m

m

m

m

m

LL

L
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Formal definition of aTAM

38



abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west. 

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order. 
• T denotes the set of tile types. 

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

• Let Bα = (V,E) denote the binding graph of α, where
• V = Sα

• E = { (p,q) | α(p) and α(q) interact }
• Bα is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.

• Given τ ∈ ℕ+, α is τ-stable if the minimum weight cut of Bα is at least τ.
• i.e., to separate α into two pieces requires breaking bonds of strength at least τ.
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abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and 
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting      
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably 
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence       

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0

• for all 0 ≤ i < k, αi ⊑ β, and
• Sβ = ⋃i Sαi

• We say β is the result of the assembly sequence. 
• If k is finite, it is routine to verify that β = αk, and → is the reflexive, transitive closure →1* of →1.

Why can’t we just say → is the 
reflexive, transitive closure →1* of →1?

Sometimes we write α →Θ β to 
emphasize this is with respect 
to a particular tile system Θ.

Question: If α ⊑ β, 
can α grow into β?
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abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α. 

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if 
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there 

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all          
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)
• Note X can be infinite.
• Example: strict self-assembly of entire second quadrant X = { (x,y) ∈ ℤ2 | x ≥ 0 and y ≤ 0 }
• Example of tile system Θ that does not strictly self-assemble any shape?

• Let X ⊆ ℤ2. Θ weakly self-assembles X if there is a subset B ⊆ T (the “blue tiles”) such that, 
for all α ∈ A□[Θ], X = α–1(B). (every terminal producible assembly puts blue tiles exactly on X.)
• example: weak self-assembly of the discrete Sierpinski triangle.



Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ 
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof: 
1. Since β is stable and glue strengths are nonnegative, the 

only potentially unstable cut is ({p},Sβ). 
2. But: 

1. α ⊑ β,
2. α + (p↦t) is stable, 
3. compared to α, β only has extra tiles on the other 

side of the cut (t,Sβ).
4. so the cut (t,Sβ) is also stable. QED

Intuition: if a tile can attach to α, 
it can attach in the presence of 
extra tiles on α.

example: 

α

t

p

β

t

p

⇒



Basic reachability result
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Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies 
such that α → γ. Then β  → γ.

Proof:
1. Let α=α0, α1, … be an assembly sequence with result γ. 
2. For each i, let pi = Sαi+1 \ Sαi (i’th attachment position) and ti 

the i’th tile added.
3. Let i(0) < i(1) < …  such that Sγ \ Sβ = {i(0), i(1), …} 

(subsequence of indices of tile attached outside of β).
4. Define assembly sequence β=β0,β1,… by βj+1 = βj+(pi(j)↦ti(j)). 

(adding tiles to Sγ \ Sβ in order they were added to α, 
skipping tiles already in Sβ.)

5. Then for each j, αi(j) ⊑ βj, so previous Observation implies 
that βj + (pi(j)↦ti(j)) is stable.

6. Thus the assembly sequence is valid (each tile attachment 
is stable), showing β  → γ. QED

Intuition: if α can grow into γ, then if some 
of what will attach is already present (β), 
the remaining tiles can still attach.

β

then 

example: 

α γ

if →



example of usefulness of Rothemund’s Lemma

• Recall two alternate characterizations of deterministic tile systems:
(a) |A□[Θ]| = 1.

(b) for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Rothemund’s Lemma can be used to show that (b) implies (a)
• will skip in lecture (optional problem on homework 1)

44



Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence. 
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location 

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite: 

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t. 

Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since Sγ = ⋃i Sαi, there exists i such that N ⊆ ∂αi (after some finite number of tile 

attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p ∈ ∂αi. (the tile t can attach to αi, reached after only i steps)
7. By fairness, there exists j such that p ∈ Sαj ⊆ Sγ (eventually p gets a tile), which 

contradicts the claim that p ∉ Sγ. QED

Definition: Let α0, α1, … be an assembly sequence. 
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there 
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually 
gets a tile; none are “starved”

Concrete example of 
simulation algorithm creating 
a fair assembly sequence?

Corollary: For every assembly α, there is a 
terminal assembly γ such that α → γ.

