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Abstract
Chemical reaction network has been a model of interest to both theoretical and applied computer scientists, and there has

been concern about its physical-realisticity which calls for study on the atomic property of chemical reaction networks.

Informally, a chemical reaction network is ‘‘atomic’’ if each reaction may be interpreted as the rearrangement of indivisible

units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity

of deciding whether a given network is atomic according to each of these definitions. Primitive atomic, which requires each

reaction to preserve the total number of atoms, is shown to be equivalent to mass conservation. Since it is known that it can

be decided in polynomial time whether a given chemical reaction network is mass-conserving (Mayr and Weihmann, in:

International conference on applications and theory of petri nets and concurrency, Springer, New York, 2014), the

equivalence we show gives an efficient algorithm to decide primitive atomicity. Subset atomic further requires all atoms be

species, so intuitively this type of network is endowed with a ‘‘better’’ property than primitive atomic (i.e. mass conserving)

ones in the sense that the atoms are not just abstract indivisible units, but also actual participants of reactions. We show that

deciding if a network is subset atomic is in NP, and ‘‘whether a network is subset atomic with respect to a given atom set’’

is strongly NP-complete. Reachably atomic, studied by Adleman et al. (On the mathematics of the law of mass action,

Springer, Dordrecht, 2014. https://doi.org/10.1007/978-94-017-9041-3_1), and Gopalkrishnan (2016), further requires that

each species has a sequence of reactions splitting it into its constituent atoms. Using a combinatorial argument, we show

that there is a polynomial-time algorithm to decide whether a given network is reachably atomic, improving upon the result

of Adleman et al. that the problem is decidable. We show that the reachability problem for reachably atomic networks is

PSPACE-complete. Finally, we demonstrate equivalence relationships between our definitions and some cases of an

existing definition of atomicity due to Gnacadja (J Math Chem 49(10):2137, 2011).
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1 Introduction

A chemical reaction network is a set of reactions such as

Aþ B � C and X ! 2Y , intended to model molecular

species that interact, possibly combining or splitting in the

process. For 150 years (Guldberg and Waage 1864), the

model has been a popular language for describing natural

chemicals that react in a well-mixed solution. It is known

that in theory any set of reactions can be implemented by

synthetic DNA complexes (Soloveichik et al. 2010). Syn-

tactically equivalent to Petri nets (Angeli et al. 2007; Bri-

jder et al. 2016; Esparza et al. 2017), chemical reaction

networks are now equally appropriate as a programming

language that can be compiled into real chemicals. With

advances in synthetic biology heralding a new era of

sophisticated biomolecular engineering (Chen et al. 2013;

Montagne et al. 2011; Padirac et al. 2013; Qian et al. 2011;
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Qian and Winfree 2011; Seelig et al. 2006; Srinivas 2015),

chemical reaction networks are expected to gain promi-

nence as a natural high-level language for designing

molecular control circuitry.

There has been a flurry of recent progress in under-

standing the ability of chemical reaction networks to carry

out computation: computing functions (Alistarh et al.

2017; Brijder et al. 2016; Chen et al. 2014, 2013, 2014;

Cummings et al. 2015; Doty 2014; Doty and Hajiaghayi

2015; Esparza et al. 2017; Salehi et al. 2016, 2015;

Soloveichik et al. 2008), as well as other computational

tasks such as space- and energy-efficient search (Thachuk

and Condon 2012), signal processing (Hua et al. 2013;

Salehi et al. 2014), linear I/O systems (Oishi and Klavins

2011), machine learning (Napp and Adams 2013), and

even identifying function computation in existing biologi-

cal chemical reaction networks (Cardelli and Csikász-Nagy

2012). These studies generally assume that any set of

reactions is permissible, but not all are physically realistic.

Consider, for example, the reaction X ! 2X, which

appears to violate the law of conservation of mass. Typi-

cally such a reaction is a shorthand for a more realistic

reaction such as F þ X ! 2X, where F is an anonymous

and plentiful source of ‘‘fuel’’ providing the necessary

matter for the reaction to occur. The behavior of the two is

approximately equal only when the number of executions

of X ! 2X is far below the supplied amount of F, and if F

runs out then the two reactions behave completely differ-

ently. Thus, although X ! 2X may be implemented

approximately, to truly understand the long-term behavior

of the system requires studying its more realistic imple-

mentation F þ X ! 2X. A straightforward generalization

of this ‘‘realism’’ constraint is that each chemical species S

may be assigned a mass mðSÞ 2 Rþ, where in each reaction

the total mass of the reactants equals that of the products.

