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In an electronic circuit,

voltage can represent Boolean input

In a well-mixed solution,

concentration can represent Boolean input
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Representing Information with Molecules

Time

VoltageConcentration
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Chemical Identity Gate: Idealized vs. Actual Behavior

Time

Output

Input Present

No Input (Ideal)

OutputInput

3/41

Qian et al. Science 332, 2011

Wang et al. DNA 23, 2017

Qian et al. Nature 475, 2011

(Don’t worry about the details in 
the pictures above)

Experimental Implementation of Chemical Logic



Levels of Abstraction

DNA

Base Pairs

Strands

long short
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DNA strand displacement

Bind

Displace

Release

t1

t2

t1* a* t2*

a

aa

5



X ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

t3 y t4hy

X

ZY
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Leak in strand displacement experiments
Source:

Lulu Qian, Erik Winfree.
Scaling Up Digital Circuit Computation

Science 332, 2011
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Reducing Leak
[Boya Wang, Chris Thachuk, Andrew Ellington, 
David Soloveichik. The Design Space of Strand 
Displacement Cascades with Toehold-Size Clamps
DNA Computing Conference, 2017]Intended:

Leak:
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Ø ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

t3 y t4hy

X ⟶ Y + Z

t3hy

What causes leak 
“kinetically”?
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more favorable

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

t5 z t6hz

t3 y t4hy

hy* t3* hz* t5*

t3 hz
t5hyt2x

t1* x* t2*

Before: After:

What causes leak “thermodynamically”?

slow

very slow

less favorable
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Need a kinetic binding network model

Designed Pathway
Leak

Leak

• Can we design pathways that maintain local stability?
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Levels of Abstraction

DNA

Base Pairs

Strands

Thermodynamic
Binding Network
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Thermodynamic Binding Networks

Monomer = collection of domains

Configuration = how monomers are bound

a* b*

bba a

a*

Geometry-Free Model:

The domains within a 
monomer are unordered
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Energetic favorability: Bonds and complexes
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= <

= <

all else equal,
more bonds 
= more favorable

all else equal,
more complexes 
= more favorable
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Tradeoff between #bonds and #complexes

• in general, there’s some weight parameter w:

energy = w*#bonds + #complexes 

(physics notation: ΔG = ΔH – T∙ΔS)

• We often consider a natural limiting case:

• favoring #bonds infinitely over #complexes

• require maximal #bonds formed; use #complexes only as tiebreaker

• Corresponds to bonds that are so strong they cannot spontaneously dissociate, 
but can exchange with each other to find configurations with more complexes
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Thermodynamic Binding Networks

a* b*

b

ba
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a* b*
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b
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a
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b
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a

a* b*

b

ba

a

Saturated

Stable

saturated = maximum #bonds formed
stable = saturated, AND maximum #complexes
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If we’re careful to 
make starred binding 
sites limiting, then 
saturated = all starred 
sites are bound



Computing via Thermodynamic 
Equilibrium
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AND gate

20

a b

a* b* c* d*

ea b c d

e*b* c* d*

b c e fd

e f

e* f*

c d

output monomer to 
be released only if 
both inputs present



Issues with Boolean logic

• How to compose? 
– We don’t know how to prove the previous gate is composable, and used a 

more complex design in the paper

• Want “entropy gap”:
– Need not merely that unwanted configurations are unstable (i.e., if saturated, 

they have lower entropy), but more strongly that they have much lower 
entropy.

– We can use O(n) domain/monomer types to achieve an entropy gap of n.

• Output convention?
– Obvious one: “there’s a unique stable configuration with the correct output”

– It’s problematic, so we have a one-sided convention: 
• if correct output is 0, unique stable configuration with correct answer

• if correct output is 1, then both the “output=1” and “output=0” configurations are stable
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Composable AND gate with entropy gap 3
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Rather than release a single output monomer, it suffices to gather all output domains on one complex.



Kinetic pathways and energy 
barriers
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Pathways

Thermodynamics: Which configurations are energetically favorable

Kinetics: How a system moves between configurations over time

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a
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t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

X ⟶ Y + Z
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progress

Energy

Merge
(less favorable)

Split
(more favorable)

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

X

ZY
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Ø ⟶ Y + Z

zhzyhy

hz*hy*

x*

x hzhy

progress

Energy

Merge
(less favorable)

Split
(more favorable)
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What causes leak 
“kinetically”?



