
Structural DNA nanotechnology
a.k.a. DNA carpentry

a.k.a. DNA self-assembly

slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis

Building things by hand: use tools! Great for scale of 10±2 ×

Building things
Ljubljana Marshes Wheel. 5k years old

Newgrange, Ireland. 5.2k years old

2/48[slides credit: Damien Woods]

Building things by hand: use tools! Great for scale of 10±2 ×

Building things
Ljubljana Marshes Wheel. 5k years old

Newgrange, Ireland. 5.2k years old

Building tools that build things: specify target object with a computer program

2/48[slides credit: Damien Woods]

Building things by hand: use tools! Great for scale of 10±2 ×

Building things
Ljubljana Marshes Wheel. 5k years old

Newgrange, Ireland. 5.2k years old

Building tools that build things: specify target object with a computer program

Mariana Ruiz Villarreal

Programming things to build themselves: for building

in small wet places where our hands or tools can’t reach

2/48[slides credit: Damien Woods]

Things that build themselves

Our topic: self-assembling molecules that compute as they build themselves

I want to stick below
blue & yellow and
above blue & green

3/48[slides credit: Damien Woods]

Things that build themselves

Our topic: self-assembling molecules that compute as they build themselves

I want to stick below
blue & yellow and
above blue & green

3/48[slides credit: Damien Woods]

Things that build themselves

Our topic: self-assembling molecules that compute as they build themselves

I want to stick below
blue & yellow and
above blue & green

3/48[slides credit: Damien Woods]

DNA as a building material

4

DNA as a building material

=
TCGGAAATAAAATCGGAC

AGCCTTTATTTTAGCCTG

4

DNA as a building material

=
TCGGAAATAAAATCGGAC

AGCCTTTATTTTAGCCTG

TAGCGTAATT
ATCGCATTAA

=

DNA strands bind even if only part of strands are complementary:

4

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

5

scaffold DNA strand
(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

5

http://openwetware.org/wiki/Biomod/2014/Design

scaffold DNA strand
(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

5

http://openwetware.org/wiki/Biomod/2014/Design

scaffold DNA strand
(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

5

http://openwetware.org/wiki/Biomod/2014/Design

scaffold DNA strand

staple DNA strands

(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

(+ water + salt)

5

http://openwetware.org/wiki/Biomod/2014/Design

scaffold DNA strand

staple DNA strands

folded DNA origami
heat to 90C, cool to
20C over an hour

(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design
© Shawn Douglas

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

(+ water + salt)

5

http://openwetware.org/wiki/Biomod/2014/Design

DNA origami Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

Atomic force
microscope images

100 nm

6

Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

7

Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

DNA tiles: grid graph
(tiles bind to each other, each has ≤ 4 neighbors)

7

DNA tile self-assembly

8

DNA tile self-assembly
monomers (“tiles” made from DNA) bind into a crystal lattice

Source: Programmable disorder in random DNA tilings. Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017

tile lattice

8

Practice of DNA tile self-assembly

DNA tile
Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

9

Practice of DNA tile self-assembly

DNA tile

sticky end

Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

9

Practice of DNA tile self-assembly

DNA tile

sticky end

Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

9

Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011

Practice of DNA tile self-assembly

(not the same tile motif in this image)

10

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

11

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

11

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

11

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

11

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

11

Practice of DNA tile self-assembly

12

Practice of DNA tile self-assembly

single crossover

12

Practice of DNA tile self-assembly

single crossover

double crossover

Figure from Schulman, Winfree, PNAS 2009

12

Practice of DNA tile self-assembly

triple-crossover
tile (LaBean, Yan,

Kopatsch, Liu,
Winfree, Reif,
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein,

Reif, LaBean, Science 2003)

DNA origami tile (Liu, Zhong, Wang,

Seeman, Angewandte Chemie 2011)
Tikhomirov, Petersen, Qian,
Nature Nanotechnology 2017

single-stranded tile (Yin,

Hariadi, Sahu, Choi, Park, LaBean,
Reif, Science 2008)

150 nm

double-
crossover tile
(Winfree, Liu,
Wenzler, Seeman,
Nature 1998)

13

Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree

14

abstract Tile Assembly Model (aTAM)

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

abstract Tile Assembly Model (aTAM)

• tile type = unit square

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

abstract Tile Assembly Model (aTAM)

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

abstract Tile Assembly Model (aTAM)

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate
strength 0

strength 1 (weak)

strength 2 (strong)

n
o

rt
h

 g
lu

e
la

b
el

so
u

th
 g

lu
e

 la
b

e
l

west glue label

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

abstract Tile Assembly Model (aTAM)

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

abstract Tile Assembly Model (aTAM)

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

• assembly starts as a single
copy of a special seed tile

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

abstract Tile Assembly Model (aTAM)

• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

• assembly starts as a single
copy of a special seed tile

• tile can bind to the assembly
if total binding strength ≥ 2
(two weak glues or
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

W
N

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

16

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

16

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

16

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed“cooperative binding”

16

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed“cooperative binding”

16

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed“cooperative binding”

16

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed“cooperative binding”

16

W
N

Example tile set

0

0

0

0

0

0

1

1

1

1

1

0

1

1

0

1

N

N
1 W W

1

seed

16

W
N

seed

1

1

1

0

1

1

0

1

N

N
1 W W

1

0

0

0

0

0

0

1

1

17

W
N

W
N

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

N

N
1 W W

0

seed

change function to half-adder

18

W
N

W
N

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

N

N
1 W W

0

seed

change function to half-adder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

18

Algorithmic self-assembly in action
raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image

19

aTAM simulator (WebTAS by Daniel Hader)

20

http://self-assembly.net/software/WebTAS/WebTAS-latest/

Xgrow by Constantine Evans: https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
older xgrow (by Erik Winfree) https://www.dna.caltech.edu/Xgrow/

Tip: for editing tile types, I find it
much easier to edit the text files
directly than to use the GUI, which
is tedious. You may also consider
writing code to generate the files.

http://self-assembly.net/software/WebTAS/WebTAS-latest/
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
https://www.dna.caltech.edu/Xgrow/

Tile complexity of squares

21

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

• But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

• But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

• So, we ask: how many unique tile types to we need to self-assemble some
shapes?

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

• But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

• So, we ask: how many unique tile types to we need to self-assemble some
shapes?

• We start with n x n squares as the “simplest” benchmark shape.

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

• But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

• So, we ask: how many unique tile types to we need to self-assemble some
shapes?

• We start with n x n squares as the “simplest” benchmark shape.
• Why not a 1 x n line as an even simpler shape? What is its tile complexity?

22

Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

• But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

• So, we ask: how many unique tile types to we need to self-assemble some
shapes?

• We start with n x n squares as the “simplest” benchmark shape.
• Why not a 1 x n line as an even simpler shape? What is its tile complexity?

• [Note: we have not formally defined the aTAM yet… first let’s build intuition.]

22

The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we
need to self-assemble an n x n square?

23

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

23

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

All glues are strength 2
(alternately: all are strength 1 and temperature τ = 1)

23

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

All glues are strength 2
(alternately: all are strength 1 and temperature τ = 1)

23

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

How many tile types does this
construction need in general
to assemble an n x n square?

All glues are strength 2
(alternately: all are strength 1 and temperature τ = 1)

23

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

How many tile types does this
construction need in general
to assemble an n x n square?

All glues are strength 2
(alternately: all are strength 1 and temperature τ = 1)

n2

23

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

Tile complexity at temperature τ = 1
(i.e., no cooperative binding allowed)

Is n2 optimal?
Can we do better?

24

Tile complexity at temperature τ = 1
(i.e., no cooperative binding allowed)

Is n2 optimal?
Can we do better?

Note all pairs of adjacent tiles
bind with positive strength:

24

Tile complexity at temperature τ = 1
(i.e., no cooperative binding allowed)

Is n2 optimal?
Can we do better?

Note all pairs of adjacent tiles
bind with positive strength:

Theorem: At temperature τ = 1, if all pairs of
adjacent tiles bind with positive strength, then
for every positive integer n, n2 tile types are
necessary to self-assemble an n x n square.

24

Tile complexity at temperature τ = 1
(i.e., no cooperative binding allowed)

Is n2 optimal?
Can we do better?

Note all pairs of adjacent tiles
bind with positive strength:

Theorem: At temperature τ = 1, if all pairs of
adjacent tiles bind with positive strength, then
for every positive integer n, n2 tile types are
necessary to self-assemble an n x n square.

Proof: Suppose for contradiction
we use the same tile type i at
positions (x1,y1) and (x2,y2). Then
they have a path L between them
with all positive-strength glues,
and this can happen instead:

24

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal?

25

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal? No!

25

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal? No!

25

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal? No!

25

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal? No!

strength-0 glues

25

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal? No!

Tile complexity of
this construction?

strength-0 glues

25

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal? No!

Tile complexity of
this construction?

2n – 1 = O(n)

strength-0 glues

25

Tile complexity at temperature τ = 1,
where not all adjacent tiles are bound

Is n2 still optimal? No!

Tile complexity of
this construction?

2n – 1 = O(n)

strength-0 glues

Conjecture: The temperature
τ = 1 tile complexity of an n x n
square is Ω(n).
(most recent progress:
https://arxiv.org/abs/1902.02253
https://arxiv.org/abs/2002.04012)

25

https://arxiv.org/abs/1902.02253
https://arxiv.org/abs/2002.04012

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

26

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

26

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

26

these glues should all
be different

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

26

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

26

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

strength-1 glues (with no other
glues to cooperate with)

26

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

Tile complexity = 2n

strength-1 glues (with no other
glues to cooperate with)

26

Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

Tile complexity = 2n

strength-1 glues (with no other
glues to cooperate with)This tile completes an n x n “L shape”

into an n x n square.
26

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square Tile complexity = n + 4

27

Tile complexity at temperature τ = 2

Goal: complete a 1 x n line
into an n x n square Tile complexity = n + 4

How to get sublinear
tile complexity?

27

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

28

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile
28

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile
28

Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n
28

Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment tiles

28
Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment tiles

28
Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

increment tiles

28
Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

increment tiles

copy tiles

28
Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

copy row
increment tiles

copy tiles

28
Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

copy row
increment tiles

copy tiles

increment row

28
Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

copy row
increment tiles

copy tiles

increment row

28
Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

copy row
increment tiles

copy tiles

increment row

28

for width of k bits, stops
when it reaches what value?

Unique glues
(not shown)

Logarithmic tile complexity
at temperature τ = 2

Goal: rectangle of height n
using O(log n) tile types

seed tile row encoding (a number related to) n

increment row

copy row
increment tiles

copy tiles

increment row

28

“zig-zag counter”

for width of k bits, stops
when it reaches what value?

Unique glues
(not shown)

Logarithmic tile complexity at temperature τ = 2

A few more “filler” tiles
complete the ≈n x log n
rectangle into an n x n square.

29

Logarithmic tile complexity at temperature τ = 2

A few more “filler” tiles
complete the ≈n x log n
rectangle into an n x n square.

tile complexity =
log n + 23

29

Logarithmic tile complexity at temperature τ = 2

A few more “filler” tiles
complete the ≈n x log n
rectangle into an n x n square.

tile complexity =
log n + 23

29

What number should
this encode?

Ω(log n / log log n) tile complexity lower
bound for n x n squares

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument:

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument:
• Count number of (functionally distinct) tile systems with fewer than ¼ log p / log log p tile types.

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument:
• Count number of (functionally distinct) tile systems with fewer than ¼ log p / log log p tile types.

• We’ll show that it’s fewer than p.

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument:
• Count number of (functionally distinct) tile systems with fewer than ¼ log p / log log p tile types.

• We’ll show that it’s fewer than p.

• There are p squares with width n between p+1 and 2p; each needs a different tile system.

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument:
• Count number of (functionally distinct) tile systems with fewer than ¼ log p / log log p tile types.

• We’ll show that it’s fewer than p.

• There are p squares with width n between p+1 and 2p; each needs a different tile system.

• By pigeonhole, some n x n square cannot be assembled with < ¼ log p / log log p tile types.

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument:
• Count number of (functionally distinct) tile systems with fewer than ¼ log p / log log p tile types.

• We’ll show that it’s fewer than p.

• There are p squares with width n between p+1 and 2p; each needs a different tile system.

• By pigeonhole, some n x n square cannot be assembled with < ¼ log p / log log p tile types.

• Since p ≤ n/2, we have ¼ log p / log log p ≤ ¼ log n / log log n.

30

Ω(log n / log log n) tile complexity lower
bound for n x n squares

• What does Ω(log n / log log n) tile complexity lower bound mean?
• First let’s think about what we already showed: what does O(log n) tile complexity upper bound

mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

• A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

• How to prove? It’s a counting argument:
• Count number of (functionally distinct) tile systems with fewer than ¼ log p / log log p tile types.

• We’ll show that it’s fewer than p.

• There are p squares with width n between p+1 and 2p; each needs a different tile system.

• By pigeonhole, some n x n square cannot be assembled with < ¼ log p / log log p tile types.

• Since p ≤ n/2, we have ¼ log p / log log p ≤ ¼ log n / log log n.

• Since we can do this for every positive integer p, there are infinitely many n that require more than
¼ log n / log log n tile types (a stronger result holds: “most” values of n require that many)

30

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? 4k

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

4k

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

4k

a4 = (4k)4

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

4k

a4 = (4k)4

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

4k

a4 = (4k)4

bk = (4k)4k

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

d) How many ways to choose the seed tile?

4k

a4 = (4k)4

bk = (4k)4k

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

d) How many ways to choose the seed tile? k

4k

a4 = (4k)4

bk = (4k)4k

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

d) How many ways to choose the seed tile?

• How many tile systems?

k

4k

a4 = (4k)4

bk = (4k)4k

How many tile systems with k tile types?

31

• Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

d) How many ways to choose the seed tile?

• How many tile systems?

k

4k

a4 = (4k)4

bk = (4k)4k

c∙d = k(4k)4k

How many tile systems with k tile types?

31

How many tile systems with k tile types?

• Number of tile systems with exactly k tile types: ≤ k(4k)4k

32

How many tile systems with k tile types?

• Number of tile systems with exactly k tile types:

• Number of tile systems with at most k tile types:

≤ k(4k)4k

32

How many tile systems with k tile types?

• Number of tile systems with exactly k tile types:

• Number of tile systems with at most k tile types:

≤ k(4k)4k

≤ k2(4k)4k

32

How many tile systems with k tile types?

• Number of tile systems with exactly k tile types:

• Number of tile systems with at most k tile types:

• Recall k = ¼ log p / log log p; by algebra (see notes), k2(4k)4k < p.

≤ k(4k)4k

≤ k2(4k)4k

32

How many tile systems with k tile types?

• Number of tile systems with exactly k tile types:

• Number of tile systems with at most k tile types:

• Recall k = ¼ log p / log log p; by algebra (see notes), k2(4k)4k < p.

• By pigeonhole principle, for some width n with p < n ≤ 2p, the n x n
square is not self-assembled by one of these k2(4k)4k tile systems.
Since those are all the tile systems with at most k tile types, the n x n
square requires more than ¼ log p / log log p tile types to self-
assemble. QED

≤ k(4k)4k

≤ k2(4k)4k

32

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?
• log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?
• log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

• 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?
• log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

• 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)

• 4k log(4k) to describe all k tile types, plus log k to give index of the seed.

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?
• log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

• 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)

• 4k log(4k) to describe all k tile types, plus log k to give index of the seed.

• So O(k log k) bits total.

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?
• log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

• 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)

• 4k log(4k) to describe all k tile types, plus log k to give index of the seed.

• So O(k log k) bits total.

• For any n in the Fact, log n = O(k log k), i.e., k = Ω(log n / log log n).

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity

• We can “describe” n with a tile system that self-assembles an n x n square.

• How many bits do we need to describe a tile system with k tile types?
• log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

• 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)

• 4k log(4k) to describe all k tile types, plus log k to give index of the seed.

• So O(k log k) bits total.

• For any n in the Fact, log n = O(k log k), i.e., k = Ω(log n / log log n).

Fact: “most” integers
n require ≥ log n bits
to “describe”.
(Though some require fewer:
1111111111111111111111
can be described by its length
22 in binary: 10110)

33

Note: we’re ignoring glue strengths here; adds 2 bits per glue to describe at temperature 2.
(since there are 3 possible strengths 0, 1, 2);
see http://doi.org/10.1007/s00453-014-9879-3 for handling higher-temperature systems.

https://en.wikipedia.org/wiki/Kolmogorov_complexity
http://doi.org/10.1007/s00453-014-9879-3

Which bound is tight?
1. All n x n squares can be assembled with O(log n) tile types; can we get it down

to O(log n / log log n)?