Indeed, conservative Petri nets formalize this very

idea (Edmund 1976; Mayr and Weihmann 2014), and it is

straightforward to decide algorithmically if a given net-

work is conservative by reducing to a question of linear

algebra.

The focus of this paper is a more stringent condition:

that the network should be atomic, i.e., each reaction

rearranges discrete, indivisible units (atoms), which may be

of different noninterchangeable types.1 (In contrast, mass

conservation requires each reaction to rearrange a con-

served quantity of continuous, generic ‘‘mass’’.) We

emphasize that this is not intended as a study of the atoms

appearing in the periodic table of the elements. Instead, we

aim to model chemical systems whose reactions rearrange

certain units, but never split, create, or destroy those units.

For example, DNA strand displacement systems (Solove-

ichik et al. 2010; Yurke et al. 2000) have individual DNA

strands as indivisible components, and each reaction

merely rearranges the secondary structure among the

strands (i.e., which bases on the strands are hybridized to

others).

Contrary to the idea of mass conservation, there is no

‘‘obviously correct’’ definition of what it means for a

chemical reaction network to be atomic, as we will discuss.

Furthermore, at least two inequivalent definitions exist in

the literature (Adleman et al. 2014; Gnacadja 2011). It is

not the goal of this paper to identify a single correct defi-

nition. Instead, our goal is to evaluate the choices that must

be made in formalizing a definition, to place existing and

new definitions in this context to see how they relate to

each other, and to study the computational complexity of

deciding whether a given network is atomic. This is a step

towards a more broad study of the computational abilities

of ‘‘physically realistic’’ chemical reaction networks.

1.1 Summary of results and connection
with existing work

The most directly related previous work is that of Adleman

et al. (2014) and of Gnacadja (2011), which we now dis-

cuss in conjunction with our results.

We identify two fundamental questions to be made in

formalizing a definition of an ‘‘atomic’’ chemical reaction

network:

1. Are atoms also species? (For example, if the only

reaction is 2H2 þ O2 � 2H2O; then H and O are

atoms but not species that appear in a reaction.)

2. Is each species separable into its constituent atoms via

reactions?

A negative answer to (1) implies a negative answer

to (2). (If some atom is not a species, then it cannot be the

product of a reaction.) Thus there are three consistent

answers to the above two questions: no/no, yes/no, and yes/

yes. We respectively call these primitive atomic, subset

atomic, and reachably atomic, defined formally in Sect. 3.

Intuitively, a network is primitive atomic if each species

may be interpreted as composed of one or more atoms,

which themselves are not considered species (a species can

be composed of just a single atom, but they will have

different ‘‘names’’). More formally, if K is the set of spe-

cies, there is a set D of atoms, such that each species S 2 K

has an atomic decomposition dS 2 ND n f0g describing the

atoms that constitute S, such that each reaction preserves

the atoms. A network is subset atomic if it is primitive

1 This usage of the term ‘‘atomic’’ is different from its usage in

traditional areas like operating system or syntactic analysis, where an

‘‘atomic’’ execution is an uninterruptable unit of operation (Silber-

schatz et al. 2013).
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atomic and the atoms are themselves considered species;

i.e., if D � K. A network is reachably atomic if it is subset

atomic, and furthermore, for each species S 2 K, there is a

sequence of reactions, starting with a single copy of S,

resulting in a configuration consisting only of atoms. (If

each reaction conserves the atomic count, then this con-

figuration must be unique and equal to the atomic

decomposition of S.)

A long-standing open problem in the theory of chemical

reaction networks is the global attractor conjec-

ture (Craciun et al. 2009; Horn 1974), of which even the

following special case remains open: is every network

satisfying detailed balance persistence, i.e., if started with

all positive concentrations, do concentrations stay bounded

away from 0? Adleman et al. (2014) defined reachably

atomic chemical reaction networks and proved the global

attractor conjecture holds for such networks. Gnacadja

(2011), attacking similar goals, defined a notion of

atomicity called ‘‘species decomposition’’ and showed a

similar result. We establish links between our definitions

and those of both Gnacadja (2011) and Adleman et al.

