Structural DNA nanotechnology

a.k.a. DNA carpentry

a.k.a. DNA self-assembly

slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis

Ljubljana Marshes Wheel. 5k years old Newgrange, Ireland. 5.2k years old

Building things by hand: use tools! Great for scale of 10%2 x [%

[slides credit: Damien Woods] 2/48

N Ireland. 5.2k I
Ljubljana Marshes Wheel. 5k years old ewgrange, Ireland. 5.2k years old

Building things by hand: use tools! Great for scale of 10%2 x [%

Building tools that build things: specify target object with a computer program

A LA MEMOIRE DE J. M. JACQUARD,

[slides credit: Damien Woods] 2/48

Newgrange, Ireland. 5.2k years old

Ljubljana Marshes Wheel. 5k years old

Building things by hand: use tools! Great for scale of 10%2 x [%

Building tools that build things: specify target object with a computer program

Programming things to build themselves: for building .~
In small wet places where our hands or tools can’'t reach #~

A LA MEMOIRE DE J. M. JACQUARD,

[slides credit: Damien Woods] 2/48

Mariana Ruiz Villarreal

Things that build themselves

| want to stick below
blue & yellow and
above blue & green

Our topic: self-assembling molecules that compute as they build themselves

[slides credit: Damien Woods] 3/48

Things that build themselves

)

*,

B SO M Fonsi T a4 |
Our topic: self-assembling molecules that compute as they build themselves

[slides credit: Damien Woods] 3/48

Things that build themselves

Our topic: self-assembling molecules that compute as they build themselves

[slides credit: Damien Woods] 3/48

U.S. National Library of Medicine

J— DNA as a building material

Adenine Thymine

—)

Guanine Cytosine

Sugar phosphate
backbone

© Hydrogen
© Oxygen

@ Nitrogen

© Carbon

© Phosphorus

Minor groove

Major groove

Pyrimidines Purines

L DNA as a building material

TCGGAAATAAAATCGﬂAC

AGCCTTTATTTTAGCCTG

—)

Guanine Cytosine

Sugar phosphate
backbone

U.S. National Library of Medicine © Hydrogen
o © Oxygen
§ @ Nitrogen
o @ Carbon
‘5: © Phosphorus
S
A
o
>
o
o
(@]
S,
= G

Pyrimidines Purines

T DNA as a building material

TCGGAAATAAAATCGﬂAC

—)

Guanine Cytosine

Sugar phosphate
backbone

AGCCTTTATTTTAGCCTG
U.S. National Library of Medicine © Hydrogen
© O_xygen
: ?::rrggin DNA strands bind even if only part of strands are complementary:

© Phosphorus

Minor groove

A \/\’J\j W - -
—_— al0* bi0

10 al10
ag9" ba*

Major groove

5

ATCGCATTAA

b~ TAGCGTAATT~/\/\/

Pyrimidines Purines

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

|

scaffold DNA strand
(M13mp18 bacteriophage virus)

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

© http://openwetware.org/wiki/Biomod/2014/Design

http://openwetware.org/wiki/Biomod/2014/Design

DNA origami
5

|

scaffold DNA strand
(M13mp18 bacteriophage virus)

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

© http://openwetware.org/wiki/Biomod/2014/Design

http://openwetware.org/wiki/Biomod/2014/Design

DNA origami

Lo
—) =
|

scaffold DNA strand
(M13mp18 bacteriophage virus)

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

© http://openwetware.org/wiki/Biomod/2014/Design

http://openwetware.org/wiki/Biomod/2014/Design

DNA origami
staple DNA strands
(r/ (+ water + salt) \
N,
—> — \< “
Y
9

scaffold DNA strand
(M13mp18 bacteriophage virus)

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

© http://openwetware.org/wiki/Biomod/2014/Design

http://openwetware.org/wiki/Biomod/2014/Design

DNA origami

staple DNA strands
/ + water + salt
() \ folded DNA origami

/ J) heat to 90C, cool to — e —
‘ 20C over an hour =

—> — -)'\f —> I;:_]_IE _,:l
(a |

= =
)) T —1

|

scaffold DNA strand
(M13mp18 bacteriophage virus)

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

© http://openwetware.org/wiki/Biomod/2014/Design

© Shawn Douglas

http://openwetware.org/wiki/Biomod/2014/Design

Paul Rothemund

D N A O r I ga m I Folding DNA to create nanoscale shapes and patterns

Nature 2006

Atomic force
microscope images

100 nm

Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

DNA tiles: grid graph
(tiles bind to each other, each has £ 4 neighbors)

s— L —) —)
| | | |
)y

|

DNA tile self-assembly

DNA tile self-assembly

monomers (“tiles” made from DNA) bind into a crystal lattice

4 N N

S K OO EOELE0808586868S
. FIIITII IR TII Y .
GREREREREGRGRERSRGRNEGRS
SLPOLPOLPOLOLOLOL e OO
OROLONS @ & o9 & & SOD
= e da-2a-2a-a-a-2a- a2
OOHON ‘3.: :t?:?b:bi 2&252‘ 0‘00%
SODOPIRER EL O LB L L 0L L LK 0 ,,o‘v‘"w»
00 «uu 2L CGVGOP
»uoum @

OO0
OO
QGO
ODORN
QOVGD
SEAAS
OO
%w?¢$
N Q&
0000
QOO

OO

GO
VOVGOGTOVGOP
3 Ms{r s
QUoGOv wim?
'”:":‘"‘ GIVPVOV0"

D
Aqum
DODBOROODOONAD
Aquum D600

'”‘ o

DODODIPP

GOG
i

)

360506p00)
DOBORDD M S

4
DOV
%owq
J&» :
00Q
OO0
0,

HOHBOOOBHOOBOOPVE gL VQUP ni’wdcwv
vﬂm u?mbup S wv’o“w‘“‘ 'M‘ Sy
OO0 ’“‘"‘"""""‘ v?o nqml‘«mm
W&upu ”'"""'” Q 200008 oww:m O
SO0 BOOHOOLHRO0O00! /S STEOGT "j'w OGS
m&mtsyo‘ocov’ 383 % OOV
HOH uoyuu.‘nu S 3_3 2_‘ 2?9 onva
Wympm ””” EEKEES M\WM&W
HOO «Wf"um'g_: SHRLELK :_;~w¢mmw'm
v""v' OO0 ;‘{: EEEEEKER gt: thv
q«nur e s b st r b rbrtrt VGOIVGVGUP
»um’ 04g44¢:g:::::: wn-w
XOOBOM0L TS S S B S S S S B S S TSI VGUIUR
DODOBAN] LIYVVILIVSAILIIVESS ‘s' P
trtrtrtrtrtrtrtrtrtr e
RLLRLD QR DGO ILALIS
S S S S SIS I BT AT IISISTSIS
£59989898539853535383¢

Source: Programmable disorder in random DNA tilings. Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017
8

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released

under the GNU Free Documentation License. l—

il

G

o
F it T T

T ”
y I ,}’{f} 'i.j ,14 p.) “ Z S
% iy J}
T A
T A
G C
cC G
AT
AT
G C
C G
T T T T
c| GI GI T| Al A C T

cC G
G C
AT
T A
T A
G C
C G
G C
G C
AT
G C
i
G|
A
C|
5

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982

sfclel Al

o
=
o

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at

en.wikipedia; Permission: PDB; Released / T [
under the GNU Free Documentation License. C— D NA tl I e
z
|G
C
‘ i AT Ned Seeman, Journal of
1 g c G . .
) B X Theoretical Biology 1982
F | b VL T A
T A
G C
C G
AT
AT
G C
C G
T T[T T Tlc]T C TCG|C|C|A|T|
CIGIGITIAIAGCCAATCAGT Tl clalclalclsl]als
\ \C G/ W
G C
AT
T A .
A sticky end
G C
C G
G C
G c
AT
G C
A
G
A
)
G|
Ve 9

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

[

||°|° [+le]-

R [o0 B2 B=N o IoN E=N BN [N IoN b=
[oN LN Exl Eul [7H [N B= b= ExE 7N k!

[aR B=N FoN IoN Eol FoN EN EoN b0 InE Io]

o o= |o|=||o]|=|o]o]e|o]=]=]-]c]e

—

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982

2]
=
o

A GICICIAITI
G| 7| Al G

H_I

sticky end

ile self-assembly

ice of DNA t

Pract

IoN

in solut

ile

ies of DNA t

Place many cop

o)
o]
o

£

2

<

)

=

=

)
@)
S

9

=)
v
£
1Y)
(%]
v

e
)
]
)

=

HEENENEEENE R

N

u.;/

10

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011

HERNERRERERERRERENEERERERER

EFEAEFEF R AR

EENENEEENEEEEENNEEENNEEREN

A

g .Gf
BEREREEEERREERRRANERREREERE|
e

VAx

J
EREReRERNEREERE
N

X,
NENNRERREARNRRRRENENNERARER
S

EEENENEEENEEEEE NN EERRNEERE

“w/«
KEREREEEEAENERERANERRERARER|
v;\

.wf,
FRRERE AR RRRER
e

J
NPREReRERNEERERE
N

N\
FRRRREERERRREREEEEERNEEAERH
2

< .a/
K FEREEF AR

BEENENEEENEEEEENNEEENNEEREN

B EENENEEENEEEEE NN N EENNEENEN

.,af
RRRERERRERRRERERRNERRRERARE|
e

L

.
NRRERHRENNERRERE
~

J
FENRSEEEEAERE MERREEREERI
4 N

g
FEREREEREAEREREREKERREREEER
A

EEEEENEEENNEENEN

EEBEENEEENNEENEN

.w(
HRRRREEEEHE ARG
I

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

11

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

T T
<€

TP

ATITH

11

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

T
TP

Ll
<L

11

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

11

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

I

S HITTITTITNN

I

T

I

IIIIIIIIIIIIII,HImIIIIIIIIIIIII

IIIIIIIIIIIIIEIII“IIIIIIIIIIIII

IIIIIIIIIIIIIIHImIIIIIIIIIIIII

IIIIIIIIIIIIIEIIIHIIIIIIIIIIIII

™

TR

IIIIIIIIIIIIIwImIIIIIIIIIIIII

IIIIIIIIIIIII“IIIHIIIIIIIIIIIII

IIIIIIIIIIIIIIHImIIIIIIIIIIIII

™

£ £ 4 £

™

T LTTHITI

TN g

<L

I

11

Practice of DNA tile self-assembly

. >
L 3

" 1llg
<€

Practice of DNA tile self-assembly

>

Al

1llg

<l

N

single crossover

12

Practice of DNA tile self-assembly

>

Al

1llg

L

N

single crossover

et N —
TR < CNNLLLLL
<€ N >

Figure from Schulman, Winfree, PNAS 2009

double crossover

12

Practice of DNA tile self-assembly

Theory of algorithmic selt-assembly

What if...
... there is more than one tile type?

... some sticky ends are “weak”?

Erik Winfree

14

abstract Tile Assembly Model (aTAM)

Erik Winfree, Ph.D. thesis,
Caltech 1998

15

abstract Tile Assembly Model (aTAM)

%

* tile type = unit square

Erik Winfree, Ph.D. thesis,
Caltech 1998

abstract Tile Assembly Model (aTAM)

* tile type = unit square B

north glue label

[39e| an|3 1som

* each side has a glue
with a label and south glue label
strength (0, 1, or 2) B

strength O

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—

Caltech 1998

abstract Tile Assembly Model (aTAM)

* tile type = unit square

* each side has a glue
with a label and
strength (O, 1, or 2)

e tiles cannot rotate

Erik Winfree, Ph.D. thesis,
Caltech 1998

K9]
0
&
()
=
[o]4]
{5
+—
>
-,

west glue lab€

strength O

strength 1 (weak)

strength 2 (strong)

N

15

abstract Tile Assembly Model (aTAM)

* tile type = unit square B * finitely many tile types

north glue label

[39e| an|3 1som

* each side has a glue * infinitely many tiles: copies

with a label and south glue label of each type
strength (O, 1, or 2) H
strength O

e tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—

Caltech 1998

abstract Tile Assembly Model (aTAM)

* tile type = unit square B * finitely many tile types

north glue label

[39e| an|3 1som

* each side has a glue

* infinitely many tiles: copies
with a label and

south glue label Of eaCh type
strength (O, 1, or 2) B
strength 0 * assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
N
strength 2 (strong)
Erik Winfree, Ph.D. thesis, —-—

Caltech 1998

abstract Tile Assembly Model (aTAM)

* tile type = unit square B * finitely many tile types

north glue label

[39e| an|3 1som

* each side has a glue * infinitely many tiles: copies

with a label and south glue label of each type
strength (O, 1, or 2) H
strength O e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
B * tile can bind to the assembly
if total binding strength > 2

strength 2 (strong)

-~ (two weak glues or
Erik Winfree, Ph.D. thesis,
Caltoch 1998 one strong glue)

Example tile set

Example tile set

Example tile set

Example tile set

“cooperative binding”

16

Example tile set

“cooperative binding”

16

Example tile set

“cooperative binding” seed

L
i

Example tile set

“cooperative binding”

i
fit &

16

Example tile set

gt - nat- -t st
SRR R R
o B o e EE
SR S R
SR o S
SR S o R
S o S
SR R o e,
SRS N -
SR R R
SRS S

FEFS RRERFY 5
FoL o FREE E
ML

o ~fnat st -t
R
S o S
o
E

-ﬁ++++++++

SR Y
SR

£

SRR
PR e
S ot
SRR S -
b+
S R, Y

n
of
s
o
o
o
4
o

R R

Fha-E
I
|
|
+
SO Bl L el UL

FEE SR R S R S A
f SR SR S AR S
S S R S A A
S S R B S R S R
S S R S R
EHE SR SO S R
FEE R AR S SRR S A
FEEE S R
[EE S R SRR S R R
FEE R SRR SRR S S
FEE SR AR S R

FEE S B S R R S R R
S I O O O A

okt ++-

T e g S

SLoEs o bl b

change function to half-adder

B - ER
Fiht £ £ £

o
TR

Algorithmic self-assembly in action

N\ raw AFM image sheared image

»

neity

» ,’.{

shearing

~ .
ll'lilﬁ~

.

80 nm

[Crystals that couht! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

aTAM simulator (WebTAS by Daniel Hader)

http://self-assembly.net/software/WebTAS/WebTAS-latest/

WebTAS File Settings System

Tile List Selected Tile < 14 | > ‘ rd

ESEED

EBOTTOM

8 .

Tip: for editing tile types, | find i
much easier to edit the text files
directly than to use the GUI, which
is tedious. You may also consider

................

BRIGHT -

Tile Properties

Tile Name

e Labsl e color kwriting code to generate the files. j
|

North Glue Label Strength

East Glue Label Strength

South Glue Label Strength

West Glue Label Strength

¥ Simulator: 280 tiles

Xgrow by Constantine Evans: https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
older xgrow (by Erik Winfree) https://www.dna.caltech.edu/Xgrow/

20

http://self-assembly.net/software/WebTAS/WebTAS-latest/
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
https://www.dna.caltech.edu/Xgrow/

Tile complexity of squares

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?
* Physically synthesizing new tile types is difficult.

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?
* Physically synthesizing new tile types is difficult.

* Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?

* Physically synthesizing new tile types is difficult.

* Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

* But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?
* Physically synthesizing new tile types is difficult.

* Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

* But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

* So, we ask: how many unique tile types to we need to self-assemble some
shapes?

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?
* Physically synthesizing new tile types is difficult.

* Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

* But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

So, we ask: how many unique tile types to we need to self-assemble some
shapes?

We start with n x n squares as the “simplest” benchmark shape.

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?
* Physically synthesizing new tile types is difficult.

* Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

* But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

So, we ask: how many unique tile types to we need to self-assemble some
shapes?

We start with n x n squares as the “simplest” benchmark shape.
* Why not a1 xnline as an even simpler shape? What is its tile complexity?

Tile complexity

* Resource bound to minimize, like time or memory with a traditional algorithm.

* Why minimize number of tile types?
* Physically synthesizing new tile types is difficult.

* Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher
when more DNA sequences are present.)

* But due to how modern synthesis technologies work, once a tile type is designed, making 50
quadrillion copies of the tile is as easy as making one copy.

So, we ask: how many unique tile types to we need to self-assemble some
shapes?

We start with n x n squares as the “simplest” benchmark shape.
* Why not a1 xnline as an even simpler shape? What is its tile complexity?

[Note: we have not formally defined the aTAM yet... first let’s build intuition.]

The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

https://www.dna.caltech.edu/Papers/squares STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

https://www.dna.caltech.edu/Papers/squares STOC.pdf
This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

6 10

711

1

1

59

59 6 10

9 13 10 14

110

711 2
10 11
11 12 2
5

11 15

9 13 10 14

134 1114

11 15

TG
14 15 5
15 16 i

All glues are strength 2
(alternately: all are strength 1 and temperature T=1)

https://www.dna.caltech.edu/Papers/squares STOC.pdf

This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

All glues are strength 2

1492433114 (alternately: all are strength 1 and temperature = 1)
5 2 6 37 43
3 TR 7 T3
L6 LTS 1+2%3%4
5 610 711 8 12 =) n

1
]
59
59 6 10 711 § 12 5 sls 6 6ls 7 717 8
5| |o | |0 n| i 6{6 N 8|8
6| o 1| i 12l |2 59 6 10 711 2
5 7
9 13 10 14 11 15 12 16 : 6 10 T 2
5|9 10f1o 1
9 13 10 14 11 15 12 16 al1o 11h 12h2
13 i3 14 |14 15| |is 913 10 14 11 15 12 16
14 |4 15| |15 16| |16 713 10 14 1 15 12 16
1313 1414 1515
1414 1515 1616
https://www.dna.caltech.edu/Papers/squares STOC.pdf

This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

Question: How many tile types do we
need to self-assemble an n x n square?

Concretely: how to assemble a 4 x 4 square?

All glues are strength 2

1492433114 (alternately: all are strength 1 and temperature t=1)
L6478 1423344 How many tile types does this

. 1 5 26 37 48
6 10 7 11 8 12 s 36 T T8

construction need in general

; ;;0166:? 1?1?”13 :ié 53 o ;% i 7 i 8 to assemble an n x n square?

9 13 10 14 11 15 12 16

11
5 711 7
9 +10411 1412

9 13 0 12 T 15 12 16 sllo 1 12h2
1313 :31 414 141 515 151 6 913 10 _14 11 15 12 16
14| s 15| |is 16l e 713 10 14 115 12 16

1313 14]14 15)15

14]14 1515 1616

https://www.dna.caltech.edu/Papers/squares STOC.pdf

This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

The program size complexity of self-
assembled squares

Concretely: how to assemble a 4 x 4 square?

3l |3
4| |4
48

6 10

711

18

6 10
5 9 10
il 10 11

9 13 10 14

711
10 11
11 12 2

11 15

9 13 10 14

134 1114

11 15

14 15 5
15 16 y

https://www.dna.caltech.edu/Papers/squares STOC.pdf

All glues are strength 2
(alternately: all are strength 1 and temperature T=1)

Question: How many tile types do we
need to self-assemble an n x n square?

1 212
212 3|3

26

3
4
37

4

48

26

515 6
1|6 7

6 10

37
6 7
7 8

4R

8 8
2

913

6 10

519 10
|10 11

10 14

11

711
10 11
11 12

11 15

81
812
11
12

12 16

913

13

10 14

13 14
14 15

1T 15

14 15
15 16

12 16

16

This paper is directly responsible for convincing many theoretical computer scientists that DNA self-assembly is worth studying.

How many tile types does this
construction need in general
to assemble an n x n square?

n2

https://www.dna.caltech.edu/Papers/squares_STOC.pdf

Tile complexity at temperaturet=1
(i.e., no cooperative binding allowed)

Is n? optimal?
Can we do better?

Tile complexity at temperaturet=1
(i.e., no cooperative binding allowed)

Is n? optimal?
Can we do better?

Note all pairs of adjacent tiles
bind with positive strength:

11 2|2 3|3
22 3|3 4l4
15 26 37 48
s 26 37 48
5|5 6|6 7|7
6[6 7|7 8|8
59 6 10 71 8 12
59 6 10 711 812
519 1of10 Hjn
6[10 i 1212
9 13 10 14 1115 12 16
913 10 14 1T 15 12 16
1313 1414 15]is
14|14 1515 16]16

Tile complexity at temperaturet=1
(i.e., no cooperative binding allowed)

2 : . .
Is n® optimal? Theorem: At temperature t = 1, if all pairs of
Can we do better? adjacent tiles bind with positive strength, then
. . . 2 .
Note al pairs of adjacent tiles for every positive integer n, n? tile types are
bind with positive strength: necessary to self-assemble an n x n square.

3|3
44

48

37
26 37 18
T8
8 12
8 12

it;:;l 2

12 16
12 16

3:;::1 6

6 10 71
6 10 71

5|9 1oj1o

610 1111

10 14 11 15
1115

10 14

13 1414
14 15]15

Tile complexity at temperature t=1
(i.e., no cooperative binding allowed)

Is n? optimal?

Can we do better?

Note all pairs of adjacent tiles
bind with positive strength:

4

48

6 10

18

6 10

100

10 14

812
812

l
1

2

12 16

10 14

13 14
14 15

12 16

16

Theorem: At temperature t = 1, if all pairs of
adjacent tiles bind with positive strength, then
for every positive integer n, n? tile types are
necessary to self-assemble an n x n square.

i|o- L
(3,7 L J

Proof: Suppose for contradiction - i
we use the same tile type i at o) —— L j
positions (x;,y;) and (x,,y,). Then N ;

they have a path L between them
with all positive-strength glues,
and this can happen instead:

Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal?

Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal? No!

Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal? No!

)w\)r—*\
JL\){()\

]

lad 3
- N
fet

[]
N

P
= LA
- =]

A

=

Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal? No!

24
1 I 12 ? 2|2 3|3
20 |2 3 N
=)) \5«’
2 3 3 34 56
3 4| |4 56
) Jam) 6
5116
56 6 7 7

=

Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal? No!

11123
~ | LA
2 3113
33444
£ £
‘u“w‘
56 6 7

=

strength-0 glues

Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal? No!

Tile complexity of
1 1L 2 2 this construction?
= S
233104
[£y
‘ 5 H 6 ‘
56 6 7

:
strength-0 glues

T
W

e complexity at temperature T =1,

nere not all adjacent tiles are bound

Is n? still optimal? No!

Tile complexity of
1 QL 2 2 this construction?
) N
2n—1=0(n)
31114
M)
S 56
Hir
56 y 7

,
strength-0 glues

Tile complexity at temperature t=1,
where not all adjacent tiles are bound

Is n? still optimal? No!

Tile complexity of
this construction?

2n—1=0(n)

111
[

DN

e
=R

Conjecture: The temperature
T =1 tile complexity of an n x n

square is Q(n).

(most recent progress:
https://arxiv.org/abs/1902.02253
https://arxiv.org/abs/2002.04012)

vy D

cn(DL

=

strength-0 glues

https://arxiv.org/abs/1902.02253
https://arxiv.org/abs/2002.04012

Tile complexity at temperature t =2
(i.e., cooperative binding allowed)

Tile complexity at temperature t =2
(i.e., cooperative binding allowed)

Bl

)

CO| ||\ D& | DI

)

3
5
7
EX

Tile complexity at temperature t= 2
(i.e., cooperative binding allowed)

Bl

)

Q| ||ON] D& | DD

)

3
2
7
5

Tile complexity at temperature t= 2
(i.e., cooperative binding allowed)

Bl

)

CO| ||\ D& | DI

)

3
2
7
5

(>
D
M

Tile com
(i.e., coo

Bl

3

)

7

~J

CO| ||\ D& | DI

)

D
9

(

L
X
il

1

olexity at temperature =2
nerative binding allowed)

6 C

OIS

OIS

OF >

G

O

O

O

O

O

D

0,

O

O

O

O

D

26

Tile com
(i.e., coo

Bl

olexity at temperature =2

3

)

7

~J

Q| ||ON] D& | DD

)

S5
5

L
X
il

nerative binding allowed)

1

6 C

OIS

OIS

OF >

G

O

O

O

O

0,

O

D

O

O

strength-1 glues (with no other

glues to cooperate with)

26

Tile com
(i.e., coo

Bl

3

)

7

~J

CO| ||\ D& | DI

)

D
9

(

L
X
il

olexity at temperature =2
nerative binding allowed)

1 2 3 4 5 Tile complexity = 2n
oo T o T O

6 C C
S+o1+616

7 ¢

& (

0 ¢ (

strength-1 glues (with no other

glues to cooperate with)

26

Tile com
(i.e., coo

Bl

3

)

7

~J

CO| ||\ D& | DI

)

D
9

(

L
X
il

This tile completes an n x n “L shape”

into an n x n square.

