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Newgrange, Ireland. 5.2k years old

Ljubljana Marshes Wheel. 5k years old

Building things by hand: use tools! Great for scale of 10%2 x [%

Building tools that build things: specify target object with a computer program

Programming things to build themselves: for building .~
In small wet places where our hands or tools can’'t reach #~
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Things that build themselves

| want to stick below
blue & yellow and
above blue & green

Our topic: self-assembling molecules that compute as they build themselves
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Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)



Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

DNA tiles: grid graph
(tiles bind to each other, each has £ 4 neighbors)
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DNA tile self-assembly

monomers (“tiles” made from DNA) bind into a crystal lattice
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Source: Programmable disorder in random DNA tilings. Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released

under the GNU Free Documentation License. l—
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.
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Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011
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Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly




Theory of algorithmic selt-assembly

What if...
... there is more than one tile type?

... some sticky ends are “weak”?

Erik Winfree
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abstract Tile Assembly Model (aTAM)

Erik Winfree, Ph.D. thesis,
Caltech 1998
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abstract Tile Assembly Model (aTAM)

* tile type = unit square B

north glue label
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abstract Tile Assembly Model (aTAM)

* tile type = unit square

* each side has a glue
with a label and
strength (O, 1, or 2)

e tiles cannot rotate

Erik Winfree, Ph.D. thesis,
Caltech 1998
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abstract Tile Assembly Model (aTAM)

* tile type = unit square B * finitely many tile types

north glue label

[39e| an|3 1som

* each side has a glue * infinitely many tiles: copies
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strength (O, 1, or 2) H
strength O

e tiles cannot rotate

strength 1 (weak)

strength 2 (strong)
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abstract Tile Assembly Model (aTAM)

* tile type = unit square B * finitely many tile types

north glue label

[39e| an|3 1som

* each side has a glue

* infinitely many tiles: copies
with a label and

south glue label Of eaCh type
strength (O, 1, or 2) B
strength 0 * assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
N
strength 2 (strong)
Erik Winfree, Ph.D. thesis, —-—

Caltech 1998



abstract Tile Assembly Model (aTAM)

* tile type = unit square B * finitely many tile types

north glue label

[39e| an|3 1som

* each side has a glue * infinitely many tiles: copies

with a label and south glue label of each type
strength (O, 1, or 2) H
strength O e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
B * tile can bind to the assembly
if total binding strength > 2

strength 2 (strong)

-~ (two weak glues or
Erik Winfree, Ph.D. thesis,
Caltoch 1998 one strong glue)
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Example tile set
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Algorithmic self-assembly in action

N\ raw AFM image sheared image

»
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80 nm

[Crystals that couht! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]



aTAM simulator (WebTAS by Daniel Hader)

http://self-assembly.net/software/WebTAS/WebTAS-latest/

WebTAS File Settings System

Tile List Selected Tile < 14 | > ‘ rd

ESEED

EBOTTOM

8 .

Tip: for editing tile types, | find i
much easier to edit the text files
directly than to use the GUI, which
is tedious. You may also consider

................

BRIGHT -

Tile Properties

Tile Name

e Labsl e color kwriting code to generate the files. j
|

North Glue Label Strength

East Glue Label Strength

South Glue Label Strength

West Glue Label Strength

¥ Simulator: 280 tiles

Xgrow by Constantine Evans: https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
older xgrow (by Erik Winfree) https://www.dna.caltech.edu/Xgrow/

20
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Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?
* Physically synthesizing new tile types is difficult.

* Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

* But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

So, we ask: how many unique tile types to we need to self-assemble some
shapes?

We start with n x n squares as the “simplest” benchmark shape.
* Why not a1 xnline as an even simpler shape? What is its tile complexity?

[Note: we have not formally defined the aTAM yet... first let’s build intuition.]



The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

https://www.dna.caltech.edu/Papers/squares STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.



https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

https://www.dna.caltech.edu/Papers/squares STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.



https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?
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The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

All glues are strength 2

1492433114 (alternately: all are strength 1 and temperature = 1)
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This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.
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The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

All glues are strength 2

1492433114 (alternately: all are strength 1 and temperature t=1)
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The program size complexity of self-
assembled squares

Concretely: how to assemble a 4 x 4 square?
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This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

How many tile types does this
construction need in general
to assemble an n x n square?
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Tile complexity at temperaturet=1
(i.e., no cooperative binding allowed)

Is n? optimal?
Can we do better?

Note all pairs of adjacent tiles
bind with positive strength:

11 2|2 3|3
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Tile complexity at temperaturet=1
(i.e., no cooperative binding allowed)

2 : . .
Is n® optimal? Theorem: At temperature t = 1, if all pairs of
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Tile complexity at temperature t=1
(i.e., no cooperative binding allowed)

Is n? optimal?

Can we do better?

Note all pairs of adjacent tiles
bind with positive strength:
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Theorem: At temperature t = 1, if all pairs of
adjacent tiles bind with positive strength, then
for every positive integer n, n? tile types are
necessary to self-assemble an n x n square.
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(3,7 L J

Proof: Suppose for contradiction - i
we use the same tile type i at o) —— L j
positions (x;,y;) and (x,,y,). Then N ;

they have a path L between them
with all positive-strength glues,
and this can happen instead:
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Is n? still optimal? No!
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Is n? still optimal? No!
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Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal? No!

Tile complexity of
this construction?

2n—1=0(n)
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Conjecture: The temperature
T =1 tile complexity of an n x n

square is Q(n).

(most recent progress:
https://arxiv.org/abs/1902.02253
https://arxiv.org/abs/2002.04012 )
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Tile complexity at temperature t =2
(i.e., cooperative binding allowed)
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How to get sublinear
tile complexity?
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using O(log n) tile types
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using O(log n) tile types
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Logarithmic tile complexity at temperature =2

A few more “filler” tiles

rectangle into an n x n square.

complete the =n x log n
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* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:

* Count number of (functionally distinct) tile systems with fewer than % log p / log log p tile types.
* WEe'll show that it’s fewer than p.

* There are p squares with width n between p+1 and 2p; each needs a different tile system.
* By pigeonhole, some n x n square cannot be assembled with < % log p / log log p tile types.
* Since p<n/2,wehave %logp/loglogp<Y¥logn/loglogn.

* Since we can do this for every positive integer p, there are infinitely many n that require more than
% log n / log log n tile types (a stronger result holds: “most” values of n require that many)
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How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k
b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*
c) How many ways to choose the glues for all k tile types? bk = (4k)*k

d) How many ways to choose the seed tile? | k
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How many tile systems with k tile types?

* Number of tile systems with exactly k tile types: | < k(4k)%

* Number of tile systems with at most k tile types: ' < k?(4k)*

* Recall k = % log p / log log p; by algebra (see notes), k?(4k)* < p.



How many tile systems with k tile types?

* Number of tile systems with exactly k tile types: | < k(4k)%

* Number of tile systems with at most k tile types: ' < k?(4k)*

* Recall k = % log p / log log p; by algebra (see notes), k?(4k)* < p.

* By pigeonhole principle, for some width n with p<n <2p,thenxn
square is not self-assembled by one of these k2(4k)* tile systems.
Since those are all the tile systems with at most k tile types, the n x n
square requires more than % log p / log log p tile types to self-
assemble. QED



Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110)
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Fact: “most” integers
n require 2 log n bits

to “describe”.

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110}

* We can “describe” n with a tile system that self-assembles an n x n square.

* How many bits do we need to describe a tile system with k tile types?
* log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111
* 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)
» 4k log(4k) to describe all k tile types, plus log k to give index of the seed.
* So O(k log k) bits total.

* For any n in the Fact, log n = O(k log k), i.e., k = Q(log n / log log n).

Note: we’re ignoring glue strengths here; adds 2 bits per glue to describe at temperature 2.

(since there are 3 possible strengths O, 1, 2);
see http://doi.org/10.1007/s00453-014-9879-3 for handling higher-temperature systems.