2. Or do we need Ω(log n) tile types to assemble infinitely many n x n squares?

34

Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

35

Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

tile complexity =
O(log n) + 23

Recall:

35

Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

tile complexity =
O(log n) + 23

Recall: Idea:
1) Use same 23 tiles that
turn the seed row
encoding a binary
integer n’ (related to n)
into an n x n square.

2) Create the binary
seed row from only
log n / log log n tiles.

35

Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n
using O(log n / log log n) tile types

36

Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n
using O(log n / log log n) tile types

• Key idea: choose larger power-of-two base b = 2k, with
b ≈ log n / log log n, and convert from base b to base 2.

36

Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n
using O(log n / log log n) tile types

• Key idea: choose larger power-of-two base b = 2k, with
b ≈ log n / log log n, and convert from base b to base 2.

• How many base-b digits needed to represent a log(n)-bit integer?

36

Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n
using O(log n / log log n) tile types

• Key idea: choose larger power-of-two base b = 2k, with
b ≈ log n / log log n, and convert from base b to base 2.

• How many base-b digits needed to represent a log(n)-bit integer?

• Each base-b digit is k bits
• e.g., if b=23=8, then 0=000 1=001 2=010 3=011 4=100 5=101 6=110 7=111

• e.g., the octal number 71258 in binary is 1110010101012

36

Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n
using O(log n / log log n) tile types

• Key idea: choose larger power-of-two base b = 2k, with
b ≈ log n / log log n, and convert from base b to base 2.

• How many base-b digits needed to represent a log(n)-bit integer?

• Each base-b digit is k bits
• e.g., if b=23=8, then 0=000 1=001 2=010 3=011 4=100 5=101 6=110 7=111

• e.g., the octal number 71258 in binary is 1110010101012

• need log(n) / k = log(n) / log (log n / log log n) = log(n) / (log log n – log log log n)
≈ log(n) / log log n base-b digits.

36

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

1

1

0

0

0

0

1

1

0

0

0

0

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

1

1

0

0

0

0

1

1

0

0

0

0

11 110
0

1 11
1

1
1

110110110110110110110110110110110110
n

110110110110110110

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

1

1

0

0

0

0

1

1

0

0

0

0

11 110
0

1 11
1

1
1

110110110110110110110110110110110110
n

110110110110110110

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

1

1

0

0

0

0

1

1

0

0

0

0

11 110
0

1 11
1

1
1

110110110110110110110110110110110110
n

110110110110110110

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

“almost” works… what’s missing?

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

1

1

0

0

0

0

1

1

0

0

0

0

11 110
0

1 11
1

1
1

110110110110110110110110110110110110
n

110110110110110110

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

“almost” works… what’s missing? mark glues of most and least significant bit

mmmmmmmmmmmmmmmmmmmmmmmm

m

m

m

m

m

m

m

LL

L

37

Creating a row of log n glues with arbitrary bit
string s ∈ {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3

10 101
1

1 10
0

1
1

n

011011011011011011
n

01 011
1

0 01
1

0
0

n

1

1

1

1

0

0

001001001001001001001001001001001001
n

00 001
1

0 00
0

0
0

n

1

1

0

0

0

0

1

1

0

0

0

0

11 110
0

1 11
1

1
1

110110110110110110110110110110110110
n

110110110110110110

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

“almost” works… what’s missing? mark glues of most and least significant bit

mmmmmmmmmmmmmmmmmmmmmmmm

m

m

m

m

m

m

m

LL

L

37

Formal definition of aTAM

38

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

• Let Bα = (V,E) denote the binding graph of α, where

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

• Let Bα = (V,E) denote the binding graph of α, where
• V = Sα

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

• Let Bα = (V,E) denote the binding graph of α, where
• V = Sα

• E = { (p,q) | α(p) and α(q) interact }

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

• Let Bα = (V,E) denote the binding graph of α, where
• V = Sα

• E = { (p,q) | α(p) and α(q) interact }
• Bα is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

• Let Bα = (V,E) denote the binding graph of α, where
• V = Sα

• E = { (p,q) | α(p) and α(q) interact }
• Bα is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.

• Given τ ∈ ℕ+, α is τ-stable if the minimum weight cut of Bα is at least τ.

abstract Tile Assembly Model (aTAM), formal definition

39

• Fix a finite alphabet Σ. A glue is a pair g = (ℓ,s) ∈ Σ* x ℕ, with label ℓ and strength s.
• A tile type is a 4-tuple of glues t ∈ (Σ* x ℕ)4, with each glue listed in order north, east, south, west.

• Define unit vectors N = (0,1), S = (0,–1), E = (1,0), W = (–1,0)
• For d ∈ {N, E, S, W}, let d* denote the opposite direction of d, i.e., N* = S, S* = N, E* = W, W* = E.
• Let t[N], t[E], t[S], t[W] be the glues of t in order.
• T denotes the set of tile types.

• An assembly is a partial function α: ℤ2 ⇢ T, such that dom α (set of points where α is defined) is connected.
• a partial function indicating, for each (x,y) ∈ ℤ2, which tile is at (x,y), with α(x,y) undefined if no tile appears there.

• Let Sα = dom α denote the shape of α. Let |α| = |Sα|.
• Given p,q ∈ Sα, two tiles tp = α(p) and tq = α(q) interact (a.k.a. bind) if:

• ∥p − q∥2 = 1 (positions p ∈ ℤ2 and q ∈ ℤ2 are adjacent)
• letting d = q – p (the direction pointing from p to q), tp[d] = tq[d*] (the glues match where tp and tq touch)
• tp[d] has positive strength (the glues are not zero-strength)

• Let Bα = (V,E) denote the binding graph of α, where
• V = Sα

• E = { (p,q) | α(p) and α(q) interact }
• Bα is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.

• Given τ ∈ ℕ+, α is τ-stable if the minimum weight cut of Bα is at least τ.
• i.e., to separate α into two pieces requires breaking bonds of strength at least τ.

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that

Why can’t we just say → is the
reflexive, transitive closure →1* of →1?

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0 Why can’t we just say → is the

reflexive, transitive closure →1* of →1?

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0

• for all 0 ≤ i < k, αi ⊑ β, and
Why can’t we just say → is the
reflexive, transitive closure →1* of →1?

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0

• for all 0 ≤ i < k, αi ⊑ β, and
• Sβ = ⋃i Sαi

Why can’t we just say → is the
reflexive, transitive closure →1* of →1?

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0

• for all 0 ≤ i < k, αi ⊑ β, and
• Sβ = ⋃i Sαi

Why can’t we just say → is the
reflexive, transitive closure →1* of →1?

Sometimes we write α →Θ β to
emphasize this is with respect
to a particular tile system Θ.

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0

• for all 0 ≤ i < k, αi ⊑ β, and
• Sβ = ⋃i Sαi

• We say β is the result of the assembly sequence.

Why can’t we just say → is the
reflexive, transitive closure →1* of →1?

Sometimes we write α →Θ β to
emphasize this is with respect
to a particular tile system Θ.

Question: If α ⊑ β,
can α grow into β?

40

abstract Tile Assembly Model (aTAM), formal definition
• Given assemblies α,β: ℤ2 ⇢ T, we say α is a subassembly of β, written α ⊑ β if

• Sα ⊆ Sβ (α is contained in β), and
• for all p ∈ Sα, α(p) = β(p) (α and β agree on tile types wherever they share a position)

• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0

• for all 0 ≤ i < k, αi ⊑ β, and
• Sβ = ⋃i Sαi

• We say β is the result of the assembly sequence.
• If k is finite, it is routine to verify that β = αk, and → is the reflexive, transitive closure →1* of →1.

Why can’t we just say → is the
reflexive, transitive closure →1* of →1?

Sometimes we write α →Θ β to
emphasize this is with respect
to a particular tile system Θ.

Question: If α ⊑ β,
can α grow into β?

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)
• Note X can be infinite.

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)
• Note X can be infinite.
• Example: strict self-assembly of entire second quadrant X = { (x,y) ∈ ℤ2 | x ≥ 0 and y ≤ 0 }

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)
• Note X can be infinite.
• Example: strict self-assembly of entire second quadrant X = { (x,y) ∈ ℤ2 | x ≥ 0 and y ≤ 0 }
• Example of tile system Θ that does not strictly self-assemble any shape?

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)
• Note X can be infinite.
• Example: strict self-assembly of entire second quadrant X = { (x,y) ∈ ℤ2 | x ≥ 0 and y ≤ 0 }
• Example of tile system Θ that does not strictly self-assemble any shape?

• Let X ⊆ ℤ2. Θ weakly self-assembles X if there is a subset B ⊆ T (the “blue tiles”) such that,
for all α ∈ A□[Θ], X = α–1(B). (every terminal producible assembly puts blue tiles exactly on X.)

41

abstract Tile Assembly Model (aTAM), formal definition
• Given tile system Θ = (T,σ,τ), we say α is producible if σ → α.

• Write A[Θ] to denote the set of all producible assemblies.

• We say α is terminal if α is stable and ∂α = ∅. (no tile can stably attach to it)
• Write A□[Θ] ⊆ A[Θ] to denote the set of all producible, terminal assemblies.

• We say Θ is directed (a.k.a., deterministic) if
• |A□[Θ]| = 1. (this is what we want it to mean: only one terminal producible assembly)
• equivalently, the partially ordered set (A[Θ], →) is directed: for each α,β ∈ A[Θ], there

exists γ ∈ A[Θ] such that α → γ and β → γ.
• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)
• Note X can be infinite.
• Example: strict self-assembly of entire second quadrant X = { (x,y) ∈ ℤ2 | x ≥ 0 and y ≤ 0 }
• Example of tile system Θ that does not strictly self-assemble any shape?

• Let X ⊆ ℤ2. Θ weakly self-assembles X if there is a subset B ⊆ T (the “blue tiles”) such that,
for all α ∈ A□[Θ], X = α–1(B). (every terminal producible assembly puts blue tiles exactly on X.)
• example: weak self-assembly of the discrete Sierpinski triangle.

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof:

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof:
1. Since β is stable and glue strengths are nonnegative, the

only potentially unstable cut is ({p},Sβ).

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof:
1. Since β is stable and glue strengths are nonnegative, the

only potentially unstable cut is ({p},Sβ).
2. But:

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof:
1. Since β is stable and glue strengths are nonnegative, the

only potentially unstable cut is ({p},Sβ).
2. But:

1. α ⊑ β,

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof:
1. Since β is stable and glue strengths are nonnegative, the

only potentially unstable cut is ({p},Sβ).
2. But:

1. α ⊑ β,
2. α + (p↦t) is stable,

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof:
1. Since β is stable and glue strengths are nonnegative, the

only potentially unstable cut is ({p},Sβ).
2. But:

1. α ⊑ β,
2. α + (p↦t) is stable,
3. compared to α, β only has extra tiles on the other

side of the cut (t,Sβ).

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic stability result

42

Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof:
1. Since β is stable and glue strengths are nonnegative, the

only potentially unstable cut is ({p},Sβ).
2. But:

1. α ⊑ β,
2. α + (p↦t) is stable,
3. compared to α, β only has extra tiles on the other

side of the cut (t,Sβ).
4. so the cut (t,Sβ) is also stable. QED

Intuition: if a tile can attach to α,
it can attach in the presence of
extra tiles on α.

example:

α

t

p

β

t

p

⇒

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Proof:

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Proof:
1. Let α=α0, α1, … be an assembly sequence with result γ.

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Proof:
1. Let α=α0, α1, … be an assembly sequence with result γ.
2. For each i, let pi = Sαi+1 \ Sαi (i’th attachment position) and ti

the i’th tile added.

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Proof:
1. Let α=α0, α1, … be an assembly sequence with result γ.
2. For each i, let pi = Sαi+1 \ Sαi (i’th attachment position) and ti

the i’th tile added.
3. Let i(0) < i(1) < … such that Sγ \ Sβ = {i(0), i(1), …}

(subsequence of indices of tile attached outside of β).

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Proof:
1. Let α=α0, α1, … be an assembly sequence with result γ.
2. For each i, let pi = Sαi+1 \ Sαi (i’th attachment position) and ti

the i’th tile added.
3. Let i(0) < i(1) < … such that Sγ \ Sβ = {i(0), i(1), …}

(subsequence of indices of tile attached outside of β).
4. Define assembly sequence β=β0,β1,… by βj+1 = βj+(pi(j)↦ti(j)).

(adding tiles to Sγ \ Sβ in order they were added to α,
skipping tiles already in Sβ.)

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Proof:
1. Let α=α0, α1, … be an assembly sequence with result γ.
2. For each i, let pi = Sαi+1 \ Sαi (i’th attachment position) and ti

the i’th tile added.
3. Let i(0) < i(1) < … such that Sγ \ Sβ = {i(0), i(1), …}

(subsequence of indices of tile attached outside of β).
4. Define assembly sequence β=β0,β1,… by βj+1 = βj+(pi(j)↦ti(j)).

(adding tiles to Sγ \ Sβ in order they were added to α,
skipping tiles already in Sβ.)

5. Then for each j, αi(j) ⊑ βj, so previous Observation implies
that βj + (pi(j)↦ti(j)) is stable.

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

Basic reachability result

43

Rothemund’s Lemma: Let α ⊑ β ⊑ γ be stable assemblies
such that α → γ. Then β → γ.

Proof:
1. Let α=α0, α1, … be an assembly sequence with result γ.
2. For each i, let pi = Sαi+1 \ Sαi (i’th attachment position) and ti

the i’th tile added.
3. Let i(0) < i(1) < … such that Sγ \ Sβ = {i(0), i(1), …}

(subsequence of indices of tile attached outside of β).
4. Define assembly sequence β=β0,β1,… by βj+1 = βj+(pi(j)↦ti(j)).

(adding tiles to Sγ \ Sβ in order they were added to α,
skipping tiles already in Sβ.)

5. Then for each j, αi(j) ⊑ βj, so previous Observation implies
that βj + (pi(j)↦ti(j)) is stable.

6. Thus the assembly sequence is valid (each tile attachment
is stable), showing β → γ. QED

Intuition: if α can grow into γ, then if some
of what will attach is already present (β),
the remaining tiles can still attach.

β

then

example:

α γ

if →

example of usefulness of Rothemund’s Lemma

• Recall two alternate characterizations of deterministic tile systems:
(a) |A□[Θ]| = 1.

(b) for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

44

example of usefulness of Rothemund’s Lemma

• Recall two alternate characterizations of deterministic tile systems:
(a) |A□[Θ]| = 1.

(b) for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Rothemund’s Lemma can be used to show that (b) implies (a)
• will skip in lecture (optional problem on homework 1)

44

Fair assembly sequences

45

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Fair assembly sequences

45

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t.

Let N be the set of these positions. Note N is finite since p has at most four neighbors.

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t.

Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since Sγ = ⋃i Sαi, there exists i such that N ⊆ ∂αi (after some finite number of tile

attachments, all of the positions in N are on the frontier of the current assembly)

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t.

Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since Sγ = ⋃i Sαi, there exists i such that N ⊆ ∂αi (after some finite number of tile

attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p ∈ ∂αi. (the tile t can attach to αi, reached after only i steps)

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t.

Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since Sγ = ⋃i Sαi, there exists i such that N ⊆ ∂αi (after some finite number of tile

attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p ∈ ∂αi. (the tile t can attach to αi, reached after only i steps)
7. By fairness, there exists j such that p ∈ Sαj ⊆ Sγ (eventually p gets a tile), which

contradicts the claim that p ∉ Sγ. QED

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t.

Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since Sγ = ⋃i Sαi, there exists i such that N ⊆ ∂αi (after some finite number of tile

attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p ∈ ∂αi. (the tile t can attach to αi, reached after only i steps)
7. By fairness, there exists j such that p ∈ Sαj ⊆ Sγ (eventually p gets a tile), which

contradicts the claim that p ∉ Sγ. QED

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Corollary: For every assembly α, there is a
terminal assembly γ such that α → γ.

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t.

Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since Sγ = ⋃i Sαi, there exists i such that N ⊆ ∂αi (after some finite number of tile

attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p ∈ ∂αi. (the tile t can attach to αi, reached after only i steps)
7. By fairness, there exists j such that p ∈ Sαj ⊆ Sγ (eventually p gets a tile), which

contradicts the claim that p ∉ Sγ. QED

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Corollary: For every assembly α, there is a
terminal assembly γ such that α → γ.

Proof: Pick any fair assembly
sequence α=α0, α1, … ; its result γ
is terminal and α → γ . QED

Fair assembly sequences

45

Lemma: Let α0, α1, … be a fair assembly sequence.
Then its result γ is terminal.