(2014) in Section 8(C) of Doty and Zhu (2017). In par-

ticular, Adleman et al. (2014) showed that it is decidable

whether a given network is reachably atomic. This is not

obvious since the condition of a species being separable

into its constituent atoms via reactions appears to require

an unbounded search. We improve this result, showing it is

decidable in polynomial time.

Mayr and Weihmann (2014) proved that configuration

reachability graphs for mass conserving chemical reaction

networks (i.e., conservative Petri nets) are at most expo-

nentially large in the size of the binary representation of the

network, implying via Savitch’s theorem (Walter 1970) a

polynomial-space algorithm for deciding reachability in

mass-conserving networks. We use these results in ana-

lyzing the complexity of reachability problems in reach-

ably atomic chemical reaction networks in Sect. 6.

It is clear that any reasonable definition of atomicity

should imply mass conservation: simply assign all atoms to

have mass 1, noting that any reaction preserving the atoms

necessarily preserves their total count. Perhaps surpris-

ingly, the conditions of primitive atomic and mass-con-

serving are in fact equivalent, so it is decidable in

polynomial time whether a network is primitive atomic and

what is an atomic decomposition for each species. A key

technical tool is Chubanov’s algorithm (Chubanov 2015)

for finding exact rational solutions to systems of linear

equations with a strict positivity constraint.

In their work on autocatalysis of reaction networks

(Deshpande and Gopalkrishnan 2013), Abhishek and

Manoj showed that a consistent reaction network is self-

replicable if and only if it is critical. Since weak-re-

versibility implies consistency and our definition of

reversibility implies weak-reversibility defined in Desh-

pande and Gopalkrishnan (2013) , we obtain the following

equivalence: let a chemical reaction network C be rever-

sible. Then C is mass conserving if and only if there does

not exist c1\c2 2 NK such that c1 )� c2.2

Lastly, we note that there have been other models

addressing different aspects of atomicity (not necessarily

using the term ‘‘atomic’’). They focus on features of

chemical reaction networks not modeled in this paper. For

discussions on these works, please see Section 8(A) of

Doty and Zhu (2017).

2 Preliminaries

Let Z;N;R respectively denote the set of integers, non-

negative integers, and reals. Let K be a finite set. We write

NK to denote ff : K! Ng. Equivalently, by assuming a

‘‘canonical’’ ordering on K, an element c 2 NK can also be

viewed as a jKj-dimensional vector of natural numbers,

with each coordinate labeled by S 2 K interpreted as the

count of S. c 2 NK interpreted this way is called a con-

figuration. We sometimes use multiset notation, e.g.,

f3A; 2Bg to denote the configuration with 3 copies of A, 2

of B, and 0 of all other species. ZK;RK;NK�D;ND (where

D is also a finite set) are defined analogously.

We write c� c0 to denote that ð8X 2 KÞ cðXÞ� c0ðXÞ,
and c\c0 if c� c0 and c 6¼ c0. We say c and c0 are in-

comparable if c£c0 and clc0.

Definition 1 Given a finite set of chemical species K, a

reaction over K is a pair a ¼ ðr; pÞ 2 NK �NK, specifying

the stoichiometry of the reactants and products

respectively.3

A chemical reaction network is a pair C ¼ ðK;RÞ, where

K is a finite set of chemical species, and R is a finite set of

reactions over K.

A chemical reaction network is reversible if

ð8ðr; pÞ 2 RÞ ðp; rÞ 2 R.

For configurations c1; c2 2 NK, we write c1 )�C c2 (read

‘‘C reaches c2 from c1’’) if there exists a finite reaction

sequence (including the empty sequence) that starts with c1

2 Note that by the argument above, reversible networks are weakly

reversible and hence consistent, which establishes the equivalence

between self-replicability and criticality. One may further observe

from Deshpande and Gopalkrishnan (2013) that this equivalence

translates to the equivalence between the mass conserving property

and the reachability property above.
3 There is typically a positive real-valued rate constant associated to

each reaction, but we ignore reaction rates in this paper and

consequently simplify the definition.
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and ends with c2. For simplicity, write c1 )� c2 (read ‘‘c2

is reachable from c1’’) when C is clear.

Definition 2 Given c 2 NK (or ZK;RK etc. analogously),

the support of c, written as ½c�, is the set

fS 2 K j cðSÞ 6¼ 0g.