“Descriptional Complexity” proof



https://en.wikipedia.org/wiki/Kolmogorov_complexity
http://doi.org/10.1007/s00453-014-9879-3

Which bound is tight?

1. All n x n squares can be assembled with O(log n) tile types; can we get it down
to O(log n / log log n)?

2. Or do we need Q(log n) tile types to assemble infinitely many n x n squares?

34



Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types



Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

Recall:

tile complexity =
O(log n)k 23

 (—
N=F
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Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

Recall: Idea:
tile complexity = 1) Use same 23 tiles that
Qs n)}+\23 - . turn the seed row
Pered s encoding a binary
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Creating a row of log n glues with arbitrary bit string s € {0,1}°&"
using O(log n / log log n) tile types

 Key idea: choose larger power-of-two base b = 2¥, with
b =log n/log log n, and convert from base b to base 2.

* How many base-b digits needed to represent a log(n)-bit integer?

* Each base-b digit is k bits
e e.g., if b=23=8, then 0=000 2=010 3=011 4=100 5=101 6=110 7=111
* e.g., the octal number 71254 in binary is 111001010101,

* need log(n) / k =log(n) / log (log n / log log n) = log(n) / (log log n — log log log n)
= log(n) / log log n base-b digits.
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We say B is the result of the assembly sequence.
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Sometimes we write a —° B to
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Basic reachability result

Rothemund’s Lemma: Let a = B = y be stable assemblies
such thata — y. Then B — .
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example of usefulness of Rothemund’s Lemma

e Recall two alternate characterizations of deterministic tile systems:
(a) A [O]] = 1.
(b) for all a,@ € A[@] and all p € S, N Sg, a(p) = B(p).



example of usefulness of Rothemund’s Lemma

e Recall two alternate characterizations of deterministic tile systems:
(a) |A_[6]] =1.
(b) for all a,@ € A[@] and all p € S, N Sg, a(p) = B(p).

e Rothemund’s Lemma can be used to show that (b) implies (a)
* will skip in lecture (optional problem on homework 1)
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Fair assembly sequences

Definition: Let a,, a,, ... be an assembly sequence.
We say it is fair if, for all i € N and all p € da,, there
exists j>isuch thatp €S .
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Intuition: Every frontier location eventually

Definition: Let a,, a,, ... be an assembly sequence.
gets a tile; none are “starved”

We say it is fair if, for all i € N and all p € da,, there
exists j>isuch thatp €S .

Lemma: Let a,, a,, ... be a fair assembly sequence.
Then its result y is terminal.
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Fair assembly sequences

Definition: Let a,, a,, ... be an assembly sequence. Intuition: Every frontier location eventually
We say it is fair if, for all i € N and all p € da,, there gets a tile; none are “starved”
exists j>isuch thatp €S .

Lemma: Let a,, a,, ... be a fair assembly sequence.
Then its result y is terminal.

Proof:
1. Suppose for the sake of contradiction that y is not terminal, i.e., it has frontier location
p € 0y; note in particular p € S,.
2. Simpler if assembly sequence is finite:
1. inthis case, y = o, ;, SO p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p € S,))
Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p € 9y, there are positions adjacent to p with enough strength to bind a tile t.
Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since S, = U; S,;, there exists i such that N S 0, (after some finite number of tile
attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p € da.. (the tile t can attach to a, reached after only i steps)
7. By fairness, there exists j such that p € S; < S, (eventually p gets a tile), which
contradicts the claim that p € S,. QED
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We say it is fair if, for all i € N and all p € da,, there gets a tile; none are “starved”
exists j>isuch thatp €S .

Lemma: Let a,, o, ... be a fair assembly sequence. Corollary: For every assembly a, there is a

Then its result y is terminal. terminal assembly y such that a — .
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Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p € 0y, there are positions adjacent to p with enough strength to bind a tile t.
Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since S, = U; S,;, there exists i such that N S 0, (after some finite number of tile
attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p € da.. (the tile t can attach to a, reached after only i steps)
7. By fairness, there exists j such that p € S; < S, (eventually p gets a tile), which
contradicts the claim that p € S,. QED
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Fair assembly sequences

Definition: Let a,, a,, ... be an assembly sequence.
We say it is fair if, for all i € N and all p € da,, there

exists j>isuch thatp €S .

Lemma: Let a,, o, ... be a fair assembly sequence.
Then its result y is terminal.

Proof:
1. Suppose for the sake of contradiction that y is not terminal, i.e., it has frontier location
p € 0y; note in particular p € S,.
2. Simpler if assembly sequence is finite:
1. inthis case, y = o, ;, SO p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p € S )
3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p € 0y, there are positions adjacent to p with enough strength to bind a tile t.
Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since S, = U; S,;, there exists i such that N S 0, (after some finite number of tile
attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p € da.. (the tile t can attach to a, reached after only i steps)
7. By fairness, there exists j such that p € S; < S, (eventually p gets a tile), which

contradicts the claim that p € S,. QED

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Corollary: For every assembly a, there is a
terminal assembly y such that a — .

Proof: Pick any fair assembly
sequence 0=0, 0, ... ; its result y
is terminaland a — y . QED

Concrete example of
simulation algorithm creating
a fair assembly sequence?



How computationally powerful
are self-assembling tiles?
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configuration history
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Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)
* simulate a Turing machine that grows a “wedge” describing its space-time

configuration history 2,3
 What other shapes can be self-assembled? 021,222 1,2 2,2
* Define a shape to be a finite, connected subset of N2, 01 1,1 21 01 1,1 21

* Any shape with n points can be self-assembled 0,0 1,0 2,0 2,0

with at most how many tile types? p

* Is there an infinite family of shapes S, S,, ..., with |S,| = n, such that
each S, requires at least n tile types to self-assemble?

5= 5,= 53 = 547
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Theorem: For any shape S, there is a
constant c so that 5S¢ can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) € S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree,
SIAM Journal on Computing 2007]




Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

S S

scale factor 3

Theorem: For any shape S, there is a
constant c so that 5S¢ can be self-
assembled with O(k / log k) tile types,
where k is the length in bits 0

shortest program (input to a universa
Turing machine) that, on input (x,y),
indicates whether (x,y) € S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree,
SIAM Journal on Computing 2007]

Theorem (that we won’t prove): This is
optimal! No smaller tile system could self-
assemble any scaling of S. If one existed, we
could turn it into a program with < k bits
“describing” S in this way. (Why?)



Terminating output side

sunededoig

Terminating output side

op1s ndino

Input side

F1G. 5.1. Forming a shape out of blocks: (a) A coordinated shape S. (b) An assembly composed
of ¢ X ¢ blocks that grow according to transmitted instructions such that the shape of the final assembly
is S (not drawn to scale). Arrows indicate information flow and order of assembly. The seed
block and the circled growth block are schematically expanded in Figure 5.2. (c) The nomenclature
describing the types of block sides.
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fully-detailed
example of
growth block

Terminating output side

Terminating output side

Propagating output side of adjacent block
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as stated for single seed tile:

Theorem: For any shape S, there is a
constant ¢ so that 5¢ can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) € S.




Two interpretations

as stated for single seed tile:

Theorem: For any shape S, there is a
constant ¢ so that 5S¢ can be self-
assembled with{O(k / log k) tile types)
where k is the length in bifs of the
shortest program (input £o a universal
Turing machine) that, gh input (x,y),
indicates whether (x,y) € S.

most of the tile complexity is encoding the
binary string representing the program P
that encodes shape S, and O(1) tile types can
read that string and self-assemble 5S¢ from it.