Proof: Pick any fair assembly 
sequence α=α0, α1, … ; its result γ 
is terminal and α → γ . QED



How computationally powerful 
are self-assembling tiles?
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Turing machines

s,0:   q,0,→

q,0:   t,1,←

q,1:   s,0,→

t,0:   u,1,→

u,1:   HALT

s q s qt u

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0 11

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code
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Tile assembly is Turing-universal
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1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 u
→

1

→

t 0
u 1←

halt
u
→

1

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

HALT
halt

s,0:   q,0,→

q,0:   t,1,←

q,1:   s,0,→

t,0:   u,1,→

u,1:   HALTspace

time
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Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time 
configuration history

• What other shapes can be self-assembled?
• Define a shape to be a finite, connected subset of ℕ2.

• Any shape with n points can be self-assembled                                                  
with at most how many tile types?

• Is there an infinite family of shapes S1, S2, …, with |Sn| = n, such that 
each Sn requires at least n tile types to self-assemble?
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0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

0,1

1,2

1,1

2,0

2,1

2,2

2,3

n

S1 = S2 = S3 = S4 = …



Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

50

scale factor 3

Theorem: For any shape S, there is a 
constant c so that Sc can be self-
assembled with O(k / log k) tile types, 
where k is the length in bits of the 
shortest program (input to a universal 
Turing machine) that, on input (x,y), 
indicates whether (x,y) ∈ S.

S S3

Theorem (that we won’t prove): This is 
optimal! No smaller tile system could self-
assemble any scaling of S. If one existed, we 
could turn it into a program with < k bits 
“describing” S in this way. (Why?)[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, 

SIAM Journal on Computing 2007]





y

x

Programming a shape 
(inaccurate cartoonish 
overview)

1
1
0
1
1
0
1
0

compute 

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

compute 

P(0,-1)

P 0 -1

compute 

P(1,0)

P

1

0

base-conversion to 

produce k bits from 

k / log k tile types

slight modification of how P 

“computes” shape S: P(x,y) 

computes spanning tree of 

S, outputs children of point 

(x,y)



seed block growth block

More accurate detailed overview



fully-detailed 
example of 
growth block



Two interpretations

Theorem: For any shape S, there is a 
constant c so that Sc can be self-
assembled with O(k / log k) tile types, 
where k is the length in bits of the 
shortest program (input to a universal 
Turing machine) that, on input (x,y), 
indicates whether (x,y) ∈ S.

as stated for single seed tile: alternative statement for larger seed:

Theorem: There is a single set T of tile 
types (O(1) tile types), so that, for any 
finite shape S, there a constant c and a 
seed assembly σS “encoding” S, so that 
T self-assembles Sc from σS.

P

0

0

program

for UTM

input to P
σS = 

most of the tile complexity is encoding the 
binary string representing the program P 
that encodes shape S, and O(1) tile types can 
read that string and self-assemble Sc from it.

i.e., T is a universal set of tile types 
that can self-assemble any shape, 
by giving it the right seed.



Strict and weak self-assembly
Computability-theoretic questions about self-assembly



Strict and weak self-assembly

57

Recall:

Let X ⊆ ℤ2 be a shape, a connected subset 
of ℤ2. Θ strictly self-assembles X if, for all    
α ∈ A□[Θ], Sα = X. 
(every terminal producible assembly has shape X) 

Let X ⊆ ℤ2. Θ weakly self-assembles X if there 
is a subset B ⊆ T (the “blue tiles”) such that, 
for all α ∈ A□[Θ], X = α–1(B). 
(every terminal producible assembly puts blue tiles 
exactly on X.)

Tile system on right strictly self-assembles the 
whole second quadrant, and it weakly self-
assembles the discrete Sierpinski triangle.



Strict self-assembly

Observation: There is an infinite 
shape S ⊆ ℤ2 that cannot be strictly 
self-assembled by any tile system.

Proof: 
There are uncountably many shapes 
but only countably many tile systems.

?

Observation is non-constructive: 
Doesn’t tell us what is the shape S. 
Can we devise a concrete example of 
a shape that cannot be strictly self-
assembled?

Homework problem: you will show that any 
shape S ⊆ ℤ2 that can be strictly self-assembled 
is also computably enumerable.

Use that fact now to define an explicit shape 
that cannot be strictly self-assembled.

