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Representing Information with Molecules
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Chemical Identity Gate: Idealized vs. Actual Behavior

Experimental Implementation of Chemical Logic
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Levels of Abstraction

DNA
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DNA strand displacement
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Leak in strand displacement experiments
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Reducing Leak i
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What causes leak
“kinetically”?
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What causes leak “thermodynamically”?

Before: After:
hy t3 y t4
x t, h, tz h slow P~ A
t,* x* ot w“ h, t. 7z t
A very slow — W —————
S o,  C—
P . N— U x b hy t3 h 1t
LY ohT LT OhT T %
tl* x* N hy* t3* hz* t5*

less favorable more favorable

10



Need a kinetic binding network model

* Can we design pathways that maintain local stability?
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Levels of Abstraction
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Thermodynamic Binding Networks

alb 3 b Geometry-Free Model:
\ / The domains within a
a*|a*|b* monomer are unordered

Monomer = collection of domains
Configuration = how monomers are bound



Bonds and complexes
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Tradeoff between #bonds and #complexes

* in general, there’s some weight parameter w:
energy = w*#bonds + #complexes
(physics notation: AG = AH — T-AS)

* We often consider a natural limiting case:

* favoring #bonds infinitely over #complexes

* require maximal #bonds formed; use #complexes only as tiebreaker

* Corresponds to bonds that are so strong they cannot spontaneously dissociate,
but can exchange with each other to find configurations with more complexes




Thermodynamic Binding Networks

saturated = maximum #bonds formed Satu rated
stable = saturated, AND maximum #complexes

|
1 1
1 1
a b| ! a b| ! a b
o\ | /
1 1 -
1 1
! ! If we’re careful to
1 1
alb ! alb | alb make starred binding
------------ L —— T sites limiting, then
: : saturated = all starred
a b| | a b| | sites are bound
| + Stable i
a*|b* i a*|b* i
I I
1 1
alb : alb :
| |
1 1
1 1

16



Computing via Thermodynamic
Equilibrium



AND gate
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Issues with Boolean logic

* How to compose?

— We don’t know how to prove the previous gate is composable, and used a
more complex design in the paper

 Want “entropy gap”:

— Need not merely that unwanted configurations are unstable (i.e., if saturated,
they have lower entropy), but more strongly that they have much lower
entropy.

— We can use O(n) domain/monomer types to achieve an entropy gap of n.

* Qutput convention?
— Obvious one: “there’s a unique stable configuration with the correct output”

— It's problematic, so we have a one-sided convention:
* if correct output is O, unigue stable configuration with correct answer
 if correct outputis 1, then both the “output=1" and “output=0" configurations are stable




Composable AND gate with entropy gap 3

U

Rather than release a single output monomer, it suffices to gather all output domains on one complex.



Kinetic pathways and energy
barriers



Pathways

Thermodynamics: Which configurations are energetically favorable
Kinetics: How a system moves between configurations over time
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What causes leak
“kinetically”?
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Kinetic Binding Networks

* Favorability is a combination of bond count and complex count

Weighted average:

Energy := —w,(# bonds) — (# complexes)

e Define pathways to consist of merges and splits

* Butforw, 22, only saturated pathways need be considered

Since all saturated configurations have an equal number of
bonds, we can focus solely on the number of complexes

[Keenan Breik, Cameron Chalk, David Doty, David Haley, David Soloveichik. Programming Substrate-Independent
Kinetic Barriers with Thermodynamic Binding Networks. Computational Methods in Systems Biology 2018]

28



Large Energy Barriers
Energy
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A Network with a Programmable Energy Barrier
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Catalysis

E
A n;:gv

Merge
(less favorable)

Split
(more favorable)

v MV

>

progress

31



Autocatalysis
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Multiple Stable Configurations

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them
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Directed Catalysis
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Along a catalyzed pathway, the barrieris 1

Otherwise the barrier is n/2
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Social Golfer Problem

* Can 25 (n?) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no
two golfers play together more than once?

* First studied by Euler.
* True if nis a prime power (2,3,4,5,7,8,9,11,13,...)

* False for smallest non-prime power n=6: can only play for 3 days!

[Gaston Tarry (1901). "Le Probléme des 36 Officiers". Compte Rendu de I'’Association Frangaise pour
I'’Avancement des Sciences. Secrétariat de I'Association. 2: 170—-203.]

* Unknown for next prime power n=10:
* trivial upper bound is 11 days
* best known lower bound is 3



(Feasible?) DNA implementation




Thermodynamic self-assembly

Grafting the TBN model onto self-assembly



A modest goal

* Informal: Design monomers that self-assemble arbitrarily large complexes.
* size of a complex = # monomers in the complex

* Formal: Design a set of monomer types so that, for all S € N, there is a
stable complex of size at least S.

* Easy to do in Abstract Tile Assembly Model:

size-8 complex (assembly) formed
set of monomer types: with 8 copies of monomer

a a* #a a*Ha a*Ha a*Ha a*Ha a*Ha a*Ha a*Ha a*#




Difficulty of self-assembling large complexes
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An even more modest goal

and O(1) domains per monomer
Re-Revised goal: For all S € N, design a set of M monomer types using D domain typesa,

with a stable complex of size at least S.

How large can we make S relative to D and M? S = D?

D,M = O(1), S = arbitrarily large

5=D
lc_jl*l |d1 dz*l |d2 d;*d; dg* 1 d,




How large can we make S relative to D and M?