Two interpretations

as stated for single seed tile: alternative statement for larger seed:

Theorem: For any shape S, there is a
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TWO I ﬂte r p FEtat I O n S i.e., Tis a universal set of tile types

that can self-assemble any shape,
by giving it the right seed.

as stated for single seed tile: alternative statement for larger seed:

Theorem: For any shape S, there is a
constant ¢ so that S¢ can be self-

assembled with{O(k / log k) tile types) Theorem: There is a single set T of tile
where k is the length in bifs of the types (O(1) tile types), so that, for any
shortest program (input £o a universal finite shape S, there a constant c and a
Turing machine) that, of input (x,y), seed assembly o “encoding” S, so that

indicates whether (x, ) € S. T self-assembles S¢ from o..

most of the tile complexity is encoding the
binary string representing the program P program-—we,|
that encodes shape S, and O(1) tile types can Oc = for UTM

read that string and self-assemble 5¢ from it. input to P <:
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Strict and weak self-assembly

Computability-theoretic questions about self-assembly



Strict and weak self-assembly

Recall:

Let X € Z2 be a shape, a connected subset
of Z2. O strictly self-assembles X if, for all
a€A[O],S, =X

(every terminal producible assembly has shape X)
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Strict and weak self-assembly

Recall:

e D

Let X € Z2 be a shape, a connected subset
of Z2. O strictly self-assembles X if, for all
a€A_[O],S, =X

(every terminal producible assembly has shape X)
A 4

p
Let X € Z2. © weakly self-assembles X if there

is a subset B € T (the “blue tiles”) such that,
foralla € A_[@], X = a”}(B).

(every terminal producible assembly puts blue tiles
exactly on X.)

A

-

Tile system on right strictly self-assembles the
whole second quadrant, and it weakly self-
assembles the discrete Sierpinski triangle.
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St I"I Ct Se H:‘a ssem b ‘y Homework problem: you will show that any

shape S € Z? that can be strictly self-assembled
is also computably enumerable.

Observation: There is an infinite
shape S C Z? that cannot be strictly Use that fact now to define an explicit shape

self-assembled by any tile system. that cannot be strictly self-assembled.

path in block n has a “turnout” if and only if n’th
Turing machine halts on empty input

There are uncountably many shapes
but only countably many tile systems. /\\

&

Proof:

Observation is non-constructive: .o
Doesn’t tell us what is the shape S. 0 1 2 3 4 5 6

Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Question: Is there a computable shape S € Z? that
cannot be strictly self-assembled?
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A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

* Sis known as the discrete Sierpinski triangle...

Observation: S is computable (easily).

[slide credit:

Scott Summers] SO Sl SZ 83 84



The ¢

strict

iscrete Sierpinkski triangle cannot be
v self-assembled

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]
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The c

strict

iscrete Sierpinkski triangle cannot be
v self-assembled

g N
Proof:
1. The shape is a tree: no cycles in the
grid graph.
)

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]
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The discrete Sierpinkski triangle cannot be

strictly self-assemblec

p
Proof:

. 1. The shapeis a tree: no cycles in the

: grid graph.

2. The x-axis has infinitely many pinch
points: points where the subtree
above the point is distinct from any
other pinch point.

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]
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The ¢

iscrete Sierpinks

strict

<i triangle cannot be

v self-assemblec

Proof:
1. The shapeis a tree: no cycles in the
grid graph.

2. The x-axis has infinitely many pinch
points: points where the subtree
above the point is distinct from any
other pinch point.

3. The north glue must be distinct at each
pinch point, so no finite tile set suffices
to self-assemble X. QED

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]
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Weak self-assembly

Theorem: Every computable set X © N,
“embedded straightforwardly” in Z?,
can be weakly self-assembled.

Turing machine M computes
= X; tiles sequentially simulate
Mon all inputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]
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Weak self-assembly

Theorem: Every computable set X © N,
“embedded straightforwardly” in Z?,
can be weakly self-assembled.

Turing machine M computes
X; tiles sequentially simulate
Mon all inputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Theorem: Some computable sets X € Z?
cannot be weakly self-assembled.

Proof:
1. The Time Hierarchy Theorem says there is a computable set A € {1}*

not computable in O(n?) time.
2. Let R={]|x| : x € A} be the set of lengths of strings in A.
3. Define X € Z2 to be the set of “concentric diamonds” whose L, radii are

inR,e.g.,ifR={1,4,8, ..} 4)/

X
- — — 4+ — — >
v

4,

Suppose X could be weakly self-assembled. Then simulating self-
assembly for (2n)? steps necessarily places a tile at some point at L,
radius n from the origin; the tile’s color tells us whethern E R & 1" € A.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]
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Proof:

1. The Time Hierarchy Theorem says there is a computable set A € {1}*

Theorem: Every computable set X S N, not computable in O(n%) time.

“embedded straightforwardly” in Z2, 2. Let R={|x]| : x € A} be the set of lengths of strings in A.
can be weakly self-assembled 3. Define X € Z2 to be the set of “concentric diamonds” whose L, radii are
' inR, eg., ifR={1,4,8, ..} J
p
X
- — — 4+ — — >
v

Turing machine M computes 4.  Suppose X could be weakly self-assembled. Then simulating self-

X; tiles sequentially simulate assembly for (2n)? steps necessarily places a tile at some point at L,
| M on allinputs 0, 1, 2, ..., radius n from the origin; the tile’s color tells us whethern € R & 1" € A.

5. This can be done in time O(n?*) time (why?), a contradiction. QED

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.] [Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]



Randomized self-assembly



Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.



Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.

* O(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)



Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.

* O(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

* We’ll see how to get this down to O(1) with high probability by
concentration programming.



Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.

* O(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

* We’ll see how to get this down to O(1) with high probability by
concentration programming.

* i.e., move the effort from designing new tile types to (the plausibly simpler
lab step of) altering concentrations of existing tile types
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Programming polymer length with concentrations
[Becker, Rapaport, Rémila, FSTTCS 2006] /. concentration 11
\. concentration 1

expected length 12

Large variance
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3 "stages", each of
expected length 4

seed 1|

expected length 12

seed 1 1 S 2
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Bounding the probability the length deviates
much from its mean

* r total stages, each with Pr[next tile increments stage] = p.
* Let L(r,p) = total length; number of tile attachments until attaching 1l

» Expected total length E[L(r,p)] =1/ p.

e Recall: a binomial random variable B(n,p) = number of heads when
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

e forany n,r,p: Pr[L(r,p) £n] = Pr[B(n,p)2>r]

flipping a coin until flipping a coin n
the r'th heads & times results in
requires < n flips > r heads

* similarly, Pr[L(r,p) 2 n] = Pr[B(n,p) <r]
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Chernoff bound

Chernoff bound: For a binomial random variable
B(n,p) (recall E[B(n,p)] = np), and forany 0 <6< 1,
Pr[B(n,p) > (1+6)np] < exp(—62np/3)

Pr[B(n,p) < (1-8)np] < exp(—62np/2)

Let & = 0.27 and set p such that r/p(1-6) = 2.
Let & = 0.44: then r/p(1+68’) = 2+1,

Applying this to our setting gives

Pr[L(r,p) is not between 2k1 and 2¢] < 2-:0.9421’
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Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
)  with probability > 99%, actual length in [2%1, 2K)

(@] =7 [8]=[s]=2

[_[c[cIsIGlG[G[G[s[cE
HEEEESEEEESEEEs
| [GIGIG[SIGIGIG[S &

ll 4 8 16 32
|_lclclclG|GlGlG[G[s[GIG|G|G|G[G[S]GIGIGIGIGIGIGIG|GIG]SI
[ IGIGIGIGIGIGISIGIGIGIGIGIGIGIGIGIGISIGIGIGIGIGIG Sl
| lc|GlG|GIG[S|GIG|G|G|G|GIGIGIG[SIGIGIGIGISI :

E~7 [m]=[s]~1




Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
)  with probability > 99%, actual length in [2%1, 2K)

[] =/ [.] — [] =~ 2 i.e., we can’t target a precise length L,
but we can target precisely the number
HBEEHEEEEEE - . of bits [log L] in L’s binary expansion.