1

OIS

OIS

OF >

G

olexity at temperature =2
nerative binding allowed)

Tile complexity = 2n

6 C

O

O

O

O

D

0,

O

O

O

strength-1 glues (with no other

glues to cooperate with)

Tile complexity at temperature t =2

Goal: complete a1l x nline
into an n x n square

12
3][4

N

H

D

Tile complexity at temperature t =2

Goal: complete a1l xn lin

into an n x n square

NN

3 BRI
X[

W/

D (D

[

Tile complexity at temperature t =2

Goal: complete a1l x nline

into an n x n square

NN

31)=
x|

D (

[

Tile complexity at temperature t =2

Goal: complete a1l x nline

into an n x n square

NN

31)=
x|

D (

[

Tile complexity at temperature t =2

Goal: complete a1l x nline
into an n x n square

NN

31)=
x|

D (

[

Tile complexity at temperature t =2

Goal: complete a1l x nline
into an n x n square

NN

3 BRI
X[

D (D

[

W/

Tile complexity at temperature t =2

Goal: complete a1l x nline
into an n x n square

NN

3 BRI
X[

D (D

[

W/

Tile complexity at temperature t =2

Goal: complete a1l x nline
into an n x n square 1 2
()

N
O

1]]2]) ® OROAD «
i‘ 2]) ®RBO®AD & ¢
5 fmy H—"x— N\ N\
o

D (D

Tile complexity at temperature t =2

Goal: complete a1 xnline

into an n x n square 2 ;\ 4 {5-\
1]]2]) ® OROAD «
i‘ 2]) ®RBO®AD & ¢
5 & =0=0O1-O0-1O
- PBOAD O O (
» Adp B¢ R
3¢ lé()ﬁ()ﬁ()ﬁ()ﬁ(

Tile complexity at temperature t =2

Goal: complete a1 xnline

into an n x n square 2 ;\ 4 {5-\
1]]2]) ® OROAD «
i‘ 2]) ®RBO®AD & ¢
5 & =0=0O1-O0-1O
- PBOAD O O (
» Adp B¢ R
3¢ lé()ﬁ()ﬁ()ﬁ()ﬁ(

Tile complexity=n+4

Tile complexity at temperature t =2

o 21304102
I 9 OB#AD
31[4] Dig.ﬁog>:c>:c
; 9%02?):0:0:(

X[
i

D (D

Tile complexity=n+4

How to get sublinear
tile complexity?

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

ol [1][ollo]x:

7

seed tile

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

1 0 0

1 04| Qal1c

N

7

Unique glues ¢eeq tile
(not shown)

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

1 0 0

1 04| Qal1c

N

/7 :

Unique glues seed tile row encoding (a number related to) n =)y 0
(not shown) /&)

I

D) — —
PO
DO=
) —
M~

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

nnl

Doo* Slals

Unique glues
(not shown)

0

¢ () ¢| = increment tiles
1
0

7

*0
seed tile row encoding (a number related to) n === 0
(o

p—-

HO-

PO

) —a

I

£

28

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

+

"1

0% 0=
C (¥ C n
c increment tiles

P —
[

!

DOO* Sasl= éo%

=
O O et | [e
(]

Unique glues
(not shown)

0
0

7

seed tile row encoding (a number related to) n ===

*0
0
(o)

Di— -

HO-

PO

I

) —a

28

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

;;

+

*1

T
Illﬂ

1

|

0
0

0% ‘ 0= \
C (¥ C n
* kggj O
c increment tiles

DOO* Sasl= éo%

=
O O et | [e
[¢] (]

Unique glues
(not shown)

/

seed tile

b—i—a;
[

!

increment row

row encoding (a number related to) n ===y

2]

9 |
0

) O o -

28

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

*
(=]

*1 — 11—
1 A I O @ [x | Q<= copy tiles
0* 1*
0* 0* 1*
= C C O n 1 G
1

Slals

increment tiles

N

Unique glues
(not shown)

0 L

| ¢

increment row

7

seed tile

row encoding (a number related to) n ===y

2]

0
0

) O o -

28

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

*
(=]

Slals

*1 — 11—
1 A I O @ [x | Q<= copy tiles
0* 1*
0* 0* 1*
= C C O n 1 G
1

increment tiles

N

Unique glues
(not shown)

——|_|—

| ¢

7

seed tile

row encoding (a number related to) n ==

copy row

increment row

>

be

=

=

2]

28

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

*
(=]

Slals

O PO

[#]

N

Unique glues
(not shown)

0 L

| ¢

7

seed tile

| @<= copy tiles
1-*
0 0% T*
c O n 1 (4
B increment row ==l

increment tiles

copy row

increment row

row encoding (a number related to) n ==

n

=

be

n

=

2]

28

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

i 0 -

;x

1100

‘ (14— copy tiles

*1

T
nln

1

|

‘ \ I
[Q C © O 1
0
ol e () < increment tiles
1
0

DOQ* Slals 30% Slalc

=
O O et | [e

Unique glues
(not shown)

/

seed tile

(

row encoding (a number related to) n ===

increment row ==l

copy row

increment row

=
*

-
[a

.

—
*

=

be

=

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

for width of k bits, stops
when it reaches what value?

*
(=]

Slals

N

Unique glues
(not shown)

——|_|—

| ¢

7

seed tile

‘x (14— copy tiles
1*

0* 0* 1*
Q¢

increment tiles

increment row ==l

copy row

increment row

row encoding (a number related to) n ===

=
*

-
[a

.

—
*

n

=

be

n

=

2]

Logarithmic tile complexity
at temperature T =2

Goal: rectangle of height n
using O(log n) tile types

for width of k bits, stops
when it reaches what value?

“zig-zag counter”

*
(=]

Slals

O

Unique glues
(not shown)

——|_|—

| ¢

7

seed tile

‘x (14— copy tiles
1*

0* 0* 1*
Q¢

increment tiles

increment row ==l

copy row

increment row

row encoding (a number related to) n ===

=
*

-
[a

.

—
*

n

=

be

n

=

2]

29

<SP ('ROR(
— e — - =
)o@ <P (D
e o - ~
$©00 <(
- be
man
q) $o0 <P D
® G) 9o00sd — D O
— .,llﬂ_ﬂ..o.,oﬂﬂ_lo P O P
o] -1--1--130$AO O D
ot — OUSOBUSO@BﬁAe P«
- S o leololo
N e e e @ @BﬁAo q
[5] - m - m @ O . O
tot—4- “ \lodototon ¢ omMp<i
fa S |
mor Kdoo—' 1 moi1pass

MOI JUL WO UI

Logarithmic tile complexity at temperature =2

A few more “filler” tiles

rectangle into an n x n square.

complete the =n x log n

Logarithmic tile complexity at temperature =2

b = RO
o= o< R
D Oo® s D
e [f e >
) $©.00 sh
— pod
m s
JI() OO0 @ D (]
ROR) ®o0cs) — D P (
onHU —) N 11ﬁquhvoﬁ.1ﬂ0008000m
Lo - — ol O P«
« | = leg [ol olo
e O+ i OO+ OO@BﬁAe ORI
ol oo
e O - — @ A.BﬁAo q
. 1 2 e 1 = [« ool o115
+0,,..,.1 IO Lﬂw.uﬂxﬂ_u_.uﬂe ® @BﬁAm
F ot F) 4 |
mor Adoo — MOI PIIS
MO JUIIOUT
v
©
>
o [
% < m y #*
T O x =B i o
3 x S x -
gcec @ .
= un © o A [SS
= o
T o 8 c x
v S c
o c) o= O [¥]
O w Q Q = 4 — |] [p—
5 S0 SR
= Cc o]0)
S Q© =] 0 = =
v £+ - | —
“~ 0o 9 et (& B] — Ill e
A (@ R P~ a w
W = =
SNa(Tﬁ O hOd O

Logarithmic tile complexity at temperature =2

o
> (o)}
O (@]
(=
Ly S \ Ly A
b= (e O
SSENS SR Q o ot o
) O® i(€3 D
S o u =2 = A
) ®00 s S
I Dﬁ)‘ £ |And .nb
— mbu < =
‘
m 3 (
D G) ©.00 <O D
D @) o0 ashDd] — D O ¢
&l sletor——lolo
S
o] — ol O P«
- =1« lo[clols
-+ cOFOFD OO@BﬁAe ORI
- 1 5 oot
e O - — @ A.BﬁAo q
- 1 " I ool oo
+0,,.-1 S Lﬂw.uﬂxﬂ_u_.uﬂe ® @BﬁAm
F) fa P |
mor Adoo — MOI PIIS
MOI JULIOUT
v
©
>
g N | I
L = - a
=8 x £ i "
B <
Tcoc| 2o =
= a © o N 7 =
F 4 0
U -SHES -
S v w w < oAb J e Il —
m ._ol-ﬂ db e \ Ty =] =
= Cc o]0)
= 20 —=|0O = 5
v £+ - | —
< 0o 0 ~— P - P FO
A (@ R P~ a w
T = =
Sei(T& O O D

Q(log n / log log n) tile complexity lower
bound for n x n squares

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:
* Count number of (functionally distinct) tile systems with fewer than % log p / log log p tile types.

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:

* Count number of (functionally distinct) tile systems with fewer than % log p / log log p tile types.
* WEe'll show that it’s fewer than p.

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:

* Count number of (functionally distinct) tile systems with fewer than % log p / log log p tile types.
* WEe'll show that it’s fewer than p.

* There are p squares with width n between p+1 and 2p; each needs a different tile system.

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:

* Count number of (functionally distinct) tile systems with fewer than % log p / log log p tile types.
* WEe'll show that it’s fewer than p.

* There are p squares with width n between p+1 and 2p; each needs a different tile system.
* By pigeonhole, some n x n square cannot be assembled with < % log p / log log p tile types.

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:

* Count number of (functionally distinct) tile systems with fewer than % log p / log log p tile types.
* WEe'll show that it’s fewer than p.

* There are p squares with width n between p+1 and 2p; each needs a different tile system.
* By pigeonhole, some n x n square cannot be assembled with < % log p / log log p tile types.
* Since p<n/2,wehave %logp/loglogp<Y¥logn/loglogn.

30

Q(log n / log log n) tile complexity lower
bound for n x n squares

* What does Q(log n / log log n) tile complexity lower bound mean?

* First let’s think about what we already showed: what does O(log n) tile complexity upper bound
mean? For all n, O(log n) tile types is enough to self-assemble an n x n square.

* A lower bound looks like: For infinitely many n, o(log n / log log n) tile types is not enough to self-
assemble an n x n square.

 How to prove? It’s a counting argument:

* Count number of (functionally distinct) tile systems with fewer than % log p / log log p tile types.
* WEe'll show that it’s fewer than p.

* There are p squares with width n between p+1 and 2p; each needs a different tile system.
* By pigeonhole, some n x n square cannot be assembled with < % log p / log log p tile types.
* Since p<n/2,wehave %logp/loglogp<Y¥logn/loglogn.

* Since we can do this for every positive integer p, there are infinitely many n that require more than
% log n / log log n tile types (a stronger result holds: “most” values of n require that many)

30

How many tile systems with k tile types?

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have?

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k

b) How many ways can we choose the 4 glues for one tile type?

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k

b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k
b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*

c) How many ways to choose the glues for all k tile types?

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k
b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*

c) How many ways to choose the glues for all k tile types? bk = (4k)

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k
b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*
c) How many ways to choose the glues for all k tile types? bk = (4k)*k

d) How many ways to choose the seed tile?

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k
b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*
c) How many ways to choose the glues for all k tile types? bk = (4k)*k

d) How many ways to choose the seed tile? | k

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k
b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*
c) How many ways to choose the glues for all k tile types? bk = (4k)*k

d) How many ways to choose the seed tile? | k

* How many tile systems?

How many tile systems with k tile types?

e Goal: show that there are fewer than p (“functionally distinct”) tile
systems with k=% log p / log log p tile types.

* How many have exactly k tile types? Count each of the ways to define
the tile system:

a) How many different glues can we have? | 4k
b) How many ways can we choose the 4 glues for one tile type? | a% = (4k)*
c) How many ways to choose the glues for all k tile types? bk = (4k)*k

d) How many ways to choose the seed tile? | k

* How many tile systems? = c-d = k(4k)*

How many tile systems with k tile types?

* Number of tile systems with exactly k tile types: | < k(4k)%

How many tile systems with k tile types?

* Number of tile systems with exactly k tile types: | < k(4k)%

* Number of tile systems with at most k tile types:

How many tile systems with k tile types?

* Number of tile systems with exactly k tile types: | < k(4k)%

* Number of tile systems with at most k tile types: ' < k?(4k)*

How many tile systems with k tile types?

* Number of tile systems with exactly k tile types: | < k(4k)%

* Number of tile systems with at most k tile types: ' < k?(4k)*

* Recall k = % log p / log log p; by algebra (see notes), k?(4k)* < p.

How many tile systems with k tile types?

* Number of tile systems with exactly k tile types: | < k(4k)%

* Number of tile systems with at most k tile types: ' < k?(4k)*

* Recall k = % log p / log log p; by algebra (see notes), k?(4k)* < p.

* By pigeonhole principle, for some width n with p<n <2p,thenxn
square is not self-assembled by one of these k2(4k)* tile systems.
Since those are all the tile systems with at most k tile types, the n x n
square requires more than % log p / log log p tile types to self-
assemble. QED

Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110)

33

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110)

* We can “describe” n with a tile system that self-assembles an n x n square.

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110)

* We can “describe” n with a tile system that self-assembles an n x n square.
* How many bits do we need to describe a tile system with k tile types?

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110}

* We can “describe” n with a tile system that self-assembles an n x n square.

* How many bits do we need to describe a tile system with k tile types?
* log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110}

* We can “describe” n with a tile system that self-assembles an n x n square.

* How many bits do we need to describe a tile system with k tile types?
* log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111
* 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110}

* We can “describe” n with a tile system that self-assembles an n x n square.

* How many bits do we need to describe a tile system with k tile types?
* log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111
* 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)
» 4k log(4k) to describe all k tile types, plus log k to give index of the seed.

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

Descriptional Complexity” proof | 25 =>2

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110}

* We can “describe” n with a tile system that self-assembles an n x n square.

* How many bits do we need to describe a tile system with k tile types?
* log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111
* 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)
» 4k log(4k) to describe all k tile types, plus log k to give index of the seed.
* So O(k log k) bits total.

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

to “describe”.

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110}

* We can “describe” n with a tile system that self-assembles an n x n square.

* How many bits do we need to describe a tile system with k tile types?
* log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111
* 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)
» 4k log(4k) to describe all k tile types, plus log k to give index of the seed.
* So O(k log k) bits total.

* For any n in the Fact, log n = O(k log k), i.e., k = Q(log n / log log n).

“Descriptional Complexity” proof

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Fact: “most” integers
n require 2 log n bits

to “describe”.

(Though some require fewer:
111111111111112122211111

e Can be formalized with Kolmogorov complexity can be described by its length
* https://en.wikipedia.org/wiki/Kolmogorov complexity 22 in binary: 10110}

* We can “describe” n with a tile system that self-assembles an n x n square.

* How many bits do we need to describe a tile system with k tile types?
* log(4k) to describe one of the 4k glues, e.g., 8 glues: 000, 001, 010, 011, 100, 101, 110, 111
* 4 log(4k) to describe one tile type consisting of 4 glues, e.g., tile b = (010, 011, 111, 100)
» 4k log(4k) to describe all k tile types, plus log k to give index of the seed.
* So O(k log k) bits total.

* For any n in the Fact, log n = O(k log k), i.e., k = Q(log n / log log n).

Note: we’re ignoring glue strengths here; adds 2 bits per glue to describe at temperature 2.

(since there are 3 possible strengths O, 1, 2);
see http://doi.org/10.1007/s00453-014-9879-3 for handling higher-temperature systems.

“Descriptional Complexity” proof

https://en.wikipedia.org/wiki/Kolmogorov_complexity
http://doi.org/10.1007/s00453-014-9879-3

Which bound is tight?

1. All n x n squares can be assembled with O(log n) tile types; can we get it down
to O(log n / log log n)?

2. Or do we need Q(log n) tile types to assemble infinitely many n x n squares?

34

Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

Recall:

tile complexity =
O(log n)k 23

 (—
N=F

ﬁ@::: s@% - ﬁ}ﬂ
=] =] £y

35

Improved upper bound: self-assembling an
n x n square with O(log n / log log n) tile types

Recall: Idea:
tile complexity = 1) Use same 23 tiles that
Qs n)}+\23 - . turn the seed row
Pered s encoding a binary
[‘6 1llolloll E—8 ‘ Efad | integer n’ (related to n)
——— 2 E ‘ / - ! into an n x n square.
Eﬁ])ﬂb@ S —— X ||l
S e 1 AR i .
YEISEISEINE a% e 2) Create the binary
S ——— s RlifololTof { | seed row from only
I:;? L1 14[0c ﬁ,%“‘j;s}?me | | N log n / log log n tiles.
2 PBOAD ¢ q b
041 0¢PLSFQslT AR

Creating a row of log n glues with arbitrary bit string s € {0,1}°&"
using O(log n / log log n) tile types

Creating a row of log n glues with arbitrary bit string s € {0,1}°&"
using O(log n / log log n) tile types

 Key idea: choose larger power-of-two base b = 2¥, with
b =log n/log log n, and convert from base b to base 2.

Creating a row of log n glues with arbitrary bit string s € {0,1}°&"
using O(log n / log log n) tile types

 Key idea: choose larger power-of-two base b = 2¥, with
b =log n/log log n, and convert from base b to base 2.

* How many base-b digits needed to represent a log(n)-bit integer?

Creating a row of log n glues with arbitrary bit string s € {0,1}°&"
using O(log n / log log n) tile types

 Key idea: choose larger power-of-two base b = 2¥, with
b =log n/log log n, and convert from base b to base 2.

* How many base-b digits needed to represent a log(n)-bit integer?

* Each base-b digit is k bits
e e.g., if b=23=8, then 0=000 2=010 3=011 4=100 5=101 6=110 7=111
* e.g., the octal number 71254 in binary is 111001010101,

Creating a row of log n glues with arbitrary bit string s € {0,1}°&"
using O(log n / log log n) tile types

 Key idea: choose larger power-of-two base b = 2¥, with
b =log n/log log n, and convert from base b to base 2.

* How many base-b digits needed to represent a log(n)-bit integer?

* Each base-b digit is k bits
e e.g., if b=23=8, then 0=000 2=010 3=011 4=100 5=101 6=110 7=111
* e.g., the octal number 71254 in binary is 111001010101,

* need log(n) / k =log(n) / log (log n / log log n) = log(n) / (log log n — log log log n)
= log(n) / log log n base-b digits.

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) =110 001 011 101

b=23=8
hard-coded tiles:

jlo1

sl
||

sl
m011
s2
|]
s2
m001
s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) =110 001 011 101

b=23=8
hard-coded tiles:

|
1
J10 101f101

sl
||

sl
m011
s2
|]
s2
m001
s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types
(i.e., base conversion from b to 2) =110 001 011 101

b=23=8
hard-coded tiles:

| |
0 1
i 10§10 101]101

sl
| | || ||

sl
m011
s2
|]
s2
m001
s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

1

n
|

11

]
1

S= 011 101
b=23=8
hard-coded tiles:

10j10 101f101

sl
||

sl
m011
s2
|]
s2
m001
s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

1

n
|

11

S= 011 101
b=23=8
hard-coded tiles:

|
1
10j10 101f101
sl

sl
m011011=011
s2

|]
s2
m001
s3

||
s3

Creating a row of log n glues with arbitrary bit

string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

1

n
|

11

]
1

S =

b=23=8

011101

hard-coded tiles:

10j10 101f101

sl
||

sl

m011011=011 011m011

s2
|]
s2

m001

s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2) 5= 110001 011 101
ha_rd—cc_)ded tiles:
1 o0 _ 1
. 11 10j10 101f101
n s1

n sl
IOll011-011011-011011-011
s2
| | | |]
s2
m001
s3

||
s3

Creating a row of log n glues with arbitrary bit

string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

|
1

n
Joi 011]Jo11011m011 0118011 011m011

1

n
|

11

]
1

S =

b=23=8

011101

hard-coded tiles:

10j10 101f101

sl
||

sl

s2
|]
s2

m001

s3

||
s3

Creating a row of log n glues with arbitrary bit

string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

fo

|
1

|
1

n
01fo1 011fJo11011m011011m011 011m011

1

n
|

11

]
1

S =

b=23=8

011101

hard-coded tiles:

10j10 101f101

sl
||

sl

s2
|]
s2

m001

s3

||
s3

Creating a row of log n glues with arbitrary bit

string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

on

ofo

|
1

|
1

n
01fo1 011fJo11011m011011m011 011m011

1

n
|

11

]
1

S =

b=23=8

011101

hard-coded tiles:

10j10 101f101

sl
||

sl

s2
|]
s2

m001

s3

||
s3

Creating a row of log n glues with arbitrary bit

string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

on

ofo

|
1

[HE S o

n
01fo1 011fJo11011m011011m011 011m011

1

n
|

11

]
1

S =

b=23=8

011101

hard-coded tiles:

10j10 101f101

sl
||

sl

s2
|]
s2

m001

s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2) 5= 110001011 101
b=2°=8
hard-coded tiles:

| | || | |
1 1 1 0 1
- . . 11 10j10 101f101
L 1 a sl
|| || || | | | L
0 1 1 n s1
= ofo o01fo1 011]011011m011011w011 011011
2 | n n n u 2
s2
m001

s3

||
s3

Creating a row of log n glues with arbitrary bit

string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

omoO on

H>S

ofo

R -

[HE S o

n
01fo1 011fJo11011m011011m011 011m011

1

n
|

11

]
1

S =

b=23=8

011101

hard-coded tiles:

10j10 101f101

sl
||

sl

s2
|]
s2

m001

s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2) s =110 001 011 101
b=2°=8
hard-coded tiles:

| | | || | |
0 1 1 1 0 1
= m . . 11 10j10 101f101
0 1 1 n sl
|| || || | | | L
0 1 1 n sl
= ofo o01fo1 011]011011m011011w011 011011
2 | | | | | 2
n s2
IOOl 001=001 001=001 001=001 001=001 001m001 001m001

s3

| | | | | | | | | ||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2) s =110 001 011 101
b=2°=8
hard-coded tiles:

| | | || | |
0 1 1 1 0 1
= m . . 11 10j10 101f101
0 1 1 n s1
|| || || | | | L
0 1 1 n s1
n ofo o01fo1 011]011011m011011w011 011011
| || | 2 | | [| | 2
0 0 1 n 52
n oo 00foo 001foo1001m001 001001 001001 001001 001WO01 001mO01
n s3

| | || || | [| | | | | | | ||
s3

Creating a row of log n glues with arbitrary bit

string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2)

onmo omo on

H>S

ofjo

omno omo on

i~ FPE 2N

omoO on

H>S

>

ofo

R -

[HE S [y

n
01fo1 011fJo11011m011011m011 011m011

1

n
|

11

]
1

S =

b=23=8

011101

hard-coded tiles:

10§10 101f101

sl
||

sl

s2
|]

s2

OOIOO OOlIOOl 001=001 001001 001=001 001=001 001=001 001m001

s3

||
s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2) 5= 110 001011 101
b=2°=8
hard-coded tiles:

| | | | | | || | |
0 0 1 0 1 1 1 0 1
= m . . m . . 11 1010 101f101
0 0 1 0 1 1 n s1
| | | || || || | | | L
0 0 1 0 1 1 n s1
. . . . ofo o01fo1 011]011011m011011w011 011011
0 0 1 n 52
| | | | | | | | | .
0 0 1 n 52
n oo 00foo 001foo1001m001 001001 001001 001001 001WO01 001mO01
n || || rll || || | | | | | | 2
n s3

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion frw

S =

011 101

b=23=8

hard-coded tiles:

n
0

1

101

sl
||

sl

01fo1 011fJo11011m011011m011 011m011

s2
|]
s2

s3

||
s3

]]] n ™ n]]]]
l 0 0 1 0 1 1 1
(] []]]]]]]]
0 0 1 0 1 1 n
[[[] [[] | [[| |
0 0 1 0 1 1 n
m m m = N | OIO
0 0 1 n
| | | []] [| | | | |
0 0 1 n
= . . oo 00foo 001oo1001m001 001001 001001 001001 001WO01 001mO01
| [[rl] [[[]] (]
n
]]]

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion frw

S =

011 101

b=23=8

hard-coded tiles:

n
0

1

101

sl
||

sl

01fo1 011fJo11011m011011m011 011m011

s2
|]
s2

s3

||
s3

]]] n ™ n]]]]
l 0 0 1 0 1 1 1
(] []]]]]]]]
0 0 1 0 1 1 n
[[[] [[] | [[| |
0 0 1 0 1 1 n
m m m = N | OIO
0 0 1 n
| | | []] [| | | | |
0 0 1 n
= . . oo 00foo 001oo1001m001 001001 001001 001001 001WO01 001mO01
| [[rl] [[[]] (]
n
]]]

“almost” works

... what’s missing?

