
Structural DNA nanotechnology
a.k.a. DNA carpentry

a.k.a. DNA self-assembly

slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis



Building things by hand: use tools! Great for scale of 10±2 ×

Building things
Ljubljana Marshes Wheel. 5k years old

Newgrange, Ireland. 5.2k years old

2/48[slides credit: Damien Woods]



Building things by hand: use tools! Great for scale of 10±2 ×

Building things
Ljubljana Marshes Wheel. 5k years old

Newgrange, Ireland. 5.2k years old

Building tools that build things: specify target object with a computer program

2/48[slides credit: Damien Woods]



Building things by hand: use tools! Great for scale of 10±2 ×

Building things
Ljubljana Marshes Wheel. 5k years old

Newgrange, Ireland. 5.2k years old

Building tools that build things: specify target object with a computer program

Mariana Ruiz Villarreal

Programming things to build themselves: for building 

in small wet places where our hands or tools can’t reach
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Things that build themselves

Our topic: self-assembling molecules that compute as they build themselves

I want to stick below 
blue & yellow and 
above blue & green
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DNA as a building material

=
TCGGAAATAAAATCGGAC

AGCCTTTATTTTAGCCTG

TAGCGTAATT
ATCGCATTAA

=

DNA strands bind even if only part of strands are complementary:
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DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006
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scaffold DNA strand

staple DNA strands

(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design 

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

(+ water + salt)

5

http://openwetware.org/wiki/Biomod/2014/Design


scaffold DNA strand

staple DNA strands

folded DNA origami
heat to 90C, cool to 
20C over an hour

(M13mp18 bacteriophage virus)

DNA origami

© http://openwetware.org/wiki/Biomod/2014/Design 
© Shawn Douglas

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

(+ water + salt)
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DNA origami Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

Atomic force 
microscope images

100 nm
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Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)
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Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

DNA tiles: grid graph
(tiles bind to each other, each has ≤ 4 neighbors)
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DNA tile self-assembly
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DNA tile self-assembly
monomers (“tiles” made from DNA) bind into a crystal lattice

Source: Programmable disorder in random DNA tilings. Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017

tile lattice
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Practice of DNA tile self-assembly

DNA tile
Ned Seeman, Journal of 
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at 
en.wikipedia; Permission: PDB; Released 
under the GNU Free Documentation License.
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Practice of DNA tile self-assembly

DNA tile
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Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011

Practice of DNA tile self-assembly

(not the same tile motif in this image)
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Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly

single crossover
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Practice of DNA tile self-assembly

single crossover

double crossover

Figure from Schulman, Winfree, PNAS 2009
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Practice of DNA tile self-assembly

triple-crossover 
tile (LaBean, Yan, 

Kopatsch, Liu, 
Winfree, Reif, 
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein, 

Reif, LaBean, Science 2003)

DNA origami tile (Liu, Zhong, Wang, 

Seeman, Angewandte Chemie 2011)
Tikhomirov, Petersen, Qian, 
Nature Nanotechnology 2017

single-stranded tile (Yin, 

Hariadi, Sahu, Choi, Park, LaBean, 
Reif, Science 2008)

150 nm

double-
crossover tile 
(Winfree, Liu, 
Wenzler, Seeman, 
Nature 1998)
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Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree
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abstract Tile Assembly Model (aTAM)

Erik Winfree, Ph.D. thesis, 
Caltech 1998
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abstract Tile Assembly Model (aTAM)

• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies 
of each type

• assembly starts as a single 
copy of a special seed tile

• tile can bind to the assembly 
if total binding strength ≥ 2 
(two weak glues or              
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glu

e lab
el

Erik Winfree, Ph.D. thesis, 
Caltech 1998
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Algorithmic self-assembly in action
raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image
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aTAM simulator (WebTAS by Daniel Hader)

20

http://self-assembly.net/software/WebTAS/WebTAS-latest/ 
  

Xgrow by Constantine Evans: https://github.com/DNA-and-Natural-Algorithms-Group/xgrow 
older xgrow (by Erik Winfree) https://www.dna.caltech.edu/Xgrow/ 

Tip: for editing tile types, I find it 
much easier to edit the text files 
directly than to use the GUI, which 
is tedious. You may also consider 
writing code to generate the files.

http://self-assembly.net/software/WebTAS/WebTAS-latest/
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
https://www.dna.caltech.edu/Xgrow/


Tile complexity of squares
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Tile complexity

• Resource bound to minimize, like time or memory with a traditional algorithm.

• Why minimize number of tile types?
• Physically synthesizing new tile types is difficult.

• Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher 
when more DNA sequences are present.)

• But due to how modern synthesis technologies work, once a tile type is designed, making 50 
quadrillion copies of the tile is as easy as making one copy.

• So, we ask: how many unique tile types to we need to self-assemble some 
shapes?

• We start with n x n squares as the “simplest” benchmark shape.
• Why not a 1 x n line as an even simpler shape? What is its tile complexity?

• [Note: we have not formally defined the aTAM yet… first let’s build intuition.]
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The program size complexity of self-
assembled squares

https://www.dna.caltech.edu/Papers/squares_STOC.pdf 
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we 
need to self-assemble an n x n square?
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The program size complexity of self-
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This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

Question: How many tile types do we 
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

How many tile types does this 
construction need in general 
to assemble an n x n square?

All glues are strength 2
(alternately: all are strength 1 and temperature τ = 1)

n2
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Tile complexity at temperature τ = 1
(i.e., no cooperative binding allowed)

Is n2 optimal? 
Can we do better?

Note all pairs of adjacent tiles 
bind with positive strength:

Theorem: At temperature τ = 1, if all pairs of 
adjacent tiles bind with positive strength, then 
for every positive integer n, n2 tile types are 
necessary to self-assemble an n x n square.

Proof: Suppose for contradiction 
we use the same tile type i at 
positions (x1,y1) and (x2,y2). Then 
they have a path L between them 
with all positive-strength glues, 
and this can happen instead:
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Tile complexity at temperature τ = 1, 
where not all adjacent tiles are bound

Is n2 still optimal? 
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Tile complexity at temperature τ = 1, 
where not all adjacent tiles are bound

Is n2 still optimal? No!

Tile complexity of 
this construction?

2n – 1 = O(n)

strength-0 glues

Conjecture: The temperature 
τ = 1 tile complexity of an n x n 
square is Ω(n).
(most recent progress:
https://arxiv.org/abs/1902.02253 
https://arxiv.org/abs/2002.04012 )
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Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)
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Tile complexity at temperature τ = 2
(i.e., cooperative binding allowed)

Tile complexity = 2n

strength-1 glues (with no other 
glues to cooperate with)This tile completes an n x n “L shape” 

into an n x n square.
26



Tile complexity at temperature τ = 2

Goal: complete a 1 x n line 
into an n x n square
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Tile complexity at temperature τ = 2

Goal: complete a 1 x n line 
into an n x n square Tile complexity = n + 4

How to get sublinear 
tile complexity?
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Logarithmic tile complexity 
at temperature τ = 2

Goal: rectangle of height n 
using O(log n) tile types
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Logarithmic tile complexity 
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copy row
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28

“zig-zag counter”

for width of k bits, stops 
when it reaches what value?

Unique glues 
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Ω(log n / log log n) tile complexity lower 
bound for n x n squares
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• We’ll show that it’s fewer than p.

• There are p squares with width n between p+1 and 2p; each needs a different tile system.
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• Goal: show that there are fewer than p (“functionally distinct”) tile 
systems with k = ¼ log p / log log p tile types.

• How many have exactly k tile types? Count each of the ways to define 
the tile system:

a) How many different glues can we have?

b) How many ways can we choose the 4 glues for one tile type?

c) How many ways to choose the glues for all k tile types?

d) How many ways to choose the seed tile?

• How many tile systems?

k

4k

a4 = (4k)4

bk = (4k)4k

c∙d = k(4k)4k

How many tile systems with k tile types?
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How many tile systems with k tile types?

• Number of tile systems with exactly k tile types: ≤ k(4k)4k
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How many tile systems with k tile types?