Kinetic Binding Networks

• Define pathways to consist of merges and splits

Weighted average:

Energy :=  – wH(# bonds) – (# complexes)

[Keenan Breik, Cameron Chalk, David Doty, David Haley, David Soloveichik. Programming Substrate-Independent 
Kinetic Barriers with Thermodynamic Binding Networks. Computational Methods in Systems Biology 2018]

• But for wH ≥ 2, only saturated pathways need be considered

• Favorability is a combination of bond count and complex count

Since all saturated configurations have an equal number of 
bonds, we can focus solely on the number of complexes
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Configuration space

Energy

α β

Large Energy Barriers

Reaction Pathway

Barrier

Merge
(less favorable)

Split
(more favorable)
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x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*
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A Network with a Programmable Energy Barrier
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Autocatalysis
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Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different 
stable configurations with barrier n to pass between any of them



Directed Catalysis

34

Along a catalyzed pathway, the barrier is 1

Otherwise the barrier is n/2



Social Golfer Problem

• Can 25 (n2) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no 
two golfers play together more than once?

• First studied by Euler.

• True if n is a prime power (2,3,4,5,7,8,9,11,13,…)

• False for smallest non-prime power n=6: can only play for 3 days!             
[Gaston Tarry (1901). "Le Probléme des 36 Officiers". Compte Rendu de l'Association Française pour 
l'Avancement des Sciences. Secrétariat de l'Association. 2: 170–203.]

• Unknown for next prime power n=10: 
• trivial upper bound is 11 days

• best known lower bound is 3

35
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(Feasible?) DNA implementation



Thermodynamic self-assembly
Grafting the TBN model onto self-assembly



A modest goal

• Informal: Design monomers that self-assemble arbitrarily large complexes.
• size of a complex  =  # monomers in the complex

• Formal: Design a set of monomer types so that, for all S ∈ ℕ, there is a 
stable complex of size at least S.

• Easy to do in Abstract Tile Assembly Model: 

39

a a*

set of monomer types:
size-8 complex (assembly) formed 
with 8 copies of monomer  

a a* a a* a a* a a* a a* a a* a a* a a*



Difficulty of self-assembling large complexes
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a a*

a a*

a a*

a a*

a a*

a a*

a a*

a a*

not stable! (or even saturated)

a a*

more complexes ⇒ higher entropy ⇒ more stable

a a*

a a*

a a*

a a*

a a*

a a*

a a*

w x*

x y*

y z*

z w*

attempt 2:

w x*

x y*

y z*

z w*

w x*

x y*

y z*

z w*

not stable! 

w x*

x y*

y z*

z w*

…

These have more complexes, and each is self-saturating 
(every domain can be bound within the complex)



An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable 
complex of size at least S.
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How large can we make S relative to D and M?

S ≈ D
D,M = O(1),  S = arbitrarily large

S ≈ D2

d1 d2* d2 d3* d3 d4* d4d1*
d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^

d1 c1 d2*c1 d1* d2 c1 d3* d3 c1

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types 
with a stable complex of size at least S.



How large can we make S relative to D and M?
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d2 d1* d2

d1 d1

d2 d1* d2

d3 d2* d3

d4 d3* d4

d4*

d3 d2* d3
d3 d2* d3 d3 d2* d3

d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4

d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4*

S ≈ 2D? 𝑆 ≈  22𝐷
?? 



Stable complexes have at most exponential size

Theorem: Any thermodynamic binding network with 
• D domain types, 

• M monomer types, 

• ≤ A domains per monomer type                (note D/A ≤ M ≤ AD+1)

Has stable complexes of size ≤ 2(M+D)(AD)2D+3 = poly(DD) if A = O(1)
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Easy proof if binding 
graph is acyclic (tree)

44

• Since monomers have O(1) domains, binding 
graph is bounded degree

• # nodes of tree is at most exponential in 
depth (longest path length ≤ 2∙depth)

• If some path has > 2D edges, it must repeat 
some ordered pair (di,di*) or (di*,di)

• Break into two saturated complexes as shown.

not stable



Monomers as vectors

• monomer {a,    b*,b*,    d,d,d,d,d*,    e,e*} represented as (1,-2,0,3,0)