Question: Is there a computable shape S ⊆ ℤ2 that 
cannot be strictly self-assembled?

…
0 1 2 3 4 5 6

path in block n has a “turnout” if and only if n’th 
Turing machine halts on empty input



A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

• S is known as the discrete Sierpinski triangle…

S0 S1 S2 S3 S4

[slide credit: 
Scott Summers]

…

Observation: S is computable (easily).



The discrete Sierpinkski triangle cannot be 
strictly self-assembled
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Proof:
1. The shape is a tree: no cycles in the 

grid graph.
2. The x-axis has infinitely many pinch 

points: points where the subtree 
above the point is distinct from any 
other pinch point.

3. The north glue must be distinct at each 
pinch point, so no finite tile set suffices 
to self-assemble X. QED

…

…

…

[Lathrop, Lutz, Summers, Strict self-assembly of discrete 
Sierpinski triangles, Theoretical Computer Science 2009.]



Weak self-assembly
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Theorem: Every computable set X ⊆ ℕ, 
“embedded straightforwardly” in ℤ2, 
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes 
X; tiles sequentially simulate 
M on all inputs 0, 1, 2, …, 

Theorem: Some computable sets X ⊆ ℤ2 
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof: 
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}* 

not computable in O(n4) time. 
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are 

in R, e.g., if R = {1, 4, 8, …}

4. Suppose X could be weakly self-assembled. Then simulating self-
assembly for (2n)2 steps necessarily places a tile at some point at L1 
radius n from the origin; the tile’s color tells us whether n ∈ R ⇔ 1n ∈ A.

5. This can be done in time O(n4) time (why?), a contradiction. QED

y

x

e.g., X = {0, 2, …}



Randomized self-assembly
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Tile complexity of universal shape construction

• Recall: if we can have a seed structure encoding a shape S (in a binary 
string x ∈ {0,1}*, in glues on one side), we can self-assemble some 
scaling Sc of S with O(1) additional tile types that read and interpret x.

• Θ(K(x) / log K(x)) tile types are necessary and sufficient to create x 
from a single seed tile in the aTAM. (K(x) = length in bits of shortest 
program for universal Turing machine that prints x)

• We’ll see how to get this down to O(1) with high probability by 
concentration programming.

• i.e., move the effort from designing new tile types to (the plausibly simpler 
lab step of) altering concentrations of existing tile types

63



Nondeterministic binding

seed 1

G1

S1

concentration 11

concentration 1

Pr[        ] = 11/12

Pr[        ] =  1/12

seed 1 G1

seed 1 S1



Programming polymer length with concentrations

seed 1

G 11

S1

seed 1 S1G 11

expected length 12

G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11

seed 1 S1G 11G 11G 11

seed 1 S1G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11G 11G 11G 11G 11

seed 1 G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11 GG 11G 11G 11G 11G 11G 11 G 11 GG 11 GG 11 G

Large variance

[Becker, Rapaport, Rémila, FSTTCS 2006]
concentration 11

concentration 1



Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of 

expected length 4

seed 1 G 11G 11 S 21 S 32G 22 G 33 S3G 33 G 33G 33 G 33 G 33

seed 1 G 11G 11 S 21 S 32 G 33 S3G 33 G 33G 33G 11 G 11

seed 1 G 11G 11 S 21 S3G 33 G 33G 11 G 11 S 32 S3G 33 G 33G 22 G 22 G 22 G 22

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1

Lower variance… 
how much lower?



Bounding the probability the length deviates 
much from its mean

• r total stages, each with Pr[next tile           increments stage] = p.

• Let L(r,p) = total length; number of tile attachments until attaching 

• Expected total length E[L(r,p)] = r / p. 