• Number of tile systems with exactly k tile types: 

• Number of tile systems with at most k tile types: 

• Recall k = ¼ log p / log log p; by algebra (see notes), k2(4k)4k < p.
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How many tile systems with k tile types?

• Number of tile systems with exactly k tile types: 

• Number of tile systems with at most k tile types: 

• Recall k = ¼ log p / log log p; by algebra (see notes), k2(4k)4k < p.

• By pigeonhole principle, for some width n with p < n ≤ 2p, the n x n 
square is not self-assembled by one of these k2(4k)4k tile systems. 
Since those are all the tile systems with at most k tile types, the n x n 
square requires more than ¼ log p / log log p tile types to self-
assemble. QED

≤ k(4k)4k

≤ k2(4k)4k
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“Descriptional Complexity” proof

• Can be formalized with Kolmogorov complexity
• https://en.wikipedia.org/wiki/Kolmogorov_complexity 

Fact: “most” integers 
n require ≥ log n bits 
to “describe”. 
(Though some require fewer: 
1111111111111111111111
can be described by its length 
22 in binary: 10110)
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Note: we’re ignoring glue strengths here; adds 2 bits per glue to describe at temperature 2. 
(since there are 3 possible strengths 0, 1, 2);
see http://doi.org/10.1007/s00453-014-9879-3  for handling higher-temperature systems.

https://en.wikipedia.org/wiki/Kolmogorov_complexity
http://doi.org/10.1007/s00453-014-9879-3


Which bound is tight?
1. All n x n squares can be assembled with O(log n) tile types; can we get it down 

to O(log n / log log n)?

2. Or do we need Ω(log n) tile types to assemble infinitely many n x n squares?
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Improved upper bound: self-assembling an    
n x n square with O(log n / log log n) tile types 
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tile complexity =
O(log n)  +  23

Recall:
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Improved upper bound: self-assembling an    
n x n square with O(log n / log log n) tile types 

tile complexity =
O(log n)  +  23

Recall: Idea: 
1) Use same 23 tiles that 
turn the seed row 
encoding a binary 
integer n’ (related to n) 
into an n x n square.

2) Create the binary 
seed row from only     
log n / log log n tiles.
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Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n 
using O(log n / log log n) tile types
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• Key idea: choose larger power-of-two base b = 2k, with                             
b ≈ log n / log log n, and convert from base b to base 2.
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• Each base-b digit is k bits
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Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n 
using O(log n / log log n) tile types

• Key idea: choose larger power-of-two base b = 2k, with                             
b ≈ log n / log log n, and convert from base b to base 2.

• How many base-b digits needed to represent a log(n)-bit integer?

• Each base-b digit is k bits
• e.g., if b=23=8, then 0=000  1=001  2=010  3=011  4=100  5=101  6=110  7=111

• e.g., the octal number 71258 in binary is 1110010101012

• need log(n) / k = log(n) / log (log n / log log n) = log(n) / (log log n – log log log n) 
≈ log(n) / log log n base-b digits.
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Creating a row of log n glues with arbitrary bit 
string s ∈ {0,1}* using log n / log log n tile types 
(i.e., base conversion from b to 2) s = 110 001 011 101

b = 23 = 8
hard-coded tiles:

101
s1

011
s2

s1

001
s3

s2

110
s3
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• We say Θ = (T,σ,τ) is a tile system, where T is a finite set of tile types, τ ∈ ℕ+ is the temperature, and 
σ: ℤ2 ⇢ T is the finite, τ-stable seed assembly.

• We say α produces β in one step, denoted α →1 β, to denote that α ⊑ β, |Sβ \ Sα| = 1, and letting      
{p} = Sβ \ Sα be the point in β but not α, the cut ({p},Sα) of the binding graph Bβ has weight ≥ τ.
• (one new tile β(p) attaches to α with strength at least τ to create β)
• If the tile type added is t, write β = α + (p ↦ t).

• The frontier of α is denoted ∂α = ⋃α →1 β (Sβ \ Sα) (empty locations adjacent to α where a tile can stably 
attach to α.)

• A sequence of k ∈ ℕ∪{∞} assemblies α0, α1, … is an assembly sequence if for all 0 ≤ i < k, αi →1 αi+1.
• We say that α produces β (in 0 or more steps), denoted α → β, if there is an assembly sequence       

α0, α1, … of length k ∈ ℕ∪{∞} such that
• α = α0

• for all 0 ≤ i < k, αi ⊑ β, and
• Sβ = ⋃i Sαi

• We say β is the result of the assembly sequence. 
• If k is finite, it is routine to verify that β = αk, and → is the reflexive, transitive closure →1* of →1.

Why can’t we just say → is the 
reflexive, transitive closure →1* of →1?

Sometimes we write α →Θ β to 
emphasize this is with respect 
to a particular tile system Θ.

Question: If α ⊑ β, 
can α grow into β?
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• equivalently, for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Let X be a shape, a connected subset of ℤ2. Θ strictly self-assembles X if, for all          
α ∈ A□[Θ], Sα = X. (every terminal producible assembly has shape X)
• Note X can be infinite.
• Example: strict self-assembly of entire second quadrant X = { (x,y) ∈ ℤ2 | x ≥ 0 and y ≤ 0 }
• Example of tile system Θ that does not strictly self-assemble any shape?

• Let X ⊆ ℤ2. Θ weakly self-assembles X if there is a subset B ⊆ T (the “blue tiles”) such that, 
for all α ∈ A□[Θ], X = α–1(B). (every terminal producible assembly puts blue tiles exactly on X.)
• example: weak self-assembly of the discrete Sierpinski triangle.
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Observation: Let α ⊑ β be stable assemblies and p ∈ ℤ2 \ Sβ 
such that α + (p↦t) is stable. Then β + (p↦t) is also stable.

Proof: 
1. Since β is stable and glue strengths are nonnegative, the 

only potentially unstable cut is ({p},Sβ). 
2. But: 

1. α ⊑ β,
2. α + (p↦t) is stable, 
3. compared to α, β only has extra tiles on the other 

side of the cut (t,Sβ).
4. so the cut (t,Sβ) is also stable. QED

Intuition: if a tile can attach to α, 
it can attach in the presence of 
extra tiles on α.
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5. Then for each j, αi(j) ⊑ βj, so previous Observation implies 
that βj + (pi(j)↦ti(j)) is stable.

6. Thus the assembly sequence is valid (each tile attachment 
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example of usefulness of Rothemund’s Lemma

• Recall two alternate characterizations of deterministic tile systems:
(a) |A□[Θ]| = 1.

(b) for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).
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• Recall two alternate characterizations of deterministic tile systems:
(a) |A□[Θ]| = 1.

(b) for all α,β ∈ A[Θ] and all p ∈ Sα ⋂ Sβ, α(p) = β(p).

• Rothemund’s Lemma can be used to show that (b) implies (a)
• will skip in lecture (optional problem on homework 1)
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Concrete example of 
simulation algorithm creating 
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Corollary: For every assembly α, there is a 
terminal assembly γ such that α → γ.
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How computationally powerful 
are self-assembling tiles?
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Suppose we are content to create a scaled up version of the shape:

50

scale factor 3

Theorem: For any shape S, there is a 
constant c so that Sc can be self-
assembled with O(k / log k) tile types, 
where k is the length in bits of the 
shortest program (input to a universal 
Turing machine) that, on input (x,y), 
indicates whether (x,y) ∈ S.

S S3

Theorem (that we won’t prove): This is 
optimal! No smaller tile system could self-
assemble any scaling of S. If one existed, we 
could turn it into a program with < k bits 
“describing” S in this way. (Why?)[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, 

SIAM Journal on Computing 2007]
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Two interpretations

Theorem: For any shape S, there is a 
constant c so that Sc can be self-
assembled with O(k / log k) tile types, 
where k is the length in bits of the 
shortest program (input to a universal 
Turing machine) that, on input (x,y), 
indicates whether (x,y) ∈ S.

as stated for single seed tile: alternative statement for larger seed:

Theorem: There is a single set T of tile 
types (O(1) tile types), so that, for any 
finite shape S, there a constant c and a 
seed assembly σS “encoding” S, so that 
T self-assembles Sc from σS.