• sum of many monomers gives the number of excess domains in a fully 
bound (saturated) complex with those monomers
• i.e., 2 copies of above monomer 2∙(1,-2,0,3,0) = (2,-4,0,6,0) have an excess of 

2 a’s, 4 b*’s, 0 c’s, 6 d’s, 0 e’s
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Somewhat easy proof that unbounded size 
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki. 
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of Pi’s agrees on which set 

of domain types are unbound.
2. By Dickson’s Lemma we may assume P1 < P2 < ... and S1 < S2 < ... i.e., each has all the monomers of the 

previous, plus some more, and each has all the unbound domains of the previous, plus some more.
4. Let d = P2 – P1. Then M∙d = M∙P2 – M∙P1 = S2 - S1 ≥ 0. 
5. i.e., S2 = S1 + M∙d and all three are nonnegative, 
6. i.e., we can split S2 into 2 disjoint nonempty nonnegative subsets, S1 and M∙d. QED



A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig 
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution… maxi xi ≤ exp(maxij(Aij,bj))

• Papadimitriou’s proof:
• If x is a large enough solution, there is 0 < y < x, y ∈ ℕm, such that Ay = 0.

• Defining z = x – y,   Az = A(x – y) = Ax – Ay = Ax – 0 = b.

• So z is a strictly smaller solution than x: x cannot be the smallest solution.

47

[On the complexity of integer programming. Papadimitriou, JACM 1981]



Farkas’ Lemma
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Given vectors m1, m2, … , they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

h∙mi ≥ 1

m1

h(m1 m2 m3)c = 0
∃c (counts of monomers)

(hyperplane 
orthogonal vector)

∃h

m2

m3

m1

m2

m3



How to prove exponential complex size bound 
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of 

domain di over di*

• If Ac = b, then bi = total # unbound di in any 
saturated configuration of c

• If |c| > exponential in D, Papadimtriou’s proof gives 
us subcollection y < c such that Ay = 0, (Farkas’ 
Lemma says that if this fails, then monomer vectors 
all lie on one side of a hyperplane, see next slide)

• i.e., #di in y = #di* in y, so y is self-saturating.

• So whatever bonds were broken to separate y can 
be re-bound within y.

• By symmetry, the same bonds in z = c – y can be re-
bound within z.

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

Ac = (2,1,0)
a b c

y

z

monomer collection c ∈ ℕM 



If all monomer types lie on one side of hyperplane h…

• Consider “slack monomers” {d1*}, {d2*},…, adding just enough to bind to all the 
excess di domains, so saturated (fully bound) == all domains bound

• If c is count of all monomers including slack monomers (c(i) = count of mi), then 
Ac = 0, where each column of A represents a monomer (counts of domains).

• dot-product h on both sides: h∙Ac = h∙0 = 0, distribute through: ∑i(h∙mi)c(i) = 0

• Let S be set of monomers with “small” counts, move them to one side: 

  – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i)

• Then “small”2 ≥ – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i) ≥ ∑i∉Sc(i) 

50

c(i) (count of i’th monomer) is 
small by definition, and h∙mi = O(1)

above since h∙mi ≥ 1



Applying thermodynamic model to tile assembly

• Let’s incorporate the thermodynamic binding network model into the 
abstract tile assembly model.

• How can we create a large assembly from a small number of tile 
types?

51



A thermodynamically unstable tile assembly counter

52

0
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A thermodynamically stable tile assembly counter

53

Difference is that each row (corresponding to bits of the same significance) 
has glues labeled with the row number



Conclusions

• Strong bonds (surprisingly) aren’t sufficient to self-assemble large 
thermodynamically stable structures. Geometry helps!

• Kinetically self-assembling a thermodynamically stable structure has 
very strong guarantees on errors:
• target structure eventually results despite arbitrary kinetic errors.
• If it’s the only stable structure, and free energy of other structures is much 

less, then it’s the only result you’ll see.

• Bad news: NP-complete to tell if a given configuration is unstable… 
even NP-hard to approximate entropy of stable configuration:  

[Breik, Thachuk, Heule, Soloveichik, Computing properties of stable configurations of 
thermodynamic binding networks, Theoretical Computer Science 2019]
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