HEEEESEEEESEEEs
| [GIGIG[SIGIGIG[S &

ll 4 8 16 32
|_lclclclG|GlGlG[G[s[GIG|G|G|G[G[S]GIGIGIGIGIGIGIG|GIG]SI
[ IGIGIGIGIGIGISIGIGIGIGIGIGIGIGIGIGISIGIGIGIGIGIG Sl
| lc|GlG|GIG[S|GIG|G|G|G|GIGIGIG[SIGIGIGIGISI :

E~7 [m]=[s]~1
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Programming polymer length 2 precisely

distance
from seed

signal to stop at
next power of two
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(110D

13 in binary
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tiles
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compete in
Bernoulli trials

m

concentration concentration
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with high probability,
13/16 < fraction of. < 14/16

(again by Chernoff bound)
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Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape
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Other plausible modifications of aTAM model
that can reduce tile complexity

e staged self-assembly:
e https://doi.org/10.1007/s11047-008-9073-0

* temperature programming:
* https://dl.acm.org/doi/10.5555/1109557.1109620
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The power of nondeterminism in
self-assembly



Can nondeterminism help to
self-assemble shapes?



Nondeterminism in Biology
N (¢

enetic mutation

~

ytoskeleton formation

(G

Nondeterminism can allow complex structures
to be created from a compact encoding.
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Nondeterminism in Computer Science

- : Nondeterministic:
[ Algorithm types: ] flips coins; magical

Randomized:
flips coins; realistic

Trivially nondeterministic — _
(“pseudodeterministic”): Deterministic: entire
flips coins, but final output | | cOMputation uniquely
independent of flip results | |determined by input

Power
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Nondeterminism in Self-Assembly

. Atile set is deterministic if it has only one
terminal assembly (map of tile types to points).

. This tile set has multiple terminal assemblies,
but they all have the same shape.

R
ESN

- The tile set self-assembles a 2 x 2 square.

l




Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic
tile set also self-assemble S?



Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

In this example, we can
convert this nondeterministic
tile set that self-assembles a

2 X 2 square ...

R

A
N t j 1
seedE E




Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

In this example, we can
convert this nondeterministic

tile set that self-assembles a . L
... to this deterministic tile set that
2 X 2 square ...
self-assembles the same shape.

nh ~ :
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N 1 N 1
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Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

Answer: Trivially yes. deterministic tile set
(hard-coding S)

nondeterministic shape S > .
tile set | |
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Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondetermmlstlc tlle set. Does some deterministic

tile set alg T

Answer: T IS there some way that
nondeterminism helps to
self-assemble shapes?

i i
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P P = =

ministic tile set
-coding S)

nondetermir
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Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?
Answer: No

Question 2: Let S be a finite shape strictly self-
assembled by some nondeterministic tile system with Kk
tile types. Does some deterministic tile system with at
most K tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?
Answer: No

There is an infinite shape
S strictly self-assembled
by only nondeterministic
tile systems.

There is a finite shape S
strictly self-assembled
with at most k tile types
by only nondeterministic
tile systems.



Power of Nondeterminism

Question 1: Let S be an Infinite shape strictly self- There is an infinite shape
assembled by some nondeterministic tile system. Does | S strictly self-assembled
some deterministic tile set also self-assemble S? by only nondeterministic
Is tile computability unaffected by nondeterminism? tile systems.

Answer: No [Remainder of talk]

/

‘Question 2: Let S be a finite shape strictly self- ") Thereis a finite shape S
assembled by some nondeterministic tile system with k | = strictly self-assembled
tile types. Does some deterministic tile system with at with at most k tile types
most K tile types also self-assemble S? b}' only nondeterministic
Is tile complexity unaffected by nondeterminism? tile systems.
\Answer: No
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Optimization Problems

MINTILESET

Given: finite shape S

Find: size of smallest tile system that self-assembles S
MINDETTILESET

Given: finite shape S
Find: size of smallest deterministic tile system that self-assembles S

False statement: Nondeterminism does not affect tile complexity:
for every nondeterministic tile set of size k that self-assembles a shape S,
there is a deterministic tile set of size at most k that self-assembles S.

if true, would imply MINDETTILESET = MINTILESET




Main Result

We show: MINTILESET is NPNP-complete.
a.k.a., 2y

MINDETTILESET IS NP-complete. (adieman, cheng,
Goel, Huang, Kempe, Moisset de Espanés, Rothemund, STOC 2002)

NP # NPNP = MINTILESET # MINDETTILESET



Nondeterminism in Algorithms and Self-Assembly

Algorithm that flips Tile set that flips

coins but always coins but always

produces same output | | produces same shape
coin flips useless coin flips useful

But ... finding smallest tile
set Is harder if it flips coins.
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A Finite Shape for which Nondeterminism
Affects Tile Complexity

in NPNP-hardness reduction, compete to
assign bits to variable in Boolean formula

| A

. Smallest tile set: = 2h
tile types

. Smallest deterministic
tile set: = 3h tile types
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NPNP-hardness Reduction

NPNP-complete problem (Stockmeyer,Wrathall 1976):
AVCNF-UNSAT

Given: CNF Boolean formula ® with k+n input bits
X=X;...X, and y=y,...y,

Question: is (AX)(Vy)~d(X,y) true?

Reduction goal: Given &, output shape S and integer c
such that (3x)(Vy)-~d(X,y) holds if and only if some tile
set of size at most ¢ self-assembles S.
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NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

. Glven a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

- Compute Y's minimal tile set T. (c=T)

Create shape S o Y such that s
- If @x)(Vy)~D(X,y), tiles from T can be altered to assemble S.

Create a tree shape Y that “encodes” . : r y
I |

— Otherwise, tiles from T cannot be altered to assemble S.

- “Since Y € S,” every tile set that assembles S contains T, so if tiles
from T cannot be altered to assemble S then additional tiles are
needed; i.e., S requires more than c = |T| tile types.
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Evaluation of Formula

Order variables w = w;...w,, (both 3 and V variables) and clauses C,... C

arbitrarily.

Fix an assignment to variables.

For each clause C; and variable w;, let a; be the pair (U/S, T/F) representing
whether C, is satisfied by w, for k < i, and whether w, is true or false.

The matrix A = (g;) looks like

highlighting when C; goes from
unsatisfied (U) to satisfied (S)

w = 0011
D= (W, V wy) A (W, V w, V w,) A (~w,; V w,)
C,|SF|SF|ST|ST
C, |UF |UF |UT|ST
C, |UF |UF|ST|ST
Wy | W, | Wy | W,

C; |USF | SSF|SST | SST
C, |UUF|UUF|UUT [UST
C, |UUF|UUF | UST | SST

Wy | W, | Wy | W,




Gadgets (Adleman et al. 2002)

1 IE\E 5 =

branch point p
UST

For each variable w; and clause C;, value of w; = T/F and

SS; — C, satisfied by a previous variable (w, for k <)
US; — C; unsatisfied by previous variables but is satisfied by w;
UU; — C; unsatisfied by previous variables and by w;
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for assighing for assigning
3 variables V variables
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T, = tile types to self-assemble Y; size c = | Ty |
(Ix)(Vy)-D(x,y) is true < tiles in T, can be modified to self-assemble S
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guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf



https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

- How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

. Hardness of approximation of minimum tile set problem


https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square


https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)


https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)

Weak self-assembly (pattern painting): paint some tile types “black”, and say
“pattern assembled” is set of points with a black tile


https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)

Weak self-assembly (pattern painting): paint some tile types “black”, and say
“pattern assembled” is set of points with a black tile

— Minimum tile set problem: uncomputable! (NP-complete with some restrictions:
https://arxiv.org/abs/1404.0967 )



https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)

Weak self-assembly (pattern painting): paint some tile types “black”, and say
“pattern assembled” is set of points with a black tile

— Minimum tile set problem: uncomputable! (NP-complete with some restrictions:
https://arxiv.org/abs/1404.0967 )

- Power of nondeterminism: is it possible to uniquely paint a pattern, but only by
assembling more than one shape on which the pattern is painted?
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Errors in self-assembly

 abstract Tile Assembly Model (aTAM,
the model we’ve used so far):

* tiles attach but never detach
* tiles bind only with strength 2 or higher

errors

oo gy RN

-_ A A A

e unrealistic... what’s a better model?