Proof:
1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location

p ∈ ∂γ; note in particular p ∉ Sγ.
2. Simpler if assembly sequence is finite:

1. in this case, γ = αk-1, so p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p ∈ Sαj)

3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p ∈ ∂γ, there are positions adjacent to p with enough strength to bind a tile t.

Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since Sγ = ⋃i Sαi, there exists i such that N ⊆ ∂αi (after some finite number of tile

attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p ∈ ∂αi. (the tile t can attach to αi, reached after only i steps)
7. By fairness, there exists j such that p ∈ Sαj ⊆ Sγ (eventually p gets a tile), which

contradicts the claim that p ∉ Sγ. QED

Definition: Let α0, α1, … be an assembly sequence.
We say it is fair if, for all i ∈ ℕ and all p ∈ ∂αi, there
exists j > i such that p ∈ Sαj.

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Concrete example of
simulation algorithm creating
a fair assembly sequence?

Corollary: For every assembly α, there is a
terminal assembly γ such that α → γ.

Proof: Pick any fair assembly
sequence α=α0, α1, … ; its result γ
is terminal and α → γ . QED

How computationally powerful
are self-assembling tiles?

46

Turing machines

47

Turing machines

…0 1 0 0 1 _1 _ _

tape ≈ memory
47

Turing machines

…0 1 0 0 1 _1 _ _

tape ≈ memory

state ≈ line of code

47

Turing machines

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

state ≈ line of code

47

Turing machines

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

q

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

q

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

t

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0 1

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

47

Turing machines

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT

u

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0 11

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

47

Tile assembly is Turing-universal

48

Tile assembly is Turing-universal

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 q
→

0

s 0

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ *

_

←

_^

_
_^

* s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 u
→

1

→

t 0
u 1←

halt
u
→

1

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 u
→

1

→

t 0
u 1←

halt
u
→

1

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

HALT
halt

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALT 48

Tile assembly is Turing-universal

1 2

1

1 0 3

0

2 0 4

0

3 1 5

1

4 1 6

1

5 _
_^

6

0 ←

0

←

0
0 q

→

0

s 0

0 ←

0

←

0

1 ←

1

←

1

1 ←

1

←

1
_ *

_

←

_^

_
_^

*

s 0 1

s 0

q 1←

q 1
q
→

1

0 s
→

0

→

q 1
0 →

0

0
s 0←

s 0
s

→
0

0 ←

0

←

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

0 q
→

0

→

s 0

0 →

0

→

0
0 →

0

0
q 0←

q 0
q
→

0

1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 ←

1
t

←
q 0

t 0 t
←

t 0

→

0

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_
_ ←

_

←

_
_ ←

_

←

_

_ *

_

←

_^

_
_^

*

1 u
→

1

→

t 0
u 1←

halt
u
→

1

0 →

0

→

0
0 →

0

0
1 ←

1

←

1

1 ←

1

←

1

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ ←

_

←

_

_ *

_

←

_^

_
_^

*

HALT
halt

s,0: q,0,→

q,0: t,1,←

q,1: s,0,→

t,0: u,1,→

u,1: HALTspace

time

48

Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

49

Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

• What other shapes can be self-assembled?

49

Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

• What other shapes can be self-assembled?
• Define a shape to be a finite, connected subset of ℕ2.

49

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

0,1

1,2

1,1

2,0

2,1

2,2

2,3

Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

• What other shapes can be self-assembled?
• Define a shape to be a finite, connected subset of ℕ2.

• Any shape with n points can be self-assembled
with at most how many tile types?

49

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

0,1

1,2

1,1

2,0

2,1

2,2

2,3

Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

• What other shapes can be self-assembled?
• Define a shape to be a finite, connected subset of ℕ2.

• Any shape with n points can be self-assembled
with at most how many tile types?

49

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

0,1

1,2

1,1

2,0

2,1

2,2

2,3

n

Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

• What other shapes can be self-assembled?
• Define a shape to be a finite, connected subset of ℕ2.

• Any shape with n points can be self-assembled
with at most how many tile types?

• Is there an infinite family of shapes S1, S2, …, with |Sn| = n, such that
each Sn requires at least n tile types to self-assemble?

49

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

0,1

1,2

1,1

2,0

2,1

2,2

2,3

n

Complexity of self-assembled shapes

• We’ve seen how use algorithmic tiles to:
• self-assemble n x n squares with “few” tile types O(log n / log log n)

• simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

• What other shapes can be self-assembled?
• Define a shape to be a finite, connected subset of ℕ2.

• Any shape with n points can be self-assembled
with at most how many tile types?

• Is there an infinite family of shapes S1, S2, …, with |Sn| = n, such that
each Sn requires at least n tile types to self-assemble?

49

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

0,1

1,2

1,1

2,0

2,1

2,2

2,3

n

S1 = S2 = S3 = S4 = …

Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

50

scale factor 3

S S3

Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

50

scale factor 3

Theorem: For any shape S, there is a
constant c so that Sc can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) ∈ S.

S S3

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree,
SIAM Journal on Computing 2007]

Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

50

scale factor 3

Theorem: For any shape S, there is a
constant c so that Sc can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) ∈ S.

S S3

Theorem (that we won’t prove): This is
optimal! No smaller tile system could self-
assemble any scaling of S. If one existed, we
could turn it into a program with < k bits
“describing” S in this way. (Why?)[Complexity of Self-Assembled Shapes. Soloveichik and Winfree,

SIAM Journal on Computing 2007]

y

x

Programming a shape
(inaccurate cartoonish
overview)

y

x

Programming a shape
(inaccurate cartoonish
overview)

y

x

Programming a shape
(inaccurate cartoonish
overview)

y

x

Programming a shape
(inaccurate cartoonish
overview)

1
1
0
1
1
0
1
0

base-conversion to

produce k bits from

k / log k tile types

y

x

Programming a shape
(inaccurate cartoonish
overview)

P

0

0

program

for UTM

input to P

base-conversion to

produce k bits from

k / log k tile types

y

x

Programming a shape
(inaccurate cartoonish
overview)

P

0

0

program

for UTM

input to P

base-conversion to

produce k bits from

k / log k tile types

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

base-conversion to

produce k bits from

k / log k tile types

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

P 0 -1

P

1

0

base-conversion to

produce k bits from

k / log k tile types

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

P 0 -1

P

1

0

base-conversion to

produce k bits from

k / log k tile types

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

P 0 -1

P

1

0

base-conversion to

produce k bits from

k / log k tile types

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

compute

P(0,-1)

P 0 -1

compute

P(1,0)

P

1

0

base-conversion to

produce k bits from

k / log k tile types

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

compute

P(0,-1)

P 0 -1

compute

P(1,0)

P

1

0

base-conversion to

produce k bits from

k / log k tile types

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

seed block growth block

More accurate detailed overview

fully-detailed
example of
growth block

Two interpretations

Theorem: For any shape S, there is a
constant c so that Sc can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) ∈ S.

as stated for single seed tile:

Two interpretations

Theorem: For any shape S, there is a
constant c so that Sc can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) ∈ S.

as stated for single seed tile:

most of the tile complexity is encoding the
binary string representing the program P
that encodes shape S, and O(1) tile types can
read that string and self-assemble Sc from it.

Two interpretations

Theorem: For any shape S, there is a
constant c so that Sc can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) ∈ S.

as stated for single seed tile: alternative statement for larger seed:

Theorem: There is a single set T of tile
types (O(1) tile types), so that, for any
finite shape S, there a constant c and a
seed assembly σS “encoding” S, so that
T self-assembles Sc from σS.

P

0

0

program

for UTM

input to P
σS =

most of the tile complexity is encoding the
binary string representing the program P
that encodes shape S, and O(1) tile types can
read that string and self-assemble Sc from it.

Two interpretations

Theorem: For any shape S, there is a
constant c so that Sc can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) ∈ S.

as stated for single seed tile: alternative statement for larger seed:

Theorem: There is a single set T of tile
types (O(1) tile types), so that, for any
finite shape S, there a constant c and a
seed assembly σS “encoding” S, so that
T self-assembles Sc from σS.

P

0

0

program

for UTM

input to P
σS =

most of the tile complexity is encoding the
binary string representing the program P
that encodes shape S, and O(1) tile types can
read that string and self-assemble Sc from it.

i.e., T is a universal set of tile types
that can self-assemble any shape,
by giving it the right seed.

Strict and weak self-assembly
Computability-theoretic questions about self-assembly

Strict and weak self-assembly

57

Recall:

Let X ⊆ ℤ2 be a shape, a connected subset
of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X.
(every terminal producible assembly has shape X)

Strict and weak self-assembly

57

Recall:

Let X ⊆ ℤ2 be a shape, a connected subset
of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X.
(every terminal producible assembly has shape X)

Let X ⊆ ℤ2. Θ weakly self-assembles X if there
is a subset B ⊆ T (the “blue tiles”) such that,
for all α ∈ A□[Θ], X = α–1(B).
(every terminal producible assembly puts blue tiles
exactly on X.)

Strict and weak self-assembly

57

Recall:

Let X ⊆ ℤ2 be a shape, a connected subset
of ℤ2. Θ strictly self-assembles X if, for all
α ∈ A□[Θ], Sα = X.
(every terminal producible assembly has shape X)

Let X ⊆ ℤ2. Θ weakly self-assembles X if there
is a subset B ⊆ T (the “blue tiles”) such that,
for all α ∈ A□[Θ], X = α–1(B).
(every terminal producible assembly puts blue tiles
exactly on X.)

Tile system on right strictly self-assembles the
whole second quadrant, and it weakly self-
assembles the discrete Sierpinski triangle.

Strict self-assembly

Observation: There is an infinite
shape S ⊆ ℤ2 that cannot be strictly
self-assembled by any tile system.

Strict self-assembly

Observation: There is an infinite
shape S ⊆ ℤ2 that cannot be strictly
self-assembled by any tile system.

Proof:

?

Strict self-assembly

Observation: There is an infinite
shape S ⊆ ℤ2 that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Strict self-assembly

Observation: There is an infinite
shape S ⊆ ℤ2 that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Observation is non-constructive:
Doesn’t tell us what is the shape S.
Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Strict self-assembly

Observation: There is an infinite
shape S ⊆ ℤ2 that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Observation is non-constructive:
Doesn’t tell us what is the shape S.
Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Homework problem: you will show that any
shape S ⊆ ℤ2 that can be strictly self-assembled
is also computably enumerable.

Use that fact now to define an explicit shape
that cannot be strictly self-assembled.

Strict self-assembly

Observation: There is an infinite
shape S ⊆ ℤ2 that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Observation is non-constructive:
Doesn’t tell us what is the shape S.
Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Homework problem: you will show that any
shape S ⊆ ℤ2 that can be strictly self-assembled
is also computably enumerable.

Use that fact now to define an explicit shape
that cannot be strictly self-assembled.

…
0 1 2 3 4 5 6

path in block n has a “turnout” if and only if n’th
Turing machine halts on empty input

Strict self-assembly

Observation: There is an infinite
shape S ⊆ ℤ2 that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Observation is non-constructive:
Doesn’t tell us what is the shape S.
Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Homework problem: you will show that any
shape S ⊆ ℤ2 that can be strictly self-assembled
is also computably enumerable.

Use that fact now to define an explicit shape
that cannot be strictly self-assembled.

Question: Is there a computable shape S ⊆ ℤ2 that
cannot be strictly self-assembled?

…
0 1 2 3 4 5 6

path in block n has a “turnout” if and only if n’th
Turing machine halts on empty input

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0

[slide credit:
Scott Summers]

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0 S1

[slide credit:
Scott Summers]

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0 S1 S2

[slide credit:
Scott Summers]

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0 S1 S2 S3

[slide credit:
Scott Summers]

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0 S1 S2 S3

[slide credit:
Scott Summers]

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0 S1 S2 S3

[slide credit:
Scott Summers]

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0 S1 S2 S3

[slide credit:
Scott Summers]

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

S0 S1 S2 S3 S4

[slide credit:
Scott Summers]

…

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

• S is known as the discrete Sierpinski triangle…

S0 S1 S2 S3 S4

[slide credit:
Scott Summers]

…

A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

• S is known as the discrete Sierpinski triangle…

S0 S1 S2 S3 S4

[slide credit:
Scott Summers]

…

Observation: S is computable (easily).

The discrete Sierpinkski triangle cannot be
strictly self-assembled

60

…

…

…

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

The discrete Sierpinkski triangle cannot be
strictly self-assembled

60

Proof:
1. The shape is a tree: no cycles in the

grid graph.

…

…

…

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

The discrete Sierpinkski triangle cannot be
strictly self-assembled

60

Proof:
1. The shape is a tree: no cycles in the

grid graph.
2. The x-axis has infinitely many pinch

points: points where the subtree
above the point is distinct from any
other pinch point.

…

…

…

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

The discrete Sierpinkski triangle cannot be
strictly self-assembled

60

Proof:
1. The shape is a tree: no cycles in the

grid graph.
2. The x-axis has infinitely many pinch

points: points where the subtree
above the point is distinct from any
other pinch point.

3. The north glue must be distinct at each
pinch point, so no finite tile set suffices
to self-assemble X. QED

…

…

…

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are

in R, e.g., if R = {1, 4, 8, …} y

x

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are

in R, e.g., if R = {1, 4, 8, …} y

x

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are

in R, e.g., if R = {1, 4, 8, …} y

x

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are

in R, e.g., if R = {1, 4, 8, …} y

x

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are

in R, e.g., if R = {1, 4, 8, …}

4. Suppose X could be weakly self-assembled. Then simulating self-
assembly for (2n)2 steps necessarily places a tile at some point at L1
radius n from the origin; the tile’s color tells us whether n ∈ R ⇔ 1n ∈ A.

y

x

e.g., X = {0, 2, …}

Weak self-assembly

61

Theorem: Every computable set X ⊆ ℕ,
“embedded straightforwardly” in ℤ2,
can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Turing machine M computes
X; tiles sequentially simulate
M on all inputs 0, 1, 2, …,

Theorem: Some computable sets X ⊆ ℤ2
cannot be weakly self-assembled.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Proof:
1. The Time Hierarchy Theorem says there is a computable set A ⊆ {1}*

not computable in O(n4) time.
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are

in R, e.g., if R = {1, 4, 8, …}

4. Suppose X could be weakly self-assembled. Then simulating self-
assembly for (2n)2 steps necessarily places a tile at some point at L1
radius n from the origin; the tile’s color tells us whether n ∈ R ⇔ 1n ∈ A.

5. This can be done in time O(n4) time (why?), a contradiction. QED

y

x

e.g., X = {0, 2, …}

Randomized self-assembly

62

Tile complexity of universal shape construction

• Recall: if we can have a seed structure encoding a shape S (in a binary
string x ∈ {0,1}*, in glues on one side), we can self-assemble some
scaling Sc of S with O(1) additional tile types that read and interpret x.

63

Tile complexity of universal shape construction

• Recall: if we can have a seed structure encoding a shape S (in a binary
string x ∈ {0,1}*, in glues on one side), we can self-assemble some
scaling Sc of S with O(1) additional tile types that read and interpret x.

• Θ(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

63

Tile complexity of universal shape construction

• Recall: if we can have a seed structure encoding a shape S (in a binary
string x ∈ {0,1}*, in glues on one side), we can self-assemble some
scaling Sc of S with O(1) additional tile types that read and interpret x.

• Θ(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

• We’ll see how to get this down to O(1) with high probability by
concentration programming.

63

Tile complexity of universal shape construction

• Recall: if we can have a seed structure encoding a shape S (in a binary
string x ∈ {0,1}*, in glues on one side), we can self-assemble some
scaling Sc of S with O(1) additional tile types that read and interpret x.

• Θ(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

• We’ll see how to get this down to O(1) with high probability by
concentration programming.