• Recall: a binomial random variable B(n,p) = number of heads when 
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

• for any n,r,p:  Pr[L(r,p) ≤ n]   =   Pr[B(n,p) ≥ r] 

• similarly,         Pr[L(r,p) ≥ n]   =   Pr[B(n,p) ≤ r] 
67

Si i+1

Sr

flipping a coin n 
times results in    
≥ r heads

flipping a coin until 
the r’th heads 
requires ≤ n flips

⇔



Chernoff bound

68

Chernoff bound: For a binomial random variable 
B(n,p) (recall E[B(n,p)] = np), and for any 0 < δ < 1,
Pr[B(n,p) > (1+δ)np] < exp(–δ2np/3)
Pr[B(n,p) < (1–δ)np] < exp(–δ2np/2)

Let δ ≈ 0.27 and set p such that r/p(1–δ) = 2k.
Let δ’ ≈ 0.44: then r/p(1+δ’) ≈ 2k–1.
Applying this to our setting gives 
Pr[L(r,p) is not between 2k–1 and 2k] < 2·0.9421r



[  ] ≈ 7    [   ] = [   ] ≈ 1SG S

if r = 90 stages, expected length midway in [2k–1, 2k)

             with probability > 99%, actual length in [2k–1, 2k)

SG G SG G S GGG G G G G GG G GG G G G GG G

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[  ] ≈ 7    [   ] = [   ] ≈ 2SG S

SG SG G S GG GG GGG G

SG G SG G G S GGGG G G G G GG G G GG G G GG G

SG G SG G S GG G G G G GG G GG GG G

SG SG G SG GG

i.e., we can’t target a precise length L, 
but we can target precisely the number 
of bits ⌈log L⌉ in L’s binary expansion.



1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance

from seed

...
1

1

1

1

1

1

1

1

S SS

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

0 0 0 0 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2k precisely

signal to stop at 

next power of two

256



1 1 0

1

0

1 1

1 0

1

0

1

0

0

1

0

10

Programming a binary string

1101
13 in binary

# blue 

tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2k

1

0

1

0

1

0

1

1

13/16  ≤ <  14/16fraction of

with high probability,

(again by Chernoff bound)

≈ 132

low-order bits 

absorb error

concentration 

13.5/16

compete in 

Bernoulli trials

concentration 

1 - 13.5/16

B B B B B B B B B B B B

B B



y

x

Programming a shape 
(inaccurate cartoonish 
overview)

1
1
0
1
1
0
1
0

compute 

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

compute 

P(0,-1)

P 0 -1

compute 

P(1,0)

P

1

0

Sampling tiles to 

(probably) produce 

a binary string

slight modification of how P 

“computes” shape S: P(x,y) 

computes spanning tree of 

S, outputs children of point 

(x,y)



Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape 

(with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]



Other plausible modifications of aTAM model 
that can reduce tile complexity
• staged self-assembly: 

• https://doi.org/10.1007/s11047-008-9073-0 

• temperature programming:
• https://dl.acm.org/doi/10.5555/1109557.1109620 
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https://doi.org/10.1007/s11047-008-9073-0
https://dl.acm.org/doi/10.5555/1109557.1109620


The power of nondeterminism in 
self-assembly

75



Can nondeterminism help to 

self-assemble shapes?



Nondeterminism in Biology

Nondeterminism can allow complex structures 

to be created from a compact encoding.

Cytoskeleton formationGenetic mutation



Nondeterminism in Computer Science

Deterministic: entire 

computation uniquely 

determined by input

Randomized:        

flips coins; realistic

Nondeterministic: 

flips coins; magical

Trivially nondeterministic 

(“pseudodeterministic”): 

flips coins, but final output 

independent of flip results

Algorithm types:

P
o

w
e

r



seed

N
E

1
E

N
1

1
1

seed
N

E
1

E

N
1

1
1

... only one possible 

terminal assembly.

seed

N
E

1
E

N
1

So the tile set is 

still deterministic.

Either could 

bind first, but ...

seed

N
E

1
E

seed

N
E

N
1

1
1 Y

X

If tile types 

compete ...

seed
N

E
1

E

N
1 1

1 B
A

Nondeterminism in Self-Assembly

≥ 2 potential 

binding sites

at a single binding 

site, ≥ 2 tile types 

attachable

Perhaps:

seed
N

E
1

E

N
1

1
1 Y

X

... ≥ 2 possible 

terminal assemblies.

seed
N

E
1

E

N
1

1
1 B

A

More meaningful:



Nondeterminism in Self-Assembly

⚫ A tile set is deterministic if it has only one 

terminal assembly (map of tile types to points).