* kinetic Tile Assembly Model (kKTAM);
essential differences with aTAM:

 tiles can detach
* tiles can bind with strength 1

L1L0000LLLLOD

e e e T Y
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Modeling errors: kinetic Tile Assembly Model

main cause of algorithmic errors: tile

« All tiles attach with rate r, (no matter how 2; matches one glue but not the other

many glues match)
* Tiles detach with rate r ,, if they are ({;)
rfJ [rr,z
N\, ’

attached by total glue strength b

* “rate” = time until it occurs is exponential
random variable with that rate; expected
time 1/rate

* a.k.a., continuous time Markov process

* Take home message: tiles bound with fewer
glues (potential errors) fall off faster, but
could get locked in by subsequent
neighboring attachment




KTAM simulators

* [SU TAS (developed by Matt Patitz) also does kTAM simulation:

* http://self-assembly.net/wiki/index.php?title=ISU TAS
* http://self-assembly.net/wiki/index.php?title=ISU TAS Tutorials

e xgrow (new version developed by Constantine Evans):
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow

» xgrow (original version developed by Erik Winfree)

* https://www.dna.caltech.edu/Xgrow/
e older and a bit less intuitive
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Tradeoff between assembly speed and errors

* attach rate r; can be controlled through
concentrations
* “energy” of attachment is called G,
(monomer goncentration): I g-6me

* detach rate r,, can be controlled
through temperature

* “energy” of detachment is called G,
(sticky end): r,, o e72Cse
* Intuitively, setting r,=r_, is like
“temperature T = 2” assembly
e ... but with net zero growth rate

* make r; a little larger, and growth is faster,
but error rates go up

Theorem [Winfree, 1998]: To have total
error rate ¢, for fastest assembly speed,
set G, = In(4/¢) and G, = In(8/¢g?),
i.e, G, =2G, . —1In2,ie,r/r,=2

optimal
growth constant €

low 4 T=2
[monomer]
no growth
T=1
G e
fast
random
aggregation
high =
[monomer]
weak strong
bonds G bonds 98
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Proofreading: Algorithmic error correction

k x k proofreading: replace each tile with all

strength-1 glues by a k x k block of tiles: s
' 2x2 block X
ieX (P = 0" s
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k x k proofreading: replace each tile with all
strength-1 glues by a k x k block of tiles:

X 2x2_ block X
e

glues internal to the
block all unique
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k x k proofreading: replace each tile with all represent an original glue
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glues internal to the
block all unique
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least k mismatches occur before the k x k block can be completed to
represent the wrong external glue.



Proofreading: Algorithmic error correction

glues external to the block
come in k versions that each

k x k proofreading: replace each tile with all represent an original glue

strength-1 glues by a k x k block of tiles:

. 2x2 block X
ileX ‘ (4 tles)

glues internal to the

block all unique Theorem(ish): If the error rate of the

original tile system is g, the error rate of
Proposition: No tiling of the k x k region with “consistent external the k x k proofreading tile system is O(g),

glues” (all represent the same glue in original tile set) has m e.g., if e=0.01, then 2 x 2 proofreading
mismatches, where 0 < m <k, i.e., if any mismatch occurs, then at gets error rate about €2 = 0.0001.

least k mismatches occur before the k x k block can be completed to

represent the wrong external glue.



Experimental algorithmic self-
assembly



Crystals that think

about how they’re growing

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin

slides for ECS 232: Theory of Molecular Computation

Inria Paris UC Davis Harvard
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Hierarchy of abstractions

=) Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
DNA: DNA strands implement tiles
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Harmonious arrangement
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Harmonious arrangement

1 1 1

0 1
M,
0 1
2,
1\d 1

104/48



Harmonious arrangement
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Odd bits
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Odd bits

1 0 0
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a.k.a. parity

Odd bits
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Circuit model

0,

gate

gate: function with two input bits i,/
and two output bits o0,,0,
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Circuit mode|

truth table

I, 1,]04 O,
0 0|0

0 1|1

i . 10(1

ate 1 1|0

gate: function with two input bits i,/
and two output bits o0,,0,

107/48



Circuit mode|

truth table

1 1

0, 0,

00
01
0, 10
gate 11

gate: function with two input bits i,/
and two output bits o0,,0,

0

1
1
0

0

0
0
1
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Circuit mode|

Ly

A
7 rows in layer

N

\_ /
0
0,

X’ J
\_

/

e

one layer
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Circuit mode|

Ly

P 4
7 rows in layer

N

)

\_ /
0
0,

Y
N
-

one layer

b 0;
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Circuit model

1]

O]
ENN
| PINGY
12
.
) (3
b, O
o » Yo

2 @/

Randomization: Each row may be assigned = 2 gates, with
associated probabilities, e.g., Pr[gxn] = Prlg€xal = %2
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Circuit mode|
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Programmer specifies layer:
gates to go in each row
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Example circuits with same gate in every row

Copy

R R, OOR R

Copy gates

I, 1,0, 0,
0 0j]O0 O
0 110 1
1011 O
1 111 1

il
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Example circuits with same gate in every row

Copy gates

I, 1,0, 0,
0 0j]O0 O
0 110 1
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Example circuits with same gate in every row

CopY Copy gates

. . Iy bloy o, %’
10000000000000000000 . Ly oolo o N
10000000000000000000) .,
: : 0 1|0 1 @
0 0
10000000000000000000 i 10(1 0 @ ,
10000000000000000000 1 1101 1

o~
—

\
SORTING SORTING gates
.. | o 0y
OR(i,,i,) olo o
111 O
' AND(i, iy ©°|t °
111 1
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Example circuits with different gates in each row
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Example circuits with different gates in each row

PARITY

P OFL,r OOR
OO OO0OOo

R O R R OR
O OO o oo

011011, =273, =39 111011,

R R OR RO
R RO R R R
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Example circuits with different gates in each row

PARITY

P OFL,r OOR
OO OO0OOo

R O R R OR
O OO o oo

011011, = 27,4 =3-9 111011, =59,9=3-19 + 2

R R OR RO
R RO R R R
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Randomization: “Lazy” sorting

¢

If 1 and 0 out of order, flip a coin to copy gate

decide whether to swap them. °

sort gate

113/48



Randomization: “Lazy” sorting

000000000000000)!

00000000 @ 0

100000000000 0 e

If 1 and 0 out of order, flip a coin to copy gate

decide whether to swap them. e
00000} °

00000 0000
] 00000000000 000 000!
103 00000000000 @ 0 t oat
10000 0000000000000 0 sort gate
100000

o
\

o O
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Deterministic CIrcults

PARITY MULTIPLEOF3
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\

answer yes/no question
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Deterministic circuits

4 )
PARITY MULTIPLEOF3 PALINDROME answer yes/no question
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Deterministic circuits

4 )
PARITY MULTIPLEOF3 PALINDROME answer yes/no question
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Deterministic circuits

4 )
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

(CYCLE63 “count” as high as possible )
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Deterministic circuits

4 )
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

(CYCLE63 “count” as high as possible )

1/121314|5 6 71819|10[11{12[13|14]15|16|17|18|19|20[21|22|23|24|25|26|27|28|29[30[31(32[33[34[35[36[37|38[39|40[41|42[43|44|45|46|47|48[49|50[51|52[53[54(55|56|57|58|59|60|61(62[63| 1 | 2

\. J

(B RULE110 simulate cellular automata
o
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Deterministic circuits

4 )
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

D SSTRACKS

COLLECTED

\_
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Deterministic circuits

[

\_

PARITY MULTIPLEOF3

COLLECTED

PALINDROME

D SSTRACKS

\
answer yes/no question

\

1121314|5|6|7|8|9|10/11|12|13|14/15/16/17|18|19|20|21|22|23|24/25/26/27/28/|29/30|31|32|33|34/35/36/37|38|39/|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|6 1|62|63| 1 | 2
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[
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= | A A ° ° ° ° ™ Theorem: Rule 110 can efficiently

- R G R I vecute any algorith
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= 000 © 000 © 000 O 000 © 000 © 000 ©

E‘ 000000000000000000000000000000000000 (Cook, Complex Systems 2004]
L [3 [Neary, Woods, ICALP 2006] |

. N\
simulate cellular automata
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Randomized circuits
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Randomized circuits

LAZYPARITY

RANDOMWALKINGBIT . .