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2) P

011 101

hard-coded tiles:

]]] n n] u]]] n n
l m 0 0 1 0 1 1 1 0 1L
[] []]]]]]] 101
m 0 0 1 0 1 1 n L~ L
|] |]]] | |]] [] -
m 0 0 1 0 1 1 n s1
[| [n [[OIO 01I01 011I011 011=011011=011011m011
m 0 0 1 n s2
| | | []] | | | | | | | [|
m 0 0 1 n s2
[[[OIO OOIOO OOlIOOl 001=001 001=001 001=001 001=001 001=001 001m001
m n s3
] n] []]] n (] =]] -
m n s3

mlm mlm ml

“almost” works... what’s missing?

N | n | |
m m mm m M MM Mmm mm mMm mm mm m

mark glues of most and least significant bit

Creating a row of log n glues with arbitrary bit
string s € {0,1}* using log n / log log n tile types

(i.e., base conversion from b to 2) P

011 101

hard-coded tiles:

]]] n n] u]]] n _—
l m 0 0 1 0 1 1 1 0 1L
[] []]]]]]] 101
m 0 0 1 0 1 1 n L~ L
|] |]]] | |]] [] -
m 0 0 1 0 1 1 n s1
[| [n [[OIO 01I01 011I011 011=011011=011011m011
m 0 0 1 n s2
| | | []] | | | | | | | [|
m 0 0 1 n s2
[[[OIO OOIOO OOlIOOl 001=001 001=001 001=001 001=001 001=001 001m001
m n s3
] n] []]] n (] =]] -
m n s3

mlm mlm ml

“almost” works... what’s missing?

N | n | |
m m mm m M MM Mmm mm mMm mm mm m

mark glues of most and least significant bit

Formal definition of aTAM

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.
A tile type is a 4-tuple of glues t € (2* x N)%, with each glue listed in order north, east, south, west.

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)%, with each glue listed in order north, east, south, west.
Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)%, with each glue listed in order north, east, south, west.
Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
Ford € {N, E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)%, with each glue listed in order north, east, south, west.
Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
Ford € {N, E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
Let t[N], t[E], t[S], t{W] be the glues of t in order.

39

abstract Tile Assembly Model (aTAM), formal definition

* Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

« Atile typeis a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W =(-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t[W] be the glues of t in order.
* T denotes the set of tile types.

39

abstract Tile Assembly Model (aTAM), formal definition

* Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

* Atile typeis a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.

* An assembly is a partial function a: Z?--» T, such that dom a (set of points where a is defined) is connected.

39

abstract Tile Assembly Model (aTAM), formal definition

* Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

* Atile typeis a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.

* An assembly is a partial function a: Z?--» T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.
A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.

An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.

Let S, = dom a denote the shape of a. Let |a| = [S,].

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.
A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.

An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.

Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.
A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.

An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.

Let S, = dom a denote the shape of a. Let |a| = [S,].

Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.

An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.

Let S, = dom a denote the shape of a. Let |a| = [S,].

Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.
An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» apartial function indicating, for each (x,y) € Z2?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.
Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)
* t,[d] has positive strength (the glues are not zero-strength)

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.
An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» apartial function indicating, for each (x,y) € Z2?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.
Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)
* t,[d] has positive strength (the glues are not zero-strength)

Let B, = (V,E) denote the binding graph of a, where

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.
An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» apartial function indicating, for each (x,y) € Z2?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.
Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)
* t,[d] has positive strength (the glues are not zero-strength)

Let B, = (V,E) denote the binding graph of a, where
¢ V=S,

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.
An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» apartial function indicating, for each (x,y) € Z2?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.
Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)
* t,[d] has positive strength (the glues are not zero-strength)

Let B, = (V,E) denote the binding graph of a, where
¢ V=S,
* E={(p,q) | a(p) and a(qg) interact }

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.
An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.
Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)
* t,[d] has positive strength (the glues are not zero-strength)
Let B, = (V,E) denote the binding graph of a, where
e V=S,
* E={(p,q) | a(p) and a(q) interact }
* B, is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.

39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.

A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.

An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.

Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)
* t,[d] has positive strength (the glues are not zero-strength)
Let B, = (V,E) denote the binding graph of a, where
e V=S,
* E={(p,q) | a(p) and a(q) interact }
* B, is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.

Given t € N*, a is t-stable if the minimum weight cut of B, is at least t.
39

abstract Tile Assembly Model (aTAM), formal definition

Fix a finite alphabet 2. A glue is a pair g = (£,s) € 2* x N, with label £ and strength s.
A tile type is a 4-tuple of glues t € (2* x N)4, with each glue listed in order north, east, south, west.
* Define unit vectors N =(0,1), S=(0,-1), E=(1,0), W = (-1,0)
* Ford€{N,E, S, W}, let d* denote the opposite direction of d, i.e., N*=S,S* =N, E* =W, W* = E.
* Let t[N], t[E], t[S], t{W] be the glues of t in order.
* T denotes the set of tile types.
An assembly is a partial function a: Z2-»> T, such that dom a (set of points where a is defined) is connected.
» a partial function indicating, for each (x,y) € Z?, which tile is at (x,y), with a(x,y) undefined if no tile appears there.
Let S, = dom a denote the shape of a. Let |a| = [S,].
Given p,q €S, two tiles t, = a(p) and t, = a(q) interact (a.k.a. bind) if:
* llp-qll, =1 (positions p € Z? and q € Z? are adjacent)
* letting d = g — p (the direction pointing from p to q), t,[d] = t [d*] (the glues match where t, and t, touch)
* t,[d] has positive strength (the glues are not zero-strength)
Let B, = (V,E) denote the binding graph of a, where
e V=S,
* E={(p,q) | a(p) and a(q) interact }
* B, is a weighted, undirected graph: Each edge’s weight is the strength of the glue it represents.

Given t € N*, a is t-stable if the minimum weight cut of B, is at least t.
* j.e., toseparate a into two pieces requires breaking bonds of strength at least t. 39

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z? > T, we say a is a subassembly of B, written a E B if

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z? > T, we say a is a subassembly of B, written a E B if
* S, €S (ais contained in B), and

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z? > T, we say a is a subassembly of B, written a E B if
* S, €S (ais contained in B), and
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

40

abstract Tile Assembly Model (aTAM), formal definition

* Given assemblies a,: Z? > T, we say a is a subassembly of B, written o C B if Question: If a = B,
* S, €S (ais contained in B), and can a grow into B?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

40

abstract Tile Assembly Model (aTAM), formal definition

* Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* S, €S (ais contained in B), and can o grow into pB?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

« Wesay O =(T,o0,1)is a tile system, where T is a finite set of tile types, T € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* Sy € Sg (ais contained in B), and can o grow into B?
« forallp €S, a(p) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* Sy € Sg (ais contained in B), and can o grow into B?
« forallp €S, a(p) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* S, €S (ais contained in B), and can o grow into pB?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

o: Z?-» Tis the finite, t-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
 Ifthetiletype addedist, write B=a + (p — t).

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* Sy € Sg (ais contained in B), and can o grow into B?
« forallp €S, a(p) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)

* Ifthetile type added is t, write B=a + (p + t).
The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably
attach to a.)

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* Sy € Sg (ais contained in B), and can o grow into B?
« forallp €S, a(p) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
* Ifthetile type added is t, write B=a + (p + t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall0<i<k, o, -, a

+1°

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* Sy € Sg (ais contained in B), and can o grow into B?
« forallp €S, a(p) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
* Ifthetile type added is t, write B=a + (p + t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall0<i<k, o, -, a

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

0, 04, ... of length k € NU{>} such that

+1°

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* S, €S (ais contained in B), and can o grow into pB?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
 Ifthetiletype addedist, write B=a + (p — t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall 0 <i<k, a; -, a,;.

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

0, 04, ... of length k € NU{>} such that

Why can’t we just say — is the
reflexive, transitive closure —,* of —,?

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* S, €S (ais contained in B), and can o grow into pB?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
 Ifthetiletype addedist, write B=a + (p — t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall 0 <i<k, a; -, a,;.

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

0, 04, ... of length k € NU{>} such that
° o=0,

Why can’t we just say — is the
reflexive, transitive closure —,* of —,?

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* Sy € Sg (ais contained in B), and can o grow into B?
« forallp €S, a(p) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
* Ifthetile type added is t, write B=a + (p + t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall 0 <i<k, a; -, a,;.

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

0, 04, ... of length k € NU{>} such that
° o=a,
 forall0<i<k, a Ep,and

Why can’t we just say — is the
reflexive, transitive closure —,* of —,?

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* Sy € Sg (ais contained in B), and can o grow into B?
« forallp €S, a(p) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
* Ifthetile type added is t, write B=a + (p + t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall 0 <i<k, a; -, a,;.

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

0, 04, ... of length k € NU{>} such that
° o=a,
 forall0<i<k, a Ep,and
* Sg=U;S,

Why can’t we just say — is the
reflexive, transitive closure —,* of —,?

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* S, €S (ais contained in B), and can o grow into pB?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
 Ifthetiletype addedist, write B=a + (p — t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall 0 <i<k, a; -, a,;.

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

0, 04, ... of length k € NU{>} such that
° a=0,
 forall0<i<k, a Ep,and
* Sg=U,;S,

Sometimes we write a —° B to

Why can’t we just say — is the emphasize this is with respect
reflexive, transitive closure —>1* of —>1? to a particular tile system O.

40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* S, €S (ais contained in B), and can o grow into pB?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
 Ifthetiletype addedist, write B=a + (p — t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall 0 <i<k, a; -, a,;.

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

g, oy, ... Of length k € NU{>} such that ‘ : : o
e o=a Sometimes we write o —° B to
. for aI(I)0 <i<k aCp,and Why can’t we just say — is the emphasize this is with respect
Y S_ S reflexive, transitive closure —,* of —,? to a particular tile system ©.
B~ VYi“ai

We say B is the result of the assembly sequence.
40

abstract Tile Assembly Model (aTAM), formal definition

Given assemblies a,B: Z2-» T, we say a is a subassembly of B, written o C B if Question: If o C B,
* S, €S (ais contained in B), and can o grow into pB?
« forallp €S, alp) =B(p) (o and B agree on tile types wherever they share a position)

We say O = (7,0,1) is a tile system, where T is a finite set of tile types, t € N* is the temperature, and

0: Z?-» Tis the finite, T-stable seed assembly.

We say a produces B in one step, denoted a —, B, to denote that a = B, [Sg\ S, | = 1, and letting

{p} =S5 \'S, be the pointin B but not a, the cut ({p},S,) of the binding graph Bg has weight > t.

* (one new tile B(p) attaches to a with strength at least t to create B)
 Ifthetiletype addedist, write B=a + (p — t).

The frontier of a is denoted da = U, _,4 (Sg \ S,) (empty locations adjacent to a where a tile can stably

attach to a.)

A sequence of k € NU{=} assemblies a,, a,, ... is an assembly sequence if forall 0 <i<k, a; -, a,;.

We say that a produces B (in 0 or more steps), denoted a — B, if there is an assembly sequence

0, 04, ... of length k € NU{>} such that
° a=0,
 forall0<i<k, a Ep,and
* Sg=U,;S,

We say B is the result of the assembly sequence.

If k is finite, it is routine to verify that B = a,, and — is the reflexive, transitive closure —;* of —;. %0

Sometimes we write a —° B to

Why can’t we just say — is the emphasize this is with respect
reflexive, transitive closure —>1* of —>1? to a particular tile system O.

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
Write A[©] to denote the set of all producible assemblies.

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
Write A[©] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.

We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .
* equivalently, for all a,f € A[@] and all p € S, 1 S, a(p) = B(p).

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .
* equivalently, for all a,f € A[@] and all p € S, 1 S, a(p) = B(p).
Let X be a shape, a connected subset of Z2. © strictly self-assembles X if, for all
a € A_[O], S, = X. (every terminal producible assembly has shape X)

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .
* equivalently, for all a,f € A[@] and all p € S, 1 S, a(p) = B(p).
Let X be a shape, a connected subset of Z2. © strictly self-assembles X if, for all
a € A_[O], S, = X. (every terminal producible assembly has shape X)
* Note X can be infinite.

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .
* equivalently, for all a,f € A[@] and all p € S, 1 S, a(p) = B(p).
Let X be a shape, a connected subset of Z2. © strictly self-assembles X if, for all
a € A_[O], S, = X. (every terminal producible assembly has shape X)
* Note X can be infinite.
* Example: strict self-assembly of entire second quadrant X={ (x,y) € Z? | x>0and y <0}

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .
* equivalently, for all a,f € A[@] and all p € S, 1 S, a(p) = B(p).
Let X be a shape, a connected subset of Z2. © strictly self-assembles X if, for all
a € A_[O], S, = X. (every terminal producible assembly has shape X)
* Note X can be infinite.
* Example: strict self-assembly of entire second quadrant X={ (x,y) € Z? | x>0and y <0}
 Example of tile system © that does not strictly self-assemble any shape?

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .
* equivalently, for all a,f € A[@] and all p € S, 1 S, a(p) = B(p).
Let X be a shape, a connected subset of Z2. © strictly self-assembles X if, for all
a € A_[O], S, = X. (every terminal producible assembly has shape X)
* Note X can be infinite.
* Example: strict self-assembly of entire second quadrant X={ (x,y) € Z? | x>0and y <0}
 Example of tile system © that does not strictly self-assemble any shape?
Let X € Z2. © weakly self-assembles X if there is a subset B € T (the “blue tiles”) such that,
forall a € A_[@], X = a™Y(B). (every terminal producible assembly puts blue tiles exactly on X.)

41

abstract Tile Assembly Model (aTAM), formal definition

Given tile system © = (T,0,T), we say a is producible if c — a.
* Write A[O] to denote the set of all producible assemblies.
We say a is terminal if a is stable and da = @. (no tile can stably attach to it)
* Write A_[O] € A[O] to denote the set of all producible, terminal assemblies.
We say O is directed (a.k.a., deterministic) if
* |A_[O]]| = 1. (this is what we want it to mean: only one terminal producible assembly)
* equivalently, the partially ordered set (A[®], —) is directed: for each o,B € A[O], there
existsy € A[@] such thata — yand B — .
* equivalently, for all a,f € A[@] and all p € S, 1 S, a(p) = B(p).
Let X be a shape, a connected subset of Z2. © strictly self-assembles X if, for all
a € A_[O], S, = X. (every terminal producible assembly has shape X)
* Note X can be infinite.
* Example: strict self-assembly of entire second quadrant X={ (x,y) € Z? | x>0and y <0}
 Example of tile system © that does not strictly self-assemble any shape?
Let X € Z2. © weakly self-assembles X if there is a subset B € T (the “blue tiles”) such that,
forall a € A_[@], X = a™Y(B). (every terminal producible assembly puts blue tiles exactly on X.)
 example: weak self-assembly of the discrete Sierpinski triangle.

41

Basic stability result

Basic stability result

Basic stability result

example:

a

-

\
e

Basic stability result

example:

Basic stability result

example:

Basic stability result

example:

Basic stability result

example:

Basic stability result

example:

Basic stability result

example:

Basic stability result

example:

Basic stability result

example:

Basic reachability result

Rothemund’s Lemma: Let a = B = y be stable assemblies
such thata — y. Then B — .

Basic reachability result

Basic reachability result

example:
a Y

43

Basic reachability result

example:

Basic reachability result

example:

Basic reachability result

example:

Basic reachability result

example:

Basic reachability result

example:

Basic reachability result

example:

Basic reachability result

example:

Basic reachability result

example:

example of usefulness of Rothemund’s Lemma

e Recall two alternate characterizations of deterministic tile systems:
(a) A [O]] = 1.
(b) for all a,@ € A[@] and all p € S, N Sg, a(p) = B(p).

example of usefulness of Rothemund’s Lemma

e Recall two alternate characterizations of deterministic tile systems:
(a) |A_[6]] =1.
(b) for all a,@ € A[@] and all p € S, N Sg, a(p) = B(p).

e Rothemund’s Lemma can be used to show that (b) implies (a)
* will skip in lecture (optional problem on homework 1)

44

Fair assembly sequences

Definition: Let a,, a,, ... be an assembly sequence.
We say it is fair if, for all i € N and all p € da,, there
exists j>isuch thatp €S .

45

Fair assembly sequences

Definition: Let a,, a,, ... be an assembly sequence. Intuition: Every frontier location eventually
We say it is fair if, for all i € N and all p € da,, there gets a tile; none are “starved”
exists j>isuch thatp €S .

Fair assembly sequences

Intuition: Every frontier location eventually

Definition: Let a,, a,, ... be an assembly sequence.
gets a tile; none are “starved”

We say it is fair if, for all i € N and all p € da,, there
exists j>isuch thatp €S .

Lemma: Let a,, a,, ... be a fair assembly sequence.
Then its result y is terminal.

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Fair assembly sequences

Definition: Let a,, a,, ... be an assembly sequence. Intuition: Every frontier location eventually
We say it is fair if, for all i € N and all p € da,, there gets a tile; none are “starved”
exists j>isuch thatp €S .

Lemma: Let a,, a,, ... be a fair assembly sequence.
Then its result y is terminal.

Proof:
1. Suppose for the sake of contradiction that y is not terminal, i.e., it has frontier location
p € 0y; note in particular p € S,.
2. Simpler if assembly sequence is finite:
1. inthis case, y = o, ;, SO p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p € S,))
Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p € 9y, there are positions adjacent to p with enough strength to bind a tile t.
Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since S, = U; S,;, there exists i such that N S 0, (after some finite number of tile
attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p € da.. (the tile t can attach to a, reached after only i steps)
7. By fairness, there exists j such that p € S; < S, (eventually p gets a tile), which
contradicts the claim that p € S,. QED

=

Fair assembly sequences

We say it is fair if, for all i € N and all p € da,, there gets a tile; none are “starved”
exists j>isuch thatp €S .

Lemma: Let a,, o, ... be a fair assembly sequence. Corollary: For every assembly a, there is a
Then its result y is terminal. terminal assembly y such that a — .
Proof:

1. Suppose for the sake of contradiction that y is not terminal, i.e., it has frontier location
p € 0y; note in particular p € S,.
2. Simpler if assembly sequence is finite:
1. inthis case, y = o, ;, SO p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p € S)
Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p € 0y, there are positions adjacent to p with enough strength to bind a tile t.
Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since S, = U; S,;, there exists i such that N S 0, (after some finite number of tile
attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p € da.. (the tile t can attach to a, reached after only i steps)
7. By fairness, there exists j such that p € S; < S, (eventually p gets a tile), which
contradicts the claim that p € S,. QED

=

Fair assembly sequences

We say it is fair if, for all i € N and all p € da,, there gets a tile; none are “starved”
exists j>isuch thatp €S .

Lemma: Let a,, o, ... be a fair assembly sequence. Corollary: For every assembly a, there is a

Then its result y is terminal. terminal assembly y such that a — .

Proof: Proof: Pick any fair assembly

1. Suppose for the sake of contradiction that y is not terminal, i.e., it has frontier location sequence a=ay, Q, ... ; its result y
p € 0y; note in particular p & S,. is terminal and a — y . QED

2. Simpler if assembly sequence is finite:
1. inthis case, y = o, ;, SO p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p € S)
Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p € 0y, there are positions adjacent to p with enough strength to bind a tile t.
Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since S, = U; S,;, there exists i such that N S 0, (after some finite number of tile
attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p € da.. (the tile t can attach to a, reached after only i steps)
7. By fairness, there exists j such that p € S; < S, (eventually p gets a tile), which
contradicts the claim that p € S,. QED

=

Fair assembly sequences

Definition: Let a,, a,, ... be an assembly sequence.
We say it is fair if, for all i € N and all p € da,, there

exists j>isuch thatp €S .

Lemma: Let a,, o, ... be a fair assembly sequence.
Then its result y is terminal.

Proof:
1. Suppose for the sake of contradiction that y is not terminal, i.e., it has frontier location
p € 0y; note in particular p € S,.
2. Simpler if assembly sequence is finite:
1. inthis case, y = o, ;, SO p never receives a tile.
2. Thus the assembly sequence is not fair. (there is no j > k-1 such that p € S)
3. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
4. Since p € 0y, there are positions adjacent to p with enough strength to bind a tile t.
Let N be the set of these positions. Note N is finite since p has at most four neighbors.
5. Since S, = U; S,;, there exists i such that N S 0, (after some finite number of tile
attachments, all of the positions in N are on the frontier of the current assembly)
6. Thus p € da.. (the tile t can attach to a, reached after only i steps)
7. By fairness, there exists j such that p € S; < S, (eventually p gets a tile), which

contradicts the claim that p € S,. QED

Intuition: Every frontier location eventually
gets a tile; none are “starved”

Corollary: For every assembly a, there is a
terminal assembly y such that a — .

Proof: Pick any fair assembly
sequence 0=0, 0, ... ; its result y
is terminaland a — y . QED

Concrete example of
simulation algorithm creating
a fair assembly sequence?

How computationally powerful
are self-assembling tiles?

Turing machines

Turing machines

R/—/

tape = memory

47

Turing machines

state = line of code

Hf—/

tape = memory

47

Turing machines
state = line of code

initial state =s

Hf—/

tape = memory

47

Turing machines
state = line of code

initial state =s

5,0 q,0,—

H/—/
transitions

(instructions) tape = memory

47

Turing machines
state = line of code

current state initial state = s

\6}): q,0,~>

Hﬁ
transitions

(instructions) tape = memory

47

Turing machines
state = line of code
current symbol

current state initial state = s

N

0) 9,0,>

Hﬁ
transitions

(instructions) tape = memory

47

Turing machines
state = line of code
current symbol

next state |n|t|a| state = s

current state \
s,0: ,9

Hﬁ
transitions

(instructions) tape = memory

47

Turing machines
state = line of code

current symbol next symbol

current state \ next state initial state = s
s,0: 0@

Hﬁ
transitions

(instructions) tape = memory

47

Turing machines
state = line of code

current symbol next symbol

current state \ next 5t7next move initial state = s

5,0 q,0

Hﬁ
transitions

(instructions) tape = memory

47

Turing machines
state = line of code

current symbol next symbol

ext move initial state = s

current state next state

q,0: t,1,¢&
q,1: 5,0,
t,0: ul,—>
u,l: HALT

transitions
(instructions) tape = memory

47

Turing machines
state = line of code
current symbol next symbol

current state next state /' next move initial state = s

NN\ /7

5,0 q,0,—
q,0: t1,<¢

t,0: ul,—-

u,1: HALT g —

transitions
(instructions) tape = memory

47

Turing machines
state = line of code

current symbol next symbol

ext move initial state = s

current state next state

q,0: t,1,¢&
q,1: 5,0,
t,0: ul,—>
u,l: HALT

transitions
(instructions) tape = memory

47

Turing machines
state = line of code
current symbol next symbol

current state next state /' next move initial state = s

NN\ /7

5,0 q,0,—
q,1: s,0,—»
t,0: ul,—-

u,1: HALT g —

transitions
(instructions) tape = memory

47

Turing machines
state = line of code
current symbol next symbol

current state next state /' next move initial state = s
5,0 q,0,—
q,0: t1,<¢
g,1: 5,0,

u,1: HALT g —

transitions
(instructions) tape = memory

47

Turing machines
state = line of code

current symbol next symbol

current state next state /' next move initial state = s
5,0 q,0,—
q,0: t1,<¢
g,1: 5,0,
t,0: ul,—-

uloeAT

transitions

(instructions)

tape = memory

47

Tile assembly is Turing-universal

Tile assembly is Turing-universal

s,0: q,0,~»
q,0: t,1,¢
q,1: s,0,>
t,0: ul,—->
u,l: HALT

Tile assembly is Turing-universal

s,0: 9,0,~>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

gr+4 4+

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

gr+4 4+

s,0: 9,0,~>
q,0: t,1,&
q,1: s,0,—>
t,0: ul,—>
u,l: HALT

48

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

Tile assembly is Turing-universal

Frh
+EFE

EFE

0 gl 0

B S

Tile assembly is Turing-universal

L

+FE+

+ b+
S+ -
-+ -

u,1: HALT

Tile assembly is Turing-universal

HALT

+hFE
+FE

+ b+
S+ -
-+ -

u,1: HALT

Tile assembly is Turing-universal

HALT

+hFE
+FE

+ b+
S+ -
-+ -

u,1: HALT

time

Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)

* simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)

* simulate a Turing machine that grows a “wedge” describing its space-time
configuration history

 What other shapes can be self-assembled?

Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)
* simulate a Turing machine that grows a “wedge” describing its space-time

configuration history 2,3
 What other shapes can be self-assembled? 021,222 1,2 2,2
* Define a shape to be a finite, connected subset of N2, 01 1,1 21 01 1,1 21

0,0 1,0 2,0 2.0

Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)
* simulate a Turing machine that grows a “wedge” describing its space-time

configuration history 2,3
 What other shapes can be self-assembled? 021,222 1,2 2,2
* Define a shape to be a finite, connected subset of N2, 01 1,1 21 01 1,1 21

* Any shape with n points can be self-assembled 0,0 1,0 2,0 2,0

with at most how many tile types?

Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)
* simulate a Turing machine that grows a “wedge” describing its space-time

configuration history 2,3
 What other shapes can be self-assembled? 021,222 1,2 2,2
* Define a shape to be a finite, connected subset of N2, 01 1,1 21 01 1,1 21

* Any shape with n points can be self-assembled 0,0 1,0 2,0 2,0

with at most how many tile types? p

Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)
* simulate a Turing machine that grows a “wedge” describing its space-time

configuration history 2,3
 What other shapes can be self-assembled? 021,222 1,2 2,2
* Define a shape to be a finite, connected subset of N2, 01 1,1 21 01 1,1 21

* Any shape with n points can be self-assembled 0,0 1,0 2,0 2,0

with at most how many tile types? p

* Is there an infinite family of shapes S, S,, ..., with |S,| = n, such that
each S, requires at least n tile types to self-assemble?

Complexity of self-assembled shapes

* We've seen how use algorithmic tiles to:
* self-assemble n x n squares with “few” tile types O(log n / log log n)
* simulate a Turing machine that grows a “wedge” describing its space-time

configuration history 2,3
 What other shapes can be self-assembled? 021,222 1,2 2,2
* Define a shape to be a finite, connected subset of N2, 01 1,1 21 01 1,1 21

* Any shape with n points can be self-assembled 0,0 1,0 2,0 2,0

with at most how many tile types? p

* Is there an infinite family of shapes S, S,, ..., with |S,| = n, such that
each S, requires at least n tile types to self-assemble?

5= 5,= 53 = 547

Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

S S3

scale factor 3

Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

S S

scale factor 3

Theorem: For any shape S, there is a
constant c so that 5S¢ can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) € S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree,
SIAM Journal on Computing 2007]

Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

S S

scale factor 3

Theorem: For any shape S, there is a
constant c so that 5S¢ can be self-
assembled with O(k / log k) tile types,
where k is the length in bits 0

shortest program (input to a universa
Turing machine) that, on input (x,y),
indicates whether (x,y) € S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree,
SIAM Journal on Computing 2007]

Theorem (that we won’t prove): This is
optimal! No smaller tile system could self-
assemble any scaling of S. If one existed, we
could turn it into a program with < k bits
“describing” S in this way. (Why?)

Terminating output side

sunededoig

Terminating output side

op1s ndino

Input side

F1G. 5.1. Forming a shape out of blocks: (a) A coordinated shape S. (b) An assembly composed
of ¢ X ¢ blocks that grow according to transmitted instructions such that the shape of the final assembly
is S (not drawn to scale). Arrows indicate information flow and order of assembly. The seed
block and the circled growth block are schematically expanded in Figure 5.2. (c) The nomenclature
describing the types of block sides.

Programming a shape
(inaccurate cartoonish
overview) 1’

Programming a shape
(inaccurate cartoonish
overview) 1’

Programming a shape
(inaccurate cartoonish_
overview) ¥ _ -~

~

X
—

Programming a shape

(inaccurate cartoonish

~

overview) 1’

~

-~

~

X

—

\

\

~ I base-conversion to

produce Kk bits from
k /log k tile types
v

NN ENENENE

Programming a shape

(inaccurate cartoonish

~ I base-conversion to

overview)

y _ -
~
~
X
—
N
\
\
\
\
\

produce Kk bits from
k /log k tile types
v

program—wew |
for UTM

input to P <:

oo ®

Programming a shape
(inaccurate cartoonish | - — — _ _ _ _ _ _ _ _

~

' y P produce k bits from
ove rVIeW) -~ I k /log k tile types
v

-~ I
1k A y N A A X I program\P
i > > for UTM |
< = v v > 0
PN S . | input to P <:3
< v \\v v > I
< a N |t > | slight modification of how P

A 4

“‘computes” shape S: P(X,y)
| computes spanning tree of
\ S, outputs children of point

\ I (xy)

4
<
—
<
-
<
P

%’
-
Y

Programming a shape
(inaccurate cartoonish | - — — _ _ _ _ _ _ _ _

~

' y P produce k bits from
ove rVIeW) -~ I k /log k tile types
v

-~ I
1; A | A 7 S § X I program\P
— > > for UTM | compute

<« L v v > ; 0 P 0,0
N : : | input to P <:E 0.0
> - |H>| | i
< YN\Y|Y > I
< > N > | slight modification of how P

A 4

“‘computes” shape S: P(X,y)
| computes spanning tree of
\ S, outputs children of point

\ I (xy)

4

<

—

<

~

<

>
%’

P
a

Programming a shape

v v

slight modification of how P
“‘computes” shape S: P(X,y)
| computes spanning tree of
\ S, outputs children of point

\ I (xy)
N
\

A

v
y/
>

(inaccurate cartoonish - - — _ _ _ _ _ _ _ _
_ ~ base-conversion to
" y P produce k bits from
overvi eW) -~ I k / log k tile types
-~ | ¢
y N A y N A A X I program\P
[- > for UTM | compute
v v > 0 P
:_ ;: . . : inputtoP<:E (0.0)
* [
[

A 4

4

<

—

<

~

<

>
%’

P
a

- - - - —_ e =

Programming a shape
(inaccurate cartoonish | - — — _ — — _ _ _ _ _

”~

' y P produce k bits from
ove rVIeW) -~ I k /log k tile types
v

[T
>
[
»
»
>
[
[
»

program—wew |
for UTM compute

I
I
I o P(0,0)
I
I

i)

v X

v

f
it

oo]

inputto P —__|

v v v

A A A

v v

slight modification of how P
“‘computes” shape S: P(x,y)
| computes spanning tree of
\ S, outputs children of point

\ I (xy)
N
\

A

v
y/
>

A 4 M v I

A 4

4

<

—

<

~

<

>
%’

P
a

| E—

Programming a shape |
(inaccurate cartoonish | - — — — _ _ _ _ _ _ _

”~

' y P produce k bits from
ove rVIeW) -~ I k /log k tile types
v

[T

program—wew |
for UTM compute

I
I
I o P(0,0)
I
I

i)

v X

v

f
it

oo]

inputto P —__|

v v v

A A A

v v

g slight modification of how P

v I “‘computes” shape S: P(x,y)
| computes spanning tree of
\ S, outputs children of point

A

v
y/
>

A 4

4

<

—

<

~

<

>
%’

P
a

Programming a shape |
(inaccurate cartoonish_ | - — — _ _ _ _ _ _ _ L ____ _ ___.

”~

' y P produce k bits from
ove rVIeW) -~ I k /log k tile types
v

[T
>
[
»
»
>
[
[
»

program—wew |
for UTM compute

I
I
I o P(0,0)
I
I

i)

v X

v

17+
v v <
v v v

oo]

inputto P —__|

i compute
P(1,0)

A A A

v v

slight modification of how P
“‘computes” shape S: P(x,y)
viv|vy "\I" | computes spanning tree of
\ S, outputs children of point

4
v
y/

>

A 4 M v I

Compute
P(O"l)

Programming a shape
(inaccurate cartoonish_ | - — — _ _ _ _ _ _ _ L __ _ ___.

. ~ .
y P produce K bits from
ove rVIEW) -~ I k /log k tile types
v

- |

program—wew |
for UTM

—

> |
I inputto P —__|
I
I

—

compute
P(0,0)

o[o] ©

i compute
P(1,0)

\ slight modification of how P

I “‘computes” shape S: P(x,y)
| computes spanning tree of
\ S, outputs children of point

Compute
P(O"l)

More accurate detailed overview

seed block

output
nﬂ [L} S m

output
D01801...
omp _'___Hon

compl

~computation

g unpackin 5l
~, unp g~

#

acking

~Seed frame-!
~ unpacking

F .

unp
\\.
#

-~ Furyoedun

L
\

nduwos -

uong)

[—=

CT10ST10°
mdino

..011501...
output

growth block

output
nu n S n

output
nﬂ ES“

~T0ST0

halt
<

—
computation
2
<

~

.011S01...
1mnput

mdino

wistad
raseyd puooas

Y
UOne[NWIS JALL
aseyd sa1y

fully-detailed
example of
growth block

Terminating output side

Terminating output side

Propagating output side of adjacent block

BT bNi 07 07 bYi T PN T T T PN AT BT

B BB BB BB BB BB BB BB B|B B B B B
A 0 0 A A A A A A A A B
) 0 0 A)) p))))}) B

A A Al A Al Al A Al Al X A A A

B 0 0 A A A A A A A A B

B 0 0 Y X \ Y p))) 1Y B
1 a1 il i 1l 1t 11 11 11 1 1 1 1

B A 0 A A A A A A A A B

B b 0) p)))))) B § O
1 i mm sls sls sls sls sls sls sls sls sls S[S a0

B A 101 | [0S A Y A b A A A A g ¢ B

I]) TO1 108)) X A X A)y A)2]
A Al AN B AR Alx Al A Al b A A A

B A 101 | 108 A A A A A A A B
E]) TO1 05 X A)) A pY P B :"',3'
A A AR A EE AR A Al AlA A A A Alg

B A 101 | 108 A A A A A A A B__|us
N)} TOL | 105)} 5)))))) B | &
A Al AlA AP AlA Al Al Ala b A A AR

B A 101 | 108 A A p) A A A A A B o
— B) TOT | 105 b)) p) p))) p) B _g,
A Al AlA AP Al Alx A Aln b A A A £

B A 101 | 108 A b)\ A A A A B v
— B)} TOT | 105 Yy)) p)) P} p) B | &=
A A 5 Al AP Al Alx AlA A

B A q10.] 108 A A A D3

B by 'EiﬁT' 105 | A A A D.
(ﬁ ele O ele [ele ele ele |[Da

B A g10 | 108 A) A X
— B A 710 | 105 A A p) A
A i R -Eﬂ_ (!'1 1{' [e|e [[5 [(& &

B A 0 qo A A A A A

B A 0 qox A p) p) B
(i [[[(J' [[[[[[[e

B A 0 go A b A A

B A 1] oA A A A A
B BlB BB BB BB BB BB B

B1 Al 01 S Al AT Al AT

3%‘ AT o7 ST AT AT T AT 1 AT

AN

wistid :aseyd puoodas

uone[nuwis AL :2seyd 1s11j

Two interpretations

as stated for single seed tile:

Theorem: For any shape S, there is a
constant ¢ so that 5¢ can be self-
assembled with O(k / log k) tile types,
where k is the length in bits of the
shortest program (input to a universal
Turing machine) that, on input (x,y),
indicates whether (x,y) € S.

Two interpretations

as stated for single seed tile:

Theorem: For any shape S, there is a
constant ¢ so that 5S¢ can be self-
assembled with{O(k / log k) tile types)
where k is the length in bifs of the
shortest program (input £o a universal
Turing machine) that, gh input (x,y),
indicates whether (x,y) € S.

most of the tile complexity is encoding the
binary string representing the program P
that encodes shape S, and O(1) tile types can
read that string and self-assemble 5S¢ from it.

Two interpretations

as stated for single seed tile: alternative statement for larger seed:

Theorem: For any shape S, there is a
constant ¢ so that S¢ can be self-

assembled with{O(k / log k) tile types) Theorem: There is a single set T of tile

where k is the length in bifs of the types (O(1) tile types), so that, for any

shortest program (input £o a universal finite shape S, there a constant c and a
Turing machine) that, of input (x,y), seed assembly o “encoding” S, so that
indicates whether (x,yf € S. T self-assembles S¢ from o..

most of the tile complexity is encoding the

binary string representing the program P]I?fogfam\p
that encodes shape S, and O(1) tile types can Oc = or UTM 0
read that string and self-assemble S¢ from it. input to P <:5

TWO I ﬂte r p FEtat I O n S i.e., Tis a universal set of tile types

that can self-assemble any shape,
by giving it the right seed.

as stated for single seed tile: alternative statement for larger seed:

Theorem: For any shape S, there is a
constant ¢ so that S¢ can be self-

assembled with{O(k / log k) tile types) Theorem: There is a single set T of tile
where k is the length in bifs of the types (O(1) tile types), so that, for any
shortest program (input £o a universal finite shape S, there a constant c and a
Turing machine) that, of input (x,y), seed assembly o “encoding” S, so that

indicates whether (x,) € S. T self-assembles S¢ from o..

most of the tile complexity is encoding the
binary string representing the program P program-—we,|
that encodes shape S, and O(1) tile types can Oc = for UTM

read that string and self-assemble 5¢ from it. input to P <:

)

olo]

Strict and weak self-assembly

Computability-theoretic questions about self-assembly

Strict and weak self-assembly

Recall:

Let X € Z2 be a shape, a connected subset
of Z2. O strictly self-assembles X if, for all
a€A[O],S, =X

(every terminal producible assembly has shape X)

57

Strict and weak self-assembly

Recall:

Strict and weak self-assembly

Recall:

e D

Let X € Z2 be a shape, a connected subset
of Z2. O strictly self-assembles X if, for all
a€A_[O],S, =X

(every terminal producible assembly has shape X)
A 4

p
Let X € Z2. © weakly self-assembles X if there

is a subset B € T (the “blue tiles”) such that,
foralla € A_[@], X = a”}(B).

(every terminal producible assembly puts blue tiles
exactly on X.)

A

-

Tile system on right strictly self-assembles the
whole second quadrant, and it weakly self-
assembles the discrete Sierpinski triangle.

(=10 =]
(=3 [=]

O=Q OmQ OomQ

(=] N=]
(=] K=

OmD Om(Om(Q

oo

OmD OmQ om0

(=0 §=1 (=1 =1

(=0 =]

Om0O

(=4 [=] =]
oRo (=]

(=1 [=]

=N 1=}

L] om0 om0

(=] [=1
ol oe

oo (=0 §=] (=0 L=
-

O=0 1

[y

57

Strict self-assembly

Observation: There is an infinite
shape S € Z? that cannot be strictly
self-assembled by any tile system.

Strict self-assembly

Strict self-assembly

Observation: There is an infinite
shape S € Z? that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Strict self-assembly

Observation: There is an infinite
shape S € Z? that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Observation is non-constructive:
Doesn’t tell us what is the shape S.
Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Strict self-assembly

Observation: There is an infinite
shape S € Z? that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Observation is non-constructive:
Doesn’t tell us what is the shape S.
Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Homework problem: you will show that any
shape S € Z? that can be strictly self-assembled
is also computably enumerable.

Use that fact now to define an explicit shape
that cannot be strictly self-assembled.

Strict self-assembly

Observation: There is an infinite
shape S € Z? that cannot be strictly
self-assembled by any tile system.

Proof:
There are uncountably many shapes
but only countably many tile systems.

Observation is non-constructive:
Doesn’t tell us what is the shape S.
Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Homework problem: you will show that any
shape S € Z? that can be strictly self-assembled
is also computably enumerable.

Use that fact now to define an explicit shape
that cannot be strictly self-assembled.

path in block n has a “turnout” if and only if n’th
Turing machine halts on empty input

7 T

&

St I"I Ct Se H:‘a ssem b ‘y Homework problem: you will show that any

shape S € Z? that can be strictly self-assembled
is also computably enumerable.

Observation: There is an infinite
shape S C Z? that cannot be strictly Use that fact now to define an explicit shape

self-assembled by any tile system. that cannot be strictly self-assembled.

path in block n has a “turnout” if and only if n’th
Turing machine halts on empty input

There are uncountably many shapes
but only countably many tile systems. /\\

&

Proof:

Observation is non-constructive: .o
Doesn’t tell us what is the shape S. 0 1 2 3 4 5 6

Can we devise a concrete example of
a shape that cannot be strictly self-
assembled?

Question: Is there a computable shape S € Z? that
cannot be strictly self-assembled?

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:
Scott Summers] SO

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:
Scott Summers] SO Sl

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:
Scott Summers] SO Sl SZ

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:

Scott Summers] SO Sl SZ 83

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:

Scott Summers] SO Sl SZ 83

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:

Scott Summers] SO Sl SZ 83

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:

Scott Summers] SO Sl SZ 83

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

[slide credit:

Scott Summers] SO Sl SZ 83 84

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

* Sis known as the discrete Sierpinski triangle...

[slide credit:

Scott Summers] SO Sl SZ 83 84

A famous fractal

* LetS,=1{(0,0) }
* Let V={(0,0), (0,1), (1,0) } be three vectors for “recursive translation”.

* Sis known as the discrete Sierpinski triangle...

Observation: S is computable (easily).

[slide credit:

Scott Summers] SO Sl SZ 83 84

The ¢

strict

iscrete Sierpinkski triangle cannot be
v self-assembled

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

60

The c

strict

iscrete Sierpinkski triangle cannot be
v self-assembled

g N
Proof:
1. The shape is a tree: no cycles in the
grid graph.
)

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

60

The discrete Sierpinkski triangle cannot be

strictly self-assemblec

p
Proof:

. 1. The shapeis a tree: no cycles in the

: grid graph.

2. The x-axis has infinitely many pinch
points: points where the subtree
above the point is distinct from any
other pinch point.

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

60

The ¢

iscrete Sierpinks

strict

<i triangle cannot be

v self-assemblec

Proof:
1. The shapeis a tree: no cycles in the
grid graph.

2. The x-axis has infinitely many pinch
points: points where the subtree
above the point is distinct from any
other pinch point.

3. The north glue must be distinct at each
pinch point, so no finite tile set suffices
to self-assemble X. QED

[Lathrop, Lutz, Summers, Strict self-assembly of discrete
Sierpinski triangles, Theoretical Computer Science 2009.]

60

Weak self-assembly

Theorem: Every computable set X © N,
“embedded straightforwardly” in Z?,
can be weakly self-assembled.

Turing machine M computes
= X; tiles sequentially simulate
Mon all inputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

61

Theorem: Some computable sets X € Z?

We d k Se H:—a SSem b ‘y cannot be weakly self-assembled.

Theorem: Every computable set X © N,
“embedded straightforwardly” in Z?,
can be weakly self-assembled.

Turing machine M computes
= X; tiles sequentially simulate
Mon all inputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.] [Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 206018.]

Weak self-assembly

Turing machine M computes
X; tiles sequentially simulate
Mon allinputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 206018.]

Weak self-assembly

Turing machine M computes
X; tiles sequentially simulate
Mon allinputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 206018.]

Weak self-assembly

Turing machine M computes
X; tiles sequentially simulate
Mon allinputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 206018.]

Weak self-assembly

Turing machine M computes
X; tiles sequentially simulate
Mon allinputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 206018.]

Weak self-assembly

Turing machine M computes
X; tiles sequentially simulate
Mon allinputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 206018.]

Weak self-assembly

Turing machine M computes
X; tiles sequentially simulate
Mon allinputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 206018.]

Weak self-assembly

Theorem: Every computable set X © N,
“embedded straightforwardly” in Z?,
can be weakly self-assembled.

Turing machine M computes
X; tiles sequentially simulate
Mon all inputs O, 1, 2, ...,

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

Theorem: Some computable sets X € Z?
cannot be weakly self-assembled.

Proof:
1. The Time Hierarchy Theorem says there is a computable set A € {1}*

not computable in O(n?) time.
2. Let R={]|x| : x € A} be the set of lengths of strings in A.
3. Define X € Z2 to be the set of “concentric diamonds” whose L, radii are

inR,e.g.,ifR={1,4,8, ..} 4)/

X
- — — 4+ — — >
v

4,

Suppose X could be weakly self-assembled. Then simulating self-
assembly for (2n)? steps necessarily places a tile at some point at L,
radius n from the origin; the tile’s color tells us whethern E R & 1" € A.

[Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Theorem: Some computable sets X € Z?

V\/e d k Se H:—a SSéem b |y cannot be weakly self-assembled.

Proof:

1. The Time Hierarchy Theorem says there is a computable set A € {1}*

Theorem: Every computable set X S N, not computable in O(n%) time.

“embedded straightforwardly” in Z2, 2. Let R={|x]| : x € A} be the set of lengths of strings in A.
can be weakly self-assembled 3. Define X € Z2 to be the set of “concentric diamonds” whose L, radii are
' inR, eg., ifR={1,4,8, ..} J
p
X
- — — 4+ — — >
v

Turing machine M computes 4. Suppose X could be weakly self-assembled. Then simulating self-

X; tiles sequentially simulate assembly for (2n)? steps necessarily places a tile at some point at L,
| M on allinputs 0, 1, 2, ..., radius n from the origin; the tile’s color tells us whethern € R & 1" € A.

5. This can be done in time O(n?*) time (why?), a contradiction. QED

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.] [Lathrop, Lutz, Patitz, Summers, Computability and Complexity in Self-Assembly, CiE 2008.]

Randomized self-assembly

Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.

Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.

* O(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.

* O(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

* We’ll see how to get this down to O(1) with high probability by
concentration programming.

Tile complexity of universal shape construction

* Recall: if we can have a seed structure encoding a shape S (in a binary
string x € {0,1}’, in glues on one side), we can self-assemble some
scaling S¢ of S with O(1) additional tile types that read and interpret x.

* O(K(x) / log K(x)) tile types are necessary and sufficient to create x
from a single seed tile in the aTAM. (K(x) = length in bits of shortest
program for universal Turing machine that prints x)

* We’ll see how to get this down to O(1) with high probability by
concentration programming.

* i.e., move the effort from designing new tile types to (the plausibly simpler
lab step of) altering concentrations of existing tile types

Nondeterministic binding

Nondeterministic binding

/ 1 G concentration 11

concentration 1

Nondeterministic binding

/ 1 G | concen tration 11
\. cccccc tration 1

Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006] / concentration 11
seed 1
\. concentration 1

Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006] /. concentration 11
\. concentration 1
expected length 12
A

_

Programming polymer length with concentrations
[Becker, Rapaport, Rémila, FSTTCS 2006] /. concentration 11
\. concentration 1

expected length 12

Large variance

d 1]

[%2]
H
(1]

Programming polymer length (improved)

concentration 3
1 S concentration 1

eeeee

Programming polymer length (improved)

concentration 3
. concentration 1

3 "stages", each of
expected length 4

eeeee

Programming polymer length (improved)

. . . concentration 3
. concentration 1
expected length 12

A 3 "stages", each of
expected length 4

Programming polymer length (improved)

3 "stages", each of
expected length 4

seed 1|

expected length 12

Programming polymer length (improved)

3 "stages", each of
expected length 4

seed 1|

expected length 12

seed 1 1 S 2

Bounding the probability the length deviates
much from its mean

e r total stages, each with Pr[next tile increments stage] = p.