• i.e., move the effort from designing new tile types to (the plausibly simpler
lab step of) altering concentrations of existing tile types

63

Nondeterministic binding

seed 1

G1

S1

Nondeterministic binding

seed 1

G1

S1

concentration 11

concentration 1

Nondeterministic binding

seed 1

G1

S1

concentration 11

concentration 1

Pr[] = 11/12

Pr[] = 1/12

seed 1 G1

seed 1 S1

Programming polymer length with concentrations

seed 1

G 11

S1

seed 1

[Becker, Rapaport, Rémila, FSTTCS 2006]
concentration 11

concentration 1

Programming polymer length with concentrations

seed 1

G 11

S1

seed 1 S1G 11

expected length 12

G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11

[Becker, Rapaport, Rémila, FSTTCS 2006]
concentration 11

concentration 1

Programming polymer length with concentrations

seed 1

G 11

S1

seed 1 S1G 11

expected length 12

G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11

seed 1 S1G 11G 11G 11

seed 1 S1G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11G 11G 11G 11G 11

seed 1 G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11 GG 11G 11G 11G 11G 11G 11 G 11 GG 11 GG 11 G

Large variance

[Becker, Rapaport, Rémila, FSTTCS 2006]
concentration 11

concentration 1

Programming polymer length (improved)

seed 1

G 11

S1

concentration 3

concentration 1

Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of

expected length 4

concentration 3

concentration 1

Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of

expected length 4

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1

Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of

expected length 4

seed 1 G 11G 11 S 21 S 32G 22 G 33 S3G 33 G 33G 33 G 33 G 33

seed 1 G 11G 11 S 21 S 32 G 33 S3G 33 G 33G 33G 11 G 11

seed 1 G 11G 11 S 21 S3G 33 G 33G 11 G 11 S 32 S3G 33 G 33G 22 G 22 G 22 G 22

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1

Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of

expected length 4

seed 1 G 11G 11 S 21 S 32G 22 G 33 S3G 33 G 33G 33 G 33 G 33

seed 1 G 11G 11 S 21 S 32 G 33 S3G 33 G 33G 33G 11 G 11

seed 1 G 11G 11 S 21 S3G 33 G 33G 11 G 11 S 32 S3G 33 G 33G 22 G 22 G 22 G 22

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1

Lower variance…
how much lower?

Bounding the probability the length deviates
much from its mean

• r total stages, each with Pr[next tile increments stage] = p.

67

Si i+1

Bounding the probability the length deviates
much from its mean

• r total stages, each with Pr[next tile increments stage] = p.

• Let L(r,p) = total length; number of tile attachments until attaching

67

Si i+1

Sr

Bounding the probability the length deviates
much from its mean

• r total stages, each with Pr[next tile increments stage] = p.

• Let L(r,p) = total length; number of tile attachments until attaching

• Expected total length E[L(r,p)] = r / p.

67

Si i+1

Sr

Bounding the probability the length deviates
much from its mean

• r total stages, each with Pr[next tile increments stage] = p.

• Let L(r,p) = total length; number of tile attachments until attaching

• Expected total length E[L(r,p)] = r / p.

• Recall: a binomial random variable B(n,p) = number of heads when
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

67

Si i+1

Sr

Bounding the probability the length deviates
much from its mean

• r total stages, each with Pr[next tile increments stage] = p.

• Let L(r,p) = total length; number of tile attachments until attaching

• Expected total length E[L(r,p)] = r / p.

• Recall: a binomial random variable B(n,p) = number of heads when
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

• for any n,r,p: Pr[L(r,p) ≤ n] = Pr[B(n,p) ≥ r]

67

Si i+1

Sr

flipping a coin n
times results in
≥ r heads

flipping a coin until
the r’th heads
requires ≤ n flips

⇔

Bounding the probability the length deviates
much from its mean

• r total stages, each with Pr[next tile increments stage] = p.

• Let L(r,p) = total length; number of tile attachments until attaching

• Expected total length E[L(r,p)] = r / p.

• Recall: a binomial random variable B(n,p) = number of heads when
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

• for any n,r,p: Pr[L(r,p) ≤ n] = Pr[B(n,p) ≥ r]

• similarly, Pr[L(r,p) ≥ n] = Pr[B(n,p) ≤ r]
67

Si i+1

Sr

flipping a coin n
times results in
≥ r heads

flipping a coin until
the r’th heads
requires ≤ n flips

⇔

Chernoff bound

68

Chernoff bound: For a binomial random variable
B(n,p) (recall E[B(n,p)] = np), and for any 0 < δ < 1,
Pr[B(n,p) > (1+δ)np] < exp(–δ2np/3)
Pr[B(n,p) < (1–δ)np] < exp(–δ2np/2)

Chernoff bound

68

Chernoff bound: For a binomial random variable
B(n,p) (recall E[B(n,p)] = np), and for any 0 < δ < 1,
Pr[B(n,p) > (1+δ)np] < exp(–δ2np/3)
Pr[B(n,p) < (1–δ)np] < exp(–δ2np/2)

Let δ ≈ 0.27 and set p such that r/p(1–δ) = 2k.
Let δ’ ≈ 0.44: then r/p(1+δ’) ≈ 2k–1.
Applying this to our setting gives
Pr[L(r,p) is not between 2k–1 and 2k] < 2·0.9421r

if r = 90 stages, expected length midway in [2k–1, 2k)

 with probability > 99%, actual length in [2k–1, 2k)

1 2 4 8 16 32

Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k–1, 2k)

 with probability > 99%, actual length in [2k–1, 2k)

1 2 4 8 16 32

Programming polymer length (improved)

[] ≈ 7 [] = [] ≈ 2SG S

if r = 90 stages, expected length midway in [2k–1, 2k)

 with probability > 99%, actual length in [2k–1, 2k)

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[] ≈ 7 [] = [] ≈ 2SG S

SG SG G S GG GG GGG G

SG SG G SG GG

[] ≈ 7 [] = [] ≈ 1SG S

if r = 90 stages, expected length midway in [2k–1, 2k)

 with probability > 99%, actual length in [2k–1, 2k)

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[] ≈ 7 [] = [] ≈ 2SG S

SG SG G S GG GG GGG G

SG SG G SG GG

[] ≈ 7 [] = [] ≈ 1SG S

if r = 90 stages, expected length midway in [2k–1, 2k)

 with probability > 99%, actual length in [2k–1, 2k)

SG G SG G S GGG G G G G GG G GG G G G GG G

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[] ≈ 7 [] = [] ≈ 2SG S

SG SG G S GG GG GGG G

SG G SG G G S GGGG G G G G GG G G GG G G GG G

SG G SG G S GG G G G G GG G GG GG G

SG SG G SG GG

[] ≈ 7 [] = [] ≈ 1SG S

if r = 90 stages, expected length midway in [2k–1, 2k)

 with probability > 99%, actual length in [2k–1, 2k)

SG G SG G S GGG G G G G GG G GG G G G GG G

1 2 4 8 16 32

SG SG G S GG GG

Programming polymer length (improved)

[] ≈ 7 [] = [] ≈ 2SG S

SG SG G S GG GG GGG G

SG G SG G G S GGGG G G G G GG G G GG G G GG G

SG G SG G S GG G G G G GG G GG GG G

SG SG G SG GG

i.e., we can’t target a precise length L,
but we can target precisely the number
of bits ⌈log L⌉ in L’s binary expansion.

Programming polymer length 2k precisely

256

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2k precisely

256

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance

from seed

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2k precisely

256

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance

from seed

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2k precisely

signal to stop at

next power of two

256

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance

from seed

...
1

1

1

1

1

1

1

1

S SS

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

0 0 0 0 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2k precisely

signal to stop at

next power of two

256

1 0

1 1

1

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

1

distance

from seed

...
1

1

1

1

1

1

1

1

S SS

1

0

0

0

1 1

1 0

1

1

1

1

0

0

0

0 0 0 0 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

25521 43 65 87 1280

seed S SG G G G SGSG G SG S GGG ...

Programming polymer length 2k precisely

signal to stop at

next power of two

256

Programming a binary string

1101
13 in binary

Programming a binary string

1101
13 in binary

seed SG G G G SGSG G SG GG S S S...

length 2k

Programming a binary string

1101
13 in binary

seed SG G G G SGSG G SG GG S S S...

length 2k

≈ 132

Programming a binary string

1101
13 in binary

seed SG G G G SGSG G SG GG S S S...

length 2k

≈ 132

concentration

13.5/16

compete in

Bernoulli trials

concentration

1 - 13.5/16

B B B B B B B B B B B B

B B

Programming a binary string

1101
13 in binary

seed SG G G G SGSG G SG GG S S S...

length 2k

≈ 132

concentration

13.5/16

compete in

Bernoulli trials

concentration

1 - 13.5/16

1 1 0

1

0

1 1

1 0

1

0

1

0

0

1

0

10

Programming a binary string

1101
13 in binary

blue

tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2k

≈ 132

concentration

13.5/16

compete in

Bernoulli trials

concentration

1 - 13.5/16

1 1 0

1

0

1 1

1 0

1

0

1

0

0

1

0

10

Programming a binary string

1101
13 in binary

blue

tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2k

1

0

1

0

1

0

1

1

13/16 ≤ < 14/16fraction of

with high probability,

(again by Chernoff bound)

≈ 132

concentration

13.5/16

compete in

Bernoulli trials

concentration

1 - 13.5/16

1 1 0

1

0

1 1

1 0

1

0

1

0

0

1

0

10

Programming a binary string

1101
13 in binary

blue

tiles

1 1 2 2 53 4 40

seed SG G G G SGSG G SG GG S S S...

length 2k

1

0

1

0

1

0

1

1

13/16 ≤ < 14/16fraction of

with high probability,

(again by Chernoff bound)

≈ 132

low-order bits

absorb error

concentration

13.5/16

compete in

Bernoulli trials

concentration

1 - 13.5/16

y

x

Programming a shape
(inaccurate cartoonish
overview)

y

x

Programming a shape
(inaccurate cartoonish
overview)

y

x

Programming a shape
(inaccurate cartoonish
overview)

y

x

Programming a shape
(inaccurate cartoonish
overview)

1
1
0
1
1
0
1
0

Sampling tiles to

(probably) produce

a binary string

y

x

Programming a shape
(inaccurate cartoonish
overview)

P

0

0

program

for UTM

input to P

Sampling tiles to

(probably) produce

a binary string

y

x

Programming a shape
(inaccurate cartoonish
overview)

P

0

0

program

for UTM

input to P

Sampling tiles to

(probably) produce

a binary string

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

Sampling tiles to

(probably) produce

a binary string

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

P 0 -1

P

1

0

Sampling tiles to

(probably) produce

a binary string

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

P 0 -1

P

1

0

Sampling tiles to

(probably) produce

a binary string

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

P 0 -1

P

1

0

Sampling tiles to

(probably) produce

a binary string

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

compute

P(0,-1)

P 0 -1

compute

P(1,0)

P

1

0

Sampling tiles to

(probably) produce

a binary string

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

y

x

Programming a shape
(inaccurate cartoonish
overview)

compute

P(0,0)

P

0

-1

P

1

0
P

0

0

program

for UTM

input to P

compute

P(0,-1)

P 0 -1

compute

P(1,0)

P

1

0

Sampling tiles to

(probably) produce

a binary string

slight modification of how P

“computes” shape S: P(x,y)

computes spanning tree of

S, outputs children of point

(x,y)

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape

(with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape

(with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape

(with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape

(with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Other plausible modifications of aTAM model
that can reduce tile complexity
• staged self-assembly:

• https://doi.org/10.1007/s11047-008-9073-0

• temperature programming:
• https://dl.acm.org/doi/10.5555/1109557.1109620

74

https://doi.org/10.1007/s11047-008-9073-0
https://dl.acm.org/doi/10.5555/1109557.1109620

The power of nondeterminism in
self-assembly

75

Can nondeterminism help to

self-assemble shapes?

Nondeterminism in Biology

Nondeterminism can allow complex structures

to be created from a compact encoding.

Cytoskeleton formationGenetic mutation

Nondeterminism in Computer Science

Algorithm types:

P
o

w
e

r

Nondeterminism in Computer Science

Deterministic: entire

computation uniquely

determined by input

Algorithm types:

P
o

w
e

r

Nondeterminism in Computer Science

Deterministic: entire

computation uniquely

determined by input

Randomized:

flips coins; realistic

Algorithm types:

P
o

w
e

r

Nondeterminism in Computer Science

Deterministic: entire

computation uniquely

determined by input

Randomized:

flips coins; realistic

Nondeterministic:

flips coins; magical
Algorithm types:

P
o

w
e

r

Nondeterminism in Computer Science

Deterministic: entire

computation uniquely

determined by input

Randomized:

flips coins; realistic

Nondeterministic:

flips coins; magical

Trivially nondeterministic

(“pseudodeterministic”):

flips coins, but final output

independent of flip results

Algorithm types:

P
o

w
e

r

seed

N
E

1
E

N
1

1
1

Nondeterminism in Self-Assembly

≥ 2 potential

binding sites

Perhaps:

seed

N
E

1
E

N
1

1
1

Either could

bind first, but ...

seed

N
E

1
E

seed

N
E

N
1

Nondeterminism in Self-Assembly

≥ 2 potential

binding sites

Perhaps:

seed

N
E

1
E

N
1

1
1

seed
N

E
1

E

N
1

1
1

... only one possible

terminal assembly.

seed

N
E

1
E

N
1

So the tile set is

still deterministic.

Either could

bind first, but ...

seed

N
E

1
E

seed

N
E

N
1

Nondeterminism in Self-Assembly

≥ 2 potential

binding sites

Perhaps:

seed

N
E

1
E

N
1

1
1

seed
N

E
1

E

N
1

1
1

... only one possible

terminal assembly.

seed

N
E

1
E

N
1

So the tile set is

still deterministic.

Either could

bind first, but ...

seed

N
E

1
E

seed

N
E

N
1

1
1 Y

X

If tile types

compete ...

seed
N

E
1

E

N
1 1

1 B
A

Nondeterminism in Self-Assembly

≥ 2 potential

binding sites

at a single binding

site, ≥ 2 tile types

attachable

Perhaps:

More meaningful:

seed

N
E

1
E

N
1

1
1

seed
N

E
1

E

N
1

1
1

... only one possible

terminal assembly.

seed

N
E

1
E

N
1

So the tile set is

still deterministic.

Either could

bind first, but ...

seed

N
E

1
E

seed

N
E

N
1

1
1 Y

X

If tile types

compete ...

seed
N

E
1

E

N
1 1

1 B
A

Nondeterminism in Self-Assembly

≥ 2 potential

binding sites

at a single binding

site, ≥ 2 tile types

attachable

Perhaps:

seed
N

E
1

E

N
1

1
1 Y

X

... ≥ 2 possible

terminal assemblies.

seed
N

E
1

E

N
1

1
1 B

A

More meaningful:

Nondeterminism in Self-Assembly

⚫ A tile set is deterministic if it has only one

terminal assembly (map of tile types to points).

⚫

Nondeterminism in Self-Assembly

⚫ A tile set is deterministic if it has only one

terminal assembly (map of tile types to points).

⚫ This tile set has multiple terminal assemblies,

but they all have the same shape.

seed
N

E
1

E

N
1

1
1 Y

X

seed
N

E
1

E

N
1

1
1 B

A

seed
N

E
1

E

N
1 1

1 Y
X

1
1 B

A

⚫ The tile set self-assembles a 2 x 2 square.

Power of Nondeterminism
Question: Let S be a finite shape self-assembled by

some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

seed
N

E
1

E

N
1 1

1 Y
X

1
1 B

A

In this example, we can

convert this nondeterministic

tile set that self-assembles a

2 x 2 square ...

Power of Nondeterminism
Question: Let S be a finite shape self-assembled by

some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

seed
N

E
1

E

N
1 1

1 Y
X

1
1 B

A

In this example, we can

convert this nondeterministic

tile set that self-assembles a

2 x 2 square ...
... to this deterministic tile set that

self-assembles the same shape.

In general???

seed
N

E
1

E

N
1

1
1 B

A

Power of Nondeterminism
Question: Let S be a finite shape self-assembled by

some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

Power of Nondeterminism

Answer: Trivially yes.

nondeterministic

tile set

shape S

1,1

1
,1

1,2

2
,1

1
,1

2,1 2
,1

3,1

1,1

1,2 1
,2

3,2

2,1

1
,2

2
,2

3,1

3,22
,2

deterministic tile set

(hard-coding S)

Question: Let S be a finite shape self-assembled by

some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

Power of Nondeterminism

Answer: Trivially yes.

nondeterministic

tile set

shape S

1,1

1
,1

1,2

2
,1

1
,1

2,1 2
,1

3,1

1,1

1,2 1
,2

3,2

2,1

1
,2

2
,2

3,1

3,22
,2

deterministic tile set

(hard-coding S)

Question: Let S be a finite shape self-assembled by

some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

Is there some way that

nondeterminism helps to

self-assemble shapes?

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-

assembled by some nondeterministic tile system with k

tile types. Does some deterministic tile system with at

most k tile types also self-assemble S?

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-

assembled by some nondeterministic tile system with k

tile types. Does some deterministic tile system with at

most k tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Power of Nondeterminism

Answer: No

Answer: No

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-

assembled by some nondeterministic tile system with k

tile types. Does some deterministic tile system with at

most k tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Power of Nondeterminism

Answer: No

Answer: No

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-

assembled by some nondeterministic tile system with k

tile types. Does some deterministic tile system with at

most k tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Power of Nondeterminism

There is an infinite shape
S strictly self-assembled
by only nondeterministic
tile systems.