⚫ This tile set has multiple terminal assemblies, 

but they all have the same shape.

seed
N

E
1

E

N
1

1
1 Y

X

seed
N

E
1

E

N
1

1
1 B

A

seed
N

E
1

E

N
1 1

1 Y
X

1
1 B

A

⚫ The tile set self-assembles a 2 x 2 square.



seed
N

E
1

E

N
1 1

1 Y
X

1
1 B

A

In this example, we can 

convert this nondeterministic 

tile set that self-assembles a 

2 x 2 square ...
... to this deterministic tile set that 

self-assembles the same shape.

In general???

seed
N

E
1

E

N
1

1
1 B

A

Power of Nondeterminism
Question: Let S be a finite shape self-assembled by 

some nondeterministic tile set. Does some deterministic 

tile set also self-assemble S?



Power of Nondeterminism

Answer: Trivially yes.

nondeterministic 

tile set

shape S

1,1

1
,1

1,2

2
,1

1
,1

2,1 2
,1

3,1

1,1

1,2 1
,2

3,2

2,1

1
,2

2
,2

3,1

3,22
,2

deterministic tile set 

(hard-coding S)

Question: Let S be a finite shape self-assembled by 

some nondeterministic tile set. Does some deterministic 

tile set also self-assemble S?

Is there some way that 

nondeterminism helps to 

self-assemble shapes?



Remainder of talk
Answer: No

Answer: No

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does 

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-

assembled by some nondeterministic tile system with k 

tile types. Does some deterministic tile system with at 

most k tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Power of Nondeterminism

There is an infinite shape 
S strictly self-assembled 
by only nondeterministic 
tile systems.

There is a finite shape S 
strictly self-assembled 
with at most k tile types 
by only nondeterministic 
tile systems.



Optimization Problems

MINTILESET

    Given: finite shape S

    Find: size of smallest tile system that self-assembles S

MINDETTILESET

    Given: finite shape S

    Find: size of smallest deterministic tile system that self-assembles S

False statement: Nondeterminism does not affect tile complexity: 
for every nondeterministic tile set of size k that self-assembles a shape S, 

there is a deterministic tile set of size at most k that self-assembles S.

if true, would imply MINDETTILESET = MINTILESET



Main Result

⚫ We show: MINTILESET is NPNP-complete.

⚫ MINDETTILESET is NP-complete. (Adleman, Cheng, 

Goel, Huang, Kempe, Moisset de Espanés, Rothemund, STOC 2002)

⚫ NP ≠ NPNP ⇒   MINTILESET ≠ MINDETTILESET

a.k.a., Σ2
𝑃



Nondeterminism in Algorithms and Self-Assembly

Algorithm that flips 

coins but always 

produces same output

⚫ coin flips useless

But … finding smallest tile 

set is harder if it flips coins.

Tile set that flips   

coins but always 

produces same shape

⚫ coin flips useful



A Finite Shape for which Nondeterminism 

Affects Tile Complexity

h

⚫ Smallest tile set: ≈ 2h 

tile types

⚫ Smallest deterministic 

tile set: ≈ 3h tile types

in NPNP-hardness reduction, compete to 

assign bits to variable in Boolean formula



NPNP-hardness Reduction

⚫ NPNP-complete problem (Stockmeyer,Wrathall 1976): 

∃∀CNF-UNSAT

− Given: CNF Boolean formula Φ with k+n input bits 

x=x1...xk and y=y1...yn

− Question: is (∃x)(∀y)¬Φ(x,y) true?

⚫ Reduction goal: Given Φ, output shape S and integer c 

such that (∃x)(∀y)¬Φ(x,y) holds if and only if some tile 

set of size at most c self-assembles S.



Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to 

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫ Compute ϒ's minimal tile set T. (c=T)

⚫ Create shape S ⊃ ϒ such that 

− If (∃x)(∀y)¬Φ(x,y), tiles from T can be altered to assemble S.

− Otherwise, tiles from T cannot be altered to assemble S.

− “Since ϒ ⊆ S,” every tile set that assembles S contains T, so if tiles 

from T cannot be altered to assemble S then additional tiles are 

needed; i.e., S requires more than c = |T| tile types.

NPNP-hardness Reduction

S

ϒ



Evaluation of Formula
⚫ Order variables w = w1...wn (both ∃ and ∀ variables) and clauses C1… Cm 

arbitrarily.

⚫ Fix an assignment to variables.