DIAMONDSAREFOREVER

FAIRCOIN 000000000000 . : ..’ e

. . [ ] [ ] o0 o0 o0 ®
use biased coin to e oo oo oo
simulate unbiased coin
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Randomized circuits

LAZYPARITY Sl

RANDOMWALKINGBIT ' oo ot

DIAMONDSAREFOREVER

FAIRCOIN S0aS30stts 200000 S00s®

ZatedsiodstedSne =7

o0
use biased coin to oo oo e oo oo oo
simulate unbiased coin

for any (positive) probabilities for the randomized gate
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Hierarchy of abstractions

Bits: Boolean circuits compute
=) Tiles: Tile growth implements circuits
DNA: DNA strands implement tiles
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Gates =2 Tiles

gate
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Gates =2 Tiles
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Gates =2 Tiles e

gate

11 12 |01 O2
O 0|0 O
O 111 O

truth table row is
1 0|1 O encoded by a tile with

4 glues encoding bits
1 1lo0 1 J J
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How tiles compute while growing
(algorithmic self-assembly)
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How tiles compute while growing
(algorithmic self-assembly)

>

*
*
*
*
*
>
>

one mismatch

two mismatches

“data-free” tile wraps top
to bottom to form a tube

&
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How tiles compute while growing
(algorithmic self-assembly)

two glues match:
cooperative binding
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How tiles compute while growing
(algorithmic self-assembly)

two glues match:
cooperative binding

mismatch
@

two mismatches

“data-free” tile wraps top
to bottom to form a tube

&
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Hierarchy of abstractions

Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
=) DNA: DNA strands implement tiles

120/48



DNA single-stranded tiles

Domain 4 Domain 3

‘\"n -'yﬂ

Domain1 Domain 2

assembly >

glue 4 glue 3

glue 1 glue 2

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif.
Programming DNA tube circumferences.
Science 2008

L1.1

L1.2

L1.3 L1.
2.3 uz2.4 I

lJ;;1I uz2.2 I U I
o M MU Ew Men o
U5.1 I us.2 I us.3 I us.4 I

USJI ue.2 I I

U6.3
2

L6.3

LJ2.5,

U6.4 Iiﬁéiél

L6.4
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Single-stranded tiles for making any shape

Molecular canvas

=l -—-"_"-7  EEEECEEEEEEEEE = S E
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- EEaEER000E
e SRR o [P ]E[B ]y [V
= v e NEIRRBEEEEEE
Bryan Wei, Mingjie Dai, and Peng Yin. nunEEm

Complex shapes self-assembled from single-stranded DNA tiles.

Nature 2012. 122/48



Uniquely addressed self-assembly versus algorithmic

Unigue addressing: each DNA “monomer” appears exactly once in final structure.

uniquely-addressed tiles

Molecular canvas

single DNA origami
E=‘ -4 -IZoS-ITT ERRARARARRRRAR
= . — FElTI L EE
| T-oEoIET- e
 — e o o
— — \
—_— Ea_gl_e_hfad Triangle o

tile for position (4,2)
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Uniquely addressed self-assembly versus algorithmic

Unigue addressing: each DNA “monomer” appears exactly once in final structure.

Algorithmic: DNA tiles are reused throughout the structure.
uniquely-addressed tiles

single DNA origami array of many DNA origamis
o
| — Irfoeil, Sl
B | I oI R
: - Te=T - o o o e
— ] \
—_— Ea_gl_e_hfad Triangle o

tile for position (4,2)
123/48

staple strand for position (4,2)
origami for position (4,2)



Single-stranded tile tubes

DNA-level diagram of 20-helix tube

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. Programming DNA tube circumferences, Science 2008.
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Seeded growth === =

single-stranded tiles
implementing circuit gates

———
O4 14 —
05 05
ﬁ
1 1 0 0
2 2
————
O4 O4 —
T —— 13 03
—
15 15
14 04
—————
—
05 15

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C
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Seeded growth === =

DNA origami seed

single-stranded tiles
implementing circuit gates

0, 1,
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— 05 05
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T —— 13 03

—
15 15

1, 0,
————
—

05 15

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C
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Seeded growth === =

DNA origami seed

single-stranded “input-adapter” single-stranded tiles
extensions encoding 6 input bits implementing circuit gates
f 0, 1,
04 14 —
- S — 05 05
—
1, 1, 0, o,
| | 0, 0, —
" 13 03
—
15 15

A({_; 1, 0,
0 1

need barrier to nucleation

(tile growth without seed);

[tile]=100 nM;
temperature=50.9° C
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Seeded growth

DNA origami seed

single-stranded “input-adapter”
extensions encoding 6 input bits

!

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

hold 8-48 hours

)

| —
: | —
13 13
single-stranded tiles
implementing circuit gates
0, 1,
6 1 —
0 0 :
15 15
1, 0,
05 15

.“ ./
—— i 4:"0 -

m/‘/:_'é” “ I‘v“ “

_“';;f ligﬂ O
. —m: -i"gt:ﬁa_(‘n‘:&xg.\ Cﬁ

h-‘ e(-p.(i- FFVA (“ )Y
{$\| \‘{\_t E o\ 5 @\/
~ ~ v ~ )
seed input- growing

adapters tiles

o~
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Seeded growth === =

DNA origami seed

single-stranded “input-adapter” single-stranded tiles
extensions encoding 6 input bits implementing circuit gates

f

4‘" ./ Q/\/

&0\:
. . £
need barrier to nucleation — J' Jv _('(_(, J, ,L‘,(.L‘
(tile growth without seed); ~ hold 8-48 hours — = f'o"(“ \

— - - , - v. \
‘ — -\cﬂeﬂ"@'«'?’c‘ (A v
| ) . 7 I —-a';f ‘:'\(“‘ ' \
[tile]=100 nI\/_I, — me——r _,.3-&‘175-’*“’\_ o ﬁm‘"’ Cﬁ

temperature=50.9° C e

- " h-(n V‘F\ PR A
k\:“ g\‘;\‘{\’t 6 A\ g\/
~ - JW_A ~ ,
seed input- growing

adapters tiles

g
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can later add streptavidin (5 nm

S e e d e d g ro Wt h & — V\{ide Protein) to bind biotins and

p— visualize where the 1’s are

DNA origami seed

Subunit A "

single-stranded “input-adapter” single-stranded tiles
extensions encoding 6 input bits implementing circuit gates

!

need barrier to nucleation
(tile growth without seed); ~ hold 8-48 hours

[tile]=100 nM; ‘
temperature=50.9° C

h - (‘twnp. (i -{\—ﬂnvug (‘ ' a \! !