Answer: No

Answer: No

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-

assembled by some nondeterministic tile system with k

tile types. Does some deterministic tile system with at

most k tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Power of Nondeterminism

There is an infinite shape
S strictly self-assembled
by only nondeterministic
tile systems.

There is a finite shape S
strictly self-assembled
with at most k tile types
by only nondeterministic
tile systems.

Remainder of talk
Answer: No

Answer: No

Question 1: Let S be an infinite shape strictly self-

assembled by some nondeterministic tile system. Does

some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-

assembled by some nondeterministic tile system with k

tile types. Does some deterministic tile system with at

most k tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Power of Nondeterminism

There is an infinite shape
S strictly self-assembled
by only nondeterministic
tile systems.

There is a finite shape S
strictly self-assembled
with at most k tile types
by only nondeterministic
tile systems.

Optimization Problems

MINTILESET

 Given: finite shape S

 Find: size of smallest tile system that self-assembles S

Optimization Problems

MINTILESET

 Given: finite shape S

 Find: size of smallest tile system that self-assembles S

MINDETTILESET

 Given: finite shape S

 Find: size of smallest deterministic tile system that self-assembles S

Optimization Problems

MINTILESET

 Given: finite shape S

 Find: size of smallest tile system that self-assembles S

MINDETTILESET

 Given: finite shape S

 Find: size of smallest deterministic tile system that self-assembles S

False statement: Nondeterminism does not affect tile complexity:
for every nondeterministic tile set of size k that self-assembles a shape S,

there is a deterministic tile set of size at most k that self-assembles S.

Optimization Problems

MINTILESET

 Given: finite shape S

 Find: size of smallest tile system that self-assembles S

MINDETTILESET

 Given: finite shape S

 Find: size of smallest deterministic tile system that self-assembles S

False statement: Nondeterminism does not affect tile complexity:
for every nondeterministic tile set of size k that self-assembles a shape S,

there is a deterministic tile set of size at most k that self-assembles S.

if true, would imply MINDETTILESET = MINTILESET

Main Result

⚫ We show: MINTILESET is NPNP-complete.

⚫ MINDETTILESET is NP-complete. (Adleman, Cheng,

Goel, Huang, Kempe, Moisset de Espanés, Rothemund, STOC 2002)

⚫ NP ≠ NPNP ⇒ MINTILESET ≠ MINDETTILESET

a.k.a., Σ2
𝑃

Nondeterminism in Algorithms and Self-Assembly

Algorithm that flips

coins but always

produces same output

⚫ coin flips useless

But … finding smallest tile

set is harder if it flips coins.

Tile set that flips

coins but always

produces same shape

⚫ coin flips useful

A Finite Shape for which Nondeterminism

Affects Tile Complexity

h

⚫ Smallest tile set: ≈ 2h

tile types

⚫

A Finite Shape for which Nondeterminism

Affects Tile Complexity

h

⚫ Smallest tile set: ≈ 2h

tile types

⚫ Smallest deterministic

tile set: ≈ 3h tile types

A Finite Shape for which Nondeterminism

Affects Tile Complexity

h

⚫ Smallest tile set: ≈ 2h

tile types

⚫ Smallest deterministic

tile set: ≈ 3h tile types

in NPNP-hardness reduction, compete to

assign bits to variable in Boolean formula

NPNP-hardness Reduction

⚫ NPNP-complete problem (Stockmeyer,Wrathall 1976):

∃∀CNF-UNSAT

− Given: CNF Boolean formula Φ with k+n input bits

x=x1...xk and y=y1...yn

−

⚫

NPNP-hardness Reduction

⚫ NPNP-complete problem (Stockmeyer,Wrathall 1976):

∃∀CNF-UNSAT

− Given: CNF Boolean formula Φ with k+n input bits

x=x1...xk and y=y1...yn

− Question: is (∃x)(∀y)¬Φ(x,y) true?

⚫

NPNP-hardness Reduction

⚫ NPNP-complete problem (Stockmeyer,Wrathall 1976):

∃∀CNF-UNSAT

− Given: CNF Boolean formula Φ with k+n input bits

x=x1...xk and y=y1...yn

− Question: is (∃x)(∀y)¬Φ(x,y) true?

⚫ Reduction goal: Given Φ, output shape S and integer c

such that (∃x)(∀y)¬Φ(x,y) holds if and only if some tile

set of size at most c self-assembles S.

Main idea (due to Adleman et al. STOC 2002):
⚫

⚫

⚫

⚫

−

−

−

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to

compute its minimum tile set in polynomial time.

⚫

⚫

⚫

−

−

−

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫

⚫

−

−

−

NPNP-hardness Reduction

ϒ

Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫ Compute ϒ's minimal tile set T. (c=T)

⚫

−

−

−

NPNP-hardness Reduction

ϒ

Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫ Compute ϒ's minimal tile set T. (c=T)

⚫ Create shape S ⊃ ϒ such that

−

−

−

NPNP-hardness Reduction

S

ϒ

Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫ Compute ϒ's minimal tile set T. (c=T)

⚫ Create shape S ⊃ ϒ such that

− If (∃x)(∀y)¬Φ(x,y), tiles from T can be altered to assemble S.

−

−

NPNP-hardness Reduction

S

ϒ

Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫ Compute ϒ's minimal tile set T. (c=T)

⚫ Create shape S ⊃ ϒ such that

− If (∃x)(∀y)¬Φ(x,y), tiles from T can be altered to assemble S.

− Otherwise, tiles from T cannot be altered to assemble S.

−

NPNP-hardness Reduction

S

ϒ

Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫ Compute ϒ's minimal tile set T. (c=T)

⚫ Create shape S ⊃ ϒ such that

− If (∃x)(∀y)¬Φ(x,y), tiles from T can be altered to assemble S.

− Otherwise, tiles from T cannot be altered to assemble S.

− “Since ϒ ⊆ S,” every tile set that assembles S contains T, so if tiles

from T cannot be altered to assemble S then additional tiles are

needed; i.e., S requires more than c = |T| tile types.

NPNP-hardness Reduction

S

ϒ

Evaluation of Formula
⚫ Order variables w = w1...wn (both ∃ and ∀ variables) and clauses C1… Cm

arbitrarily.

⚫

⚫

⚫

Evaluation of Formula
⚫ Order variables w = w1...wn (both ∃ and ∀ variables) and clauses C1… Cm

arbitrarily.

⚫ Fix an assignment to variables.

⚫

⚫

Evaluation of Formula
⚫ Order variables w = w1...wn (both ∃ and ∀ variables) and clauses C1… Cm

arbitrarily.

⚫ Fix an assignment to variables.

⚫ For each clause Cj and variable wi, let aij be the pair (U/S, T/F) representing

whether Cj is satisfied by wk for k ≤ i, and whether wk is true or false.

⚫

Evaluation of Formula
⚫ Order variables w = w1...wn (both ∃ and ∀ variables) and clauses C1… Cm

arbitrarily.

⚫ Fix an assignment to variables.

⚫ For each clause Cj and variable wi, let aij be the pair (U/S, T/F) representing

whether Cj is satisfied by wk for k ≤ i, and whether wk is true or false.

⚫ The matrix A = (aij) looks like

C3
SF SF ST ST

C2
UF UF UT ST

C1
UF UF ST ST

w1 w2 w3 w4

w = 0011
Φ = (w1 ∨ w3) ∧ (w1 ∨ w2 ∨ w4) ∧ (¬w1 ∨ w2)

Evaluation of Formula
⚫ Order variables w = w1...wn (both ∃ and ∀ variables) and clauses C1… Cm

arbitrarily.

⚫ Fix an assignment to variables.

⚫ For each clause Cj and variable wi, let aij be the pair (U/S, T/F) representing

whether Cj is satisfied by wk for k ≤ i, and whether wk is true or false.

⚫ The matrix A = (aij) looks like

C3
USF SSF SST SST

C2
UUF UUF UUT UST

C1
UUF UUF UST SST

w1 w2 w3 w4

C3
SF SF ST ST

C2
UF UF UT ST

C1
UF UF ST ST

w1 w2 w3 w4

highlighting when Ci goes from

unsatisfied (U) to satisfied (S)
w = 0011
Φ = (w1 ∨ w3) ∧ (w1 ∨ w2 ∨ w4) ∧ (¬w1 ∨ w2)

Gadgets (Adleman et al. 2002)

SSij – Cj satisfied by a previous variable (wk for k < i)

USij – Cj unsatisfied by previous variables but is satisfied by wi

UUij – Cj unsatisfied by previous variables and by wi

For each variable wi and clause Cj, value of wi = T/F and

Shape S

Tϒ = tile types to self-assemble ϒ; size c = |Tϒ |
(∃x)(∀y)¬Φ(x,y) is true ⇔ tiles in Tϒ can be modified to self-assemble S

Shape S

Tϒ = tile types to self-assemble ϒ; size c = |Tϒ |
(∃x)(∀y)¬Φ(x,y) is true ⇔ tiles in Tϒ can be modified to self-assemble S

by changing these glues

…

Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile

complexity? our example has ratio 3/2; Schweller (unpublished) improved to

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

⚫

⚫

−

⚫

−

−

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile

complexity? our example has ratio 3/2; Schweller (unpublished) improved to

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

⚫ Hardness of approximation of minimum tile set problem

⚫

−

⚫

−

−

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile

complexity? our example has ratio 3/2; Schweller (unpublished) improved to

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

⚫ Hardness of approximation of minimum tile set problem

⚫ Minimum tile set problem when shape is a square

−

⚫

−

−

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile

complexity? our example has ratio 3/2; Schweller (unpublished) improved to

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

⚫ Hardness of approximation of minimum tile set problem

⚫ Minimum tile set problem when shape is a square

− deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard

unless P=NP)

⚫

−

−

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile

complexity? our example has ratio 3/2; Schweller (unpublished) improved to

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

⚫ Hardness of approximation of minimum tile set problem

⚫ Minimum tile set problem when shape is a square

− deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard

unless P=NP)

⚫ Weak self-assembly (pattern painting): paint some tile types “black”, and say

“pattern assembled” is set of points with a black tile

−

−

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile

complexity? our example has ratio 3/2; Schweller (unpublished) improved to

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

⚫ Hardness of approximation of minimum tile set problem

⚫ Minimum tile set problem when shape is a square

− deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard

unless P=NP)

⚫ Weak self-assembly (pattern painting): paint some tile types “black”, and say

“pattern assembled” is set of points with a black tile

− Minimum tile set problem: uncomputable! (NP-complete with some restrictions:

https://arxiv.org/abs/1404.0967)

−

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile

complexity? our example has ratio 3/2; Schweller (unpublished) improved to

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

⚫ Hardness of approximation of minimum tile set problem

⚫ Minimum tile set problem when shape is a square

− deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard

unless P=NP)

⚫ Weak self-assembly (pattern painting): paint some tile types “black”, and say

“pattern assembled” is set of points with a black tile

− Minimum tile set problem: uncomputable! (NP-complete with some restrictions:

https://arxiv.org/abs/1404.0967)

− Power of nondeterminism: is it possible to uniquely paint a pattern, but only by

assembling more than one shape on which the pattern is painted?

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Errors in algorithmic self-assembly

94

Errors in self-assembly

• abstract Tile Assembly Model (aTAM,
the model we’ve used so far):

• tiles attach but never detach

• tiles bind only with strength 2 or higher

95

Errors in self-assembly

• abstract Tile Assembly Model (aTAM,
the model we’ve used so far):

• tiles attach but never detach

• tiles bind only with strength 2 or higher

95

errors

Errors in self-assembly

• abstract Tile Assembly Model (aTAM,
the model we’ve used so far):

• tiles attach but never detach

• tiles bind only with strength 2 or higher

• unrealistic… what’s a better model?

95

errors

Errors in self-assembly

• abstract Tile Assembly Model (aTAM,
the model we’ve used so far):

• tiles attach but never detach

• tiles bind only with strength 2 or higher

• unrealistic… what’s a better model?

• kinetic Tile Assembly Model (kTAM);
essential differences with aTAM:

• tiles can detach

• tiles can bind with strength 1

95

errors

Modeling errors: kinetic Tile Assembly Model

96

Modeling errors: kinetic Tile Assembly Model

96

main cause of algorithmic errors: tile
matches one glue but not the other

Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate rf (no matter how
many glues match)

96

main cause of algorithmic errors: tile
matches one glue but not the other

Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate rf (no matter how
many glues match)

• Tiles detach with rate rr,b, if they are
attached by total glue strength b

96

main cause of algorithmic errors: tile
matches one glue but not the other

Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate rf (no matter how
many glues match)

• Tiles detach with rate rr,b, if they are
attached by total glue strength b

• “rate” = time until it occurs is exponential
random variable with that rate; expected
time 1/rate

96

main cause of algorithmic errors: tile
matches one glue but not the other

Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate rf (no matter how
many glues match)

• Tiles detach with rate rr,b, if they are
attached by total glue strength b

• “rate” = time until it occurs is exponential
random variable with that rate; expected
time 1/rate

• a.k.a., continuous time Markov process

96

main cause of algorithmic errors: tile
matches one glue but not the other

Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate rf (no matter how
many glues match)

• Tiles detach with rate rr,b, if they are
attached by total glue strength b

• “rate” = time until it occurs is exponential
random variable with that rate; expected
time 1/rate

• a.k.a., continuous time Markov process

• Take home message: tiles bound with fewer
glues (potential errors) fall off faster, but
could get locked in by subsequent
neighboring attachment

96

main cause of algorithmic errors: tile
matches one glue but not the other

kTAM simulators

• ISU TAS (developed by Matt Patitz) also does kTAM simulation:
• http://self-assembly.net/wiki/index.php?title=ISU_TAS

• http://self-assembly.net/wiki/index.php?title=ISU_TAS_Tutorials

• xgrow (new version developed by Constantine Evans):
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow

• xgrow (original version developed by Erik Winfree)
• https://www.dna.caltech.edu/Xgrow/

• older and a bit less intuitive

97

http://self-assembly.net/wiki/index.php?title=ISU_TAS
http://self-assembly.net/wiki/index.php?title=ISU_TAS_Tutorials
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
https://www.dna.caltech.edu/Xgrow/

Tradeoff between assembly speed and errors

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

• “energy” of attachment is called Gmc
(monomer concentration): rf ∝ e–Gmc

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

• “energy” of attachment is called Gmc
(monomer concentration): rf ∝ e–Gmc

• detach rate rr,b can be controlled
through temperature

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

• “energy” of attachment is called Gmc
(monomer concentration): rf ∝ e–Gmc

• detach rate rr,b can be controlled
through temperature

• “energy” of detachment is called Gse
(sticky end): rr,b ∝ e–b∙Gse

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

• “energy” of attachment is called Gmc
(monomer concentration): rf ∝ e–Gmc

• detach rate rr,b can be controlled
through temperature

• “energy” of detachment is called Gse
(sticky end): rr,b ∝ e–b∙Gse

• Intuitively, setting rf ≈ rr,2 is like
“temperature τ = 2” assembly

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

• “energy” of attachment is called Gmc
(monomer concentration): rf ∝ e–Gmc

• detach rate rr,b can be controlled
through temperature

• “energy” of detachment is called Gse
(sticky end): rr,b ∝ e–b∙Gse

• Intuitively, setting rf ≈ rr,2 is like
“temperature τ = 2” assembly

• … but with net zero growth rate

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

• “energy” of attachment is called Gmc
(monomer concentration): rf ∝ e–Gmc

• detach rate rr,b can be controlled
through temperature

• “energy” of detachment is called Gse
(sticky end): rr,b ∝ e–b∙Gse

• Intuitively, setting rf ≈ rr,2 is like
“temperature τ = 2” assembly

• … but with net zero growth rate

• make rf a little larger, and growth is faster,
but error rates go up

98

Tradeoff between assembly speed and errors

• attach rate rf can be controlled through
concentrations

• “energy” of attachment is called Gmc
(monomer concentration): rf ∝ e–Gmc

• detach rate rr,b can be controlled
through temperature

• “energy” of detachment is called Gse
(sticky end): rr,b ∝ e–b∙Gse

• Intuitively, setting rf ≈ rr,2 is like
“temperature τ = 2” assembly

• … but with net zero growth rate

• make rf a little larger, and growth is faster,
but error rates go up

98

Theorem [Winfree, 1998]: To have total
error rate ε, for fastest assembly speed,
set Gse = ln(4/ε) and Gmc = ln(8/ε2),
i.e., Gmc = 2Gse – ln 2, i.e., rf/rr,2 = 2

Proofreading: Algorithmic error correction

99

k x k proofreading: replace each tile with all
strength-1 glues by a k x k block of tiles:

Proofreading: Algorithmic error correction

99

k x k proofreading: replace each tile with all
strength-1 glues by a k x k block of tiles:

glues internal to the
block all unique

Proofreading: Algorithmic error correction

99

k x k proofreading: replace each tile with all
strength-1 glues by a k x k block of tiles:

glues internal to the
block all unique

glues external to the block
come in k versions that each
represent an original glue

Proofreading: Algorithmic error correction

99

k x k proofreading: replace each tile with all
strength-1 glues by a k x k block of tiles:

glues internal to the
block all unique

glues external to the block
come in k versions that each
represent an original glue

Proposition: No tiling of the k x k region with “consistent external
glues” (all represent the same glue in original tile set) has m
mismatches, where 0 < m < k, i.e., if any mismatch occurs, then at
least k mismatches occur before the k x k block can be completed to
represent the wrong external glue.