⚫ For each clause Cj and variable wi, let aij be the pair (U/S, T/F) representing 

whether Cj is satisfied by wk for k ≤ i, and whether wk is true or false.

⚫ The matrix A = (aij) looks like

C3
USF SSF SST SST

C2
UUF UUF UUT UST

C1
UUF UUF UST SST

w1 w2 w3 w4

C3
SF SF ST ST

C2
UF UF UT ST

C1
UF UF ST ST

w1 w2 w3 w4

highlighting when Ci goes from 

unsatisfied (U) to satisfied (S)
w = 0011
Φ = (w1 ∨ w3) ∧ (w1 ∨ w2 ∨ w4) ∧ (¬w1 ∨ w2)



Gadgets (Adleman et al. 2002)

SSij – Cj satisfied by a previous variable (wk for k < i)

USij – Cj unsatisfied by previous variables but is satisfied by wi

UUij – Cj unsatisfied by previous variables and by wi

For each variable wi and clause Cj, value of wi = T/F and



Shape S

Tϒ = tile types to self-assemble ϒ; size c = |Tϒ |
(∃x)(∀y)¬Φ(x,y) is true ⇔ tiles in Tϒ can be modified to self-assemble S

by changing these glues

…



Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile 

complexity?  our example has ratio 3/2; Schweller (unpublished) improved to 

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf 

⚫ Hardness of approximation of minimum tile set problem

⚫ Minimum tile set problem when shape is a square

− deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard 

unless P=NP)

⚫ Weak self-assembly (pattern painting): paint some tile types “black”, and say 

“pattern assembled” is set of points with a black tile

− Minimum tile set problem: uncomputable! (NP-complete with some restrictions: 

https://arxiv.org/abs/1404.0967 )

− Power of nondeterminism: is it possible to uniquely paint a pattern, but only by 

assembling more than one shape on which the pattern is painted?

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967


Errors in algorithmic self-assembly
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Errors in self-assembly

• abstract Tile Assembly Model (aTAM, 
the model we’ve used so far):

• tiles attach but never detach

• tiles bind only with strength 2 or higher

• unrealistic… what’s a better model?

• kinetic Tile Assembly Model (kTAM); 
essential differences with aTAM:

• tiles can detach

• tiles can bind with strength 1 

95

errors



Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate rf (no matter how 
many glues match)

• Tiles detach with rate rr,b, if they are 
attached by total glue strength b

• “rate” = time until it occurs is exponential 
random variable with that rate; expected 
time 1/rate 

• a.k.a., continuous time Markov process

• Take home message: tiles bound with fewer 
glues (potential errors) fall off faster, but 
could get locked in by subsequent 
neighboring attachment

96

main cause of algorithmic errors: tile 
matches one glue but not the other



kTAM simulators

• ISU TAS (developed by Matt Patitz) also does kTAM simulation: 
• http://self-assembly.net/wiki/index.php?title=ISU_TAS 

• http://self-assembly.net/wiki/index.php?title=ISU_TAS_Tutorials 

• xgrow (new version developed by Constantine Evans): 
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow 

• xgrow (original version developed by Erik Winfree)
• https://www.dna.caltech.edu/Xgrow/ 

• older and a bit less intuitive
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http://self-assembly.net/wiki/index.php?title=ISU_TAS
http://self-assembly.net/wiki/index.php?title=ISU_TAS_Tutorials
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
https://www.dna.caltech.edu/Xgrow/


Tradeoff between assembly speed and errors

• attach rate rf can be controlled through 
concentrations

• “energy” of attachment is called Gmc 
(monomer concentration): rf ∝ e–Gmc

• detach rate rr,b can be controlled 
through temperature

• “energy” of detachment is called Gse   
(sticky end): rr,b ∝ e–b∙Gse

• Intuitively, setting rf ≈ rr,2 is like 
“temperature τ = 2” assembly 

• … but with net zero growth rate

• make rf a little larger, and growth is faster, 
but error rates go up

98

Theorem [Winfree, 1998]: To have total 
error rate ε, for fastest assembly speed, 
set Gse = ln(4/ε) and Gmc = ln(8/ε2), 
i.e., Gmc = 2Gse – ln 2, i.e., rf/rr,2 = 2



Proofreading: Algorithmic error correction

99

k x k proofreading: replace each tile with all 
strength-1 glues by a k x k block of tiles:

glues internal to the 
block all unique

glues external to the block 
come in k versions that each 
represent an original glue

Proposition: No tiling of the k x k region with “consistent external 
glues” (all represent the same glue in original tile set) has m 
mismatches, where 0 < m < k, i.e., if any mismatch occurs, then at 
least k mismatches occur before the k x k block can be completed to 
represent the wrong external glue.