Bounding the probability the length deviates
much from its mean

* r total stages, each with Pr[next tile increments stage] = p.
* Let L(r,p) = total length; number of tile attachments until attaching 1l

Bounding the probability the length deviates
much from its mean

* r total stages, each with Pr[next tile increments stage] = p.
* Let L(r,p) = total length; number of tile attachments until attaching 1l

» Expected total length E[L(r,p)] =1/ p.

Bounding the probability the length deviates
much from its mean

* r total stages, each with Pr[next tile increments stage] = p.
* Let L(r,p) = total length; number of tile attachments until attaching 1l

» Expected total length E[L(r,p)] =1/ p.

e Recall: a binomial random variable B(n,p) = number of heads when
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

Bounding the probability the length deviates
much from its mean

* r total stages, each with Pr[next tile increments stage] = p.
* Let L(r,p) = total length; number of tile attachments until attaching 1l

» Expected total length E[L(r,p)] =1/ p.

e Recall: a binomial random variable B(n,p) = number of heads when
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

e forany n,r,p: Pr[L(r,p) £n] = Pr[B(n,p)2>r]

flipping a coin until flipping a coin n
the r'th heads & times results in
requires < n flips > r heads

Bounding the probability the length deviates
much from its mean

* r total stages, each with Pr[next tile increments stage] = p.
* Let L(r,p) = total length; number of tile attachments until attaching 1l

» Expected total length E[L(r,p)] =1/ p.

e Recall: a binomial random variable B(n,p) = number of heads when
flipping a coin n times, with Pr[heads] = p. E[B(n,p)] = np.

e forany n,r,p: Pr[L(r,p) £n] = Pr[B(n,p)2>r]

flipping a coin until flipping a coin n
the r'th heads & times results in
requires < n flips > r heads

* similarly, Pr[L(r,p) 2 n] = Pr[B(n,p) <r]

Chernoff bound

Chernoff bound: For a binomial random variable
B(n,p) (recall E[B(n,p)] = np), and forany 0 <6< 1,
Pr[B(n,p) > (1+6)np] < exp(—62np/3)

Pr[B(n,p) < (1-8)np] < exp(—62np/2)

Chernoff bound

Chernoff bound: For a binomial random variable
B(n,p) (recall E[B(n,p)] = np), and forany 0 <6< 1,
Pr[B(n,p) > (1+6)np] < exp(—62np/3)

Pr[B(n,p) < (1-8)np] < exp(—62np/2)

Let & = 0.27 and set p such that r/p(1-6) = 2.
Let & = 0.44: then r/p(1+68’) = 2+1,

Applying this to our setting gives

Pr[L(r,p) is not between 2k1 and 2¢] < 2-:0.9421’

Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
) with probability > 99%, actual length in [2%1, 2K)

12 4 8 16 32

Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
) with probability > 99%, actual length in [2%1, 2K)

(@] =7 [8]=[s]=2

12 4 8 16 32

Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
) with probability > 99%, actual length in [2%1, 2K)

(@] =7 [8]=[s]=2

| IGlGIs|GIGIGIG[S[GIE

.G.

|_IGIGIGIGIS|GIGIG|GISIGIG]

| [GIGIG[SIGIGIG[S &

12 4 8

16 32

Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
) with probability > 99%, actual length in [2%1, 2K)

(@] =7 [8]=[s]=2

| IGlGIs|GIGIGIG[S[GIE

.G.

|_IGIGIGIGIS|GIGIG|GISIGIG]

| [GIGIG[SIGIGIG[S &

12 4 8

16

32

E =7 [m]=[s]~1

Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
) with probability > 99%, actual length in [2%1, 2K)

(@] =7 [8]=[s]=2

[_[c[cIsIGlG[G[G[s[cE
HEEEESEEEESEEEs
| [GIGIG[SIGIGIG[S &

ll 4 8 16 32
|_lclclclG|GlGlG[G[s[GIG|G|G|G[G[S]GIGIGIGIGIGIGIG|GIG]SI
[IGIGIGIGIGIGISIGIGIGIGIGIGIGIGIGIGISIGIGIGIGIGIG Sl
| lc|GlG|GIG[S|GIG|G|G|G|GIGIGIG[SIGIGIGIGISI :

E~7 [m]=[s]~1

Programming polymer length (improved)

if r = 90 stages, expected length midway in [2k-1, 2K)
) with probability > 99%, actual length in [2%1, 2K)

[] =/ [.] — [] =~ 2 i.e., we can’t target a precise length L,
but we can target precisely the number
HBEEHEEEEEE - . of bits [log L] in L’s binary expansion.

HEEEESEEEESEEEs
| [GIGIG[SIGIGIG[S &

ll 4 8 16 32
|_lclclclG|GlGlG[G[s[GIG|G|G|G[G[S]GIGIGIGIGIGIGIG|GIG]SI
[IGIGIGIGIGIGISIGIGIGIGIGIGIGIGIGIGISIGIGIGIGIGIG Sl
| lc|GlG|GIG[S|GIG|G|G|G|GIGIGIG[SIGIGIGIGISI :

E~7 [m]=[s]~1

Programming polymer length 2 precisely

256

Programming polymer length 2 precisely

1 2 3 4 5 6 7 8 128 255 256

Programming polymer length 2 precisely

distance
from seed

I\
11111 /O\
1110011 \O}
11017011]|0]|1 \O/
G|G|G |G |S |G| S |G S G.
1 2 3 4 5 6 7 8 128 255 (256

Programming polymer length 2 precisely

distance _
from seed signal to stop at
next power of two

I\
11111 /O\
1110011 \O}
1,010 1]O0 1\0
G|G|G |G |S |G| S |G S| G
1 2 3 4 5 6 7 8 128 255 (256

Programming polymer length 2 precisely

distance
from seed

signal to stop at
next power of two

T\

121 0|
111,001 1\0}
17010101 \O/
eed | G | G| G |G |S |G| S |G

128

PR, P RP|IRP|RP|RP|PR

1117111
O] 0|0[0]|O
0] 0|0[0]|O
1117111
\O O] 0|0 |1
N1} 1|1/(0
0 \) 1(11]0
0 1\ 0|10
S| G S| S

S

255 256

Programming polymer length 2 precisely

0 1 2 3 4 5 6 7 8 128

Programming a binary string

1101
13 in binary

Programming a binary string

length 2X 1101
13 in binary

Programming a binary string

1101
13 in binary

Programming a binary string

@)
wG)
wG)
w()
W)

compete in

Bernoqlli trials

concentration concentration
13.5/16 1-13.5/16

wG)

oW

o)

o)

@)

0]

1101
13 in binary

Programming a binary string

1101
13 in binary

eed | G | GG |G| S |G| S |G S|S|S

compete in
Bernoulli trials

m

concentration concentration
13.5/16 1-13.5/16

Programming a binary string

1101
13 in binary

0 1 1 2 2 3 4 4 5

compete in
Bernoulli trials

m

concentration concentration
13.5/16 1-13.5/16

Programming a binary string

0 1 1 2 2

compete in
Bernoulli trials

m

concentration concentration
13.5/16 1-13.5/16

=<t | G |G| G|G|S|G|S |G S|S
o110 0(21|0]|0O0 /1\
1|1 1/ 01|0 (O #lle
tiles

3 4 4 5

with high probability,
13/16 < fraction of. < 14/16

(again by Chernoff bound)

P |k, |O|lR|O|FR,|O|R

1101
13 in binary

Programming a binary string

(110D

13 in binary

=<t | G |G| G|G|S|G|S |G S|S
o110 0(21|0]|0O0 /1\
1|1 1/ 01|0 (O #lle
tiles
1 1 \1/
0 1 1 2 2 3 4 4 5

compete in
Bernoulli trials

m

concentration concentration
13.5/16 1-13.5/16

with high probability,
13/16 < fraction of. < 14/16

(again by Chernoff bound)

low-order bits
>

absorb error

O |k, | O |k

R | O

e

-

Programming a shape
(inaccurate cartoonish
overview) 1’

Programming a shape
(inaccurate cartoonish
overview) 1’

Programming a shape
(inaccurate cartoonish_
overview) ¥ _ -~

~

X
—

Programming a shape

(inaccurate cartoonish

~

overview)

y

~

~

-~

X
—

\

\

- | Sampling tiles to

(probably) produce
a binary string

v

NN ENENENE

Programming a shape

(inaccurate cartoonish

- | Sampling tiles to

overview)

y

~

~

-~

~

X
—

\

\

(probably) produce
a binary string

v

program—wew |
for UTM

input to P <:

oo ®

Programming a shape
(inaccurate cartoonish_

overview)

y

-~

~

v X

v

\ 4 A 4 <&

v \ 4 A 4

Al A | 4 f

v

A

[

A 4 v

A 4

-
, <

(probably) produce
a binary string

v

program—wew |
for UTM

i)

I

I

I input to P <:
I

I

I

ofo]

slight modification of how P
“‘computes” shape S: P(X,y)
| computes spanning tree of
S, outputs children of point

I (xy)

Programming a shape
(inaccurate cartoonish |, - — — — — — _ _ _ _ _

. -
y P (probably) produce
OVETVI eW) -~ I a binary string
¥
program—__,|
for UTM compute

|

|

| input to P <: P(0.0)
|

|

|

U

v X

v

oo]

\ 4 A 4 <&
v \ 4 A 4

Al A | 4 f

P
<

V3

e

P

<

P

<

v v

v
y/
>

A

slight modification of how P
“‘computes” shape S: P(X,y)
| computes spanning tree of
\ S, outputs children of point

\ I (xy)

A 4

4

<

—

<

~

<

>
__:7f'

P
a

Programming a shape
(inaccurate cartoonish |, - — — — — — _ _ _ _ _

. -
y P (probably) produce
OVETVI eW) -~ I a binary string
¥
program—__,|
for UTM compute

|

|

| input to P <: P(0.0)
|

|

|

[T
>
[
»
»
>
[
[
»

i)

v X

v

oo]

P 4
v v &

v v v

A | A A f
v
<

v v

slight modification of how P
“‘computes” shape S: P(X,y)
| computes spanning tree of
\ S, outputs children of point

\ I (xy)
N
\

A

v
y/
>

A 4

4

<

—

<

~

<

>
__:7¢'

P
a

- - - - —_ e =

Programming a shape
(inaccurate cartoonish | - — — _ — — _ _ _ _ _

. -
y (probably) produce
OVETVI eW) -~ - I a binar;istring

program—wew |
for UTM compute

I
I
I o P(0,0)
I
I

[T
>
[
»
»
>
[
[
»

i)

v X

v

f
it

oo]

inputto P —__|

v v v

A A A

v v

slight modification of how P
“‘computes” shape S: P(x,y)
| computes spanning tree of
\ S, outputs children of point

\ I (xy)
N
\

A

v
y/
>

A 4 M v I

A 4

4

<

—

<

~

<

>
%’

P
a

| E—

Programming a shape |
(inaccurate cartoonish | - — — — — — _ _ _ _ _

. -
y (probably) produce
OVETVI eW) -~ - I a binar;istring

program—wew |
for UTM compute

I
I
I o P(0,0)
I
I

[T
>
[
»
»
>
[
[
»

i)

v X

v

f
it

oo]

inputto P —__|

v v v

A A A

v v

g slight modification of how P

v I “‘computes” shape S: P(x,y)
| computes spanning tree of
\ S, outputs children of point

A

v
y/
>

A 4

4

<

—

<

~

<

>
%’

P
a

Programming a shape |
(inaccurate cartoonish_ | - — — _ _ _ _ _ _ _ L ____ ____.

. -
y (probably) produce
OVETVI eW) -~ - I a binar;istring

program—wew |
for UTM compute

I
I
I o P(0,0)
I
I

[T
>
[
»
»
>
[
[
»

i)

v X

v

17+
v v <
v v v

oo]

inputto P —__|

i compute
P(1,0)

A A A

v v

slight modification of how P
“‘computes” shape S: P(x,y)
viv|vy "\I" | computes spanning tree of
\ S, outputs children of point

4
v
y/

>

A 4 M v I

Compute
P(O"l)

Programming a shape
(inaccurate cartoonish_ | - — — _ _ _ _ _ _ _ L __ ____.

. -~
y (probably) produce
overview) J _ - | Sty st
-~

program—_,|

for UTM

[

| compute
[—

[

[

P(0,0)

o[o] ©

input to P =N

i compute
P(1,0)

\ slight modification of how P

I “‘computes” shape S: P(x,y)
| computes spanning tree of
\ S, outputs children of point

Compute
P(O"l)

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

0

omE
g8 e s

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape
(with high probability) by mixing them in the right concentrations.

0

omE
g8 e s

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape

rrrrrrr

@ 4
[|
o g
o :
-
e
e
P

=

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Other plausible modifications of aTAM model
that can reduce tile complexity

e staged self-assembly:
e https://doi.org/10.1007/s11047-008-9073-0

* temperature programming:
* https://dl.acm.org/doi/10.5555/1109557.1109620

74

https://doi.org/10.1007/s11047-008-9073-0
https://dl.acm.org/doi/10.5555/1109557.1109620

The power of nondeterminism in
self-assembly

Can nondeterminism help to
self-assemble shapes?

Nondeterminism in Biology
N (¢

enetic mutation

~

ytoskeleton formation

(G

Nondeterminism can allow complex structures
to be created from a compact encoding.

Nondeterminism in Computer Science

[Algorithm types:]

Power

Nondeterminism in Computer Science

[Algorithm types:]

Deterministic: entire
computation uniquely
determined by input

Power

Nondeterminism in Computer Science

[Algorithm types:]

Randomized:

flips coins; realistic

Deterministic: entire

computation uniquely
determined by input

Power

Nondeterminism in Computer Science

- : Nondeterministic:
[Algorithm types:] flips coins; magical

Randomized:
flips coins; realistic

Deterministic: entire
computation uniquely
determined by input

Power

Nondeterminism in Computer Science

- : Nondeterministic:
[Algorithm types:] flips coins; magical

Randomized:
flips coins; realistic

Trivially nondeterministic — _
(“pseudodeterministic”): Deterministic: entire
flips coins, but final output | | cOMputation uniquely
independent of flip results | |determined by input

Power

Nondeterminism in Self-Assembly

Perhaps:

i

> 2 potential /

binding sites

Nondeterminism in Self-Assembly

1
N
N
‘ seedE

Perhaps:

X . Either could

= 2 potential / bind first, but ...
binding sites ay

Nondeterminism in Self-Assembly

Perhaps:

= 2 potential
binding sites

i

1

N E
/

o

1
N
N
seedE ~

Either could
bind first, but ...

> [E

... only one possible
terminal assembly.

N

[1]
N 1 1
seedE I seedE| [E

‘ So the tile set is

still deterministic.

Nondeterminism in Self-Assembly

Perhaps:
= 2 potentig
bindg*Sites

N

2P0 e possible
N erminal assembly.
y & | e
- I
&L could) o
1 bind fireeen | (e
g
~ I~ s
still determir

More meaningful:

at a single binding
site, = 2 tile types
attachable

5
L/

If tile types
compete ...

Nondeterminism in Self-Assembly

one possible

Perhaps: — .erminal assembly.
. &L could =

> 2 potentig / bind i et [SElET| [

etis

bindueSites > a ft(ijlldte.rl

More meaningful: s L
g se’::ldE

/ /l
: : : ... 2 2 possible
at a Slngle blndlng ;. terminal assemblies.

site, = 2 tile types t 1
ile types N -I—
attachable compete .. Ry

Nondeterminism in Self-Assembly

Atile set is deterministic if it has only one
terminal assembly (map of tile types to points).

Nondeterminism in Self-Assembly

. Atile set is deterministic if it has only one
terminal assembly (map of tile types to points).

. This tile set has multiple terminal assemblies,
but they all have the same shape.

R
ESN

- The tile set self-assembles a 2 x 2 square.

l

Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic
tile set also self-assemble S?

Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

In this example, we can
convert this nondeterministic
tile set that self-assembles a

2 X 2 square ...

R

A
N t j 1
seedE E

Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

In this example, we can
convert this nondeterministic

tile set that self-assembles a . L
... to this deterministic tile set that
2 X 2 square ...
self-assembles the same shape.

nh ~ :
.'. =) g

N 1 N 1
seedE E seedE E

In general???

Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondeterministic tile set. Does some deterministic

tile set also self-assemble S?

Answer: Trivially yes. deterministic tile set
(hard-coding S)

nondeterministic shape S > .
tile set | |

N R E

== > |, w,E w

Power of Nondeterminism

Question: Let S be a finite shape self-assembled by
some nondetermmlstlc tlle set. Does some deterministic

tile set alg T

Answer: T IS there some way that
nondeterminism helps to
self-assemble shapes?

i i
&= 5 N N
P P = =

ministic tile set
-coding S)

nondetermir
tile set

| nE==)>
B

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-
assembled by some nondeterministic tile system with Kk
tile types. Does some deterministic tile system with at
most K tile types also self-assemble S?

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?

Question 2: Let S be a finite shape strictly self-
assembled by some nondeterministic tile system with Kk
tile types. Does some deterministic tile system with at
most K tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?
Answer: No

Question 2: Let S be a finite shape strictly self-
assembled by some nondeterministic tile system with Kk
tile types. Does some deterministic tile system with at
most K tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?
Answer: No

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?
Answer: No

Question 2: Let S be a finite shape strictly self-
assembled by some nondeterministic tile system with Kk
tile types. Does some deterministic tile system with at
most K tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?
Answer: No

There is an infinite shape
S strictly self-assembled
by only nondeterministic
tile systems.

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly self-
assembled by some nondeterministic tile system. Does
some deterministic tile set also self-assemble S?

Is tile computability unaffected by nondeterminism?
Answer: No

Question 2: Let S be a finite shape strictly self-
assembled by some nondeterministic tile system with Kk
tile types. Does some deterministic tile system with at
most K tile types also self-assemble S?

Is tile complexity unaffected by nondeterminism?
Answer: No

There is an infinite shape
S strictly self-assembled
by only nondeterministic
tile systems.

There is a finite shape S
strictly self-assembled
with at most k tile types
by only nondeterministic
tile systems.

Power of Nondeterminism

Question 1: Let S be an Infinite shape strictly self- There is an infinite shape
assembled by some nondeterministic tile system. Does | S strictly self-assembled
some deterministic tile set also self-assemble S? by only nondeterministic
Is tile computability unaffected by nondeterminism? tile systems.

Answer: No [Remainder of talk]

/

‘Question 2: Let S be a finite shape strictly self- ") Thereis a finite shape S
assembled by some nondeterministic tile system with k | = strictly self-assembled
tile types. Does some deterministic tile system with at with at most k tile types
most K tile types also self-assemble S? b}' only nondeterministic
Is tile complexity unaffected by nondeterminism? tile systems.
\Answer: No

Optimization Problems

MINTILESET

Given: finite shape S
Find: size of smallest tile system that self-assembles S

Optimization Problems

MINTILESET

Given: finite shape S
Find: size of smallest tile system that self-assembles S

I\/I@ETTMESET

Given: finite shape S
Find: size of smallest deterministic tile system that self-assembles S

Optimization Problems

MINTILESET

Given: finite shape S

Find: size of smallest tile system that self-assembles S
MINDETTILESET

Given: finite shape S
Find: size of smallest deterministic tile system that self-assembles S

False statement: Nondeterminism does not affect tile complexity:
for every nondeterministic tile set of size k that self-assembles a shape S,
there is a deterministic tile set of size at most k that self-assembles S.

Optimization Problems

MINTILESET

Given: finite shape S

Find: size of smallest tile system that self-assembles S
MINDETTILESET

Given: finite shape S
Find: size of smallest deterministic tile system that self-assembles S

False statement: Nondeterminism does not affect tile complexity:
for every nondeterministic tile set of size k that self-assembles a shape S,
there is a deterministic tile set of size at most k that self-assembles S.

if true, would imply MINDETTILESET = MINTILESET

Main Result

We show: MINTILESET is NPNP-complete.
a.k.a., 2y

MINDETTILESET IS NP-complete. (adieman, cheng,
Goel, Huang, Kempe, Moisset de Espanés, Rothemund, STOC 2002)

NP # NPNP = MINTILESET # MINDETTILESET

Nondeterminism in Algorithms and Self-Assembly

Algorithm that flips Tile set that flips

coins but always coins but always

produces same output | | produces same shape
coin flips useless coin flips useful

But ... finding smallest tile
set Is harder if it flips coins.

A Finite Shape for which Nondeterminism
Affects Tile Complexity

. Smallest tile set: = 2h
tile types

A Finite Shape for which Nondeterminism
Affects Tile Complexity

. Smallest tile set: = 2h A
tile types
. Smallest deterministic >h

tile set: = 3h tile types

A Finite Shape for which Nondeterminism
Affects Tile Complexity

in NPNP-hardness reduction, compete to
assign bits to variable in Boolean formula

| A

. Smallest tile set: = 2h
tile types

. Smallest deterministic
tile set: = 3h tile types

NN EEN
PP g
v
-y

NPNP-hardness Reduction

NPNP-complete problem (Stockmeyer,Wrathall 1976):
AVCNF-UNSAT

Given: CNF Boolean formula ® with k+n input bits
X=X;...X, and y=y,...y,

NPNP-hardness Reduction

NPNP-complete problem (Stockmeyer,Wrathall 1976):
AVCNF-UNSAT

Given: CNF Boolean formula ® with k+n input bits
X=X;...X, and y=y,...y,

Question: is (AX)(Vy)~d(X,y) true?

NPNP-hardness Reduction

NPNP-complete problem (Stockmeyer,Wrathall 1976):
AVCNF-UNSAT

Given: CNF Boolean formula ® with k+n input bits
X=X;...X, and y=y,...y,

Question: is (AX)(Vy)~d(X,y) true?

Reduction goal: Given &, output shape S and integer c
such that (3x)(Vy)-~d(X,y) holds if and only if some tile
set of size at most ¢ self-assembles S.

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

Given a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

. Glven a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

. Create a tree shape Y that “encodes” . : r y

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

. Glven a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

. Create a tree shape Y that “encodes” . : r y

- Compute Y's minimal tile set T. (c=T)

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

. Glven a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

- Compute Y's minimal tile set T. (c=T)

. Create a tree shape Y that “encodes” . : r y
I |

- Create shape S D Y such that s

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

. Glven a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

. Create a tree shape Y that “encodes” . : r y
I |

- Compute Y's minimal tile set T. (c=T)

- Create shape S o Y such that s
- If @x)(Vy)~D(X,y), tiles from T can be altered to assemble S.

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

. Glven a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

. Create a tree shape Y that “encodes” . : r y
I |

- Compute Y's minimal tile set T. (c=T)

- Create shape S o Y such that s
- If @x)(Vy)~D(X,y), tiles from T can be altered to assemble S.

— Otherwise, tiles from T cannot be altered to assemble S.

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002).

. Glven a tree shape (no simple cycles), it is possible to
compute its minimum tile set in polynomial time.

- Compute Y's minimal tile set T. (c=T)

Create shape S o Y such that s
- If @x)(Vy)~D(X,y), tiles from T can be altered to assemble S.

Create a tree shape Y that “encodes” . : r y
I |

— Otherwise, tiles from T cannot be altered to assemble S.

- “Since Y € S,” every tile set that assembles S contains T, so if tiles
from T cannot be altered to assemble S then additional tiles are
needed; i.e., S requires more than c = |T| tile types.

Evaluation of Formula

Order variables w = w;...w,, (both 3 and V variables) and clauses C,... C
arbitrarily.

Evaluation of Formula

Order variables w = w;...w,, (both 3 and V variables) and clauses C,... C
arbitrarily.

Fix an assignment to variables.

Evaluation of Formula

Order variables w = w;...w,, (both 3 and V variables) and clauses C,... C
arbitrarily.

Fix an assignment to variables.

For each clause C; and variable w;, let a; be the pair (U/S, T/F) representing
whether C, is satisfied by w, for k < i, and whether w, is true or false.