Proofreading: Algorithmic error correction

99

k x k proofreading: replace each tile with all
strength-1 glues by a k x k block of tiles:

glues internal to the
block all unique

glues external to the block
come in k versions that each
represent an original glue

Proposition: No tiling of the k x k region with “consistent external
glues” (all represent the same glue in original tile set) has m
mismatches, where 0 < m < k, i.e., if any mismatch occurs, then at
least k mismatches occur before the k x k block can be completed to
represent the wrong external glue.

Theorem(ish): If the error rate of the
original tile system is ε, the error rate of
the k x k proofreading tile system is O(εk),
e.g., if ε = 0.01, then 2 x 2 proofreading
gets error rate about ε2 = 0.0001.

Experimental algorithmic self-
assembly

100

Crystals that think
about how they’re growing

Caltech HarvardInria Paris UC Davis

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin

slides for ECS 232: Theory of Molecular Computation

Acknowledgements

Damien Woods
(co-first author)

Erik Winfree co-authors

Cameron Myhrvold Peng Yin

Felix Zhou

lab/science help

Ashwin Gopinath

Sungwook Woo Constantine Evans

Jongmin Kim

Sarina Mohanty Niranjan Srinivas

Paul Rothemund

Yannick Rondolez

Mingjie Dai Nikhil Gopalkrishnan

Bryan Wei Cody Geary

Deborah Fygenson

Chris Thachuk Nadine Dabby

Joy Hui

Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Damien Woods†, David Doty†, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, Erik Winfree.
Nature 2019. †These authors contributed equally.

Caltech HarvardInria Paris UC Davis

102/48

Hierarchy of abstractions

Bits: Boolean circuits compute

 Tiles: Tile growth implements circuits

 DNA: DNA strands implement tiles

103/48

Harmonious arrangement

0

1

1

0

1

1

104/48

Harmonious arrangement

0

1

1

0

1

1

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

1

0

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

1

0

1

0

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

1

0

1

0

1

1

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

1

0

1

0

1

1

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

1

0

1

0

1

1

1

0

1

0

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

1

0

1

0

1

1

1

0

1

0

1

1

104/48

Harmonious arrangement

0

1

1

0

1

1

1

1

1

1

0

0

1

0

1

0

1

1

1

0

1

0

1

1

1

1

1

0

1

0

1

1

1

1

0

0

a.k.a. sorting=

=

=

=

=

=

104/48

Odd bits

1

0

1

0

0

1

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

0

1

0

1

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

0

1

0

1

1

0

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

0

1

0

1

1

0

1

2

3

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

0

1

0

1

1

0

1

2

3

6

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

0

1

0

1

1

0

0

0

1

2

3

6

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

0

1

0

1

1

0

0

1

0

0

0

0

1

2

3

6

7

5

4

105/48

move 1’s
to here

Odd bits

1

0

1

0

0

1

0

1

0

1

1

0

0

1

0

0

0

0

0

0

0

1

0

0

1

2

3

6

7

5

4

1

2

3

0

0

0

1

0

0

0

0

0

1

0

0

…

6

7

5

4

1

2

3

0

0

0

1

0

0

0

0

0

1

0

0

6

7

5

4

1

2

3

a.k.a. parity

105/48

Parity

1

0

1

1

0

1

106/48

Parity

1

0

1

1

0

1

0

1

0

0

1

0

106/48

Parity

1

0

1

1

0

1

0

1

0

0

1

0

0

1

1

0

0

0

106/48

Parity

1

0

1

1

0

1

0

1

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

…

0

0

0

0

0

0

0

0

0

0

0

0

106/48

gate: function with two input bits i1,i2
 and two output bits o1,o2

Circuit model

gate

i1

i2

o1

o2

107/48

i1 i2 o1 o2

0 0

0 1

1 0

1 1

0

1

1

0

gate: function with two input bits i1,i2
 and two output bits o1,o2

truth table

Circuit model

gate

i1

i2

o1

o2

107/48

i1 i2 o1 o2

0 0

0 1

1 0

1 1

0

1

1

0

0

0

0

1

gate: function with two input bits i1,i2
 and two output bits o1,o2

truth table

Circuit model

gate

i1

i2

o1

o2

107/48

i1
o1

i2

o2

Circuit model

108/48

3

i1
o1

i2

o2

Circuit model

108/48

3

2

4

i1
o1

i2

o2

Circuit model

108/48

3

2

4

1

5

6

7

i1
o1

i2

o2

one layer

7 rows in layer

Circuit model

108/48

i1 o1

i2
o2

3

2

4

1

5

6

7

i1
o1

i2

o2

one layer

7 rows in layer

Circuit model

108/48

Randomization: Each row may be assigned ≥ 2 gates, with

associated probabilities, e.g., Pr[gNN] = Pr[gXA] = ½

2

4

6

3

5

1

7

gXA

i1

o1

i2

o2

i1
o1

i2
o2

gNN

Circuit model

109/48

2

4

6

3

5

7

1

Programmer specifies layer:
gates to go in each row

Circuit model

110/48

2

4

6

3

5

7

1

x5

x6

x3

x4

x1

x2

input

User gives 𝑛 input bits

Programmer specifies layer:
gates to go in each row

Circuit model

110/48

2

4

6

3

5

7

1

x5

x6

x3

x4

x1

x2

2

4

6

3

5

7

1

2

4

6

3

5

7

1

layers: 1 2 3

input

User gives 𝑛 input bits

Programmer specifies layer:
gates to go in each row

Circuit model

110/48

Example circuits with same gate in every row

1
1
0
0
1
1

COPY

i1

i2

i1

i2

i1 i2 o1 o2

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

COPY gates

111/48

Example circuits with same gate in every row

1
1
0
0
1
1

1
1
0
0
1
1

COPY

i1

i2

i1

i2

i1 i2 o1 o2

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

COPY gates

111/48

Example circuits with same gate in every row

1
1
0
0
1
1

1
1
0
0
1
1

COPY

i1

i2

i1

i2

i1 i2 o1 o2

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

0
0
0
1
1
1

1
1
1
0
0
0

SORTING
i1 i2 o1 o2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

i1

i2

OR(i1,i2)

AND(i1,i2)

COPY gates

SORTING gates

111/48

Example circuits with different gates in each row
PARITY

112/48

Example circuits with different gates in each row

1
0
0
1
0
1

0
0
0
1
0
0

PARITY

1
0
1
1
0
1

0
0
0
0
0
0

112/48

Example circuits with different gates in each row

1
0
0
1
0
1

0
0
0
1
0
0

PARITY

MULTIPLEOF3
0110112

1
0
1
1
0
1

0
0
0
0
0
0

0
1
1
0
1
1

112/48

Example circuits with different gates in each row

1
0
0
1
0
1

0
0
0
1
0
0

PARITY

MULTIPLEOF3
0110112

1
0
1
1
0
1

0
0
0
0
0
0

0
1
1
0
1
1

= 2710 = 3∙9

112/48

Example circuits with different gates in each row

1
0
0
1
0
1

0
0
0
1
0
0

PARITY

MULTIPLEOF3

1
1
1
0
1
1

0110112 1110112

1
0
1
1
0
1

0
0
0
0
0
0

0
1
1
0
1
1

= 2710 = 3∙9

112/48

Example circuits with different gates in each row

1
0
0
1
0
1

0
0
0
1
0
0

PARITY

MULTIPLEOF3

1
1
1
0
1
1

0110112 = 5910 = 3∙19 + 21110112

1
0
1
1
0
1

0
0
0
0
0
0

0
1
1
0
1
1

= 2710 = 3∙9

112/48

Randomization: “Lazy” sorting

2

4

6

3

5

1

7

copy gate

sort gate

If 1 and 0 out of order, flip a coin to
decide whether to swap them.

113/48

Randomization: “Lazy” sorting

0
0
0
1
1
1

1
1
1
0
0
0

2

4

6

3

5

1

7

copy gate

sort gate

If 1 and 0 out of order, flip a coin to
decide whether to swap them.

0
0
0
1
1
1

1
1
1
0
0
0

113/48

Deterministic circuits
answer yes/no questionPARITY MULTIPLEOF3

114/48

Deterministic circuits
answer yes/no questionPARITY MULTIPLEOF3 PALINDROME

yes

no

114/48

Deterministic circuits
answer yes/no questionPARITY MULTIPLEOF3 PALINDROME

yes

no

114/48

Deterministic circuits
answer yes/no question

“count” as high as possible

PARITY MULTIPLEOF3 PALINDROME

CYCLE63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 1 2

yes

no

114/48

Deterministic circuits
answer yes/no question

simulate cellular automataRULE110

“count” as high as possible

PARITY MULTIPLEOF3 PALINDROME

CYCLE63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 1 2

yes

no

114/48

Deterministic circuits
answer yes/no question

simulate cellular automataRULE110

time

“count” as high as possible

PARITY MULTIPLEOF3 PALINDROME

CYCLE63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 1 2

yes

no

114/48

Deterministic circuits
answer yes/no question

simulate cellular automataRULE110

time

Theorem: Rule 110 can efficiently
execute any algorithm.

[Neary, Woods, ICALP 2006]

[Cook, Complex Systems 2004]

“count” as high as possible

PARITY MULTIPLEOF3 PALINDROME

CYCLE63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 1 2

yes

no

114/48

Randomized circuits

LAZYPARITY

115/48

Randomized circuits

LAZYPARITY

115/48

Randomized circuits

LAZYPARITY

RANDOMWALKINGBIT

115/48

Randomized circuits

LAZYPARITY

RANDOMWALKINGBIT

DIAMONDSAREFOREVER

115/48

Randomized circuits

use biased coin to
simulate unbiased coin

LAZYPARITY

RANDOMWALKINGBIT

DIAMONDSAREFOREVER

FAIRCOIN

115/48

Randomized circuits

use biased coin to
simulate unbiased coin

Pr = Pr = ½

for any (positive) probabilities for the randomized gate

LAZYPARITY

RANDOMWALKINGBIT

DIAMONDSAREFOREVER

FAIRCOIN

115/48

116/48

100 nm

116/48

Hierarchy of abstractions

Bits: Boolean circuits compute

 Tiles: Tile growth implements circuits

 DNA: DNA strands implement tiles

117/48

Gates → Tiles

i1 i2 o1 o2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

gate
i1

i2

o1

o2

118/48

Gates → Tiles

i1 i2 o1 o2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

tiles
truth table row is

encoded by a tile with

4 glues encoding bits

gate
i1

i2

o1

o2

118/48

Gates → Tiles

i1 i2 o1 o2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

tiles

input

glues

output

glues

truth table row is

encoded by a tile with

4 glues encoding bits

gate
i1

i2

o1

o2

118/48

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

How tiles compute while growing
(algorithmic self-assembly)

119/48

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

How tiles compute while growing
(algorithmic self-assembly)

119/48

U2

U3

U4

U5

U6

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

How tiles compute while growing
(algorithmic self-assembly)

119/48

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

“data-free” tile wraps top
to bottom to form a tube

U_

How tiles compute while growing
(algorithmic self-assembly)

119/48

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

119/48

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

119/48

13

02

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

11

04

119/48

?
13

02

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

11

04

119/48

?
U3

02

03

U3
12

03

U3
02

13

U3
12

13

13

02

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

11

04

119/48

?
U3

02

03

U3
12

03

U3
02

13

U3
12

13

13

02

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

one mismatch
“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

11

04

119/48

?
U3

02

03

U3
12

03

U3
02

13

U3
12

13

13

02

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

one mismatch

two mismatches

“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

11

04

119/48

?
U3

02

03

U3
12

03

U3
02

13

U3
12

13

13

02

two glues match:
cooperative binding

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

one mismatch

two mismatches

“data-free” tile wraps top
to bottom to form a tube

U_

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

11

04

119/48

U3
02

03

U3
12

03

U3
02

13

U3
12

13

13

02

two glues match:
cooperative binding

U2

U3

U4

U5

U6

U_

U1

U7

2

4

6

3

5

7

1
2

4

6

3

5

7

1
2

4

6

3

5

7

1x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

_

_

U2

U3

U4

U5

U6

U_

U1

U7

U2

U3

U4

U5

U6

U_

U1

U7

one mismatch

two mismatches

“data-free” tile wraps top
to bottom to form a tube

U_

12

03

03

0312

12

13

02

U_ U_ U_ U_ U_ U_ U_ U_ U_
U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U2

U7

U2

U7 U7

U2 U2 U2 U2 U2 U2 U2

U7

How tiles compute while growing
(algorithmic self-assembly)

11

04

119/48

Hierarchy of abstractions

Bits: Boolean circuits compute

 Tiles: Tile growth implements circuits

 DNA: DNA strands implement tiles

120/48

DNA single-stranded tiles

glue 4 glue 3

glue 2glue 1

assembly

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif.
Programming DNA tube circumferences.
Science 2008

121/48

Single-stranded tiles for making any shape

Bryan Wei, Mingjie Dai, and Peng Yin.
Complex shapes self-assembled from single-stranded DNA tiles.
Nature 2012.

122/48

Uniquely addressed self-assembly versus algorithmic

single DNA origami uniquely-addressed tiles

staple strand for position (4,2)

tile for position (4,2)origami for position (4,2)

Unique addressing: each DNA “monomer” appears exactly once in final structure.

array of many DNA origamis

123/48

Uniquely addressed self-assembly versus algorithmic

single DNA origami uniquely-addressed tiles

staple strand for position (4,2)

tile for position (4,2)origami for position (4,2)

Unique addressing: each DNA “monomer” appears exactly once in final structure.

array of many DNA origamis

Algorithmic: DNA tiles are reused throughout the structure.

123/48

Single-stranded tile tubes

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. Programming DNA tube circumferences, Science 2008.