Theorem(ish): If the error rate of the 
original tile system is ε, the error rate of 
the k x k proofreading tile system is O(εk), 
e.g., if ε = 0.01, then 2 x 2 proofreading 
gets error rate about ε2 = 0.0001.



Experimental algorithmic self-
assembly
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Crystals that think
about how they’re growing

Caltech HarvardInria Paris UC Davis

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin

slides for ECS 232: Theory of Molecular Computation
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Hierarchy of abstractions

Bits:  Boolean circuits compute

   Tiles: Tile growth implements circuits

   DNA: DNA strands implement tiles
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Harmonious arrangement
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move 1’s 
to here

Odd bits
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Parity
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i1 i2 o1 o2

0 0

0 1

1 0

1 1

0

1

1

0

0
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0

1

gate: function with two input bits i1,i2 
               and two output bits o1,o2

truth table

Circuit model

gate

i1

i2

o1

o2
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i1 o1

i2
o2
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i1
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one layer

7 rows in layer

Circuit model
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Randomization: Each row may be assigned ≥ 2 gates, with 

associated probabilities, e.g., Pr[gNN] = Pr[gXA] = ½ 
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Circuit model
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Circuit model
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Example circuits with same gate in every row

1
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COPY
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i1 i2 o1 o2
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SORTING
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i1
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OR(i1,i2)

AND(i1,i2)

COPY gates

SORTING gates

111/48



Example circuits with different gates in each row

1
0
0
1
0
1

0
0
0
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0
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PARITY

MULTIPLEOF3

1
1
1
0
1
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0110112 = 5910 = 3∙19 + 21110112

1
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0
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0
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0
1
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= 2710 = 3∙9
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Randomization: “Lazy” sorting
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Deterministic circuits
answer yes/no question

simulate cellular automataRULE110

time

Theorem: Rule 110 can efficiently 
execute any algorithm.

[Neary, Woods, ICALP 2006]

[Cook, Complex Systems 2004]

“count” as high as possible

PARITY MULTIPLEOF3 PALINDROME

CYCLE63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 1 2

yes

no
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Randomized circuits

use biased coin to 
simulate unbiased coin

Pr = Pr = ½

for any (positive) probabilities for the randomized gate

LAZYPARITY

RANDOMWALKINGBIT

DIAMONDSAREFOREVER

FAIRCOIN
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100 nm
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Hierarchy of abstractions

Bits:  Boolean circuits compute

   Tiles: Tile growth implements circuits

   DNA: DNA strands implement tiles

117/48



Gates → Tiles
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input 
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output 
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truth table row is 

encoded by a tile with 

4 glues encoding bits

gate
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i2

o1

o2
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Hierarchy of abstractions

Bits:  Boolean circuits compute

   Tiles: Tile growth implements circuits

   DNA: DNA strands implement tiles
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DNA single-stranded tiles

glue 4 glue 3

glue 2glue 1

assembly

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. 
Programming DNA tube circumferences.
Science 2008
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Single-stranded tiles for making any shape

Bryan Wei, Mingjie Dai, and Peng Yin.
Complex shapes self-assembled from single-stranded DNA tiles. 
Nature 2012.
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Uniquely addressed self-assembly versus algorithmic

single DNA origami uniquely-addressed tiles

staple strand for position (4,2)

tile for position (4,2)origami for position (4,2)

Unique addressing: each DNA “monomer” appears exactly once in final structure.

array of many DNA origamis

Algorithmic: DNA tiles are reused throughout the structure.
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Single-stranded tile tubes

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. Programming DNA tube circumferences, Science 2008.