P

0

0

program

for UTM

input to P
σS = 

most of the tile complexity is encoding the 
binary string representing the program P 
that encodes shape S, and O(1) tile types can 
read that string and self-assemble Sc from it.

i.e., T is a universal set of tile types 
that can self-assemble any shape, 
by giving it the right seed.
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Recall:

Let X ⊆ ℤ2 be a shape, a connected subset 
of ℤ2. Θ strictly self-assembles X if, for all    
α ∈ A□[Θ], Sα = X. 
(every terminal producible assembly has shape X) 

Let X ⊆ ℤ2. Θ weakly self-assembles X if there 
is a subset B ⊆ T (the “blue tiles”) such that, 
for all α ∈ A□[Θ], X = α–1(B). 
(every terminal producible assembly puts blue tiles 
exactly on X.)

Tile system on right strictly self-assembles the 
whole second quadrant, and it weakly self-
assembles the discrete Sierpinski triangle.
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Strict self-assembly

Observation: There is an infinite 
shape S ⊆ ℤ2 that cannot be strictly 
self-assembled by any tile system.

Proof: 
There are uncountably many shapes 
but only countably many tile systems.

Observation is non-constructive: 
Doesn’t tell us what is the shape S. 
Can we devise a concrete example of 
a shape that cannot be strictly self-
assembled?

Homework problem: you will show that any 
shape S ⊆ ℤ2 that can be strictly self-assembled 
is also computably enumerable.

Use that fact now to define an explicit shape 
that cannot be strictly self-assembled.

Question: Is there a computable shape S ⊆ ℤ2 that 
cannot be strictly self-assembled?

…
0 1 2 3 4 5 6

path in block n has a “turnout” if and only if n’th 
Turing machine halts on empty input
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• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.
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[slide credit: 
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A famous fractal

• Let S0 = { (0,0) }

• Let V = { (0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

• S is known as the discrete Sierpinski triangle…

S0 S1 S2 S3 S4

[slide credit: 
Scott Summers]

…

Observation: S is computable (easily).



The discrete Sierpinkski triangle cannot be 
strictly self-assembled
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…

…

…

[Lathrop, Lutz, Summers, Strict self-assembly of discrete 
Sierpinski triangles, Theoretical Computer Science 2009.]
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The discrete Sierpinkski triangle cannot be 
strictly self-assembled

60

Proof:
1. The shape is a tree: no cycles in the 

grid graph.
2. The x-axis has infinitely many pinch 

points: points where the subtree 
above the point is distinct from any 
other pinch point.

3. The north glue must be distinct at each 
pinch point, so no finite tile set suffices 
to self-assemble X. QED

…

…

…

[Lathrop, Lutz, Summers, Strict self-assembly of discrete 
Sierpinski triangles, Theoretical Computer Science 2009.]
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4. Suppose X could be weakly self-assembled. Then simulating self-
assembly for (2n)2 steps necessarily places a tile at some point at L1 
radius n from the origin; the tile’s color tells us whether n ∈ R ⇔ 1n ∈ A.
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not computable in O(n4) time. 
2. Let R = {|x| : x ∈ A} be the set of lengths of strings in A.
3. Define X ⊆ ℤ2 to be the set of “concentric diamonds” whose L1 radii are 

in R, e.g., if R = {1, 4, 8, …}

4. Suppose X could be weakly self-assembled. Then simulating self-
assembly for (2n)2 steps necessarily places a tile at some point at L1 
radius n from the origin; the tile’s color tells us whether n ∈ R ⇔ 1n ∈ A.

5. This can be done in time O(n4) time (why?), a contradiction. QED

y

x

e.g., X = {0, 2, …}
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Tile complexity of universal shape construction

• Recall: if we can have a seed structure encoding a shape S (in a binary 
string x ∈ {0,1}*, in glues on one side), we can self-assemble some 
scaling Sc of S with O(1) additional tile types that read and interpret x.
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• Recall: if we can have a seed structure encoding a shape S (in a binary 
string x ∈ {0,1}*, in glues on one side), we can self-assemble some 
scaling Sc of S with O(1) additional tile types that read and interpret x.

• Θ(K(x) / log K(x)) tile types are necessary and sufficient to create x 
from a single seed tile in the aTAM. (K(x) = length in bits of shortest 
program for universal Turing machine that prints x)

• We’ll see how to get this down to O(1) with high probability by 
concentration programming.

• i.e., move the effort from designing new tile types to (the plausibly simpler 
lab step of) altering concentrations of existing tile types

63
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Pr[        ] = 11/12

Pr[        ] =  1/12
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Programming polymer length with concentrations

seed 1

G 11

S1

seed 1 S1G 11

expected length 12

G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11

seed 1 S1G 11G 11G 11

seed 1 S1G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11G 11G 11G 11G 11

seed 1 G 11G 11G 11G 11G 11G 11G 11G 11G 11G 11 G 11 GG 11G 11G 11G 11G 11G 11 G 11 GG 11 GG 11 G

Large variance

[Becker, Rapaport, Rémila, FSTTCS 2006]
concentration 11

concentration 1
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Programming polymer length (improved)

seed 1

G 11

S1

G 22

S22

G 33

S33

3 "stages", each of 

expected length 4

seed 1 G 11G 11 S 21 S 32G 22 G 33 S3G 33 G 33G 33 G 33 G 33

seed 1 G 11G 11 S 21 S 32 G 33 S3G 33 G 33G 33G 11 G 11

seed 1 G 11G 11 S 21 S3G 33 G 33G 11 G 11 S 32 S3G 33 G 33G 22 G 22 G 22 G 22

expected length 12

seed 1 G 11G 11 S 21G 11 G 22 S 32G 22 G 22 G 33 S3G 33 G 33

concentration 3

concentration 1

Lower variance… 
how much lower?
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much from its mean

• r total stages, each with Pr[next tile           increments stage] = p.

• Let L(r,p) = total length; number of tile attachments until attaching 

• Expected total length E[L(r,p)] = r / p. 

• Recall: a binomial random variable B(n,p) = number of heads when 
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

• for any n,r,p:  Pr[L(r,p) ≤ n]   =   Pr[B(n,p) ≥ r] 

• similarly,         Pr[L(r,p) ≥ n]   =   Pr[B(n,p) ≤ r] 
67

Si i+1

Sr

flipping a coin n 
times results in    
≥ r heads

flipping a coin until 
the r’th heads 
requires ≤ n flips
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Chernoff bound

68

Chernoff bound: For a binomial random variable 
B(n,p) (recall E[B(n,p)] = np), and for any 0 < δ < 1,
Pr[B(n,p) > (1+δ)np] < exp(–δ2np/3)
Pr[B(n,p) < (1–δ)np] < exp(–δ2np/2)

Let δ ≈ 0.27 and set p such that r/p(1–δ) = 2k.
Let δ’ ≈ 0.44: then r/p(1+δ’) ≈ 2k–1.
Applying this to our setting gives 
Pr[L(r,p) is not between 2k–1 and 2k] < 2·0.9421r
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if r = 90 stages, expected length midway in [2k–1, 2k)

             with probability > 99%, actual length in [2k–1, 2k)
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Programming polymer length (improved)

[  ] ≈ 7    [   ] = [   ] ≈ 2SG S

SG SG G S GG GG GGG G

SG G SG G G S GGGG G G G G GG G G GG G G GG G

SG G SG G S GG G G G G GG G GG GG G

SG SG G SG GG

i.e., we can’t target a precise length L, 
but we can target precisely the number 
of bits ⌈log L⌉ in L’s binary expansion.
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Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape 

(with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]



Other plausible modifications of aTAM model 
that can reduce tile complexity
• staged self-assembly: 

• https://doi.org/10.1007/s11047-008-9073-0 

• temperature programming:
• https://dl.acm.org/doi/10.5555/1109557.1109620 

74

https://doi.org/10.1007/s11047-008-9073-0
https://dl.acm.org/doi/10.5555/1109557.1109620
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Can nondeterminism help to 

self-assemble shapes?



Nondeterminism in Biology

Nondeterminism can allow complex structures 

to be created from a compact encoding.