Evaluation of Formula

Order variables w = w;...w,, (both 3 and V variables) and clauses C,... C
arbitrarily.

Fix an assignment to variables.

For each clause C; and variable w;, let a; be the pair (U/S, T/F) representing
whether C, is satisfied by w, for k < i, and whether w, is true or false.

The matrix A = (g;) looks like

w=0011
O=(w, Vwy) A(w, Vw,Vw,)A(-w,Vw,)

C,|SF|SF|ST|ST
C, |UF|UF|UT|ST
C, |UF|UF|ST|ST

Wy | W, | Wy | Wy

Evaluation of Formula

Order variables w = w;...w,, (both 3 and V variables) and clauses C,... C

arbitrarily.

Fix an assignment to variables.

For each clause C; and variable w;, let a; be the pair (U/S, T/F) representing
whether C, is satisfied by w, for k < i, and whether w, is true or false.

The matrix A = (g;) looks like

highlighting when C; goes from
unsatisfied (U) to satisfied (S)

w = 0011
D= (W, V wy) A (W, V w, V w,) A (~w,; V w,)
C,|SF|SF|ST|ST
C, |UF |UF |UT|ST
C, |UF |UF|ST|ST
Wy | W, | Wy | W,

C; |USF | SSF|SST | SST
C, |UUF|UUF|UUT [UST
C, |UUF|UUF | UST | SST

Wy | W, | Wy | W,

Gadgets (Adleman et al. 2002)

1 IE\E 5 =

branch point p
UST

For each variable w; and clause C;, value of w; = T/F and

SS; — C, satisfied by a previous variable (w, for k <)
US; — C; unsatisfied by previous variables but is satisfied by w;
UU; — C; unsatisfied by previous variables and by w;

Shape S .

G

G

for assighing for assigning
3 variables V variables

L e

X; X X; Y y, middle gadgets top gadgets right satisfied right unsatisfied false true false true
gadgets gadgets

plllars

T, = tile types to self-assemble Y; size c = | Ty |
(Ix)(Vy)-D(x,y) is true < tiles in T, can be modified to self-assemble S

..

Shape S .

G

G

for assighing for assigning
3 variables V variables

N

y X X; y, middle gadgets top gadgets right satisfied right unsatisfied false true false true
e gadgets gadgets

by changing these glues

plllars X

T, = tile types to self-assemble Y; size c = | Ty |
(Ix)(Vy)-D(x,y) is true < tiles in T, can be modified to self-assemble S

Open Questions

- How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

- How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

. Hardness of approximation of minimum tile set problem

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)

Weak self-assembly (pattern painting): paint some tile types “black”, and say
“pattern assembled” is set of points with a black tile

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)

Weak self-assembly (pattern painting): paint some tile types “black”, and say
“pattern assembled” is set of points with a black tile

— Minimum tile set problem: uncomputable! (NP-complete with some restrictions:
https://arxiv.org/abs/1404.0967)

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Open Questions

How large is the gap between deterministic tile complexity and unrestricted tile
complexity? our example has ratio 3/2; Schweller (unpublished) improved to
guadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf

Hardness of approximation of minimum tile set problem

Minimum tile set problem when shape is a square

- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard
unless P=NP)

Weak self-assembly (pattern painting): paint some tile types “black”, and say
“pattern assembled” is set of points with a black tile

— Minimum tile set problem: uncomputable! (NP-complete with some restrictions:
https://arxiv.org/abs/1404.0967)

- Power of nondeterminism: is it possible to uniquely paint a pattern, but only by
assembling more than one shape on which the pattern is painted?

https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
https://arxiv.org/abs/1404.0967

Errors in algorithmic self-assembly

Errors in self-assembly

 abstract Tile Assembly Model (aTAM,
the model we’ve used so far):

* tiles attach but never detach
* tiles bind only with strength 2 or higher

Errors in self-assembly

 abstract Tile Assembly Model (aTAM,

errors

the model we’ve used so far):
* tiles attach but never detach
* tiles bind only with strength 2 or higher

95

Errors in self-assembly

 abstract Tile Assembly Model (aTAM, errors
the model we’ve used so far):
* tiles attach but never detach

* tiles bind only with strength 2 or higher

01 1110000[t/t 11040

001100[1/L00
QL010L040410L0L0LOLD

-_ A A A

e unrealistic... what’s a better model?

e e e T Y

95

Errors in self-assembly

 abstract Tile Assembly Model (aTAM,
the model we’ve used so far):

* tiles attach but never detach
* tiles bind only with strength 2 or higher

errors

oo gy RN

-_ A A A

e unrealistic... what’s a better model?

* kinetic Tile Assembly Model (kKTAM);
essential differences with aTAM:

 tiles can detach
* tiles can bind with strength 1

L1L0000LLLLOD

e e e T Y

Ll

Ll
00
00

95

Modeling errors: kinetic Tile Assembly Model

Modeling errors: kinetic Tile Assembly Model

Modeling errors: kinetic Tile Assembly Model

main cause of algorithmic errors: tile

* All tiles attach with rate r; (no matter how
many glues match)

Modeling errors: kinetic Tile Assembly Model

main cause of algorithmic errors: tile
* All tiles attach with rate r; (no matter how matches one glue but not the other

many glues match) <}>
* Tiles detach with rate r ,, if they are ({;)
attached by total glue strength b ffJ [l‘r,z @
r

Modeling errors: kinetic Tile Assembly Model

main cause of algorithmic errors: tile

« All tiles attach with rate r, (no matter how matches one glue but not the other
many glues match)

* Tiles detach with rate r ,, if they are
attached by total glue strength b

* “rate” = time until it occurs is exponential
random variable with that rate; expected
time 1/rate

Modeling errors: kinetic Tile Assembly Model

main cause of algorithmic errors: tile

« All tiles attach with rate r, (no matter how matches one glue but not the other
many glues match)

* Tiles detach with rate r ,, if they are
attached by total glue strength b

* “rate” = time until it occurs is exponential
random variable with that rate; expected
time 1/rate

* a.k.a., continuous time Markov process

Modeling errors: kinetic Tile Assembly Model

main cause of algorithmic errors: tile

« All tiles attach with rate r, (no matter how 2; matches one glue but not the other

many glues match)
* Tiles detach with rate r ,, if they are ({;)
rfJ [rr,z
N\, ’

attached by total glue strength b

* “rate” = time until it occurs is exponential
random variable with that rate; expected
time 1/rate

* a.k.a., continuous time Markov process

* Take home message: tiles bound with fewer
glues (potential errors) fall off faster, but
could get locked in by subsequent
neighboring attachment

KTAM simulators

* [SU TAS (developed by Matt Patitz) also does kTAM simulation:

* http://self-assembly.net/wiki/index.php?title=ISU TAS
* http://self-assembly.net/wiki/index.php?title=ISU TAS Tutorials

e xgrow (new version developed by Constantine Evans):
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow

» xgrow (original version developed by Erik Winfree)

* https://www.dna.caltech.edu/Xgrow/
e older and a bit less intuitive

97

http://self-assembly.net/wiki/index.php?title=ISU_TAS
http://self-assembly.net/wiki/index.php?title=ISU_TAS_Tutorials
https://github.com/DNA-and-Natural-Algorithms-Group/xgrow
https://www.dna.caltech.edu/Xgrow/

Tradeoft between assembly speed and errors

Tradeoft between assembly speed and errors

* attach rate r; can be controlled through
concentrations

Tradeoft between assembly speed and errors

* attach rate r; can be controlled through
concentrations

* “energy” of attachment is called G,
(monomer concentration): r; o«c e6me

Tradeoft between assembly speed and errors

* attach rate r; can be controlled through
concentrations
* “energy” of attachment is called G,
(monomer goncentration): I g-6me

* detach rate r,, can be controlled
through temperature

Tradeoft between assembly speed and errors

* attach rate r; can be controlled through
concentrations
* “energy” of attachment is called G,
(monomer goncentration): I g-6me

* detach rate r,, can be controlled
through temperature

* “energy” of detachment is called G,
(sticky end): r, , oc e=>Gse

Tradeoft between assembly speed and errors

* attach rate r; can be controlled through
concentrations

* “energy” of attachment is called G,
(monomer concentration): r; o« e6me

optimal
growth constant €

* detach rater,, can be controlled
through temperature low

[monomer]

|

* “energy” of detachment is called G,
(sticky end): r,, o e72Cse
* Intuitively, setting r,=r_, is like G
“temperature T = 2” assembly

mc

high

[monomer]

weak strong
bonds G bonds

s¢

(hot) (cold)

Tradeoft between assembly speed and errors

* attach rate r; can be controlled through
concentrations

* “energy” of attachment is called G,
(monomer concentration): r; o« e6me

optimal
growth constant €

* detach rater,, can be controlled
through temperature low

[monomer]

|

* “energy” of detachment is called G,
(sticky end): r,, o e72Cse
* Intuitively, setting r,=r_, is like G
“temperature T = 2” assembly
e ... but with net zero growth rate

mc

high

[monomer]

weak strong
bonds G bonds

s¢

(hot) (cold)

Tradeoft between assembly speed and errors

* attach rate r; can be controlled through
concentrations

* “energy” of attachment is called G,
(monomer concentration): r; o« e6me

optimal
growth constant €

* detach rater,, can be controlled

through temperature low
[monomer]
* “energy” of detachment is called G,
(sticky end): r,, o e72Cse
* Intuitively, setting r; = r_, is like G,
“temperature T = 2” assembly
e ... but with net zero growth rate
* make r; a little larger, and growth is faster, high
but error rates go up [monomer]
weak strong
bonds G bonds

s¢

(hot) (cold)

Tradeoff between assembly speed and errors

* attach rate r; can be controlled through
concentrations
* “energy” of attachment is called G,
(monomer goncentration): I g-6me

* detach rate r,, can be controlled
through temperature

* “energy” of detachment is called G,
(sticky end): r,, o e72Cse
* Intuitively, setting r,=r_, is like
“temperature T = 2” assembly
e ... but with net zero growth rate

* make r; a little larger, and growth is faster,
but error rates go up

Theorem [Winfree, 1998]: To have total
error rate ¢, for fastest assembly speed,
set G, = In(4/¢) and G, = In(8/¢g?),
i.e, G, =2G, . —1In2,ie,r/r,=2

optimal
growth constant €

low 4 T=2
[monomer]
no growth
T=1
G e
fast
random
aggregation
high =
[monomer]
weak strong
bonds G bonds 98

(hot) (cold)

Proofreading: Algorithmic error correction

k x k proofreading: replace each tile with all

strength-1 glues by a k x k block of tiles: s
' 2x2 block X
ieX (P = 0" s

Proofreading: Algorithmic error correction

k x k proofreading: replace each tile with all
strength-1 glues by a k x k block of tiles:

X 2x2_ block X
e

glues internal to the
block all unique

99

Proofreading: Algorithmic error correction

glues external to the block

_ _ _ come in k versions that each
k x k proofreading: replace each tile with all represent an original glue
strength-1 glues by a k x k block of tiles: @
@ 2x2 block X
i (4 tiles)

tile X

glues internal to the
block all unique

99

Proofreading: Algorithmic error correction

glues external to the block
come in k versions that each

k x k proofreading: replace each tile with all represent an original glue

strength-1 glues by a k x k block of tiles:

2x2 block X
tile X . / | (4 tiles)

glues internal to the
block all unique

Proposition: No tiling of the k x k region with “consistent external
glues” (all represent the same glue in original tile set) has m
mismatches, where 0 < m <k, i.e., if any mismatch occurs, then at
least k mismatches occur before the k x k block can be completed to
represent the wrong external glue.

Proofreading: Algorithmic error correction

glues external to the block
come in k versions that each

k x k proofreading: replace each tile with all represent an original glue

strength-1 glues by a k x k block of tiles:

. 2x2 block X
ileX ‘ (4 tles)

glues internal to the

block all unique Theorem(ish): If the error rate of the

original tile system is g, the error rate of
Proposition: No tiling of the k x k region with “consistent external the k x k proofreading tile system is O(g),

glues” (all represent the same glue in original tile set) has m e.g., if e=0.01, then 2 x 2 proofreading
mismatches, where 0 < m <k, i.e., if any mismatch occurs, then at gets error rate about €2 = 0.0001.

least k mismatches occur before the k x k block can be completed to

represent the wrong external glue.

Experimental algorithmic self-
assembly

Crystals that think

about how they’re growing

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin

slides for ECS 232: Theory of Molecular Computation

Inria Paris UC Davis Harvard

Acknowledgements ZZ5N
Caltech Inria Paris UC Davis Harvard
lab/science help
Da m ie N WOOdS E ri k WI nfree co-authors Sungwook Woo Constantine Evans
(co-first author) Cameron Myhrvold Peng Yin Sarina Mohanty Niranjan Srinivas

Deborah Fygenson Yannick Rondolez

Mingjie Dai Nikhil Gopalkrishnan
Chris Thachuk Nadine Dabby
Jongmin Kim Paul Rothemund
Bryan Wei Cody Geary

Ashwin Gopinath

Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Damien WoodsT, David Dotyt, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, Erik Winfree.
Nature 2019. TThese authors contributed equally.

102/48

Hierarchy of abstractions

=) Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
DNA: DNA strands implement tiles

103/48

Harmonious arrangement

Harmonious arrangement

104/48

Harmonious arrangement

0 1
1 1
1 1
0 1
1 0

104/48

Harmonious arrangement

1 1
0 1
1 0

104/48

Harmonious arrangement

1 1
0 1
1 0

104/48

Harmonious arrangement

104/48

Harmonious arrangement

104/48

Harmonious arrangement
0 1 1
1: :o’ :

1 1 1
o: :o’ : 1 N y

1 1
1” :1: : 0

Harmonious arrangement

oy

Harmonious arrangement

1 1 1

0 1
M,
0 1
2,
1\d 1

104/48

Harmonious arrangement

=N m R' [
:0' 1 1 1 121
O
| | |
1 14 0 1 1 1=:1:
|
|
131
1=:1
|
|
0=0
0=0
\ -

21! a.k.a. sorting

O - Paoer

11 1 0 1
soulliet
111 1 1 0
)

ha e =

Odd bits

Odd bits

1

’ r—ﬁ ————————————————————————————————— N
move 1's i :

0

to here = - —

105/48

Odd bits

1 0

’ r—ﬁ ————————————————————————————————— N
move 1's i

0 1 |

to here o

105/48

Odd bits

1 0

’ r—ﬁ ————————————————————————————————— N
move 1's i

0 1 |

to here o

105/48

Odd bits

1 0

’ r—ﬁ ————————————————————————————————— N
move 1's i

0 1 |

to here o

105/48

Odd bits

1 0

’ r—ﬁ ————————————————————————————————— N
move 1's i

0 1 |

to here \ e = 2 :GI _____________________________

105/48

Odd bits

1 0

’ r—ﬁ ————————————————————————————————— N
move 1's i

0 1 0 |

to here \ e = 2 :Gi _____________________________

105/48

Odd bits

1 0 0

0” :1 :o

1 0 1
move 1’s - :Qi ——————————————————————————————————
— 0 1 0 |

to here \ e = 2 :GI _____________________________

105/48

a.k.a. parity

Odd bits

o ﬁ Jol
m Jcli -l
B oE
-
-l -]
S -
< H, jo

Parity

106/48

Parity

106/48

Parity

—-—— . . o - . o e e e e e

111111

Parity

joleliyel
s e i) sl «
joliefiye]
X X
ol ﬂ o

o i
o} d jo}

Circuit model

0,

gate

gate: function with two input bits i,/
and two output bits o0,,0,

107/48

Circuit mode|

truth table

I, 1,]04 O,
0 0|0

0 1|1

i . 10(1

ate 1 1|0

gate: function with two input bits i,/
and two output bits o0,,0,

107/48

Circuit mode|

truth table

1 1

0, 0,

00
01
0, 10
gate 11

gate: function with two input bits i,/
and two output bits o0,,0,

0

1
1
0

0

0
0
1

107/48

Circuit mode|

Ly

108/48

Circuit model

Ly

108/48

Circuit mode|

Ly

Circuit mode|

Ly

A
7 rows in layer

N

_ /
0
0,

X’ J
_

/

e

one layer

108/48

Circuit mode|

Ly

P 4
7 rows in layer

N

)

_ /
0
0,

Y
N
-

one layer

b 0;

108/48

Circuit model

1]

O]
ENN
| PINGY
12
.
) (3
b, O
o » Yo

2 @/

Randomization: Each row may be assigned = 2 gates, with
associated probabilities, e.g., Pr[gxn] = Prlg€xal = %2

109/48

Circuit mode|

S of

Programmer specifies layer:
gates to go in each row

110/48

Circuit mode|

Programmer specifies layer:

gates to go in each row ®_’
User gives n input bits 3 e

110/48

Circuit model

Programmer specifies layer:
gates to go in each row

User gives n input bits

110/48

Example circuits with same gate in every row

Copy

R R, OOR R

Copy gates

I, 1,0, 0,
0 0j]O0 O
0 110 1
1011 O
1 111 1

il

111/48

¥ N TN "

Example circuits with same gate in every row

Copy gates

I, 1,0, 0,
0 0j]O0 O
0 110 1
1011 O
1 111 1

lity

111/48

Example circuits with same gate in every row

CopY Copy gates

. . Iy bloy o, %’
10000000000000000000 . Ly oolo o N
10000000000000000000) .,
: : 0 1|0 1 @
0 0
10000000000000000000 i 10(1 0 @ ,
10000000000000000000 1 1101 1

o~
—

\
SORTING SORTING gates
.. | o 0y
OR(i,,i,) olo o
111 O
' AND(i, iy ©°|t °
111 1

111/48

- = O O

Example circuits with different gates in each row

PARITY

Example circuits with different gates in each row

PARITY

P OFL,r OOR
OO OO0OOo

R O R R OR

112/48

O O OO oo

Example circuits with different gates in each row

PARITY

R O L OO K

OO L OO0OO0O
R O R R OR
O OO o oo

011011,

P P, OPR PO

112/48

Example circuits with different gates in each row

PARITY

R O L OO K

OO L OO0OO0O
R O R R OR
O OO o oo

011011, = 27,5 =39

P P, OPR PO

112/48

Example circuits with different gates in each row

PARITY

P OFL,r OOR
OO OO0OOo

R O R R OR
O OO o oo

011011, =273, =39 111011,

R R OR RO
R RO R R R

112/48

Example circuits with different gates in each row

PARITY

P OFL,r OOR
OO OO0OOo

R O R R OR
O OO o oo

011011, = 27,4 =3-9 111011, =59,9=3-19 + 2

R R OR RO
R RO R R R

112/48

Randomization: “Lazy” sorting

¢

If 1 and 0 out of order, flip a coin to copy gate

decide whether to swap them. °

sort gate

113/48

Randomization: “Lazy” sorting

000000000000000)!

00000000 @ 0

100000000000 0 e

If 1 and 0 out of order, flip a coin to copy gate

decide whether to swap them. e
00000} °

00000 0000
] 00000000000 000 000!
103 00000000000 @ 0 t oat
10000 0000000000000 0 sort gate
100000

o
\

o O

113/48

Deterministic CIrcults

PARITY MULTIPLEOF3

- J

\

answer yes/no question

114/48

Deterministic circuits

4)
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

3CD SHTRACKS
CCCCCCCCC
AN

114/48

Deterministic circuits

4)
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

| | -
\
i

LLLLLLLLL

114/48

Deterministic circuits

4)
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

(CYCLE63 “count” as high as possible)

1121314|5|6|7|8|9|10/11|12|13|14/15/16/17|18|19|20|21|22|23|24/25/26/27/28/|29/30|31|32|33|34/35/36/37|38|39/|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|6 1|62|63| 1 | 2

\. J

114/48

Deterministic circuits

4)
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

(CYCLE63 “count” as high as possible)

1/121314|5 6 71819|10[11{12[13|14]15|16|17|18|19|20[21|22|23|24|25|26|27|28|29[30[31(32[33[34[35[36[37|38[39|40[41|42[43|44|45|46|47|48[49|50[51|52[53[54(55|56|57|58|59|60|61(62[63| 1 | 2

\. J

(B RULE110 simulate cellular automata
o
=
-

_F)

114/48

Deterministic circuits

4)
PARITY MULTIPLEOF3 PALINDROME answer yes/no question

D SSTRACKS

COLLECTED

_

1121314|5|6|7|8|9|10/11|12|13|14/15/16/17|18|19|20|21|22|23|24/25/26/27/28/|29/30|31|32|33|34/35/36/37|38|39/|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|6 1|62|63| 1 | 2

\
e

J

. N\
simulate cellular automata

114/48

Deterministic circuits

[

_

PARITY MULTIPLEOF3

COLLECTED

PALINDROME

D SSTRACKS

\
answer yes/no question

\

1121314|5|6|7|8|9|10/11|12|13|14/15/16/17|18|19|20|21|22|23|24/25/26/27/28/|29/30|31|32|33|34/35/36/37|38|39/|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|6 1|62|63| 1 | 2

J

(»

[

F=

= | A A ° ° ° ° ™ Theorem: Rule 110 can efficiently

- R G R I vecute any algorith

[L4 - 00 ® 0006 oo 0 oo o oo o oo o tasacicitlAL AL

= 000 © 000 © 000 O 000 © 000 © 000 ©

E‘ 000000000000000000000000000000000000 (Cook, Complex Systems 2004]
L [3 [Neary, Woods, ICALP 2006] |

. N\
simulate cellular automata

114/48

Randomized circuits

LAZYPARITY

Randomized circuits

115/48

Randomized circuits

RANDOMWALKINGBIT

115/48

Randomized circuits

LAZYPARITY

RANDOMWALKINGBIT

DIAMONDSAREFOREVER [¥

115/48

Randomized circuits

LAZYPARITY

RANDOMWALKINGBIT . .

DIAMONDSAREFOREVER

FAIRCOIN 000000000000 . : ..’ e

. . [] [] o0 o0 o0 ®
use biased coin to e oo oo oo
simulate unbiased coin

115/48

Randomized circuits

LAZYPARITY Sl

RANDOMWALKINGBIT ' oo ot

DIAMONDSAREFOREVER

FAIRCOIN S0aS30stts 200000 S00s®

ZatedsiodstedSne =7

o0
use biased coin to oo oo e oo oo oo
simulate unbiased coin

for any (positive) probabilities for the randomized gate

115/48

116/48

M e

‘""‘ NG \‘“’&.(“ *FF TR

116/48

Hierarchy of abstractions

Bits: Boolean circuits compute
=) Tiles: Tile growth implements circuits
DNA: DNA strands implement tiles

117/48

Gates =2 Tiles

gate

i1 i2 o1 02

= O O
, O R, O
o ~ P
, O O

118/48

Gates =2 Tiles

gate

i1 i2 o1 02
O 0|0 O
O 111 O

truth table row is
1 0|1 O encoded by a tile with

4 glues encoding bits
1 1lo0 1 J J

118/48

Gates =2 Tiles e

gate

11 12 |01 O2
O 0|0 O
O 111 O

truth table row is
1 0|1 O encoded by a tile with

4 glues encoding bits
1 1lo0 1 J J

118/48

How tiles compute while growing
(algorithmic self-assembly)

119/48

How tiles compute while growing
(algorithmic self-assembly)

AV VA VAN

119/48

How tiles compute while growing
(algorithmic self-assembly)

119/48

How tiles compute while growing
(algorithmic self-assembly)

“data-free” tile wraps top
to bottom to form a tube

&

119/48

How tiles compute while growing
(algorithmic self-assembly)

“data-free” tile wraps top
to bottom to form a tube

&

119/48

How tiles compute while growing
(algorithmic self-assembly)

“data-free” tile wraps top
to bottom to form a tube

&

119/48

How tiles compute while growing
(algorithmic self-assembly)

“data-free” tile wraps top
to bottom to form a tube

&

119/48

How tiles compute while growing
(algorithmic self-assembly)

“data-free” tile wraps top
to bottom to form a tube

&

119/48

How tiles compute while growing
(algorithmic self-assembly)

“data-free” tile wraps top
to bottom to form a tube

&

119/48

How tiles compute while growing
(algorithmic self-assembly)

OS&

119/48

“data-free” tile wraps top
to bottom to form a tube

&

How tiles compute while growing
(algorithmic self-assembly)

>

*
*
*
*
*
>
>

one mismatch

two mismatches

“data-free” tile wraps top
to bottom to form a tube

&

119/48

How tiles compute while growing
(algorithmic self-assembly)

two glues match:
cooperative binding

. [tch
“data-free” tile wraps top ne mismate

to bottom to form a tube

o
s &

two mismatches

119/48

How tiles compute while growing
(algorithmic self-assembly)

two glues match:
cooperative binding

mismatch
@

two mismatches

“data-free” tile wraps top
to bottom to form a tube

&

119/48

Hierarchy of abstractions

Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
=) DNA: DNA strands implement tiles

120/48

DNA single-stranded tiles

Domain 4 Domain 3

‘\"n -'yﬂ

Domain1 Domain 2

assembly >

glue 4 glue 3

glue 1 glue 2

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif.
Programming DNA tube circumferences.
Science 2008

L1.1

L1.2

L1.3 L1.
2.3 uz2.4 I

lJ;;1I uz2.2 I U I
o M MU Ew Men o
U5.1 I us.2 I us.3 I us.4 I

USJI ue.2 I I

U6.3
2

L6.3

LJ2.5,

U6.4 Iiﬁéiél

L6.4

121/48

Single-stranded tiles for making any shape

Molecular canvas

=l -—-"_"-7 EEEECEEEEEEEEE = S E
IIfaeiIi) T ‘B E| ef6|H[T
ol W < LM[NoPolRISIT
- a T - \ L . B -
{ | EHEBIIRNBRINE

Fagle head A > [+ |~ |* [/ [¢]r[(]a
- EEaEER000E
e SRR o [P]E[B]y [V
= v e NEIRRBEEEEEE
Bryan Wei, Mingjie Dai, and Peng Yin. nunEEm

Complex shapes self-assembled from single-stranded DNA tiles.