DNA-level diagram of 20-helix tube
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Seeded growth
DNA origami seed
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02

biotins where 
output = 1

need barrier to nucleation 
(tile growth without seed); 
[tile]=100 nM; 
temperature=50.9° C

single-stranded “input-adapter” 
extensions encoding 6 input bits

can later add streptavidin (5 nm 
wide protein) to bind biotins and 
visualize where the 1’s are

hold 8-48 hours

seed input-
adapters

growing 
tiles

single-stranded tiles 
implementing circuit gates
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Tubes to ribbons

remove “seam” by 
strand displacement

500 nm
AFM 
image

tube
ribbon
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Random sequences              vs              designed sequences
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incorrect binding 

Other goals:
• low strand secondary structure
• low interaction between strands

0

1

1

0

correct binding 

✓

DNA sequence design

correct attachment:
both domains match

incorrect attachment:
only one domain matches
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Bar-coding origami seed for imaging 
multiple samples at once

label with 

streptavidin

Generate 

plate map

some staples of origami seed 
have version with a biotin

represents some combination of 
circuit and input, e.g., 
013 = “parity circuit, input=011010”
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Experimental protocol

• Mix 

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:

15

04

15

14

13

02

03

02
13

12

03

12

05

04

05

14

05

14

15

04

• origami seed (bar-coded to identify 𝛾 and 𝑥)

• “adapter” strands encoding 𝑥

• tiles computing 𝛾

• Anneal 90° C to 50.9° C in 1 hour (origami seeds form)
• Hold at 50.9° C for 1-2 days (tiles grow tubes from seed)
• Add “unzipper” strands (remove seam to convert tube to ribbon)
• Add “guard” strands (complements of output sticky ends, to deactivate tiles)
• Deposit on mica, buffer wash, add streptavidin, AFM 129/48



Results
def test_parity():
    actual = parity('100101')

    expected = 

    assertEquals(expected, actual)
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100 nm

SORTING PARITY MULTIPLEOF3 PALINDROME

RECOGNISE21 ZIG-ZAGCOPY
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RANDOMWALKINGBITLAZYPARITY

LEADERELECTION

ABSORBINGRANDOMWALKINGBIT

LAZYSORTING

WAVES
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RULE110FAIRCOIN

133/48



Is there a 64-counter?

1 2 3 … …62 63 1 2 3 …

Circuit with 63 distinct strings

42

Counting to 63

No!
Proof by Tristan Stérin, Maynooth University
Consequence of following theorem: 
No Boolean function computes an odd permutation 
if some output bit does not depend on all input bits.
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Parity tested on all inputs

σ(6-bit input) = 3-digit barcode representing that input 

32 inputs with even # of 1’s 32 inputs with odd # of 1’s

26 = 64 inputs with 6 bits

150 nm

We used all 355 tiles in some experiment, so we’ve verified “all tiles work”.

For 14 circuits, every tile for that circuit was used for some input, verifying all 
gate tiles work “together”.
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500 nm

12 μm AFM image of 
parity ribbons for several 
inputs whose output is 1

error statistics:

seeding fraction: 61% of origami seeds have tile growth into a tube

error rate: 0.03% ± 0.0008 per tile attachment 
(1,419 observed errors out of an estimated 4,600,351 tile attachments, 
comparable to best previous algorithmic self-assembly experiments)
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What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably 
into many complex patterns, by processing information as they grow. 

more algorithmic control
than periodic self-assembly

1D tile tubes 
(Yin et al., 
Science 2008)

2D tile lattices 
(Winfree et al., 
Nature 1998)

order of magnitude more tile 
types available than previous

algorithmic self-assembly

(Rothemund et al., 
PLoS Bio 2004)

double-crossover tile lattices 

(Fujibayashi et al., 
Nano Letters 2008)

(Barish et al., PNAS 
2009)

(Evans, Ph.D. thesis 
2014)

fewer types of DNA strands 
required than uniquely-
addressed self-assembly

DNA origami 
(Rothemund, 
Nature 2006)

hard-coded tile 
lattice (Wei et al., 
Nature 2012)

Contrasting with other self-assembly work:
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Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

σsmiley_face σdolphin

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

These tiles are universally programmable for building any shape.

? ?

138/48

Can we run algorithms to 
grow interesting shapes?

Theorem: There is a single set T 
of tile types, so that, for any finite 
shape S, from an appropriately 
chosen seed σS “encoding” S, T 
self-assembles S.
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