DNA-level diagram of 20-helix tube

124/48

Seeded growth
13

12

13

02

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

single-stranded tiles
implementing circuit gates

15

04

15

14

13

02

03

02

05

04

05

14

05

14

15

04

15

04

15

04

125/48

Seeded growth
DNA origami seed

13

12

13

02

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

single-stranded tiles
implementing circuit gates

15

04

15

14

13

02

03

02

05

04

05

14

05

14

15

04

15

04

15

04

125/48

Seeded growth
DNA origami seed

13

12

13

02

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

single-stranded “input-adapter”
extensions encoding 6 input bits

single-stranded tiles
implementing circuit gates

15

04

15

14

13

02

03

02

05

04

05

14

05

14

15

04

15

04

15

04

125/48

Seeded growth
DNA origami seed

13

12

13

02

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

single-stranded “input-adapter”
extensions encoding 6 input bits

hold 8-48 hours

seed input-
adapters

growing
tiles

single-stranded tiles
implementing circuit gates

15

04

15

14

13

02

03

02

05

04

05

14

05

14

15

04

15

04

15

04

125/48

Seeded growth
DNA origami seed

13

12

13

02

biotins where
output = 1

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

single-stranded “input-adapter”
extensions encoding 6 input bits

hold 8-48 hours

seed input-
adapters

growing
tiles

single-stranded tiles
implementing circuit gates

15

04

15

14

13

02

03

02

05

04

05

14

05

14

15

04

15

04

15

04

125/48

Seeded growth
DNA origami seed

13

12

13

02

biotins where
output = 1

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

single-stranded “input-adapter”
extensions encoding 6 input bits

can later add streptavidin (5 nm
wide protein) to bind biotins and
visualize where the 1’s are

hold 8-48 hours

seed input-
adapters

growing
tiles

single-stranded tiles
implementing circuit gates

15

04

15

14

13

02

03

02

05

04

05

14

05

14

15

04

15

04

15

04

125/48

Tubes to ribbons

500 nm
AFM
image

tube

126/48

Tubes to ribbons

remove “seam” by
strand displacement

500 nm
AFM
image

tube

126/48

Tubes to ribbons

remove “seam” by
strand displacement

500 nm
AFM
image

tube

126/48

Tubes to ribbons

remove “seam” by
strand displacement

500 nm
AFM
image

tube
ribbon

126/48

DNA sequence design

correct attachment:
both domains match

incorrect attachment:
only one domain matches

127/48

Random sequences vs designed sequences

energy (-kcal/mol)
4 6 8 10 12 14 16 18

energy (-kcal/mol)
4 6 8 10 12 14 16 18

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

more favorable

2 domains1 domain
2 domains

1 domain

DNA sequence design

correct attachment:
both domains match

incorrect attachment:
only one domain matches

127/48

Random sequences vs designed sequences

energy (-kcal/mol)
4 6 8 10 12 14 16 18

energy (-kcal/mol)
4 6 8 10 12 14 16 18

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

more favorable

2 domains1 domain
2 domains

1 domain

0

0

0

0

incorrect binding

DNA sequence design

correct attachment:
both domains match

incorrect attachment:
only one domain matches

127/48

Random sequences vs designed sequences

energy (-kcal/mol)
4 6 8 10 12 14 16 18

energy (-kcal/mol)
4 6 8 10 12 14 16 18

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

more favorable

2 domains1 domain
2 domains

1 domain

0

0

0

0

incorrect binding

0

1

1

0

correct binding

✓

DNA sequence design

correct attachment:
both domains match

incorrect attachment:
only one domain matches

127/48

Random sequences vs designed sequences

energy (-kcal/mol)
4 6 8 10 12 14 16 18

energy (-kcal/mol)
4 6 8 10 12 14 16 18

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

0.9

0.5

0.0

n
o

rm
a

liz
e

d
 c

o
u

n
t

more favorable

2 domains1 domain
2 domains

1 domain

✓

0

0

0

0

incorrect binding

Other goals:
• low strand secondary structure
• low interaction between strands

0

1

1

0

correct binding

✓

DNA sequence design

correct attachment:
both domains match

incorrect attachment:
only one domain matches

127/48

Bar-coding origami seed for imaging
multiple samples at once

some staples of origami seed
have version with a biotin

128/48

Bar-coding origami seed for imaging
multiple samples at once

Generate

plate map

some staples of origami seed
have version with a biotin

128/48

Bar-coding origami seed for imaging
multiple samples at once

label with

streptavidin

Generate

plate map

some staples of origami seed
have version with a biotin

represents some combination of
circuit and input, e.g.,
013 = “parity circuit, input=011010”

128/48

Experimental protocol

• Mix

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:

129/48

Experimental protocol

• Mix

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:

• origami seed (bar-coded to identify 𝛾 and 𝑥)

129/48

Experimental protocol

• Mix

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:

• origami seed (bar-coded to identify 𝛾 and 𝑥)

• “adapter” strands encoding 𝑥

129/48

Experimental protocol

• Mix

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:

15

04

15

14

13

02

03

02
13

12

03

12

05

04

05

14

05

14

15

04

• origami seed (bar-coded to identify 𝛾 and 𝑥)

• “adapter” strands encoding 𝑥

• tiles computing 𝛾

129/48

Experimental protocol

• Mix

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:

15

04

15

14

13

02

03

02
13

12

03

12

05

04

05

14

05

14

15

04

• origami seed (bar-coded to identify 𝛾 and 𝑥)

• “adapter” strands encoding 𝑥

• tiles computing 𝛾

• Anneal 90° C to 50.9° C in 1 hour (origami seeds form)
• Hold at 50.9° C for 1-2 days (tiles grow tubes from seed)
• Add “unzipper” strands (remove seam to convert tube to ribbon)
• Add “guard” strands (complements of output sticky ends, to deactivate tiles)
• Deposit on mica, buffer wash, add streptavidin, AFM 129/48

Results
def test_parity():
 actual = parity('100101')

 expected =

 assertEquals(expected, actual)

130/48

100 nm

SORTING PARITY MULTIPLEOF3 PALINDROME

RECOGNISE21 ZIG-ZAGCOPY

131/48

RANDOMWALKINGBITLAZYPARITY

LEADERELECTION

ABSORBINGRANDOMWALKINGBIT

LAZYSORTING

WAVES

132/48

RULE110FAIRCOIN

133/48

Is there a 64-counter?

1 2 3 … …62 63 1 2 3 …

Circuit with 63 distinct strings

42

Counting to 63

No!
Proof by Tristan Stérin, Maynooth University
Consequence of following theorem:
No Boolean function computes an odd permutation
if some output bit does not depend on all input bits.

134/48

Parity tested on all inputs

σ(6-bit input) = 3-digit barcode representing that input

32 inputs with even # of 1’s 32 inputs with odd # of 1’s

26 = 64 inputs with 6 bits

150 nm
135/48

Parity tested on all inputs

σ(6-bit input) = 3-digit barcode representing that input

32 inputs with even # of 1’s 32 inputs with odd # of 1’s

26 = 64 inputs with 6 bits

150 nm

We used all 355 tiles in some experiment, so we’ve verified “all tiles work”.

For 14 circuits, every tile for that circuit was used for some input, verifying all
gate tiles work “together”.

135/48

12 μm AFM image of
parity ribbons for several
inputs whose output is 1

136/48

500 nm

12 μm AFM image of
parity ribbons for several
inputs whose output is 1

136/48

500 nm

12 μm AFM image of
parity ribbons for several
inputs whose output is 1

136/48

500 nm

12 μm AFM image of
parity ribbons for several
inputs whose output is 1

136/48

500 nm

12 μm AFM image of
parity ribbons for several
inputs whose output is 1

136/48

500 nm

12 μm AFM image of
parity ribbons for several
inputs whose output is 1

error statistics:

seeding fraction: 61% of origami seeds have tile growth into a tube

error rate: 0.03% ± 0.0008 per tile attachment
(1,419 observed errors out of an estimated 4,600,351 tile attachments,
comparable to best previous algorithmic self-assembly experiments)

136/48

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

137/48

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

more algorithmic control
than periodic self-assembly

1D tile tubes
(Yin et al.,
Science 2008)

2D tile lattices
(Winfree et al.,
Nature 1998)

Contrasting with other self-assembly work:

137/48

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

more algorithmic control
than periodic self-assembly

1D tile tubes
(Yin et al.,
Science 2008)

2D tile lattices
(Winfree et al.,
Nature 1998)

fewer types of DNA strands
required than uniquely-
addressed self-assembly

DNA origami
(Rothemund,
Nature 2006)

hard-coded tile
lattice (Wei et al.,
Nature 2012)

Contrasting with other self-assembly work:

137/48

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

more algorithmic control
than periodic self-assembly

1D tile tubes
(Yin et al.,
Science 2008)

2D tile lattices
(Winfree et al.,
Nature 1998)

order of magnitude more tile
types available than previous

algorithmic self-assembly

(Rothemund et al.,
PLoS Bio 2004)

double-crossover tile lattices

(Fujibayashi et al.,
Nano Letters 2008)

(Barish et al., PNAS
2009)

(Evans, Ph.D. thesis
2014)

fewer types of DNA strands
required than uniquely-
addressed self-assembly

DNA origami
(Rothemund,
Nature 2006)

hard-coded tile
lattice (Wei et al.,
Nature 2012)

Contrasting with other self-assembly work:

137/48

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

138/48

Can we run algorithms to
grow interesting shapes?

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]138/48

Can we run algorithms to
grow interesting shapes?

Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed σS “encoding” S, T
self-assembles S.

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]138/48

Can we run algorithms to
grow interesting shapes?

Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed σS “encoding” S, T
self-assembles S.

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

σsmiley_face

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

?

138/48

Can we run algorithms to
grow interesting shapes?

Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed σS “encoding” S, T
self-assembles S.

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

σsmiley_face σdolphin

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

These tiles are universally programmable for building any shape.

? ?

138/48

Can we run algorithms to
grow interesting shapes?

Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed σS “encoding” S, T
self-assembles S.

	introduction
	Slide 1: Structural DNA nanotechnology
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Things that build themselves
	Slide 6: Things that build themselves
	Slide 7: Things that build themselves
	Slide 8: DNA as a building material
	Slide 9: DNA as a building material
	Slide 10: DNA as a building material
	Slide 11: DNA origami
	Slide 12: DNA origami
	Slide 13: DNA origami
	Slide 14: DNA origami
	Slide 15: DNA origami
	Slide 16: DNA origami
	Slide 17: DNA origami
	Slide 18: Binding graphs
	Slide 19: Binding graphs
	Slide 20: DNA tile self-assembly
	Slide 21: DNA tile self-assembly
	Slide 22: Practice of DNA tile self-assembly
	Slide 23: Practice of DNA tile self-assembly
	Slide 24: Practice of DNA tile self-assembly
	Slide 25: Practice of DNA tile self-assembly
	Slide 26: Practice of DNA tile self-assembly
	Slide 27: Practice of DNA tile self-assembly
	Slide 28: Practice of DNA tile self-assembly
	Slide 29: Practice of DNA tile self-assembly
	Slide 30: Practice of DNA tile self-assembly
	Slide 31: Practice of DNA tile self-assembly
	Slide 32: Practice of DNA tile self-assembly
	Slide 33: Practice of DNA tile self-assembly
	Slide 34: Practice of DNA tile self-assembly
	Slide 35: Theory of algorithmic self-assembly
	Slide 36: abstract Tile Assembly Model (aTAM)
	Slide 37: abstract Tile Assembly Model (aTAM)
	Slide 38: abstract Tile Assembly Model (aTAM)
	Slide 39: abstract Tile Assembly Model (aTAM)
	Slide 40: abstract Tile Assembly Model (aTAM)
	Slide 41: abstract Tile Assembly Model (aTAM)
	Slide 42: abstract Tile Assembly Model (aTAM)
	Slide 43: Example tile set
	Slide 44: Example tile set
	Slide 45: Example tile set
	Slide 46: Example tile set
	Slide 47: Example tile set
	Slide 48: Example tile set
	Slide 49: Example tile set
	Slide 50: Example tile set
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Algorithmic self-assembly in action
	Slide 55: aTAM simulator (WebTAS by Daniel Hader)

	tile complexity of squares
	Slide 56: Tile complexity of squares
	Slide 57: Tile complexity
	Slide 58: Tile complexity
	Slide 59: Tile complexity
	Slide 60: Tile complexity
	Slide 61: Tile complexity
	Slide 62: Tile complexity
	Slide 63: Tile complexity
	Slide 64: Tile complexity
	Slide 65: Tile complexity
	Slide 66: The program size complexity of self-assembled squares
	Slide 67: The program size complexity of self-assembled squares
	Slide 68: The program size complexity of self-assembled squares
	Slide 69: The program size complexity of self-assembled squares
	Slide 70: The program size complexity of self-assembled squares
	Slide 71: The program size complexity of self-assembled squares
	Slide 72: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 73: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 74: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 75: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 76: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 77: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 78: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 79: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 80: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 81: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 82: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 83: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 84: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 85: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 86: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 87: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 88: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 89: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 90: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 91: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 92: Tile complexity at temperature τ = 2
	Slide 93: Tile complexity at temperature τ = 2
	Slide 94: Tile complexity at temperature τ = 2
	Slide 95: Tile complexity at temperature τ = 2
	Slide 96: Tile complexity at temperature τ = 2
	Slide 97: Tile complexity at temperature τ = 2
	Slide 98: Tile complexity at temperature τ = 2
	Slide 99: Tile complexity at temperature τ = 2
	Slide 100: Tile complexity at temperature τ = 2
	Slide 101: Tile complexity at temperature τ = 2
	Slide 102: Tile complexity at temperature τ = 2
	Slide 103: Logarithmic tile complexity at temperature τ = 2
	Slide 104: Logarithmic tile complexity at temperature τ = 2
	Slide 105: Logarithmic tile complexity at temperature τ = 2
	Slide 106: Logarithmic tile complexity at temperature τ = 2
	Slide 107: Logarithmic tile complexity at temperature τ = 2
	Slide 108: Logarithmic tile complexity at temperature τ = 2
	Slide 109: Logarithmic tile complexity at temperature τ = 2
	Slide 110: Logarithmic tile complexity at temperature τ = 2
	Slide 111: Logarithmic tile complexity at temperature τ = 2
	Slide 112: Logarithmic tile complexity at temperature τ = 2
	Slide 113: Logarithmic tile complexity at temperature τ = 2
	Slide 114: Logarithmic tile complexity at temperature τ = 2
	Slide 115: Logarithmic tile complexity at temperature τ = 2
	Slide 116: Logarithmic tile complexity at temperature τ = 2
	Slide 117: Logarithmic tile complexity at temperature τ = 2
	Slide 118: Logarithmic tile complexity at temperature τ = 2
	Slide 119: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 120: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 121: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 122: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 123: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 124: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 125: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 126: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 127: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 128: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 129: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 130: How many tile systems with k tile types?
	Slide 131: How many tile systems with k tile types?
	Slide 132: How many tile systems with k tile types?
	Slide 133: How many tile systems with k tile types?
	Slide 134: How many tile systems with k tile types?
	Slide 135: How many tile systems with k tile types?
	Slide 136: How many tile systems with k tile types?
	Slide 137: How many tile systems with k tile types?
	Slide 138: How many tile systems with k tile types?
	Slide 139: How many tile systems with k tile types?
	Slide 140: How many tile systems with k tile types?
	Slide 141: How many tile systems with k tile types?
	Slide 142: How many tile systems with k tile types?
	Slide 143: How many tile systems with k tile types?
	Slide 144: How many tile systems with k tile types?
	Slide 145: How many tile systems with k tile types?
	Slide 146: How many tile systems with k tile types?
	Slide 147: How many tile systems with k tile types?
	Slide 148: “Descriptional Complexity” proof
	Slide 149: “Descriptional Complexity” proof
	Slide 150: “Descriptional Complexity” proof
	Slide 151: “Descriptional Complexity” proof
	Slide 152: “Descriptional Complexity” proof
	Slide 153: “Descriptional Complexity” proof
	Slide 154: “Descriptional Complexity” proof
	Slide 155: “Descriptional Complexity” proof
	Slide 156: “Descriptional Complexity” proof
	Slide 157: Which bound is tight?
	Slide 158: Improved upper bound: self-assembling an n x n square with O(log n / log log n) tile types
	Slide 159: Improved upper bound: self-assembling an n x n square with O(log n / log log n) tile types
	Slide 160: Improved upper bound: self-assembling an n x n square with O(log n / log log n) tile types
	Slide 161: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 162: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 163: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 164: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 165: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 166: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 167: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 168: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 169: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 170: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 171: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 172: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 173: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 174: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 175: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 176: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 177: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 178: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 179: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 180: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 181: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 182: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 183: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 184: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 185: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 186: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)