Nature 2012. 122/48

Uniquely addressed self-assembly versus algorithmic

Unigue addressing: each DNA “monomer” appears exactly once in final structure.

uniquely-addressed tiles

Molecular canvas

single DNA origami
E=‘ -4 -IZoS-ITT ERRARARARRRRAR
= . — FElTI L EE
| T-oEoIET- e
 — e o o
— — \
—_— Ea_gl_e_hfad Triangle o

tile for position (4,2)
123/48

staple strand for position (4,2)

origami for position (4,2)

Uniquely addressed self-assembly versus algorithmic

Unigue addressing: each DNA “monomer” appears exactly once in final structure.

Algorithmic: DNA tiles are reused throughout the structure.
uniquely-addressed tiles

single DNA origami array of many DNA origamis
o
| — Irfoeil, Sl
B | I oI R
: - Te=T - o o o e
—] \
—_— Ea_gl_e_hfad Triangle o

tile for position (4,2)
123/48

staple strand for position (4,2)
origami for position (4,2)

Single-stranded tile tubes

DNA-level diagram of 20-helix tube

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. Programming DNA tube circumferences, Science 2008.

124/48

Seeded growth === =

single-stranded tiles
implementing circuit gates

———
O4 14 —
05 05
ﬁ
1 1 0 0
2 2
————
O4 O4 —
T —— 13 03
—
15 15
14 04
—————
—
05 15

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

125/48

Seeded growth === =

DNA origami seed

single-stranded tiles
implementing circuit gates

0, 1,
04]_4 —

— 05 05

—

1 1 0 0

2 2
——
| | O4 O4 —

T —— 13 03

—
15 15

1, 0,
————
—

05 15

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

125/48

Seeded growth === =

DNA origami seed

single-stranded “input-adapter” single-stranded tiles
extensions encoding 6 input bits implementing circuit gates
f 0, 1,
04 14 —
- S — 05 05
—
1, 1, 0, o,
| | 0, 0, —
" 13 03
—
15 15

A({_; 1, 0,
0 1

need barrier to nucleation

(tile growth without seed);

[tile]=100 nM;
temperature=50.9° C

125/48

Seeded growth

DNA origami seed

single-stranded “input-adapter”
extensions encoding 6 input bits

!

need barrier to nucleation
(tile growth without seed);
[tile]=100 nM;
temperature=50.9° C

hold 8-48 hours

)

| —
: | —
13 13
single-stranded tiles
implementing circuit gates
0, 1,
6 1 —
0 0 :
15 15
1, 0,
05 15

.“ ./
—— i 4:"0 -

m/‘/:_'é” “ I‘v“ “

_“';;f ligﬂ O
. —m: -i"gt:ﬁa_(‘n‘:&xg.\ Cﬁ

h-‘ e(-p.(i- FFVA (“)Y
{$\| \‘{_t E o\ 5 @\/
~ ~ v ~)
seed input- growing

adapters tiles

o~

125/48

Seeded growth === =

DNA origami seed

single-stranded “input-adapter” single-stranded tiles
extensions encoding 6 input bits implementing circuit gates

f

4‘" ./ Q/\/

&0\:
. . £
need barrier to nucleation — J' Jv _('(_(, J, ,L‘,(.L‘
(tile growth without seed); ~ hold 8-48 hours — = f'o"(“ \

— - - , - v. \
‘ — -\cﬂeﬂ"@'«'?’c‘ (A v
|) . 7 I —-a';f ‘:'\(“‘ ' \
[tile]=100 nI\/_I, — me——r _,.3-&‘175-’*“’_ o ﬁm‘"’ Cﬁ

temperature=50.9° C e

- " h-(n V‘F\ PR A
k\:“ g\‘;\‘{\’t 6 A\ g\/
~ - JW_A ~ ,
seed input- growing

adapters tiles

g

125/48

can later add streptavidin (5 nm

S e e d e d g ro Wt h & — V\{ide Protein) to bind biotins and

p— visualize where the 1’s are

DNA origami seed

Subunit A "

single-stranded “input-adapter” single-stranded tiles
extensions encoding 6 input bits implementing circuit gates

!

need barrier to nucleation
(tile growth without seed); ~ hold 8-48 hours

[tile]=100 nM; ‘
temperature=50.9° C

h - (‘twnp. (i -{\—ﬂnvug (‘ ' a \! !

(N

v J
N~ ~

seed input- growing
adapters tiles 125/48

Tubes to ribbons

Tubes to ribbons

Tubes to ribbons

Tubes to ribbons

bbbbbb

aaaaaaaaaaa - 44

DNA sequence design

S— . —— /

2 br—— __/ correct attachment:
e

‘r— 1 —— both domains match

__\)lz X
* incorrect attachment:
b only one domain matches

127/48

DNA sequence design

Random seguences VS designed sequences

09T domain _ 91 domain” 2 domains
2 domains

normalized count
o
(@)
normalized count

4 6 8 10 12 14 16 18 %476 8 10 12 14 16 18
more favorable == energy (-kcal/mol) energy (-kcal/mol)
[T r

= " correct attachment:
both domains match

-ﬂbﬁ\qpczzz‘x
* incorrect attachment:
i E— only one domain matches

127/48

DNA sequence design

Random seguences VS designed sequences

09T domain 91 domain” 2 domains

2 domains

0.5

normalized count

incorrect binding
4 6 8 10 12 14 16 18 "4 6 8 10 12 14 16 18

more favorable == energy (-kcal/mol) energy (-kcal/mol)

0.0

i .._:H.... ! -

-ﬁﬂﬁ{_tizEJ'

b 25 7 correct attachment:
both domains match

ETTT+E;;%;%;
LR (] ||\|. (LI
e &
Fﬁ%ﬁ%\qpc:zz)(
1 . .
*—i incorrect attachment:
i E— only one domain matches

F,_lz

L

127/48

DNA sequence design

Random seguences VS designed sequences
0.9 : - : — i
1 dgmain | 991 domain~ 2 domains
2 domains
% 05
E
0.0 0.0

6 8 10 12

more favorable m==)

16 18

energy (-kcal/mol)

12 14 16 18

energy (-kcal/mol)

o
10

#ﬁ%%ﬁ;r_tizzv’
:E—*_%_/ correct attachment:

- both domains match
=.#.I:
DT <~
iﬁfr4\th:ii)(

_*I .
E incorrect attachment:

i E— only one domain matches

correct binding

127/48

DNA sequence design

Random seguences VS designed sequences
0.9 AArma 0.9 T :
1 dgmain . 1 domain” 2 domains
2 domains
% 05
3
=
0.0 6 8 10 12 16 18 12 14 16 18
more favorable == energy (-kcal/mol) energy (-kcal/mol)
;g_‘—%_r/ correct attachment:
N em— — both domains match
S —
e (\ Other goals:
;I—-—H—\)Z X i « low strand secondary structure
e Incorrect attachment: i * low interaction between strands
i — only one domain matches correct binding

127/48

Bar-coding origami seed for imaging

multiple samples at once

218 7LI8 10818 13518 16718 19008 281 2718 3018 9118 42318
706 1116 14316 17516 2 29,16 271,16 30316 3316 36716 3916 431,16

9,15 5oowoss o [2 16,15
s e [90 e o

o3 (ezis [2608 116,13

1w 0712 9,12 2102 80312 33512 30 [EEERE

worr 1oz [26ET 2ssn w0 BB @AM asn
0] 20710 (2900 270 (805G 3350 83110

woo (929 [269 2ss0 3200
| R U

] w3 [s aes

10,1 720 1041 1360 1681 2000 2321 2641 2061 3281 3601 3021 4241

405,16

4056

4654

1652

some staples of origami seed
have version with a biotin

128/48

Bar-coding origami seed for imaging
multiple samples at once

308 7LI8 10818 13508 16718 19018 28118 26318

706 7906 11116 14316 17506 207,16

6115 68

2906 27,06 30316 335,16

IS WIS M1 WLIS 428
wors w205 2

o g .+~ some staples of origami seed
e 2T 0T - have version with a biotin

1611
B oo BN B 0 om0 Zei g0 w80

431,10
1609 289 3 4169
38 818 4058
287 [§A0F 167
816 4656

B4 454

L
me3 a3 [s 4es

10,1 720 1041 1360 1681 2001 2321 2641 2061 3281 3601 3021 4241

4652

16H barrel stay

* pos3=u, coding staples, no biotin (14 staples)
p 2]
12345678 9101112

A

] X X

c X

] x X

E X X

F X X > i |

G X X X |

H |

pos3=u, coding staples, biotin (16 staples)

16H 3bit biotin staples unzippers2 + biotin_staples 23 !
1234567891011 12345678 9101112

A X X XA I

B X RLXAB |

C x xaclc |

D X X|D I

E X X E X |

F F X |

G G |

H X H |

128/48

Bar-coding origami seed for imaging
multiple samples at once

some staples of origami seed
have version with a biotin

represents some combination of
P T circuit and input, e.g.,
Generate EREER T ey evspay,, 013 = “parity cireuit, input=011010”

plate map

label with
streptavidin

128/48

Experimental protocol

a form of growth b c d e
uncontrolled unseededseeded no
growth Jubes ~ tubes | growth
I - 1 Xy
heating \L ~ 2 P e
(7]
% (no seeds) } - } /
§ commg >> 1 hour 2 \L 1-2 days 1 day
S (no seeds) * * »
3+ seed algorithmic unzip, guards,
\ forms self-assembly deposit on mica,
[. L n add streptavidin
40 50 60 SORTING
temperature (C) tiles & seed
To execute circuit y on input x € {0,1}":
e Mix

129/48

Experimental protocol

a

uncontrolled unseededseeded no

form of growth b

growth Jubes ~ tubes | growth
| - 1
heatin ~
Bl (no seegs) 2\//\,
E; 1 hour
9| coolin é
g1 (no seegs
S () } *
** seed
L X forms
40 . . 50 ' 60 SORTING
temperature (C) tiles & seed

To execute circuit y on input x € {0,1}":

Mix

C

¥

e

1-2 days

algorithmic

origami seed (bar-coded to identify y and x)

Y

self-assembly \ }

1 day

—>

unzip, guards,

deposit on mica,

add streptavidin

129/48

Experimental protocol

a form of growth b c d e
uncontrolled unseededseeded no
growth Jubes ~ tubes | growth
| - 1 Xy
heating \L ~ 2 (L*v’ x
w
8 (no seeds) } (L-J’ } d///
g cooling ? 1 hour 2 \ 1-2 days 1 day
c
5 (no seeds) } * * »
3+ seed algorithmic unzip, guards,
\ forms self-assembly deposit on mica,
[. L n add streptavidin
40 50 60 SORTING
temperature (C) tiles & seed
To execute circuit y on input x € {0,1}":
* Mix

e origami seed (bar-coded to identify y and x)

* “adapter” strands encoding x (

O
“O~_

R
AO\‘_‘

129/48

Experimental protocol

a

form of growth

uncontrolled unseededseeded no

growth

nanotubes

—

heating
(no seeds)

cooling
(no seeds)

Jubes ~ tubes | growth

Mix

20 50

temperature (C)

b

}

?

¢

60 SORTING

—~
o~

tiles & seed

To execute circuit y on input x € {0,1}":

—-

seed algorithmic
forms self-assembly

X x

1 hour >2 \ 1-2 days

origami seed (bar-coded to identify y and x)

“adapter” strands encoding x

tiles computing y

1, 0,

————

ﬁ
05 15

*&f
O~
0, 1, &0\; 0,

1 day

—>

unzip, guards,

deposit on mica,

add streptavidin

12 12
S
o, ® 1, 3 0,
> > ——
15 15 05 OS 13 03

129/48

Experimental protocol

To execute circuit y on input x € {0,1}":

a form of growth
uncontrolled unseededseeded no
growth Jubes ~ tubes | growth

heating
(no seeds)

coohng
(no seeds)

nanotubes

b

20 50
temperature (C)

Mix

60 SORTING
tiles & seed

1 hour

—-

seed
forms

algorithmic

¥

e

1-2 days

self-assembly

e origami seed (bar-coded to identify y and x)

* “adapter” strands encoding x

e tiles computing y __,

1, 0,
————
ﬁ

05 15

Deposit on mica, buffer wash, add streptavidin, AFM

— €8

15

>

15
Anneal 90° Cto 50.9° Cin 1 hour (origami seeds form)
Hold at 50.9° C for 1-2 days (tiles grow tubes from seed)

Add “unzipper” strands (remove seam to convert tube to ribbon)
Add “guard” strands (complements of output sticky ends, to deactivate tiles)

05

05

W,

2

03

1 day

—>

unzip, guards,

deposit on mica,

add streptavidin

> 1
3

129/48

def test parity():
actual = parity('100101')

Results cxvected - TR

assertEquals(expected, actual)

130/48

PARITY

Is the number of 1’s odd?

SORTING

h input: 000001, output: 100000

yes

yes

no

Copy

000000000000000000000000000000!
000000000000000000000000000000
000000000000000000000000000000

00000000000000000000
$0000000000000000000

| ‘23:;::

\qu;

MuLTIPLEOF3
Is the input binary number a multiple of 37

RECOGNISE21
Is the binary input = 217

yes

yes

LAl no

PALINDROME
Is the input a palindrome?

Z1G-ZAG
Repeating pattern

131/48

yes

yes

LAZYPARITY LAZYSORTING RANDOMWALKINGBIT

ABSORBINGRANDOMWALKINGBIT
Random walker absorbs to top/bottom

S
§ I

FAIRCOIN RULE110
Unblasmg a biased coin Simulation of a cellular automaton

1 1y ddddadd .i..:.u_.t.a

Prob[result=yes]
1.0 = = theory
Il cxperiment

0.1 03 05 0.7 0.9
132 134 130 133 131
bias p & barcode

distance to yes/no result (nm
300 yes/ (nm)

{ theory
200 { experiment |
100
| II i
0 nm T
0 1 0.5 0 7
132 134 130 133 131

bias p & barcode
133/48

Counting to 63

Circuit with 63 distinct strings
123... ...6263123.
by 2 1¢¢
% $02 eee 20000000 tues ees"e 3 77 o3"0ed"3"S 3

3° Cud o3y oEF°

e 9 =

Is there a 64-counter?

No!

Proof by Tristan Stérin, Maynooth University
Consequence of following theorem:

No Boolean function computes an odd permutation
if some output bit does not depend on all input bits.

134/48

Parity tested on all inputs

2% = 64 inputs with 6 bits
/ 32 inputs with even # of 1’s \ / 32 inputs with odd # of 1’s \

o(eeeen1) = eal

o(e8e00R) = 800

o(eeee11) = 013

o(eee1e1) = 821

o(eee110) = 822

o(e01001) = 024

0(e81010) = 830

o(ee11ee) = 101

o(ee1111) = 110

ofeleee1) = 112 |8

o(e1e010) = 113

o(e10100) = 121

o(e1e111) = 130

0(911000) = 442

0(e11011) = 133

o(e11101) = 200 ¥

o(e1111e) = 201

0(100001) = 002

0(100010) = 212

0(100100) = 221

o(180111) = 223

0(101000) = 230

o(101011) = 233

o(101101) = 300

0(101110) = 301

0(110000) = 303

o(110011) = 333

o(110101) = 004

0(111001) = 404

0(111010) = 410

0(111100) = 420

0(111111) = 431

o(eee010) = 811

o(eee100) = 820

o(eee111) = 823

o(001000) = 441

o(eele1l) = 100

o(ee1101) = 102

0(e01110) = 103

0(010000) = 111

o(e1ee11) = 114

o(010101) = 122

o(010110) = 123

o(e11e01) = 131

0(011010) = 132

0(011100) = 134

K/

%1111) =21e

D R
L7 Fid — B AP,

#
= =

0(100011) = 213
0(100101) = 003
0(100110) = 222
o(101001) = 231
0(101010) = 232
0(101100) = 234 |
0(101111) = 302
0(110001) = 310
0(110010) = 320
0(110100) = 330
o(110111) =400 [.
0(111000) = 401
o(111011) = 411 'J. 1 : oo
D

o(111101) = 421

0(111110) = 438

o(6-bit input) = 3-digit barcode representing that input

T
% !

Parity tested on all inputs

2% = 64 inputs with 6 bits
/ 32 inputs with even # of 1’s \ / 32 mputs with odd # of 1’s \

o(000000) = 260 m

o(eeee11) = 013

o(eeeenl) = el 0(100000) = 211

0(100001) = 002

aee - ‘ sy
3 A . .
- n o(eeee10) = 911
o(100010) =212 MEREE RS . \ g
1} N
PERD 4 o(eeslee) = 828 2
o(100100) = 221 |- 5

. o(eee111) = 823
oftee111) = 223

0(100011)= 213 Rl I ’\......'-.....--—.

NS 0(100101) = 003 HL S e R
ofeeelel) = e21 [LSIHEE () 3D 3 ¥ y

'y ¥
o(aeette) = 622

o(ee1e01) = @

0(e81010) = 8 '

We used all 355 tiles in some experiment, so we’ve verified “all tiles work”.

0(881160) = 1

0(100110) = 222

o(ee1111) = 1

o(e1eee1) = 1

For 14 circuits, every tile for that circuit was used for some input, verifying all |
ofe1e010) = 1 gate tiles work ”together”. I

ole10100) = 1 u

o(110101) = ee4 [} > N, - . s —
o(e10111) = 130 H’ o(e1011e) = 123 - B TSRPS0 (110111) = 400 {{QG v e v
: of)= oler10e1) = 131 RTC B T R 0(111000) = 401 [N

= {8

o(6-bit input) = 3-digit barcode representing that input

o(e11060) = 242 [

o(e11e10) = 132 o111611) =411 Ry

— 135/48

12 um AFM image of
parity ribbons for several
inputs whose output is 1

136/48

12 um AFM image of
parity ribbons for several
inputs whose outputis 1

%
-

0@ tenccs.
114

136/48

12 um AFM image of
parity ribbons for several
inputs whose outputis 1

01 tence.
114

'\-.
* -

,-/ :

N
.-
W

;e € 12

e ‘

~
R e’
/
’: "’.3:..‘

’

/
iy & - - '.

9 ,‘,3\“

-

-as s Y Z“c

=
W
[}

Rl P ? A
\“t\"

136/48

12 um AFM image of
parity ribbons for several
inputs whose outputis 1

01 tence.
114

'\-.
* -

,-/ :

N
.-
W

s

fe :
$2EC Q‘?y
;e € 12
r:\ 213, :

/

’

/
iy & - - P "

-
=

W

[}

£

) ‘," W

-as s Y Z“c

. ¥
\“t\"

136/48

12 um AFM image of
parity ribbons for several
inputs whose outputis 1

01 tence.
114

'\‘-.

* -

,-/ :

N
.-
W

;e € 12
’: 213, : &

136/48

12 um AFM image of
parity ribbons for several
inputs whose outputis 1

error statistics:

seeding fraction: 61% of origami seeds have tile growth into a tube

error rate: 0.03% = 0.0008 per tile attachment
(1,419 observed errors out of an estimated 4,600,351 tile attachments,
comparable to best previous algorithmic self-assembly experiments)

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

/more algorithmic control

than periodic self-assembly

2D tile lattices
(Winfree et al.,
Nature 1998)

137/48

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably

into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

/more algorithmic control

than periodic self-assembly

X

2D tile lattices 1D tile tubes

(Winfree et al., (Yinetal.,

wture 1998) Science 2008)/

ﬂewer types of DNA strands\
required than uniquely-
addressed self-assembly

IIIIIEEH-
—— ISUAODDENE

DNA origami hard-coded tile

(Rothemund, lattice (Wei et al.,
K Nature 2006) Nature 2012) /

137/48

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably
into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

/more algorithmic control

than periodic self-assembly

A

2D tile lattices

(Winfree et al.,

wture 1998)

ﬂewer types of DNA strands\
required than uniquely-
addressed self-assembly

f

DNA origami hard-coded tile

/order of magnitude more tile\
types available than previous
algorithmic self-assembly

double-crossover tile lattices

(Rothemund et al., (Fujibayashi et al.,
PLoS Bio 2004) Nano Letters 2008)

(Rothemund, lattice (Wei et al.,
K Nature 2006) Nature 2012) /

(Barish et al., PNAS (Evans, Ph.D. thesis
@9) 2014) /

137/48

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to
grow interesting shapes?

138/48

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

200 Y e SR PO GE TS0 SIED D

Can we run algorithms to
grow interesting shapes?

" Theorem: There is a single set T Y
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T

Qelf—assembles S. 4

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

200 > ww™ R R WSSO SD D

Can we run algorithms to
grow interesting shapes?

-~y 5
Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T
self-assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

200 Y e SR PO GE TS0 SIED D

Can we run algorithms to
grow interesting shapes?

smiley_face

" Theorem: There is a single set T Y
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T

Qelf—assembles S. 4

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.

Next big challenge: Algorithmically control shape

We “drew” interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to

grow interesting shapes? O dolphin

smiley_face

Theorem: There is a single set T
of tile types, so that, for any finite
shape S, from an appropriately
chosen seed o, “encoding” S, T
self-assembles S.