Cytoskeleton formationGenetic mutation
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Nondeterminism in Computer Science

Deterministic: entire 

computation uniquely 

determined by input

Randomized:        

flips coins; realistic

Nondeterministic: 

flips coins; magical

Trivially nondeterministic 

(“pseudodeterministic”): 

flips coins, but final output 

independent of flip results

Algorithm types:

P
o

w
e

r
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Nondeterminism in Self-Assembly

⚫ A tile set is deterministic if it has only one 

terminal assembly (map of tile types to points).

⚫ This tile set has multiple terminal assemblies, 

but they all have the same shape.
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⚫ The tile set self-assembles a 2 x 2 square.
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In this example, we can 

convert this nondeterministic 

tile set that self-assembles a 

2 x 2 square ...
... to this deterministic tile set that 

self-assembles the same shape.

In general???
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Question: Let S be a finite shape self-assembled by 
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nondeterminism helps to 

self-assemble shapes?
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Optimization Problems

MINTILESET

    Given: finite shape S

    Find: size of smallest tile system that self-assembles S

MINDETTILESET

    Given: finite shape S

    Find: size of smallest deterministic tile system that self-assembles S

False statement: Nondeterminism does not affect tile complexity: 
for every nondeterministic tile set of size k that self-assembles a shape S, 

there is a deterministic tile set of size at most k that self-assembles S.

if true, would imply MINDETTILESET = MINTILESET



Main Result

⚫ We show: MINTILESET is NPNP-complete.

⚫ MINDETTILESET is NP-complete. (Adleman, Cheng, 

Goel, Huang, Kempe, Moisset de Espanés, Rothemund, STOC 2002)

⚫ NP ≠ NPNP ⇒   MINTILESET ≠ MINDETTILESET

a.k.a., Σ2
𝑃



Nondeterminism in Algorithms and Self-Assembly

Algorithm that flips 

coins but always 

produces same output

⚫ coin flips useless

But … finding smallest tile 

set is harder if it flips coins.

Tile set that flips   

coins but always 

produces same shape

⚫ coin flips useful
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⚫ NPNP-complete problem (Stockmeyer,Wrathall 1976): 

∃∀CNF-UNSAT

− Given: CNF Boolean formula Φ with k+n input bits 

x=x1...xk and y=y1...yn

− Question: is (∃x)(∀y)¬Φ(x,y) true?

⚫ Reduction goal: Given Φ, output shape S and integer c 

such that (∃x)(∀y)¬Φ(x,y) holds if and only if some tile 

set of size at most c self-assembles S.
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Main idea (due to Adleman et al. STOC 2002):
⚫ Given a tree shape (no simple cycles), it is possible to 

compute its minimum tile set in polynomial time.

⚫ Create a tree shape ϒ that “encodes” Φ.

⚫ Compute ϒ's minimal tile set T. (c=T)

⚫ Create shape S ⊃ ϒ such that 

− If (∃x)(∀y)¬Φ(x,y), tiles from T can be altered to assemble S.

− Otherwise, tiles from T cannot be altered to assemble S.

− “Since ϒ ⊆ S,” every tile set that assembles S contains T, so if tiles 

from T cannot be altered to assemble S then additional tiles are 

needed; i.e., S requires more than c = |T| tile types.

NPNP-hardness Reduction

S

ϒ
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Evaluation of Formula
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Evaluation of Formula
⚫ Order variables w = w1...wn (both ∃ and ∀ variables) and clauses C1… Cm 

arbitrarily.

⚫ Fix an assignment to variables.

⚫ For each clause Cj and variable wi, let aij be the pair (U/S, T/F) representing 

whether Cj is satisfied by wk for k ≤ i, and whether wk is true or false.

⚫ The matrix A = (aij) looks like

C3
USF SSF SST SST

C2
UUF UUF UUT UST

C1
UUF UUF UST SST

w1 w2 w3 w4

C3
SF SF ST ST

C2
UF UF UT ST

C1
UF UF ST ST

w1 w2 w3 w4

highlighting when Ci goes from 

unsatisfied (U) to satisfied (S)
w = 0011
Φ = (w1 ∨ w3) ∧ (w1 ∨ w2 ∨ w4) ∧ (¬w1 ∨ w2)



Gadgets (Adleman et al. 2002)

SSij – Cj satisfied by a previous variable (wk for k < i)

USij – Cj unsatisfied by previous variables but is satisfied by wi

UUij – Cj unsatisfied by previous variables and by wi

For each variable wi and clause Cj, value of wi = T/F and
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(∃x)(∀y)¬Φ(x,y) is true ⇔ tiles in Tϒ can be modified to self-assemble S

by changing these glues

…
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Open Questions
⚫ How large is the gap between deterministic tile complexity and unrestricted tile 

complexity?  our example has ratio 3/2; Schweller (unpublished) improved to 

quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf 

⚫ Hardness of approximation of minimum tile set problem

⚫ Minimum tile set problem when shape is a square

− deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard 

unless P=NP)

⚫ Weak self-assembly (pattern painting): paint some tile types “black”, and say 

“pattern assembled” is set of points with a black tile

− Minimum tile set problem: uncomputable! (NP-complete with some restrictions: 

https://arxiv.org/abs/1404.0967 )

− Power of nondeterminism: is it possible to uniquely paint a pattern, but only by 

assembling more than one shape on which the pattern is painted?

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967
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Errors in self-assembly

• abstract Tile Assembly Model (aTAM, 
the model we’ve used so far):

• tiles attach but never detach

• tiles bind only with strength 2 or higher

• unrealistic… what’s a better model?

• kinetic Tile Assembly Model (kTAM); 
essential differences with aTAM:

• tiles can detach

• tiles can bind with strength 1 

95
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Modeling errors: kinetic Tile Assembly Model

• All tiles attach with rate rf (no matter how 
many glues match)

• Tiles detach with rate rr,b, if they are 
attached by total glue strength b

• “rate” = time until it occurs is exponential 
random variable with that rate; expected 
time 1/rate 

• a.k.a., continuous time Markov process

• Take home message: tiles bound with fewer 
glues (potential errors) fall off faster, but 
could get locked in by subsequent 
neighboring attachment

96

main cause of algorithmic errors: tile 
matches one glue but not the other



kTAM simulators

• ISU TAS (developed by Matt Patitz) also does kTAM simulation: 
• http://self-assembly.net/wiki/index.php?title=ISU_TAS 

• http://self-assembly.net/wiki/index.php?title=ISU_TAS_Tutorials 

• xgrow (new version developed by Constantine Evans): 
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow 

• xgrow (original version developed by Erik Winfree)
• https://www.dna.caltech.edu/Xgrow/ 

• older and a bit less intuitive
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Theorem [Winfree, 1998]: To have total 
error rate ε, for fastest assembly speed, 
set Gse = ln(4/ε) and Gmc = ln(8/ε2), 
i.e., Gmc = 2Gse – ln 2, i.e., rf/rr,2 = 2
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99

k x k proofreading: replace each tile with all 
strength-1 glues by a k x k block of tiles:

glues internal to the 
block all unique

glues external to the block 
come in k versions that each 
represent an original glue

Proposition: No tiling of the k x k region with “consistent external 
glues” (all represent the same glue in original tile set) has m 
mismatches, where 0 < m < k, i.e., if any mismatch occurs, then at 
least k mismatches occur before the k x k block can be completed to 
represent the wrong external glue.

Theorem(ish): If the error rate of the 
original tile system is ε, the error rate of 
the k x k proofreading tile system is O(εk), 
e.g., if ε = 0.01, then 2 x 2 proofreading 
gets error rate about ε2 = 0.0001.



Experimental algorithmic self-
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Crystals that think
about how they’re growing

Caltech HarvardInria Paris UC Davis

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin

slides for ECS 232: Theory of Molecular Computation
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Hierarchy of abstractions

Bits:  Boolean circuits compute

   Tiles: Tile growth implements circuits

   DNA: DNA strands implement tiles
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gate: function with two input bits i1,i2 
               and two output bits o1,o2
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Randomization: Each row may be assigned ≥ 2 gates, with 

associated probabilities, e.g., Pr[gNN] = Pr[gXA] = ½ 
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Circuit model
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Example circuits with same gate in every row
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Example circuits with different gates in each row
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Randomization: “Lazy” sorting
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If 1 and 0 out of order, flip a coin to 
decide whether to swap them.
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Deterministic circuits
answer yes/no question

simulate cellular automataRULE110

time

Theorem: Rule 110 can efficiently 
execute any algorithm.