(N

v J
N~ ~

seed input- growing
adapters tiles 125/48



Tubes to ribbons




Tubes to ribbons




Tubes to ribbons




Tubes to ribbons

bbbbbb

aaaaaaaaaaa - 44




DNA sequence design

S— . —— /

2 br—— __/ correct attachment:
e

‘r— 1 —— both domains match

__\)lz X
* incorrect attachment:
b only one domain matches
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DNA sequence design

Random seguences VS designed sequences

09T domain _ 91 domain” 2 domains
2 domains

normalized count
o
(@)
normalized count

4 6 8 10 12 14 16 18 %476 8 10 12 14 16 18
more favorable == energy (-kcal/mol) energy (-kcal/mol)
[T r

= " correct attachment:
both domains match

-ﬂbﬁ\qpczzz‘x
*  incorrect attachment:
i E— only one domain matches
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DNA sequence design

Random seguences VS designed sequences

09T domain 91 domain” 2 domains

2 domains

0.5

normalized count

incorrect binding
4 6 8 10 12 14 16 18 "4 6 8 10 12 14 16 18

more favorable == energy (-kcal/mol) energy (-kcal/mol)

0.0

i .._:H.... ! -

-ﬁﬂﬁ{_tizEJ'

b 25 7 correct attachment:
both domains match

ETTT+E;;%;%;
LR (] ||\|. (LI
e &
Fﬁ%ﬁ%\qpc:zz)(
1 . .
*—i incorrect attachment:
i E— only one domain matches

F,_lz

L
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DNA sequence design

Random seguences VS designed sequences
0.9 : - : — i
1 dgmain | 991 domain~ 2 domains
2 domains
% 05
E
0.0 0.0

6 8 10 12

more favorable m==)

16 18

energy (-kcal/mol)

12 14 16 18

energy (-kcal/mol)

o
10

#ﬁ%%ﬁ;r_tizzv’
:E—*_%_/ correct attachment:

- both domains match
=.#.I:
DT <~
iﬁfr4\th:ii)(

_*I .
E incorrect attachment:

i E— only one domain matches

correct binding
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DNA sequence design

Random seguences VS designed sequences
0.9 AArma 0.9 T :
1 dgmain . 1 domain” 2 domains
2 domains
% 05
3
=
0.0 6 8 10 12 16 18 12 14 16 18
more favorable == energy (-kcal/mol) energy (-kcal/mol)
;g_‘—%_r/ correct attachment:
N em— — both domains match
S —
e (\ Other goals:
;I—-—H—\)Z X i « low strand secondary structure
e Incorrect attachment: i * low interaction between strands
i — only one domain matches correct binding
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Bar-coding origami seed for imaging

multiple samples at once

218 7LI8 10818 13518 16718 19008 281 2718 3018 9118 42318
706 1116 14316 17516 2 29,16 271,16 30316 3316 36716 3916 431,16

9,15 5oowoss o [ 2 16,15
s e [ 90 e o

o3 (ezis [ 2608 116,13

1w 0712 9,12 2102 80312 33512 30 [ EEERE

worr 1oz [ 26ET 2ssn w0 BB @AM asn
0] 20710 (2900 270 (805G 3350 83110

woo (929 [ 269 2ss0 3200
| R U

] w3 [ s aes

10,1 720 1041 1360 1681 2000 2321 2641 2061 3281 3601 3021 4241

405,16

4056

4654

1652

some staples of origami seed
have version with a biotin
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Bar-coding origami seed for imaging
multiple samples at once

308 7LI8 10818 13508 16718 19018 28118 26318

706 7906 11116 14316 17506 207,16

6115 68

2906 27,06 30316 335,16

IS WIS M1 WLIS 428
wors w205 2

o g .+~ some staples of origami seed
e 2T 0T - have version with a biotin

1611
B oo BN B 0 om0 Zei g0 w80

431,10
1609 289 3 4169
38 818 4058
287 [§A0F 167
816 4656

B4 454

L
me3 a3 [ s 4es

10,1 720 1041 1360 1681 2001 2321 2641 2061 3281 3601 3021 4241

4652

16H barrel stay

* pos3=u, coding staples, no biotin (14 staples)
p 2 ]
12345678 9101112

A

] X X

c X

] x X

E X X

F X X > i |

G X X X |

H |

pos3=u, coding staples, biotin (16 staples)

16H 3bit biotin staples unzippers2 + biotin_staples 23 !
1234567891011 12345678 9101112

A X X XA I

B X RLXAB |

C x  xaclc |

D X X|D I

E X X E X |

F F X |

G G |

H X H |
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Bar-coding origami seed for imaging
multiple samples at once

some staples of origami seed
have version with a biotin

represents some combination of
P T circuit and input, e.g.,
Generate EREER T  ey evspay,, 013 = “parity cireuit, input=011010”

plate map

label with
streptavidin
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Experimental protocol

a form of growth b c d e
uncontrolled unseededseeded no
growth Jubes ~ tubes | growth
I - 1 Xy
heating \L ~ 2 P e
(7]
% (no seeds) } - } /
§ commg >> 1 hour 2 \L 1-2 days 1 day
S (no seeds) * * »
3+ seed algorithmic unzip, guards,
\ forms self-assembly deposit on mica,
[ . L n add streptavidin
40 50 60 SORTING
temperature (C) tiles & seed
To execute circuit y on input x € {0,1}":
e Mix
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Experimental protocol

a

uncontrolled unseededseeded no

form of growth b

growth Jubes ~ tubes | growth
| - 1
heatin ~
Bl (no seegs) 2\//\,
E; 1 hour
9| coolin é
g1 (no seegs
S ( ) } *
** seed
L X forms
40 . . 50 ' 60 SORTING
temperature (C) tiles & seed

To execute circuit y on input x € {0,1}":

Mix

C

¥

e

1-2 days

algorithmic

origami seed (bar-coded to identify y and x)

Y

self-assembly \ }

1 day

—>

unzip, guards,

deposit on mica,

add streptavidin
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Experimental protocol

a form of growth b c d e
uncontrolled unseededseeded no
growth Jubes ~ tubes | growth
| - 1 Xy
heating \L ~ 2 (L*v’ x
w
8 (no seeds) } (L-J’ } d///
g cooling ? 1 hour 2 \ 1-2 days 1 day
c
5 (no seeds) } * * »
3+ seed algorithmic unzip, guards,
\ forms self-assembly deposit on mica,
[ . L n add streptavidin
40 50 60 SORTING
temperature (C) tiles & seed
To execute circuit y on input x € {0,1}":
* Mix

e origami seed (bar-coded to identify y and x)

* “adapter” strands encoding x (

O
“O~_

R
AO\‘_‘
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Experimental protocol

a

form of growth

uncontrolled unseededseeded no

growth

# nanotubes

—

heating
(no seeds)

cooling
(no seeds)

Jubes ~ tubes | growth

Mix

20 50

temperature (C)

b

}

?

¢

60 SORTING

—~
o~

tiles & seed

To execute circuit y on input x € {0,1}":

—-

seed algorithmic
forms self-assembly

X x

1 hour >2 \ 1-2 days

origami seed (bar-coded to identify y and x)

“adapter” strands encoding x

tiles computing y

1, 0,

————

ﬁ
05 15

*&f
O~
0, 1, &0\; 0,

1 day

—>

unzip, guards,

deposit on mica,

add streptavidin

12 12
S
o, ® 1, 3 0,
> > ——
15 15 05 OS 13 03
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Experimental protocol

To execute circuit y on input x € {0,1}":

a form of growth
uncontrolled unseededseeded no
growth Jubes ~ tubes | growth

heating
(no seeds)

coohng
(no seeds)

# nanotubes

b

20 50
temperature (C)

Mix

60 SORTING
tiles & seed

1 hour

—-

seed
forms

algorithmic

¥

e

1-2 days

self-assembly

e origami seed (bar-coded to identify y and x)

* “adapter” strands encoding x

e tiles computing y __,

1, 0,
————
ﬁ

05 15

Deposit on mica, buffer wash, add streptavidin, AFM

— €8

15

>

15
Anneal 90° Cto 50.9° Cin 1 hour (origami seeds form)
Hold at 50.9° C for 1-2 days (tiles grow tubes from seed)

Add “unzipper” strands (remove seam to convert tube to ribbon)
Add “guard” strands (complements of output sticky ends, to deactivate tiles)

05

05

W,

2

03

1 day

—>

unzip, guards,

deposit on mica,

add streptavidin

> 1
3
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def test parity():
actual = parity('100101')

Results cxvected - TR

assertEquals(expected, actual)
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PARITY

Is the number of 1’s odd?