S =207 S = vr

}2 n dK /12 n dk
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Stable complexes have at most exponential size

Theorem: Any thermodynamic binding network with
* D domain types,
* M monomer types,
» <A domains per monomer type (note D/A < M < AP+1)

Has stable complexes of size < 2(M+D)(AD)?"*3 = poly(DP) if A = O(1)



Easy proof if binding
graph is acyclic (tree)

* Since monomers have O(1) domains, binding
graph is bounded degree

* # nodes of tree is at most exponential in
depth (longest path length < 2-depth)

* |If some path has > 2D edges, it must repeat
some ordered pair (d,d*) or (d.*,d))

* Break into two saturated complexes as shown.

,
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5
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Monomers as vectors

* monomer {a, b*b* d,ddd,d* e,e*}representedas(1,-2,0,3,0)
e sum of many monomers gives the number of excess domains in a fully

bound (saturated) complex with those monomers

* i.e., 2 copies of above monomer 2:(1,-2,0,3,0) = (2,-4,0,6,0) have an excess of
2a’s,4b*s,0c’s,6d’s,0e’s



Somewhat easy proof that unbounded size
complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all S € N, there is a stable complex P of size > S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P, P, ... in N™ be an infinite sequence of stable complexes increasing in size.
m is number of monomer types, P(j) = # monomers of type j in complex P..
2. Represent each monomer type as a vector in Z9 as on previous slide.
1. P;is composed of monomers my;, m,,, ..., My;.
2. lLetS,=mg+m, +..+m, Note thatthere isa m x d matrix M such that S, = M-P,
3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of P/s agrees on which set
of domain types are unbound.
2. By Dickson’s Lemma we may assume P, <P,<...and §; < S, < ... i.e., each has all the monomers of the
previous, plus some more, and each has all the unbound domains of the previous, plus some more.
4. letd=P,—P,.Then M-d=M-P,—M-P,=S,-5,20.
i.e., S, =S; + M-d and all three are nonnegative,
6. i.e., we can split S, into 2 disjoint nonempty nonnegative subsets, S, and M-d. QED

il



A digression into computational complexity

INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b
Question: is there a nonnegative integer vector x such that Ax = b?

0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution... max; x; < exp(max;(A;,b))

Papadimitriou’s proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
* If xis a large enough solution, thereis0<y<x,y € N” such that Ay = 0.
 Definingz=x-vy, Az=A(x—-y)=Ax—Ay=Ax-0=bh.

e So zis a strictly smaller solution than x: x cannot be the smallest solution.



Farkas’ Lemma

Given vectors m;, m,, ..., they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

3¢ (counts of monomers)
(m;m, m;3)c=0 m, .

(hyperplane N
orthogonal vector) "
h'mI Z 1 \\\ m3
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How to prove exponential complex size bound
for complexes with cycles in binding graph?

A = d x m matrix: A; = monomer m;’s excess of monomer collection ¢ € NM

domain d; over d.* abc .

If Ac = b, then b, = total # unbound d in any Ac=(2,1,0) E

saturated configuration of ¢ . i
/4 \

If |c| > exponential in D, Papadimtriou’s proof gives ! Yy i i

us subcollection y < ¢ such that Ay = 0, (Farkas’ | . ! E

Lemma says that if this fails, then monomer vectors ! a b ! |

all lie on one side of a hyperplane, see next slide) i : |

| |

i.e., #d.iny =#d* iny, soyis self-saturating. L far i E

| |

So whatever bonds were broken to separate y can i * i |

be re-bound within y. : / : i

|

By symmetry, the same bondsinz=c¢—ycan bere- i b/D* E i

bound within z. : a ! ]
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If all monomer types lie on one side of hyperplane h...

* Consider “slack monomers” {d,*}, {d,*},..., adding just enough to bind to all the
excess d. domains, so saturated (fully bound) == all domains bound

* If cis count of all monomers including slack monomers (¢(i) = count of m,), then
Ac = 0, where each column of A represents a monomer (counts of domains).

* dot-product h on both sides: h-Ac = h-0 = 0, distribute through: }.(h-m.)c(i) =0
e Let S be set of monomers with “small” counts, move them to one side:

— 2ies(h-my)c(i) = 3,¢5(h-m;)c(i)
* Then “small”, > =3 .c(h-m;)c(i) = 3,.(h-m;)c(i) = 3,.c(i)

\

c(i) (count of i"th monomer) is above since h-m.> 1
small by definition, and h-m, = O(1) |



Applying thermodynamic model to tile assembly

* Let’s incorporate the thermodynamic binding network model into the
abstract tile assembly model.

* How can we create a large assembly from a small number of tile
types?



A thermodynamically unstable tile assembly counter
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A thermodynamically stable tile assembly counter

Difference is that each row (corresponding to bits of the same significance)
has glues labeled with the row number

n, . . n’ |
1O 011 a1l 1101 O"O 011 111 110 010 011 1.1

1 ™ 1111n1 11C11n1
C, 1 0 c 0 0

n’ c’
1101 0 o ch o e OO ¢




Conclusions

 Strong bonds (surprisingly) aren’t sufficient to self-assemble large
thermodynamically stable structures. Geometry helps!

* Kinetically self-assembling a thermodynamically stable structure has
very strong guarantees on errors:
 target structure eventually results despite arbitrary kinetic errors.

* If it’s the only stable structure, and free energy of other structures is much
less, then it’s the only result you'll see.

* Bad news: NP-complete to tell if a given configuration is unstable...
even NP-hard to approximate entropy of stable configuration:

[Breik, Thachuk, Heule, Soloveichik, Computing properties of stable configurations of
thermodynamic binding networks, Theoretical Computer Science 2019]
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