[Neary, Woods, ICALP 2006]

[Cook, Complex Systems 2004]

“count” as high as possible
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Randomized circuits

use biased coin to 
simulate unbiased coin
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Randomized circuits

use biased coin to 
simulate unbiased coin

Pr = Pr = ½

for any (positive) probabilities for the randomized gate

LAZYPARITY

RANDOMWALKINGBIT

DIAMONDSAREFOREVER

FAIRCOIN
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Hierarchy of abstractions

Bits:  Boolean circuits compute

   Tiles: Tile growth implements circuits

   DNA: DNA strands implement tiles
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Hierarchy of abstractions

Bits:  Boolean circuits compute

   Tiles: Tile growth implements circuits

   DNA: DNA strands implement tiles
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DNA single-stranded tiles

glue 4 glue 3

glue 2glue 1

assembly

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. 
Programming DNA tube circumferences.
Science 2008
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Single-stranded tiles for making any shape

Bryan Wei, Mingjie Dai, and Peng Yin.
Complex shapes self-assembled from single-stranded DNA tiles. 
Nature 2012.
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Uniquely addressed self-assembly versus algorithmic

single DNA origami uniquely-addressed tiles

staple strand for position (4,2)

tile for position (4,2)origami for position (4,2)

Unique addressing: each DNA “monomer” appears exactly once in final structure.

array of many DNA origamis
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Uniquely addressed self-assembly versus algorithmic

single DNA origami uniquely-addressed tiles

staple strand for position (4,2)

tile for position (4,2)origami for position (4,2)

Unique addressing: each DNA “monomer” appears exactly once in final structure.

array of many DNA origamis

Algorithmic: DNA tiles are reused throughout the structure.

123/48



Single-stranded tile tubes

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. Programming DNA tube circumferences, Science 2008.

DNA-level diagram of 20-helix tube
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Seeded growth
DNA origami seed
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biotins where 
output = 1

need barrier to nucleation 
(tile growth without seed); 
[tile]=100 nM; 
temperature=50.9° C

single-stranded “input-adapter” 
extensions encoding 6 input bits

can later add streptavidin (5 nm 
wide protein) to bind biotins and 
visualize where the 1’s are
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Tubes to ribbons

500 nm
AFM 
image

tube
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Tubes to ribbons

remove “seam” by 
strand displacement

500 nm
AFM 
image

tube
ribbon
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DNA sequence design

correct attachment:
both domains match

incorrect attachment:
only one domain matches
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Bar-coding origami seed for imaging 
multiple samples at once

some staples of origami seed 
have version with a biotin
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Bar-coding origami seed for imaging 
multiple samples at once

label with 

streptavidin

Generate 

plate map

some staples of origami seed 
have version with a biotin

represents some combination of 
circuit and input, e.g., 
013 = “parity circuit, input=011010”
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Experimental protocol

• Mix 

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:
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Experimental protocol

• Mix 

To execute circuit 𝛾 on input 𝑥 ∈ 0,1 ∗:
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• origami seed (bar-coded to identify 𝛾 and 𝑥)

• “adapter” strands encoding 𝑥

• tiles computing 𝛾

• Anneal 90° C to 50.9° C in 1 hour (origami seeds form)
• Hold at 50.9° C for 1-2 days (tiles grow tubes from seed)
• Add “unzipper” strands (remove seam to convert tube to ribbon)
• Add “guard” strands (complements of output sticky ends, to deactivate tiles)
• Deposit on mica, buffer wash, add streptavidin, AFM 129/48



Results
def test_parity():
    actual = parity('100101')

    expected = 

    assertEquals(expected, actual)
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Is there a 64-counter?

1 2 3 … …62 63 1 2 3 …

Circuit with 63 distinct strings

42

Counting to 63

No!
Proof by Tristan Stérin, Maynooth University
Consequence of following theorem: 
No Boolean function computes an odd permutation 
if some output bit does not depend on all input bits.
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Parity tested on all inputs

σ(6-bit input) = 3-digit barcode representing that input 

32 inputs with even # of 1’s 32 inputs with odd # of 1’s

26 = 64 inputs with 6 bits

150 nm
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Parity tested on all inputs

σ(6-bit input) = 3-digit barcode representing that input 

32 inputs with even # of 1’s 32 inputs with odd # of 1’s

26 = 64 inputs with 6 bits

150 nm

We used all 355 tiles in some experiment, so we’ve verified “all tiles work”.

For 14 circuits, every tile for that circuit was used for some input, verifying all 
gate tiles work “together”.
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12 μm AFM image of 
parity ribbons for several 
inputs whose output is 1
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500 nm

12 μm AFM image of 
parity ribbons for several 
inputs whose output is 1

error statistics:

seeding fraction: 61% of origami seeds have tile growth into a tube

error rate: 0.03% ± 0.0008 per tile attachment 
(1,419 observed errors out of an estimated 4,600,351 tile attachments, 
comparable to best previous algorithmic self-assembly experiments)
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What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably 
into many complex patterns, by processing information as they grow. 
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What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably 
into many complex patterns, by processing information as they grow. 

more algorithmic control
than periodic self-assembly

1D tile tubes 
(Yin et al., 
Science 2008)

2D tile lattices 
(Winfree et al., 
Nature 1998)

order of magnitude more tile 
types available than previous

algorithmic self-assembly

(Rothemund et al., 
PLoS Bio 2004)

double-crossover tile lattices 

(Fujibayashi et al., 
Nano Letters 2008)

(Barish et al., PNAS 
2009)

(Evans, Ph.D. thesis 
2014)

fewer types of DNA strands 
required than uniquely-
addressed self-assembly

DNA origami 
(Rothemund, 
Nature 2006)

hard-coded tile 
lattice (Wei et al., 
Nature 2012)

Contrasting with other self-assembly work:
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Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)
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Theorem: There is a single set T 
of tile types, so that, for any finite 
shape S, from an appropriately 
chosen seed σS “encoding” S, T 
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Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

σsmiley_face

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

?
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Can we run algorithms to 
grow interesting shapes?

Theorem: There is a single set T 
of tile types, so that, for any finite 
shape S, from an appropriately 
chosen seed σS “encoding” S, T 
self-assembles S.



Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

σsmiley_face σdolphin

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

These tiles are universally programmable for building any shape.

? ?

138/48

Can we run algorithms to 
grow interesting shapes?

Theorem: There is a single set T 
of tile types, so that, for any finite 
shape S, from an appropriately 
chosen seed σS “encoding” S, T 
self-assembles S.


	introduction
	Slide 1: Structural DNA nanotechnology
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Things that build themselves
	Slide 6: Things that build themselves
	Slide 7: Things that build themselves
	Slide 8: DNA as a building material
	Slide 9: DNA as a building material
	Slide 10: DNA as a building material
	Slide 11: DNA origami
	Slide 12: DNA origami
	Slide 13: DNA origami
	Slide 14: DNA origami
	Slide 15: DNA origami
	Slide 16: DNA origami
	Slide 17: DNA origami
	Slide 18: Binding graphs
	Slide 19: Binding graphs
	Slide 20: DNA tile self-assembly
	Slide 21: DNA tile self-assembly
	Slide 22: Practice of DNA tile self-assembly
	Slide 23: Practice of DNA tile self-assembly
	Slide 24: Practice of DNA tile self-assembly
	Slide 25: Practice of DNA tile self-assembly
	Slide 26: Practice of DNA tile self-assembly
	Slide 27: Practice of DNA tile self-assembly
	Slide 28: Practice of DNA tile self-assembly
	Slide 29: Practice of DNA tile self-assembly
	Slide 30: Practice of DNA tile self-assembly
	Slide 31: Practice of DNA tile self-assembly
	Slide 32: Practice of DNA tile self-assembly
	Slide 33: Practice of DNA tile self-assembly
	Slide 34: Practice of DNA tile self-assembly
	Slide 35: Theory of algorithmic self-assembly
	Slide 36: abstract Tile Assembly Model (aTAM)
	Slide 37: abstract Tile Assembly Model (aTAM)
	Slide 38: abstract Tile Assembly Model (aTAM)
	Slide 39: abstract Tile Assembly Model (aTAM)
	Slide 40: abstract Tile Assembly Model (aTAM)
	Slide 41: abstract Tile Assembly Model (aTAM)
	Slide 42: abstract Tile Assembly Model (aTAM)
	Slide 43: Example tile set
	Slide 44: Example tile set
	Slide 45: Example tile set
	Slide 46: Example tile set
	Slide 47: Example tile set
	Slide 48: Example tile set
	Slide 49: Example tile set
	Slide 50: Example tile set
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Algorithmic self-assembly in action
	Slide 55: aTAM simulator (WebTAS by Daniel Hader)

