IAT_EX Example ECS 120

David Doty

Non-numbered section

Sections are a good way to break up homework solutions by problem.

1 Numbered section

Or you can use a numbered section.

2 How to do things that are easy in a word processor

Normal text appears mostly as you type it. A notable exception is "quotation marks"; the left ones are wrong if you use the "normal quotes". Whitespace is ignored, but you can introduce more spaces between words if you want. I like to keep sentences on separate lines in the LATFX code, but this will not introduce a new paragraph.

To start a new paragraph, you need two newlines in the LATEX code.

You can also force text to

appear on the next line in the same paragraph.

You can make text **bold**, or in *italics*, or <u>underlined</u>. Instead of italics, I prefer to use *emphasis*, because of Theorem 5.4.

You can create numbered lists:

- 1. first numbered list item
- 2. By using labels, you can reference the list numbers so they automatically update if you add or delete items.
- 3. This is a reference to the labeled list item, which is number 2. You may have to compile twice to get the number correct.

You can also create bullet-point lists:

- first bullet list item
- second bullet list item

The verbatim environment is good for writing code, not only because it uses a fixed width font, but also because nothing in it is interpreted as a LATEX command:

int x = 5; // \emph{initial} position
double y = x*x;

You can also use it inline, but often what you really want instead is merely fixed width font, in which you can still have KEX commands such as *italics*.

Hyperlinks show up in PDF documents compiled from LATEX: link to course page

You can also just display a URL that is itself a link (for some reason this displays tilde characters better than the previous): https://smartsite.ucdavis.edu/portal/site/fall2015ecs120

3 How to write mathematics

Readable mathematical notation is the main reason to use IAT_EX instead of a word processor. There's much more to math in IAT_EX than this, but I want to give just the basics that will be most of what is needed for this course.

You can put math in the same line as the text like this: x = 5. Or you can put it on its own line like this:

$$x = 5.$$

(1)

$$x \neq 6.$$

Now we can reference equation (1).

You can also number equations:

Multiline equations are also useful:

$$\begin{array}{rcl} x & = & y+z \\ & \leq & 2y \\ & < & 3y & \text{if } y > 0 \end{array}$$

It's possible to number these also, or number only some of them:

$$\begin{array}{rcl} x &=& y+z & (2) \\ &\leq& 2y & \\ &<& 3y & (3) \end{array}$$

And we can make a reference to inequality (3).

Here's a list of common useful math symbols:

- x^2 . Use curly braces to superscript multiple characters, so you get x^{100} instead of x^100 .
- $n_2, x_{n^2}, x_n^2, O(n \log n), \hat{x}, \overline{A}, x_1', x_n''$
- Plain text in math mode: $\{p \in \mathbb{N} \mid p \text{ is prime}\}$
- Spaces in math mode: $\{ p \in \mathbb{N} \mid p \text{ is prime } \}$
- $\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$
- $\zeta(z) = \prod_{n=1}^{\infty} \frac{1}{1 p_n^{-z}}$

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \mathbb{Z} \setminus \{-1, -2, \ldots\} \subseteq \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \not\subseteq \mathbb{R}^+$
- Greek letters: $\alpha, \beta, \gamma, \Gamma, \delta, \Delta, \epsilon, \zeta, \eta, \theta, \Theta, \kappa, \lambda, \Lambda, \mu, \nu, \xi, \Xi, \pi, \Pi, \rho, \sigma, \tau, \phi, \Phi, \chi, \psi, \Psi, \omega, \Omega$
- complexity classes: $P, NP, DTIME(n^3)$
- $\Sigma^*, \{0,1\}^*$
- $\delta: Q \times \Sigma \to Q$
- $(\forall X) |\mathcal{P}(X)| > |X|$
- $\lim_{n\to\infty}\frac{1}{n}=0$
- $(\forall n \in \mathbb{N})(\exists m \in X)m > n \iff |X| = \infty \implies |X| \ge |\mathbb{N}|$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$

Note how ugly this looks:

$$(\frac{1}{n^2})$$

Use \left and \right to make pairs of matching delimiters big enough for the text they contain:

$$\left(\frac{1}{n^2}\right)$$

For defining sets where you want the vertical line in the middle to scale with the text size, it is useful to have a "phantom delimiter" (represented by a period):

$$X = \left\{ \left. \frac{n^2}{2^{n^3}} \right| n \in \mathbb{N} \right\}$$

Of course this only works if you guess properly whether the left or right is bigger, which failed here:

$$X = \left\{ n | \frac{n^2}{2^{n^3}} \ge \frac{1}{10} \right\}$$

4 Commands

You can define commands that act like macros. These both look the same, but one is easier to type: NP and NP. If IAT_EX complains that the command is already defined, redefine it.

And then use it: P

Commands can take arguments. We can make a command for the "make set delimiter big enough for the left-hand text" idea, which takes two arguments whose names are **#1** and **#2**,

and then we can call it with two arguments: $X = \left\{ \frac{n^2}{2^{n^3}} \middle| n \in \mathbb{N} \right\}$

In this document I'm defining commands as we go, but the normal way to do it would be to define them in the preamble (the part before \begin{document}).

Figure 1: A figure

5 Theorems/Lemmas/Definitions/etc.

Using the package amsthm alone does not provide environments for theorem/lemma/definition/etc. You have to define your own using the \newtheorem command.

Definition 5.1. Given $n \in \mathbb{N}$, let $\pi(n) = |\{ p \in \mathbb{N} \mid p \leq n \text{ and } p \text{ is prime } \}|$.

Theorem 5.2. $\lim_{n \to \infty} \frac{\pi(n)}{n / \ln n} = 1.$

Proof. I don't remember.

The following is a corollary of Theorem 5.2:

Corollary 5.3. There are an infinite number of primes.

Theorem 5.4. In an environment where the text is already italicized, using the italics command will not change it, but it can still be emphasized with the command \emph.

6 Figures

To include a figure that is a PDF file or a PNG file, use the **figure** environment. It is famously difficult in LAT_EX to get figures to go where you want them to; that's why it's important to label them so you can refer to them, such as Figure 1.