SORTING

h input: 000001, output: 100000

yes

yes

no

Copy

000000000000000000000000000000!
000000000000000000000000000000
000000000000000000000000000000

00000000000000000000
$0000000000000000000

| ‘23:;::

\qu;

MuLTIPLEOF3
Is the input binary number a multiple of 37

RECOGNISE21
Is the binary input = 217

yes

yes

LAl no

PALINDROME
Is the input a palindrome?

Z1G-ZAG
Repeating pattern

131/48
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LAZYPARITY LAZYSORTING RANDOMWALKINGBIT

ABSORBINGRANDOMWALKINGBIT
Random walker absorbs to top/bottom

S
§ I




FAIRCOIN RULE110
Unblasmg a biased coin Simulation of a cellular automaton

1 1y ddddadd .i..:.u_.t.a

Prob[result=yes]
1.0 = = theory
Il cxperiment

0.1 03 05 0.7 0.9
132 134 130 133 131
bias p & barcode

distance to yes/no result (nm
300 yes/ (nm)

{ theory
200 { experiment |
100
| II i
0 nm T
0 1 0.5 0 7
132 134 130 133 131

bias p & barcode
133/48



Counting to 63

Circuit with 63 distinct strings
123... ...6263123.
by 2 1¢¢
% $02 eee 20000000 tues ees"e 3 77 o3"0ed"3"S 3

3° Cud o3y oEF°

e 9 =

Is there a 64-counter?

No!

Proof by Tristan Stérin, Maynooth University
Consequence of following theorem:

No Boolean function computes an odd permutation
if some output bit does not depend on all input bits.
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Parity tested on all inputs

2% = 64 inputs with 6 bits
/ 32 inputs with even # of 1’s \ / 32 inputs with odd # of 1’s \

o(eeeen1) = eal

o(e8e00R) = 800

o(eeee11) = 013

o(eee1e1) = 821

o(eee110) = 822

o(e01001) = 024

0(e81010) = 830

o(ee11ee) = 101

o(ee1111) = 110

ofeleee1) = 112 |8

o(e1e010) = 113

o(e10100) = 121

o(e1e111) = 130

0(911000) = 442

0(e11011) = 133

o(e11101) = 200 ¥

o(e1111e) = 201

0(100001) = 002

0(100010) = 212

0(100100) = 221

o(180111) = 223

0(101000) = 230

o(101011) = 233

o(101101) = 300

0(101110) = 301

0(110000) = 303

o(110011) = 333

o(110101) = 004

0(111001) = 404

0(111010) = 410

0(111100) = 420

0(111111) = 431

o(eee010) = 811

o(eee100) = 820

o(eee111) = 823

o(001000) = 441

o(eele1l) = 100

o(ee1101) = 102

0(e01110) = 103

0(010000) = 111

o(e1ee11) = 114

o(010101) = 122

o(010110) = 123

o(e11e01) = 131

0(011010) = 132

0(011100) = 134

K/

%1111) =21e

D R
L7 Fid — B AP,

#
= =

0(100011) = 213
0(100101) = 003
0(100110) = 222
o(101001) = 231
0(101010) = 232
0(101100) = 234 |
0(101111) = 302
0(110001) = 310
0(110010) = 320
0(110100) = 330
o(110111) =400 [ .
0(111000) = 401
o(111011) = 411 'J. 1 : oo
D

o(111101) = 421

0(111110) = 438

o(6-bit input) = 3-digit barcode representing that input

T
% !




Parity tested on all inputs

2% = 64 inputs with 6 bits
/ 32 inputs with even # of 1’s \ / 32 mputs with odd # of 1’s \

o(000000) = 260 m

o(eeee11) = 013

o(eeeenl) = el 0(100000) = 211

0(100001) = 002

aee - ‘ sy
3 A . .
- n o(eeee10) = 911
o(100010) =212 MEREE RS . \ g
1} N
PERD 4 o(eeslee) = 828 2
o(100100) = 221 |- 5

. o(eee111) = 823
oftee111) = 223

0(100011)= 213 Rl I ’\......'-.....--—.

NS 0(100101) = 003  HL S e R
ofeeelel) = e21 [LSIHEE ( ) 3D 3 ¥ y

'y ¥
o(aeette) = 622

o(ee1e01) = @

0(e81010) = 8 '

We used all 355 tiles in some experiment, so we’ve verified “all tiles work”.

0(881160) = 1

0(100110) = 222

o(ee1111) = 1

o(e1eee1) = 1

For 14 circuits, every tile for that circuit was used for some input, verifying all |
ofe1e010) = 1 gate tiles work ”together”. I

ole10100) = 1 u

o(110101) = ee4 [} > N, - . s —
o(e10111) = 130 H’ o(e1011e) = 123 - B TSRPS0 (110111) = 400 {{QG v e v
: of )= oler10e1) = 131 RTC B T R 0(111000) = 401 [N

= {8

o(6-bit input) = 3-digit barcode representing that input

o(e11060) = 242 [

o(e11e10) = 132 o111611) =411 Ry
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12 um AFM image of
parity ribbons for several
inputs whose output is 1

136/48




12 um AFM image of
parity ribbons for several
inputs whose outputis 1
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12 um AFM image of
parity ribbons for several
inputs whose outputis 1
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12 um AFM image of
parity ribbons for several
inputs whose outputis 1
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12 um AFM image of
parity ribbons for several
inputs whose outputis 1
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12 um AFM image of
parity ribbons for several
inputs whose outputis 1

error statistics:

seeding fraction: 61% of origami seeds have tile growth into a tube

error rate: 0.03% = 0.0008 per tile attachment
(1,419 observed errors out of an estimated 4,600,351 tile attachments,
comparable to best previous algorithmic self-assembly experiments)




What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.




What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

/more algorithmic control

than periodic self-assembly

2D tile lattices
(Winfree et al.,
Nature 1998)
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What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably

into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

/more algorithmic control

than periodic self-assembly

X

2D tile lattices 1D tile tubes

(Winfree et al., (Yinetal.,

wture 1998) Science 2008)/

ﬂewer types of DNA strands\
required than uniquely-
addressed self-assembly

IIIIIEEH-
—— ISUAODDENE

DNA origami hard-coded tile

(Rothemund, lattice (Wei et al.,
K Nature 2006) Nature 2012) /
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What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

/more algorithmic control

than periodic self-assembly

A

2D tile lattices

(Winfree et al.,

wture 1998)

ﬂewer types of DNA strands\
required than uniquely-
addressed self-assembly

f

DNA origami hard-coded tile

/order of magnitude more tile\
types available than previous
algorithmic self-assembly

double-crossover tile lattices

(Rothemund et al., (Fujibayashi et al.,
PLoS Bio 2004) Nano Letters 2008)

(Rothemund, lattice (Wei et al.,
K Nature 2006) Nature 2012) /

(Barish et al., PNAS (Evans, Ph.D. thesis
@9) 2014) /

137/48




Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to
grow interesting shapes?
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Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

200 Y e SR PO GE TS0 SIED D

Can we run algorithms to
grow interesting shapes?

" Theorem: There is a single set T Y
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T

Qelf—assembles S. 4

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.



Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

200 > ww™ R R WSSO SD D

Can we run algorithms to
grow interesting shapes?

-~y 5
Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T
self-assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.




Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

200 Y e SR PO GE TS0 SIED D

Can we run algorithms to
grow interesting shapes?

smiley_face

" Theorem: There is a single set T Y
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T

Qelf—assembles S. 4

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.



Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to

grow interesting shapes? O dolphin

smiley_face

Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T
self-assembles S.

These tiles are universally programmable for building any shape.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.
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