	tile complexity of squares
	Slide 56: Tile complexity of squares
	Slide 57: Tile complexity
	Slide 58: Tile complexity
	Slide 59: Tile complexity
	Slide 60: Tile complexity
	Slide 61: Tile complexity
	Slide 62: Tile complexity
	Slide 63: Tile complexity
	Slide 64: Tile complexity
	Slide 65: Tile complexity
	Slide 66: The program size complexity of self-assembled squares
	Slide 67: The program size complexity of self-assembled squares
	Slide 68: The program size complexity of self-assembled squares
	Slide 69: The program size complexity of self-assembled squares
	Slide 70: The program size complexity of self-assembled squares
	Slide 71: The program size complexity of self-assembled squares
	Slide 72: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 73: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 74: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 75: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 76: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 77: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 78: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 79: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 80: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 81: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 82: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 83: Tile complexity at temperature τ = 1,  where not all adjacent tiles are bound
	Slide 84: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 85: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 86: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 87: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 88: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 89: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 90: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 91: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 92: Tile complexity at temperature τ = 2
	Slide 93: Tile complexity at temperature τ = 2
	Slide 94: Tile complexity at temperature τ = 2
	Slide 95: Tile complexity at temperature τ = 2
	Slide 96: Tile complexity at temperature τ = 2
	Slide 97: Tile complexity at temperature τ = 2
	Slide 98: Tile complexity at temperature τ = 2
	Slide 99: Tile complexity at temperature τ = 2
	Slide 100: Tile complexity at temperature τ = 2
	Slide 101: Tile complexity at temperature τ = 2
	Slide 102: Tile complexity at temperature τ = 2
	Slide 103: Logarithmic tile complexity at temperature τ = 2
	Slide 104: Logarithmic tile complexity at temperature τ = 2
	Slide 105: Logarithmic tile complexity at temperature τ = 2
	Slide 106: Logarithmic tile complexity at temperature τ = 2
	Slide 107: Logarithmic tile complexity at temperature τ = 2
	Slide 108: Logarithmic tile complexity at temperature τ = 2
	Slide 109: Logarithmic tile complexity at temperature τ = 2
	Slide 110: Logarithmic tile complexity at temperature τ = 2
	Slide 111: Logarithmic tile complexity at temperature τ = 2
	Slide 112: Logarithmic tile complexity at temperature τ = 2
	Slide 113: Logarithmic tile complexity at temperature τ = 2
	Slide 114: Logarithmic tile complexity at temperature τ = 2
	Slide 115: Logarithmic tile complexity at temperature τ = 2
	Slide 116: Logarithmic tile complexity at temperature τ = 2
	Slide 117: Logarithmic tile complexity at temperature τ = 2
	Slide 118: Logarithmic tile complexity at temperature τ = 2
	Slide 119: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 120: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 121: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 122: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 123: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 124: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 125: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 126: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 127: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 128: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 129: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 130: How many tile systems with k tile types?
	Slide 131: How many tile systems with k tile types?
	Slide 132: How many tile systems with k tile types?
	Slide 133: How many tile systems with k tile types?
	Slide 134: How many tile systems with k tile types?
	Slide 135: How many tile systems with k tile types?
	Slide 136: How many tile systems with k tile types?
	Slide 137: How many tile systems with k tile types?
	Slide 138: How many tile systems with k tile types?
	Slide 139: How many tile systems with k tile types?
	Slide 140: How many tile systems with k tile types?
	Slide 141: How many tile systems with k tile types?
	Slide 142: How many tile systems with k tile types?
	Slide 143: How many tile systems with k tile types?
	Slide 144: How many tile systems with k tile types?
	Slide 145: How many tile systems with k tile types?
	Slide 146: How many tile systems with k tile types?
	Slide 147: How many tile systems with k tile types?
	Slide 148: “Descriptional Complexity” proof
	Slide 149: “Descriptional Complexity” proof
	Slide 150: “Descriptional Complexity” proof
	Slide 151: “Descriptional Complexity” proof
	Slide 152: “Descriptional Complexity” proof
	Slide 153: “Descriptional Complexity” proof
	Slide 154: “Descriptional Complexity” proof
	Slide 155: “Descriptional Complexity” proof
	Slide 156: “Descriptional Complexity” proof
	Slide 157: Which bound is tight?
	Slide 158: Improved upper bound: self-assembling an    n x n square with O(log n / log log n) tile types 
	Slide 159: Improved upper bound: self-assembling an    n x n square with O(log n / log log n) tile types 
	Slide 160: Improved upper bound: self-assembling an    n x n square with O(log n / log log n) tile types 
	Slide 161: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 162: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 163: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 164: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 165: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 166: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 167: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 168: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 169: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 170: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 171: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 172: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 173: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 174: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 175: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 176: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 177: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 178: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 179: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 180: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 181: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 182: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 183: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 184: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 185: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 186: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)

	formal definitions
	Slide 187: Formal definition of aTAM
	Slide 188: abstract Tile Assembly Model (aTAM), formal definition
	Slide 189: abstract Tile Assembly Model (aTAM), formal definition
	Slide 190: abstract Tile Assembly Model (aTAM), formal definition
	Slide 191: abstract Tile Assembly Model (aTAM), formal definition
	Slide 192: abstract Tile Assembly Model (aTAM), formal definition
	Slide 193: abstract Tile Assembly Model (aTAM), formal definition
	Slide 194: abstract Tile Assembly Model (aTAM), formal definition
	Slide 195: abstract Tile Assembly Model (aTAM), formal definition
	Slide 196: abstract Tile Assembly Model (aTAM), formal definition
	Slide 197: abstract Tile Assembly Model (aTAM), formal definition
	Slide 198: abstract Tile Assembly Model (aTAM), formal definition
	Slide 199: abstract Tile Assembly Model (aTAM), formal definition
	Slide 200: abstract Tile Assembly Model (aTAM), formal definition
	Slide 201: abstract Tile Assembly Model (aTAM), formal definition
	Slide 202: abstract Tile Assembly Model (aTAM), formal definition
	Slide 203: abstract Tile Assembly Model (aTAM), formal definition
	Slide 204: abstract Tile Assembly Model (aTAM), formal definition
	Slide 205: abstract Tile Assembly Model (aTAM), formal definition
	Slide 206: abstract Tile Assembly Model (aTAM), formal definition
	Slide 207: abstract Tile Assembly Model (aTAM), formal definition
	Slide 208: abstract Tile Assembly Model (aTAM), formal definition
	Slide 209: abstract Tile Assembly Model (aTAM), formal definition
	Slide 210: abstract Tile Assembly Model (aTAM), formal definition
	Slide 211: abstract Tile Assembly Model (aTAM), formal definition
	Slide 212: abstract Tile Assembly Model (aTAM), formal definition
	Slide 213: abstract Tile Assembly Model (aTAM), formal definition
	Slide 214: abstract Tile Assembly Model (aTAM), formal definition
	Slide 215: abstract Tile Assembly Model (aTAM), formal definition
	Slide 216: abstract Tile Assembly Model (aTAM), formal definition
	Slide 217: abstract Tile Assembly Model (aTAM), formal definition
	Slide 218: abstract Tile Assembly Model (aTAM), formal definition
	Slide 219: abstract Tile Assembly Model (aTAM), formal definition
	Slide 220: abstract Tile Assembly Model (aTAM), formal definition
	Slide 221: abstract Tile Assembly Model (aTAM), formal definition
	Slide 222: abstract Tile Assembly Model (aTAM), formal definition
	Slide 223: abstract Tile Assembly Model (aTAM), formal definition
	Slide 224: abstract Tile Assembly Model (aTAM), formal definition
	Slide 225: abstract Tile Assembly Model (aTAM), formal definition
	Slide 226: abstract Tile Assembly Model (aTAM), formal definition
	Slide 227: abstract Tile Assembly Model (aTAM), formal definition
	Slide 228: abstract Tile Assembly Model (aTAM), formal definition
	Slide 229: abstract Tile Assembly Model (aTAM), formal definition
	Slide 230: abstract Tile Assembly Model (aTAM), formal definition
	Slide 231: abstract Tile Assembly Model (aTAM), formal definition
	Slide 232: abstract Tile Assembly Model (aTAM), formal definition
	Slide 233: abstract Tile Assembly Model (aTAM), formal definition
	Slide 234: abstract Tile Assembly Model (aTAM), formal definition
	Slide 235: abstract Tile Assembly Model (aTAM), formal definition
	Slide 236: abstract Tile Assembly Model (aTAM), formal definition
	Slide 237: abstract Tile Assembly Model (aTAM), formal definition
	Slide 238: abstract Tile Assembly Model (aTAM), formal definition