These tiles are universally programmable for building any shape.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007] ., ,.

	introduction
	Slide 1: Structural DNA nanotechnology
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Things that build themselves
	Slide 6: Things that build themselves
	Slide 7: Things that build themselves
	Slide 8: DNA as a building material
	Slide 9: DNA as a building material
	Slide 10: DNA as a building material
	Slide 11: DNA origami
	Slide 12: DNA origami
	Slide 13: DNA origami
	Slide 14: DNA origami
	Slide 15: DNA origami
	Slide 16: DNA origami
	Slide 17: DNA origami
	Slide 18: Binding graphs
	Slide 19: Binding graphs
	Slide 20: DNA tile self-assembly
	Slide 21: DNA tile self-assembly
	Slide 22: Practice of DNA tile self-assembly
	Slide 23: Practice of DNA tile self-assembly
	Slide 24: Practice of DNA tile self-assembly
	Slide 25: Practice of DNA tile self-assembly
	Slide 26: Practice of DNA tile self-assembly
	Slide 27: Practice of DNA tile self-assembly
	Slide 28: Practice of DNA tile self-assembly
	Slide 29: Practice of DNA tile self-assembly
	Slide 30: Practice of DNA tile self-assembly
	Slide 31: Practice of DNA tile self-assembly
	Slide 32: Practice of DNA tile self-assembly
	Slide 33: Practice of DNA tile self-assembly
	Slide 34: Practice of DNA tile self-assembly
	Slide 35: Theory of algorithmic self-assembly
	Slide 36: abstract Tile Assembly Model (aTAM)
	Slide 37: abstract Tile Assembly Model (aTAM)
	Slide 38: abstract Tile Assembly Model (aTAM)
	Slide 39: abstract Tile Assembly Model (aTAM)
	Slide 40: abstract Tile Assembly Model (aTAM)
	Slide 41: abstract Tile Assembly Model (aTAM)
	Slide 42: abstract Tile Assembly Model (aTAM)
	Slide 43: Example tile set
	Slide 44: Example tile set
	Slide 45: Example tile set
	Slide 46: Example tile set
	Slide 47: Example tile set
	Slide 48: Example tile set
	Slide 49: Example tile set
	Slide 50: Example tile set
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Algorithmic self-assembly in action
	Slide 55: aTAM simulator (WebTAS by Daniel Hader)

	tile complexity of squares
	Slide 56: Tile complexity of squares
	Slide 57: Tile complexity
	Slide 58: Tile complexity
	Slide 59: Tile complexity
	Slide 60: Tile complexity
	Slide 61: Tile complexity
	Slide 62: Tile complexity
	Slide 63: Tile complexity
	Slide 64: Tile complexity
	Slide 65: Tile complexity
	Slide 66: The program size complexity of self-assembled squares
	Slide 67: The program size complexity of self-assembled squares
	Slide 68: The program size complexity of self-assembled squares
	Slide 69: The program size complexity of self-assembled squares
	Slide 70: The program size complexity of self-assembled squares
	Slide 71: The program size complexity of self-assembled squares
	Slide 72: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 73: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 74: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 75: Tile complexity at temperature τ = 1 (i.e., no cooperative binding allowed)
	Slide 76: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 77: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 78: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 79: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 80: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 81: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 82: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 83: Tile complexity at temperature τ = 1, where not all adjacent tiles are bound
	Slide 84: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 85: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 86: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 87: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 88: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 89: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 90: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 91: Tile complexity at temperature τ = 2 (i.e., cooperative binding allowed)
	Slide 92: Tile complexity at temperature τ = 2
	Slide 93: Tile complexity at temperature τ = 2
	Slide 94: Tile complexity at temperature τ = 2
	Slide 95: Tile complexity at temperature τ = 2
	Slide 96: Tile complexity at temperature τ = 2
	Slide 97: Tile complexity at temperature τ = 2
	Slide 98: Tile complexity at temperature τ = 2
	Slide 99: Tile complexity at temperature τ = 2
	Slide 100: Tile complexity at temperature τ = 2
	Slide 101: Tile complexity at temperature τ = 2
	Slide 102: Tile complexity at temperature τ = 2
	Slide 103: Logarithmic tile complexity at temperature τ = 2
	Slide 104: Logarithmic tile complexity at temperature τ = 2
	Slide 105: Logarithmic tile complexity at temperature τ = 2
	Slide 106: Logarithmic tile complexity at temperature τ = 2
	Slide 107: Logarithmic tile complexity at temperature τ = 2
	Slide 108: Logarithmic tile complexity at temperature τ = 2
	Slide 109: Logarithmic tile complexity at temperature τ = 2
	Slide 110: Logarithmic tile complexity at temperature τ = 2
	Slide 111: Logarithmic tile complexity at temperature τ = 2
	Slide 112: Logarithmic tile complexity at temperature τ = 2
	Slide 113: Logarithmic tile complexity at temperature τ = 2
	Slide 114: Logarithmic tile complexity at temperature τ = 2
	Slide 115: Logarithmic tile complexity at temperature τ = 2
	Slide 116: Logarithmic tile complexity at temperature τ = 2
	Slide 117: Logarithmic tile complexity at temperature τ = 2
	Slide 118: Logarithmic tile complexity at temperature τ = 2
	Slide 119: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 120: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 121: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 122: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 123: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 124: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 125: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 126: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 127: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 128: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 129: Ω(log n / log log n) tile complexity lower bound for n x n squares
	Slide 130: How many tile systems with k tile types?
	Slide 131: How many tile systems with k tile types?
	Slide 132: How many tile systems with k tile types?
	Slide 133: How many tile systems with k tile types?
	Slide 134: How many tile systems with k tile types?
	Slide 135: How many tile systems with k tile types?
	Slide 136: How many tile systems with k tile types?
	Slide 137: How many tile systems with k tile types?
	Slide 138: How many tile systems with k tile types?
	Slide 139: How many tile systems with k tile types?
	Slide 140: How many tile systems with k tile types?
	Slide 141: How many tile systems with k tile types?
	Slide 142: How many tile systems with k tile types?
	Slide 143: How many tile systems with k tile types?
	Slide 144: How many tile systems with k tile types?
	Slide 145: How many tile systems with k tile types?
	Slide 146: How many tile systems with k tile types?
	Slide 147: How many tile systems with k tile types?
	Slide 148: “Descriptional Complexity” proof
	Slide 149: “Descriptional Complexity” proof
	Slide 150: “Descriptional Complexity” proof
	Slide 151: “Descriptional Complexity” proof
	Slide 152: “Descriptional Complexity” proof
	Slide 153: “Descriptional Complexity” proof
	Slide 154: “Descriptional Complexity” proof
	Slide 155: “Descriptional Complexity” proof
	Slide 156: “Descriptional Complexity” proof
	Slide 157: Which bound is tight?
	Slide 158: Improved upper bound: self-assembling an n x n square with O(log n / log log n) tile types
	Slide 159: Improved upper bound: self-assembling an n x n square with O(log n / log log n) tile types
	Slide 160: Improved upper bound: self-assembling an n x n square with O(log n / log log n) tile types
	Slide 161: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 162: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 163: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 164: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 165: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}log n using O(log n / log log n) tile types
	Slide 166: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 167: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 168: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 169: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 170: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 171: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 172: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 173: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 174: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 175: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 176: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 177: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 178: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 179: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 180: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 181: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 182: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 183: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 184: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 185: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)
	Slide 186: Creating a row of log n glues with arbitrary bit string s ∈ {0,1}* using log n / log log n tile types (i.e., base conversion from b to 2)

	formal definitions
	Slide 187: Formal definition of aTAM
	Slide 188: abstract Tile Assembly Model (aTAM), formal definition
	Slide 189: abstract Tile Assembly Model (aTAM), formal definition
	Slide 190: abstract Tile Assembly Model (aTAM), formal definition
	Slide 191: abstract Tile Assembly Model (aTAM), formal definition
	Slide 192: abstract Tile Assembly Model (aTAM), formal definition
	Slide 193: abstract Tile Assembly Model (aTAM), formal definition
	Slide 194: abstract Tile Assembly Model (aTAM), formal definition
	Slide 195: abstract Tile Assembly Model (aTAM), formal definition
	Slide 196: abstract Tile Assembly Model (aTAM), formal definition
	Slide 197: abstract Tile Assembly Model (aTAM), formal definition
	Slide 198: abstract Tile Assembly Model (aTAM), formal definition
	Slide 199: abstract Tile Assembly Model (aTAM), formal definition
	Slide 200: abstract Tile Assembly Model (aTAM), formal definition
	Slide 201: abstract Tile Assembly Model (aTAM), formal definition
	Slide 202: abstract Tile Assembly Model (aTAM), formal definition
	Slide 203: abstract Tile Assembly Model (aTAM), formal definition
	Slide 204: abstract Tile Assembly Model (aTAM), formal definition
	Slide 205: abstract Tile Assembly Model (aTAM), formal definition
	Slide 206: abstract Tile Assembly Model (aTAM), formal definition
	Slide 207: abstract Tile Assembly Model (aTAM), formal definition
	Slide 208: abstract Tile Assembly Model (aTAM), formal definition
	Slide 209: abstract Tile Assembly Model (aTAM), formal definition
	Slide 210: abstract Tile Assembly Model (aTAM), formal definition
	Slide 211: abstract Tile Assembly Model (aTAM), formal definition
	Slide 212: abstract Tile Assembly Model (aTAM), formal definition
	Slide 213: abstract Tile Assembly Model (aTAM), formal definition
	Slide 214: abstract Tile Assembly Model (aTAM), formal definition
	Slide 215: abstract Tile Assembly Model (aTAM), formal definition
	Slide 216: abstract Tile Assembly Model (aTAM), formal definition
	Slide 217: abstract Tile Assembly Model (aTAM), formal definition
	Slide 218: abstract Tile Assembly Model (aTAM), formal definition
	Slide 219: abstract Tile Assembly Model (aTAM), formal definition
	Slide 220: abstract Tile Assembly Model (aTAM), formal definition
	Slide 221: abstract Tile Assembly Model (aTAM), formal definition
	Slide 222: abstract Tile Assembly Model (aTAM), formal definition
	Slide 223: abstract Tile Assembly Model (aTAM), formal definition
	Slide 224: abstract Tile Assembly Model (aTAM), formal definition
	Slide 225: abstract Tile Assembly Model (aTAM), formal definition
	Slide 226: abstract Tile Assembly Model (aTAM), formal definition
	Slide 227: abstract Tile Assembly Model (aTAM), formal definition
	Slide 228: abstract Tile Assembly Model (aTAM), formal definition
	Slide 229: abstract Tile Assembly Model (aTAM), formal definition
	Slide 230: abstract Tile Assembly Model (aTAM), formal definition
	Slide 231: abstract Tile Assembly Model (aTAM), formal definition
	Slide 232: abstract Tile Assembly Model (aTAM), formal definition
	Slide 233: abstract Tile Assembly Model (aTAM), formal definition
	Slide 234: abstract Tile Assembly Model (aTAM), formal definition
	Slide 235: abstract Tile Assembly Model (aTAM), formal definition
	Slide 236: abstract Tile Assembly Model (aTAM), formal definition
	Slide 237: abstract Tile Assembly Model (aTAM), formal definition
	Slide 238: abstract Tile Assembly Model (aTAM), formal definition

	basic reachability results
	Slide 239: Basic stability result
	Slide 240: Basic stability result
	Slide 241: Basic stability result
	Slide 242: Basic stability result
	Slide 243: Basic stability result
	Slide 244: Basic stability result
	Slide 245: Basic stability result
	Slide 246: Basic stability result
	Slide 247: Basic stability result
	Slide 248: Basic stability result
	Slide 249: Basic stability result
	Slide 250: Basic reachability result
	Slide 251: Basic reachability result
	Slide 252: Basic reachability result
	Slide 253: Basic reachability result
	Slide 254: Basic reachability result
	Slide 255: Basic reachability result
	Slide 256: Basic reachability result
	Slide 257: Basic reachability result
	Slide 258: Basic reachability result
	Slide 259: Basic reachability result
	Slide 260: Basic reachability result
	Slide 261: example of usefulness of Rothemund’s Lemma
	Slide 262: example of usefulness of Rothemund’s Lemma
	Slide 263: Fair assembly sequences
	Slide 264: Fair assembly sequences
	Slide 265: Fair assembly sequences
	Slide 266: Fair assembly sequences
	Slide 267: Fair assembly sequences
	Slide 268: Fair assembly sequences
	Slide 269: Fair assembly sequences
	Slide 270: Fair assembly sequences
	Slide 271: Fair assembly sequences
	Slide 272: Fair assembly sequences
	Slide 273: Fair assembly sequences
	Slide 274: Fair assembly sequences
	Slide 275: Fair assembly sequences
	Slide 276: Fair assembly sequences
	Slide 277: Fair assembly sequences
	Slide 278: Fair assembly sequences

	tile complexity of general shapes
	Slide 279: How computationally powerful are self-assembling tiles?
	Slide 280: Turing machines
	Slide 281: Turing machines
	Slide 282: Turing machines
	Slide 283: Turing machines
	Slide 284: Turing machines
	Slide 285: Turing machines
	Slide 286: Turing machines
	Slide 287: Turing machines
	Slide 288: Turing machines
	Slide 289: Turing machines
	Slide 290: Turing machines
	Slide 291: Turing machines
	Slide 292: Turing machines
	Slide 293: Turing machines
	Slide 294: Turing machines
	Slide 295: Turing machines
	Slide 296: Tile assembly is Turing-universal
	Slide 297: Tile assembly is Turing-universal
	Slide 298: Tile assembly is Turing-universal
	Slide 299: Tile assembly is Turing-universal
	Slide 300: Tile assembly is Turing-universal
	Slide 301: Tile assembly is Turing-universal
	Slide 302: Tile assembly is Turing-universal
	Slide 303: Tile assembly is Turing-universal
	Slide 304: Tile assembly is Turing-universal
	Slide 305: Tile assembly is Turing-universal
	Slide 306: Tile assembly is Turing-universal
	Slide 307: Tile assembly is Turing-universal
	Slide 308: Tile assembly is Turing-universal
	Slide 309: Tile assembly is Turing-universal
	Slide 310: Tile assembly is Turing-universal
	Slide 311: Tile assembly is Turing-universal
	Slide 312: Tile assembly is Turing-universal
	Slide 313: Complexity of self-assembled shapes
	Slide 314: Complexity of self-assembled shapes
	Slide 315: Complexity of self-assembled shapes
	Slide 316: Complexity of self-assembled shapes
	Slide 317: Complexity of self-assembled shapes
	Slide 318: Complexity of self-assembled shapes
	Slide 319: Complexity of self-assembled shapes
	Slide 320: Complexity of self-assembled shapes
	Slide 321: Complexity of self-assembled shapes
	Slide 322: Complexity of self-assembled shapes
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338: Two interpretations
	Slide 339: Two interpretations
	Slide 340: Two interpretations
	Slide 341: Two interpretations

	strict and weak self-assembly of shapes
	Slide 342: Strict and weak self-assembly
	Slide 343: Strict and weak self-assembly
	Slide 344: Strict and weak self-assembly
	Slide 345: Strict and weak self-assembly
	Slide 346: Strict self-assembly
	Slide 347: Strict self-assembly
	Slide 348: Strict self-assembly
	Slide 349: Strict self-assembly
	Slide 350: Strict self-assembly
	Slide 351: Strict self-assembly
	Slide 352: Strict self-assembly
	Slide 353: A famous fractal
	Slide 354: A famous fractal
	Slide 355: A famous fractal
	Slide 356: A famous fractal
	Slide 357: A famous fractal
	Slide 358: A famous fractal
	Slide 359: A famous fractal
	Slide 360: A famous fractal
	Slide 361: A famous fractal
	Slide 362: A famous fractal
	Slide 363: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 364: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 365: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 366: The discrete Sierpinkski triangle cannot be strictly self-assembled
	Slide 367: Weak self-assembly
	Slide 368: Weak self-assembly
	Slide 369: Weak self-assembly
	Slide 370: Weak self-assembly
	Slide 371: Weak self-assembly
	Slide 372: Weak self-assembly
	Slide 373: Weak self-assembly
	Slide 374: Weak self-assembly
	Slide 375: Weak self-assembly
	Slide 376: Weak self-assembly

	randomized self-assembly
	Slide 377: Randomized self-assembly
	Slide 378: Tile complexity of universal shape construction
	Slide 379: Tile complexity of universal shape construction
	Slide 380: Tile complexity of universal shape construction
	Slide 381: Tile complexity of universal shape construction
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393: Bounding the probability the length deviates much from its mean
	Slide 394: Bounding the probability the length deviates much from its mean
	Slide 395: Bounding the probability the length deviates much from its mean
	Slide 396: Bounding the probability the length deviates much from its mean
	Slide 397: Bounding the probability the length deviates much from its mean
	Slide 398: Bounding the probability the length deviates much from its mean
	Slide 399: Chernoff bound
	Slide 400: Chernoff bound
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412
	Slide 413
	Slide 414
	Slide 415
	Slide 416
	Slide 417
	Slide 418
	Slide 419
	Slide 420
	Slide 421
	Slide 422
	Slide 423
	Slide 424
	Slide 425
	Slide 426
	Slide 427
	Slide 428
	Slide 429
	Slide 430
	Slide 431
	Slide 432
	Slide 433
	Slide 434
	Slide 435
	Slide 436
	Slide 437: Other plausible modifications of aTAM model that can reduce tile complexity

	power of nondeterminism
	Slide 438: The power of nondeterminism in self-assembly
	Slide 439
	Slide 440
	Slide 441
	Slide 442
	Slide 443
	Slide 444
	Slide 445
	Slide 446
	Slide 447
	Slide 448
	Slide 449
	Slide 450
	Slide 451
	Slide 452
	Slide 453
	Slide 454
	Slide 455
	Slide 456
	Slide 457
	Slide 458
	Slide 459
	Slide 460
	Slide 461
	Slide 462
	Slide 463
	Slide 464
	Slide 465
	Slide 466
	Slide 467
	Slide 468
	Slide 469
	Slide 470
	Slide 471
	Slide 472
	Slide 473
	Slide 474
	Slide 475
	Slide 476
	Slide 477
	Slide 478
	Slide 479
	Slide 480
	Slide 481
	Slide 482
	Slide 483
	Slide 484
	Slide 485
	Slide 486
	Slide 487
	Slide 488
	Slide 489
	Slide 490
	Slide 491
	Slide 492
	Slide 493
	Slide 494
	Slide 495
	Slide 496
	Slide 497
	Slide 498
	Slide 499
	Slide 500

	error correction
	Slide 501: Errors in algorithmic self-assembly
	Slide 502: Errors in self-assembly
	Slide 503: Errors in self-assembly
	Slide 504: Errors in self-assembly
	Slide 505: Errors in self-assembly
	Slide 506: Modeling errors: kinetic Tile Assembly Model
	Slide 507: Modeling errors: kinetic Tile Assembly Model
	Slide 508: Modeling errors: kinetic Tile Assembly Model
	Slide 509: Modeling errors: kinetic Tile Assembly Model
	Slide 510: Modeling errors: kinetic Tile Assembly Model
	Slide 511: Modeling errors: kinetic Tile Assembly Model
	Slide 512: Modeling errors: kinetic Tile Assembly Model
	Slide 513: kTAM simulators
	Slide 514: Tradeoff between assembly speed and errors
	Slide 515: Tradeoff between assembly speed and errors
	Slide 516: Tradeoff between assembly speed and errors
	Slide 517: Tradeoff between assembly speed and errors
	Slide 518: Tradeoff between assembly speed and errors
	Slide 519: Tradeoff between assembly speed and errors
	Slide 520: Tradeoff between assembly speed and errors
	Slide 521: Tradeoff between assembly speed and errors
	Slide 522: Tradeoff between assembly speed and errors
	Slide 523: Proofreading: Algorithmic error correction
	Slide 524: Proofreading: Algorithmic error correction
	Slide 525: Proofreading: Algorithmic error correction
	Slide 526: Proofreading: Algorithmic error correction
	Slide 527: Proofreading: Algorithmic error correction

	experiments
	Slide 528: Experimental algorithmic self-assembly
	Slide 529: Crystals that think about how they’re growing
	Slide 530: Acknowledgements
	Slide 531: Hierarchy of abstractions
	Slide 532: Harmonious arrangement
	Slide 533: Harmonious arrangement
	Slide 534: Harmonious arrangement
	Slide 535: Harmonious arrangement
	Slide 536: Harmonious arrangement
	Slide 537: Harmonious arrangement
	Slide 538: Harmonious arrangement
	Slide 539: Harmonious arrangement
	Slide 540: Harmonious arrangement
	Slide 541: Harmonious arrangement
	Slide 542: Harmonious arrangement
	Slide 543: Odd bits
	Slide 544: Odd bits
	Slide 545: Odd bits
	Slide 546: Odd bits
	Slide 547: Odd bits
	Slide 548: Odd bits
	Slide 549: Odd bits
	Slide 550: Odd bits
	Slide 551: Odd bits
	Slide 552: Parity
	Slide 553: Parity
	Slide 554: Parity
	Slide 555: Parity
	Slide 556: Circuit model
	Slide 557: Circuit model
	Slide 558: Circuit model
	Slide 559: Circuit model
	Slide 560: Circuit model
	Slide 561: Circuit model
	Slide 562: Circuit model
	Slide 563: Circuit model
	Slide 564: Circuit model
	Slide 565: Circuit model
	Slide 566: Circuit model
	Slide 567: Circuit model
	Slide 568: Example circuits with same gate in every row
	Slide 569: Example circuits with same gate in every row
	Slide 570: Example circuits with same gate in every row
	Slide 571: Example circuits with different gates in each row
	Slide 572: Example circuits with different gates in each row
	Slide 573: Example circuits with different gates in each row
	Slide 574: Example circuits with different gates in each row
	Slide 575: Example circuits with different gates in each row
	Slide 576: Example circuits with different gates in each row
	Slide 577: Randomization: “Lazy” sorting
	Slide 578: Randomization: “Lazy” sorting
	Slide 579: Deterministic circuits
	Slide 580: Deterministic circuits
	Slide 581: Deterministic circuits
	Slide 582: Deterministic circuits
	Slide 583: Deterministic circuits
	Slide 584: Deterministic circuits
	Slide 585: Deterministic circuits
	Slide 586: Randomized circuits
	Slide 587: Randomized circuits
	Slide 588: Randomized circuits
	Slide 589: Randomized circuits
	Slide 590: Randomized circuits
	Slide 591: Randomized circuits
	Slide 592
	Slide 593
	Slide 594: Hierarchy of abstractions
	Slide 595: Gates  Tiles
	Slide 596: Gates  Tiles
	Slide 597: Gates  Tiles
	Slide 598: How tiles compute while growing (algorithmic self-assembly)
	Slide 599: How tiles compute while growing (algorithmic self-assembly)
	Slide 600: How tiles compute while growing (algorithmic self-assembly)
	Slide 601: How tiles compute while growing (algorithmic self-assembly)
	Slide 602: How tiles compute while growing (algorithmic self-assembly)
	Slide 603: How tiles compute while growing (algorithmic self-assembly)
	Slide 604: How tiles compute while growing (algorithmic self-assembly)
	Slide 605: How tiles compute while growing (algorithmic self-assembly)
	Slide 606: How tiles compute while growing (algorithmic self-assembly)
	Slide 607: How tiles compute while growing (algorithmic self-assembly)
	Slide 608: How tiles compute while growing (algorithmic self-assembly)
	Slide 609: How tiles compute while growing (algorithmic self-assembly)
	Slide 610: How tiles compute while growing (algorithmic self-assembly)
	Slide 611: Hierarchy of abstractions
	Slide 612: DNA single-stranded tiles
	Slide 613: Single-stranded tiles for making any shape
	Slide 614: Uniquely addressed self-assembly versus algorithmic
	Slide 615: Uniquely addressed self-assembly versus algorithmic
	Slide 616: Single-stranded tile tubes
	Slide 617: Seeded growth
	Slide 618: Seeded growth
	Slide 619: Seeded growth
	Slide 620: Seeded growth
	Slide 621: Seeded growth
	Slide 622: Seeded growth
	Slide 623: Tubes to ribbons
	Slide 624: Tubes to ribbons
	Slide 625: Tubes to ribbons
	Slide 626: Tubes to ribbons
	Slide 627: DNA sequence design
	Slide 628: DNA sequence design
	Slide 629: DNA sequence design
	Slide 630: DNA sequence design
	Slide 631: DNA sequence design
	Slide 632: Bar-coding origami seed for imaging multiple samples at once
	Slide 633: Bar-coding origami seed for imaging multiple samples at once
	Slide 634: Bar-coding origami seed for imaging multiple samples at once
	Slide 635: Experimental protocol
	Slide 636: Experimental protocol
	Slide 637: Experimental protocol
	Slide 638: Experimental protocol
	Slide 639: Experimental protocol
	Slide 640: Results
	Slide 641
	Slide 642
	Slide 643
	Slide 644: Counting to 63
	Slide 645: Parity tested on all inputs
	Slide 646: Parity tested on all inputs
	Slide 647
	Slide 648
	Slide 649
	Slide 650
	Slide 651
	Slide 652
	Slide 653: What did we learn?
	Slide 654: What did we learn?
	Slide 655: What did we learn?
	Slide 656: What did we learn?
	Slide 657: Next big challenge: Algorithmically control shape
	Slide 658: Next big challenge: Algorithmically control shape
	Slide 659: Next big challenge: Algorithmically control shape
	Slide 660: Next big challenge: Algorithmically control shape
	Slide 661: Next big challenge: Algorithmically control shape