	formal definitions
	Slide 187: Formal definition of aTAM
	Slide 188: abstract Tile Assembly Model (aTAM), formal definition
	Slide 189: abstract Tile Assembly Model (aTAM), formal definition
	Slide 190: abstract Tile Assembly Model (aTAM), formal definition
	Slide 191: abstract Tile Assembly Model (aTAM), formal definition
	Slide 192: abstract Tile Assembly Model (aTAM), formal definition
	Slide 193: abstract Tile Assembly Model (aTAM), formal definition
	Slide 194: abstract Tile Assembly Model (aTAM), formal definition
	Slide 195: abstract Tile Assembly Model (aTAM), formal definition
	Slide 196: abstract Tile Assembly Model (aTAM), formal definition
	Slide 197: abstract Tile Assembly Model (aTAM), formal definition
	Slide 198: abstract Tile Assembly Model (aTAM), formal definition
	Slide 199: abstract Tile Assembly Model (aTAM), formal definition
	Slide 200: abstract Tile Assembly Model (aTAM), formal definition
	Slide 201: abstract Tile Assembly Model (aTAM), formal definition
	Slide 202: abstract Tile Assembly Model (aTAM), formal definition
	Slide 203: abstract Tile Assembly Model (aTAM), formal definition
	Slide 204: abstract Tile Assembly Model (aTAM), formal definition
	Slide 205: abstract Tile Assembly Model (aTAM), formal definition
	Slide 206: abstract Tile Assembly Model (aTAM), formal definition
	Slide 207: abstract Tile Assembly Model (aTAM), formal definition
	Slide 208: abstract Tile Assembly Model (aTAM), formal definition
	Slide 209: abstract Tile Assembly Model (aTAM), formal definition
	Slide 210: abstract Tile Assembly Model (aTAM), formal definition
	Slide 211: abstract Tile Assembly Model (aTAM), formal definition
	Slide 212: abstract Tile Assembly Model (aTAM), formal definition
	Slide 213: abstract Tile Assembly Model (aTAM), formal definition
	Slide 214: abstract Tile Assembly Model (aTAM), formal definition
	Slide 215: abstract Tile Assembly Model (aTAM), formal definition
	Slide 216: abstract Tile Assembly Model (aTAM), formal definition
	Slide 217: abstract Tile Assembly Model (aTAM), formal definition
	Slide 218: abstract Tile Assembly Model (aTAM), formal definition
	Slide 219: abstract Tile Assembly Model (aTAM), formal definition
	Slide 220: abstract Tile Assembly Model (aTAM), formal definition
	Slide 221: abstract Tile Assembly Model (aTAM), formal definition
	Slide 222: abstract Tile Assembly Model (aTAM), formal definition
	Slide 223: abstract Tile Assembly Model (aTAM), formal definition
	Slide 224: abstract Tile Assembly Model (aTAM), formal definition
	Slide 225: abstract Tile Assembly Model (aTAM), formal definition
	Slide 226: abstract Tile Assembly Model (aTAM), formal definition
	Slide 227: abstract Tile Assembly Model (aTAM), formal definition
	Slide 228: abstract Tile Assembly Model (aTAM), formal definition
	Slide 229: abstract Tile Assembly Model (aTAM), formal definition
	Slide 230: abstract Tile Assembly Model (aTAM), formal definition
	Slide 231: abstract Tile Assembly Model (aTAM), formal definition
	Slide 232: abstract Tile Assembly Model (aTAM), formal definition
	Slide 233: abstract Tile Assembly Model (aTAM), formal definition
	Slide 234: abstract Tile Assembly Model (aTAM), formal definition
	Slide 235: abstract Tile Assembly Model (aTAM), formal definition
	Slide 236: abstract Tile Assembly Model (aTAM), formal definition
	Slide 237: abstract Tile Assembly Model (aTAM), formal definition
	Slide 238: abstract Tile Assembly Model (aTAM), formal definition

	basic reachability results
	Slide 239: Basic stability result
	Slide 240: Basic stability result
	Slide 241: Basic stability result
	Slide 242: Basic stability result
	Slide 243: Basic stability result
	Slide 244: Basic stability result
	Slide 245: Basic stability result
	Slide 246: Basic stability result
	Slide 247: Basic stability result
	Slide 248: Basic stability result
	Slide 249: Basic stability result
	Slide 250: Basic reachability result
	Slide 251: Basic reachability result
	Slide 252: Basic reachability result
	Slide 253: Basic reachability result
	Slide 254: Basic reachability result
	Slide 255: Basic reachability result
	Slide 256: Basic reachability result
	Slide 257: Basic reachability result
	Slide 258: Basic reachability result
	Slide 259: Basic reachability result
	Slide 260: Basic reachability result
	Slide 261: example of usefulness of Rothemund’s Lemma
	Slide 262: example of usefulness of Rothemund’s Lemma
	Slide 263: Fair assembly sequences
	Slide 264: Fair assembly sequences
	Slide 265: Fair assembly sequences
	Slide 266: Fair assembly sequences
	Slide 267: Fair assembly sequences
	Slide 268: Fair assembly sequences
	Slide 269: Fair assembly sequences
	Slide 270: Fair assembly sequences
	Slide 271: Fair assembly sequences
	Slide 272: Fair assembly sequences
	Slide 273: Fair assembly sequences
	Slide 274: Fair assembly sequences
	Slide 275: Fair assembly sequences
	Slide 276: Fair assembly sequences
	Slide 277: Fair assembly sequences
	Slide 278: Fair assembly sequences

	tile complexity of general shapes
	Slide 279: How computationally powerful are self-assembling tiles?
	Slide 280: Turing machines
	Slide 281: Turing machines
	Slide 282: Turing machines
	Slide 283: Turing machines
	Slide 284: Turing machines
	Slide 285: Turing machines
	Slide 286: Turing machines
	Slide 287: Turing machines
	Slide 288: Turing machines
	Slide 289: Turing machines
	Slide 290: Turing machines
	Slide 291: Turing machines
	Slide 292: Turing machines
	Slide 293: Turing machines
	Slide 294: Turing machines
	Slide 295: Turing machines
	Slide 296: Tile assembly is Turing-universal
	Slide 297: Tile assembly is Turing-universal
	Slide 298: Tile assembly is Turing-universal
	Slide 299: Tile assembly is Turing-universal
	Slide 300: Tile assembly is Turing-universal
	Slide 301: Tile assembly is Turing-universal
	Slide 302: Tile assembly is Turing-universal
	Slide 303: Tile assembly is Turing-universal
	Slide 304: Tile assembly is Turing-universal
	Slide 305: Tile assembly is Turing-universal
	Slide 306: Tile assembly is Turing-universal
	Slide 307: Tile assembly is Turing-universal
	Slide 308: Tile assembly is Turing-universal
	Slide 309: Tile assembly is Turing-universal
	Slide 310: Tile assembly is Turing-universal
	Slide 311: Tile assembly is Turing-universal
	Slide 312: Tile assembly is Turing-universal
	Slide 313: Complexity of self-assembled shapes
	Slide 314: Complexity of self-assembled shapes
	Slide 315: Complexity of self-assembled shapes
	Slide 316: Complexity of self-assembled shapes
	Slide 317: Complexity of self-assembled shapes
	Slide 318: Complexity of self-assembled shapes
	Slide 319: Complexity of self-assembled shapes
	Slide 320: Complexity of self-assembled shapes
	Slide 321: Complexity of self-assembled shapes
	Slide 322: Complexity of self-assembled shapes
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338: Two interpretations
	Slide 339: Two interpretations
	Slide 340: Two interpretations
	Slide 341: Two interpretations

	strict and weak self-assembly of shapes
	Slide 342: Strict and weak self-assembly
	Slide 343: Strict and weak self-assembly
	Slide 344: Strict and weak self-assembly
	Slide 345: Strict and weak self-assembly
	Slide 346: Strict self-assembly
	Slide 347: Strict self-assembly
	Slide 348: Strict self-assembly
	Slide 349: Strict self-assembly
	Slide 350: Strict self-assembly
	Slide 351: Strict self-assembly
	Slide 352: Strict self-assembly
	Slide 353: A famous fractal
	Slide 354: A famous fractal
	Slide 355: A famous fractal
	Slide 356: A famous fractal
	Slide 357: A famous fractal
	Slide 358: A famous fractal
	Slide 359: A famous fractal
	Slide 360: A famous fractal
	Slide 361: A famous fractal
	Slide 362: A famous fractal
	Slide 363: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 364: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 365: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 366: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 367: Weak self-assembly
	Slide 368: Weak self-assembly
	Slide 369: Weak self-assembly
	Slide 370: Weak self-assembly
	Slide 371: Weak self-assembly
	Slide 372: Weak self-assembly
	Slide 373: Weak self-assembly
	Slide 374: Weak self-assembly
	Slide 375: Weak self-assembly
	Slide 376: Weak self-assembly

	randomized self-assembly
	Slide 377: Randomized self-assembly
	Slide 378: Tile complexity of universal shape construction
	Slide 379: Tile complexity of universal shape construction
	Slide 380: Tile complexity of universal shape construction
	Slide 381: Tile complexity of universal shape construction
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393: Bounding the probability the length deviates much from its mean
	Slide 394: Bounding the probability the length deviates much from its mean
	Slide 395: Bounding the probability the length deviates much from its mean
	Slide 396: Bounding the probability the length deviates much from its mean
	Slide 397: Bounding the probability the length deviates much from its mean
	Slide 398: Bounding the probability the length deviates much from its mean
	Slide 399: Chernoff bound
	Slide 400: Chernoff bound
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412
	Slide 413
	Slide 414
	Slide 415
	Slide 416
	Slide 417
	Slide 418
	Slide 419
	Slide 420
	Slide 421
	Slide 422
	Slide 423
	Slide 424
	Slide 425
	Slide 426
	Slide 427
	Slide 428
	Slide 429
	Slide 430
	Slide 431
	Slide 432
	Slide 433
	Slide 434
	Slide 435
	Slide 436
	Slide 437: Other plausible modifications of aTAM model that can reduce tile complexity

	power of nondeterminism
	Slide 438: The power of nondeterminism in self-assembly
	Slide 439
	Slide 440
	Slide 441
	Slide 442
	Slide 443
	Slide 444
	Slide 445
	Slide 446
	Slide 447
	Slide 448
	Slide 449
	Slide 450
	Slide 451
	Slide 452
	Slide 453
	Slide 454
	Slide 455
	Slide 456
	Slide 457
	Slide 458
	Slide 459
	Slide 460
	Slide 461
	Slide 462
	Slide 463
	Slide 464
	Slide 465
	Slide 466
	Slide 467
	Slide 468
	Slide 469
	Slide 470
	Slide 471
	Slide 472
	Slide 473
	Slide 474
	Slide 475
	Slide 476
	Slide 477
	Slide 478
	Slide 479
	Slide 480
	Slide 481
	Slide 482
	Slide 483
	Slide 484
	Slide 485
	Slide 486
	Slide 487
	Slide 488
	Slide 489
	Slide 490
	Slide 491
	Slide 492
	Slide 493
	Slide 494
	Slide 495
	Slide 496
	Slide 497
	Slide 498
	Slide 499
	Slide 500

	error correction
	Slide 501: Errors in algorithmic self-assembly
	Slide 502: Errors in self-assembly
	Slide 503: Errors in self-assembly
	Slide 504: Errors in self-assembly
	Slide 505: Errors in self-assembly
	Slide 506: Modeling errors: kinetic Tile Assembly Model
	Slide 507: Modeling errors: kinetic Tile Assembly Model
	Slide 508: Modeling errors: kinetic Tile Assembly Model
	Slide 509: Modeling errors: kinetic Tile Assembly Model
	Slide 510: Modeling errors: kinetic Tile Assembly Model
	Slide 511: Modeling errors: kinetic Tile Assembly Model
	Slide 512: Modeling errors: kinetic Tile Assembly Model
	Slide 513: kTAM simulators
	Slide 514: Tradeoff between assembly speed and errors
	Slide 515: Tradeoff between assembly speed and errors
	Slide 516: Tradeoff between assembly speed and errors
	Slide 517: Tradeoff between assembly speed and errors
	Slide 518: Tradeoff between assembly speed and errors
	Slide 519: Tradeoff between assembly speed and errors
	Slide 520: Tradeoff between assembly speed and errors
	Slide 521: Tradeoff between assembly speed and errors
	Slide 522: Tradeoff between assembly speed and errors
	Slide 523: Proofreading: Algorithmic error correction
	Slide 524: Proofreading: Algorithmic error correction
	Slide 525: Proofreading: Algorithmic error correction
	Slide 526: Proofreading: Algorithmic error correction
	Slide 527: Proofreading: Algorithmic error correction

	experiments
	Slide 528: Experimental algorithmic self-assembly
	Slide 529: Crystals that think about how they’re growing
	Slide 530: Acknowledgements
	Slide 531: Hierarchy of abstractions
	Slide 532: Harmonious arrangement
	Slide 533: Harmonious arrangement
	Slide 534: Harmonious arrangement
	Slide 535: Harmonious arrangement
	Slide 536: Harmonious arrangement
	Slide 537: Harmonious arrangement
	Slide 538: Harmonious arrangement
	Slide 539: Harmonious arrangement
	Slide 540: Harmonious arrangement
	Slide 541: Harmonious arrangement
	Slide 542: Harmonious arrangement
	Slide 543: Odd bits
	Slide 544: Odd bits
	Slide 545: Odd bits
	Slide 546: Odd bits
	Slide 547: Odd bits
	Slide 548: Odd bits
	Slide 549: Odd bits
	Slide 550: Odd bits
	Slide 551: Odd bits
	Slide 552: Parity
	Slide 553: Parity
	Slide 554: Parity
	Slide 555: Parity
	Slide 556: Circuit model
	Slide 557: Circuit model
	Slide 558: Circuit model
	Slide 559: Circuit model
	Slide 560: Circuit model
	Slide 561: Circuit model
	Slide 562: Circuit model
	Slide 563: Circuit model
	Slide 564: Circuit model
	Slide 565: Circuit model
	Slide 566: Circuit model
	Slide 567: Circuit model
	Slide 568: Example circuits with same gate in every row
	Slide 569: Example circuits with same gate in every row
	Slide 570: Example circuits with same gate in every row
	Slide 571: Example circuits with different gates in each row
	Slide 572: Example circuits with different gates in each row
	Slide 573: Example circuits with different gates in each row
	Slide 574: Example circuits with different gates in each row
	Slide 575: Example circuits with different gates in each row
	Slide 576: Example circuits with different gates in each row
	Slide 577: Randomization: “Lazy” sorting
	Slide 578: Randomization: “Lazy” sorting
	Slide 579: Deterministic circuits
	Slide 580: Deterministic circuits
	Slide 581: Deterministic circuits
	Slide 582: Deterministic circuits
	Slide 583: Deterministic circuits
	Slide 584: Deterministic circuits
	Slide 585: Deterministic circuits
	Slide 586: Randomized circuits
	Slide 587: Randomized circuits
	Slide 588: Randomized circuits
	Slide 589: Randomized circuits
	Slide 590: Randomized circuits
	Slide 591: Randomized circuits
	Slide 592
	Slide 593
	Slide 594: Hierarchy of abstractions
	Slide 595: Gates  Tiles
	Slide 596: Gates  Tiles
	Slide 597: Gates  Tiles
	Slide 598: How tiles compute while growing (algorithmic self-assembly)
	Slide 599: How tiles compute while growing (algorithmic self-assembly)
	Slide 600: How tiles compute while growing (algorithmic self-assembly)
	Slide 601: How tiles compute while growing (algorithmic self-assembly)
	Slide 602: How tiles compute while growing (algorithmic self-assembly)
	Slide 603: How tiles compute while growing (algorithmic self-assembly)
	Slide 604: How tiles compute while growing (algorithmic self-assembly)
	Slide 605: How tiles compute while growing (algorithmic self-assembly)
	Slide 606: How tiles compute while growing (algorithmic self-assembly)
	Slide 607: How tiles compute while growing (algorithmic self-assembly)
	Slide 608: How tiles compute while growing (algorithmic self-assembly)
	Slide 609: How tiles compute while growing (algorithmic self-assembly)
	Slide 610: How tiles compute while growing (algorithmic self-assembly)
	Slide 611: Hierarchy of abstractions
	Slide 612: DNA single-stranded tiles
	Slide 613: Single-stranded tiles for making any shape
	Slide 614: Uniquely addressed self-assembly versus algorithmic
	Slide 615: Uniquely addressed self-assembly versus algorithmic
	Slide 616: Single-stranded tile tubes
	Slide 617: Seeded growth
	Slide 618: Seeded growth
	Slide 619: Seeded growth
	Slide 620: Seeded growth
	Slide 621: Seeded growth
	Slide 622: Seeded growth
	Slide 623: Tubes to ribbons
	Slide 624: Tubes to ribbons
	Slide 625: Tubes to ribbons
	Slide 626: Tubes to ribbons
	Slide 627: DNA sequence design
	Slide 628: DNA sequence design
	Slide 629: DNA sequence design
	Slide 630: DNA sequence design
	Slide 631: DNA sequence design
	Slide 632: Bar-coding origami seed for imaging multiple samples at once
	Slide 633: Bar-coding origami seed for imaging multiple samples at once
	Slide 634: Bar-coding origami seed for imaging multiple samples at once
	Slide 635: Experimental protocol
	Slide 636: Experimental protocol
	Slide 637: Experimental protocol
	Slide 638: Experimental protocol
	Slide 639: Experimental protocol
	Slide 640: Results
	Slide 641
	Slide 642
	Slide 643
	Slide 644: Counting to 63
	Slide 645: Parity tested on all inputs
	Slide 646: Parity tested on all inputs
	Slide 647
	Slide 648
	Slide 649
	Slide 650
	Slide 651
	Slide 652
	Slide 653: What did we learn?
	Slide 654: What did we learn?
	Slide 655: What did we learn?
	Slide 656: What did we learn?
	Slide 657: Next big challenge: Algorithmically control shape
	Slide 658: Next big challenge: Algorithmically control shape
	Slide 659: Next big challenge: Algorithmically control shape
	Slide 660: Next big challenge: Algorithmically control shape
	Slide 661: Next big challenge: Algorithmically control shape