	basic reachability results
	Slide 239: Basic stability result
	Slide 240: Basic stability result
	Slide 241: Basic stability result
	Slide 242: Basic stability result
	Slide 243: Basic stability result
	Slide 244: Basic stability result
	Slide 245: Basic stability result
	Slide 246: Basic stability result
	Slide 247: Basic stability result
	Slide 248: Basic stability result
	Slide 249: Basic stability result
	Slide 250: Basic reachability result
	Slide 251: Basic reachability result
	Slide 252: Basic reachability result
	Slide 253: Basic reachability result
	Slide 254: Basic reachability result
	Slide 255: Basic reachability result
	Slide 256: Basic reachability result
	Slide 257: Basic reachability result
	Slide 258: Basic reachability result
	Slide 259: Basic reachability result
	Slide 260: Basic reachability result
	Slide 261: example of usefulness of Rothemund’s Lemma
	Slide 262: example of usefulness of Rothemund’s Lemma
	Slide 263: Fair assembly sequences
	Slide 264: Fair assembly sequences
	Slide 265: Fair assembly sequences
	Slide 266: Fair assembly sequences
	Slide 267: Fair assembly sequences
	Slide 268: Fair assembly sequences
	Slide 269: Fair assembly sequences
	Slide 270: Fair assembly sequences
	Slide 271: Fair assembly sequences
	Slide 272: Fair assembly sequences
	Slide 273: Fair assembly sequences
	Slide 274: Fair assembly sequences
	Slide 275: Fair assembly sequences
	Slide 276: Fair assembly sequences
	Slide 277: Fair assembly sequences
	Slide 278: Fair assembly sequences

	tile complexity of general shapes
	Slide 279: How computationally powerful are self-assembling tiles?
	Slide 280: Turing machines
	Slide 281: Turing machines
	Slide 282: Turing machines
	Slide 283: Turing machines
	Slide 284: Turing machines
	Slide 285: Turing machines
	Slide 286: Turing machines
	Slide 287: Turing machines
	Slide 288: Turing machines
	Slide 289: Turing machines
	Slide 290: Turing machines
	Slide 291: Turing machines
	Slide 292: Turing machines
	Slide 293: Turing machines
	Slide 294: Turing machines
	Slide 295: Turing machines
	Slide 296: Tile assembly is Turing-universal
	Slide 297: Tile assembly is Turing-universal
	Slide 298: Tile assembly is Turing-universal
	Slide 299: Tile assembly is Turing-universal
	Slide 300: Tile assembly is Turing-universal
	Slide 301: Tile assembly is Turing-universal
	Slide 302: Tile assembly is Turing-universal
	Slide 303: Tile assembly is Turing-universal
	Slide 304: Tile assembly is Turing-universal
	Slide 305: Tile assembly is Turing-universal
	Slide 306: Tile assembly is Turing-universal
	Slide 307: Tile assembly is Turing-universal
	Slide 308: Tile assembly is Turing-universal
	Slide 309: Tile assembly is Turing-universal
	Slide 310: Tile assembly is Turing-universal
	Slide 311: Tile assembly is Turing-universal
	Slide 312: Tile assembly is Turing-universal
	Slide 313: Complexity of self-assembled shapes
	Slide 314: Complexity of self-assembled shapes
	Slide 315: Complexity of self-assembled shapes
	Slide 316: Complexity of self-assembled shapes
	Slide 317: Complexity of self-assembled shapes
	Slide 318: Complexity of self-assembled shapes
	Slide 319: Complexity of self-assembled shapes
	Slide 320: Complexity of self-assembled shapes
	Slide 321: Complexity of self-assembled shapes
	Slide 322: Complexity of self-assembled shapes
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338: Two interpretations
	Slide 339: Two interpretations
	Slide 340: Two interpretations
	Slide 341: Two interpretations

	strict and weak self-assembly of shapes
	Slide 342: Strict and weak self-assembly
	Slide 343: Strict and weak self-assembly
	Slide 344: Strict and weak self-assembly
	Slide 345: Strict and weak self-assembly
	Slide 346: Strict self-assembly
	Slide 347: Strict self-assembly
	Slide 348: Strict self-assembly
	Slide 349: Strict self-assembly
	Slide 350: Strict self-assembly
	Slide 351: Strict self-assembly
	Slide 352: Strict self-assembly
	Slide 353: A famous fractal
	Slide 354: A famous fractal
	Slide 355: A famous fractal
	Slide 356: A famous fractal
	Slide 357: A famous fractal
	Slide 358: A famous fractal
	Slide 359: A famous fractal
	Slide 360: A famous fractal
	Slide 361: A famous fractal
	Slide 362: A famous fractal
	Slide 363: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 364: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 365: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 366: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 367: Weak self-assembly
	Slide 368: Weak self-assembly
	Slide 369: Weak self-assembly
	Slide 370: Weak self-assembly
	Slide 371: Weak self-assembly
	Slide 372: Weak self-assembly
	Slide 373: Weak self-assembly
	Slide 374: Weak self-assembly
	Slide 375: Weak self-assembly
	Slide 376: Weak self-assembly

	randomized self-assembly
	Slide 377: Randomized self-assembly
	Slide 378: Tile complexity of universal shape construction
	Slide 379: Tile complexity of universal shape construction
	Slide 380: Tile complexity of universal shape construction
	Slide 381: Tile complexity of universal shape construction
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393: Bounding the probability the length deviates much from its mean
	Slide 394: Bounding the probability the length deviates much from its mean
	Slide 395: Bounding the probability the length deviates much from its mean
	Slide 396: Bounding the probability the length deviates much from its mean
	Slide 397: Bounding the probability the length deviates much from its mean
	Slide 398: Bounding the probability the length deviates much from its mean
	Slide 399: Chernoff bound
	Slide 400: Chernoff bound
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412
	Slide 413
	Slide 414
	Slide 415
	Slide 416
	Slide 417
	Slide 418
	Slide 419
	Slide 420
	Slide 421
	Slide 422
	Slide 423
	Slide 424
	Slide 425
	Slide 426
	Slide 427
	Slide 428
	Slide 429
	Slide 430
	Slide 431
	Slide 432
	Slide 433
	Slide 434
	Slide 435
	Slide 436
	Slide 437: Other plausible modifications of aTAM model that can reduce tile complexity

	power of nondeterminism
	Slide 438: The power of nondeterminism in self-assembly
	Slide 439
	Slide 440
	Slide 441
	Slide 442
	Slide 443
	Slide 444
	Slide 445
	Slide 446
	Slide 447
	Slide 448
	Slide 449
	Slide 450
	Slide 451
	Slide 452
	Slide 453
	Slide 454
	Slide 455
	Slide 456
	Slide 457
	Slide 458
	Slide 459
	Slide 460
	Slide 461
	Slide 462
	Slide 463
	Slide 464
	Slide 465
	Slide 466
	Slide 467
	Slide 468
	Slide 469
	Slide 470
	Slide 471
	Slide 472
	Slide 473
	Slide 474
	Slide 475
	Slide 476
	Slide 477
	Slide 478
	Slide 479
	Slide 480
	Slide 481
	Slide 482
	Slide 483
	Slide 484
	Slide 485
	Slide 486
	Slide 487
	Slide 488
	Slide 489
	Slide 490
	Slide 491
	Slide 492
	Slide 493
	Slide 494
	Slide 495
	Slide 496
	Slide 497
	Slide 498
	Slide 499
	Slide 500

	error correction
	Slide 501: Errors in algorithmic self-assembly
	Slide 502: Errors in self-assembly
	Slide 503: Errors in self-assembly
	Slide 504: Errors in self-assembly
	Slide 505: Errors in self-assembly
	Slide 506: Modeling errors: kinetic Tile Assembly Model
	Slide 507: Modeling errors: kinetic Tile Assembly Model
	Slide 508: Modeling errors: kinetic Tile Assembly Model
	Slide 509: Modeling errors: kinetic Tile Assembly Model
	Slide 510: Modeling errors: kinetic Tile Assembly Model
	Slide 511: Modeling errors: kinetic Tile Assembly Model
	Slide 512: Modeling errors: kinetic Tile Assembly Model
	Slide 513: kTAM simulators
	Slide 514: Tradeoff between assembly speed and errors
	Slide 515: Tradeoff between assembly speed and errors
	Slide 516: Tradeoff between assembly speed and errors
	Slide 517: Tradeoff between assembly speed and errors
	Slide 518: Tradeoff between assembly speed and errors
	Slide 519: Tradeoff between assembly speed and errors
	Slide 520: Tradeoff between assembly speed and errors
	Slide 521: Tradeoff between assembly speed and errors
	Slide 522: Tradeoff between assembly speed and errors
	Slide 523: Proofreading: Algorithmic error correction
	Slide 524: Proofreading: Algorithmic error correction
	Slide 525: Proofreading: Algorithmic error correction
	Slide 526: Proofreading: Algorithmic error correction
	Slide 527: Proofreading: Algorithmic error correction

	experiments
	Slide 528: Experimental algorithmic self-assembly
	Slide 529: Crystals that think about how they’re growing
	Slide 530: Acknowledgements 
	Slide 531: Hierarchy of abstractions
	Slide 532: Harmonious arrangement
	Slide 533: Harmonious arrangement
	Slide 534: Harmonious arrangement
	Slide 535: Harmonious arrangement
	Slide 536: Harmonious arrangement
	Slide 537: Harmonious arrangement
	Slide 538: Harmonious arrangement
	Slide 539: Harmonious arrangement
	Slide 540: Harmonious arrangement
	Slide 541: Harmonious arrangement
	Slide 542: Harmonious arrangement
	Slide 543: Odd bits
	Slide 544: Odd bits
	Slide 545: Odd bits
	Slide 546: Odd bits
	Slide 547: Odd bits
	Slide 548: Odd bits
	Slide 549: Odd bits
	Slide 550: Odd bits
	Slide 551: Odd bits
	Slide 552: Parity
	Slide 553: Parity
	Slide 554: Parity
	Slide 555: Parity
	Slide 556: Circuit model
	Slide 557: Circuit model
	Slide 558: Circuit model
	Slide 559: Circuit model
	Slide 560: Circuit model
	Slide 561: Circuit model
	Slide 562: Circuit model
	Slide 563: Circuit model
	Slide 564: Circuit model
	Slide 565: Circuit model
	Slide 566: Circuit model
	Slide 567: Circuit model
	Slide 568: Example circuits with same gate in every row
	Slide 569: Example circuits with same gate in every row
	Slide 570: Example circuits with same gate in every row
	Slide 571: Example circuits with different gates in each row
	Slide 572: Example circuits with different gates in each row
	Slide 573: Example circuits with different gates in each row
	Slide 574: Example circuits with different gates in each row
	Slide 575: Example circuits with different gates in each row
	Slide 576: Example circuits with different gates in each row
	Slide 577: Randomization: “Lazy” sorting
	Slide 578: Randomization: “Lazy” sorting
	Slide 579: Deterministic circuits
	Slide 580: Deterministic circuits
	Slide 581: Deterministic circuits
	Slide 582: Deterministic circuits
	Slide 583: Deterministic circuits
	Slide 584: Deterministic circuits
	Slide 585: Deterministic circuits
	Slide 586: Randomized circuits
	Slide 587: Randomized circuits
	Slide 588: Randomized circuits
	Slide 589: Randomized circuits
	Slide 590: Randomized circuits
	Slide 591: Randomized circuits
	Slide 592
	Slide 593
	Slide 594: Hierarchy of abstractions
	Slide 595: Gates  Tiles
	Slide 596: Gates  Tiles
	Slide 597: Gates  Tiles
	Slide 598: How tiles compute while growing (algorithmic self-assembly)
	Slide 599: How tiles compute while growing (algorithmic self-assembly)
	Slide 600: How tiles compute while growing (algorithmic self-assembly)
	Slide 601: How tiles compute while growing (algorithmic self-assembly)
	Slide 602: How tiles compute while growing (algorithmic self-assembly)
	Slide 603: How tiles compute while growing (algorithmic self-assembly)
	Slide 604: How tiles compute while growing (algorithmic self-assembly)
	Slide 605: How tiles compute while growing (algorithmic self-assembly)
	Slide 606: How tiles compute while growing (algorithmic self-assembly)
	Slide 607: How tiles compute while growing (algorithmic self-assembly)
	Slide 608: How tiles compute while growing (algorithmic self-assembly)
	Slide 609: How tiles compute while growing (algorithmic self-assembly)
	Slide 610: How tiles compute while growing (algorithmic self-assembly)
	Slide 611: Hierarchy of abstractions
	Slide 612: DNA single-stranded tiles
	Slide 613: Single-stranded tiles for making any shape
	Slide 614: Uniquely addressed self-assembly versus algorithmic
	Slide 615: Uniquely addressed self-assembly versus algorithmic
	Slide 616: Single-stranded tile tubes
	Slide 617: Seeded growth
	Slide 618: Seeded growth
	Slide 619: Seeded growth
	Slide 620: Seeded growth
	Slide 621: Seeded growth
	Slide 622: Seeded growth
	Slide 623: Tubes to ribbons
	Slide 624: Tubes to ribbons
	Slide 625: Tubes to ribbons
	Slide 626: Tubes to ribbons
	Slide 627: DNA sequence design
	Slide 628: DNA sequence design
	Slide 629: DNA sequence design
	Slide 630: DNA sequence design
	Slide 631: DNA sequence design
	Slide 632: Bar-coding origami seed for imaging multiple samples at once
	Slide 633: Bar-coding origami seed for imaging multiple samples at once
	Slide 634: Bar-coding origami seed for imaging multiple samples at once
	Slide 635: Experimental protocol
	Slide 636: Experimental protocol
	Slide 637: Experimental protocol
	Slide 638: Experimental protocol
	Slide 639: Experimental protocol
	Slide 640: Results
	Slide 641
	Slide 642
	Slide 643
	Slide 644: Counting to 63
	Slide 645: Parity tested on all inputs
	Slide 646: Parity tested on all inputs
	Slide 647
	Slide 648
	Slide 649
	Slide 650
	Slide 651
	Slide 652
	Slide 653: What did we learn?
	Slide 654: What did we learn?
	Slide 655: What did we learn?
	Slide 656: What did we learn?
	Slide 657: Next big challenge: Algorithmically control shape
	Slide 658: Next big challenge: Algorithmically control shape
	Slide 659: Next big challenge: Algorithmically control shape
	Slide 660: Next big challenge: Algorithmically control shape
	Slide 661: Next big challenge: Algorithmically control shape