A few more notational conventions are listed here: write

eA 2 NK as the unit vector that has count 1 on A 2 K and 0

on everything else. Given a vector x 2 NK, write

kxk ¼ kxk1 ¼
P

S2K xðSÞ. When � is any data, write h�i for

its binary representation as a string, so jh�ij is the length of

the binary representation of �. Given f : A! B and C � A,

f �C is the function C ! B, c 7!f ðcÞ (8c 2 C). Lastly, when

M is a matrix, write MT as its transposition.

3 Definitions of ‘‘atomic’’

This section addresses definitions of several classes of

networks, some computational complexity result of which

will be exhibited later.

Intuitively, C ¼ ðK;RÞ is primitive atomic if all species

can be decomposed into combinations of some atoms.

Atoms are not required to be species. Each reaction con-

serves the total count of each type of atom in the species

involved (i.e., the reaction can only rearrange atoms but not

create or destroy them).

Note that the purpose of studying the primitive-atomic

model (as well as all other types of atomic later) is not to

analyze ‘‘real-world’’ atoms. Instead, we are trying to study

how molecules can be interpreted as decomposable into

exchangeable parts. In particular, if we know only the

reactions but not those exchangeable parts, we are inter-

ested in whether the reactions can tell us how the molecules

are composed from parts. Proposition 10 below, for

example, shows that this information can be retrieved by

finding a mass distribution vector.

Definition 3 (primitive atomic) Let D be a nonempty finite

set and C ¼ ðK;RÞ a chemical reaction network. C is

primitive atomic with respect to D if for all S 2 K, there is

dS 2 ND n f0g such that

1. ð8ðr; pÞ 2 RÞð8A 2 DÞ
P

S2K rðSÞ � dSðAÞ ¼
P

S2K
pðSÞ � dSðAÞ (reactions preserve atoms), and

2. ð8A 2 DÞð9S 2 KÞ dSðAÞ 6¼ 0. (each atom appears in

the decomposition of some species)

For S 2 K, call dS in Condition (1) the (atomic)

decomposition of S. We say C is primitive atomic if there

is a nonempty finite set D such that C is primitive atomic

with respect to D. In the cases above, D is called the set of

atoms.

Condition (1) embodies the intuition above. Condi-

tion (2) prescribes that each atom appears in the

decomposition of at least one species. Consider the

network C ¼ ðfX; Y ;W ; Zg; fðð2; 1; 0; 1ÞT ; ð0; 0; 2; 1ÞTÞ;
ðð1; 2; 1; 1ÞT ; ð0; 1; 1; 2ÞTÞgÞ. One may write C as:

f2XþYþZ! 2WþZ; Xþ2YþWþZ! YþWþ2Z:g

C is primitive-atomic with respect to, say, D ¼ fH;Og, via

the decomposition vector dX ¼ ð2; 0ÞT ; dY ¼ ð0; 2ÞT , dW ¼
ð2; 1ÞT ; dZ ¼ ð2; 2ÞT . Here dX ¼ ð2; 0ÞT means the species

X is composed of 2 units of atom H and 0 unit of atom O,

and dY ; dW ; dZ can be interpreted likewise. Observe that

each of the two reactions in C preserves the total count of

each type of atom on both sides of reactions.

Next, we introduce the definitions of stoichiometric

matrix and decomposition matrix. In particular, A encodes

the net change of species caused by execution of one

reaction, and D compiles all decomposition vectors into

one data structure.

Definition 4 (stoichiometric matrix) The stoichiometric

matrix A for a chemical reaction network C ¼ ðR;KÞ is the

jRj � jKj matrix where the entry Aðr;pÞ;S ¼ pðSÞ � rðSÞ for

each ðr; pÞ 2 R and S 2 K.

Notation-wise, Aðr;pÞ;S is the entry whose row is labeled

by the reaction ðr; pÞ and column by the species S. Each

row of the stoichiometric matrix represents the change of

count of each species via execution of 1 unit of ðr; pÞ. For

more illustration , see Example D.1 (Doty and Zhu 2017).

Definition 5 (decomposition matrix) Let C ¼ ðK;RÞ be

primitive atomic with respect to D. The decomposition

matrix, denoted as DD for C with respect to D is the jKj �
jDj matrix whose row vectors are ðdSÞT ðS 2 KÞ.

Note that the set of decomposition vectors fdSgS2K is in

general not unique for primitive atomic chemical reaction

networks—for example, Aþ B! C is primitive atomic

with respect to D ¼ fDg via ðk; k; 2kÞð8k 2 N[ 0Þ. Cor-

respondingly, DD’s are defined with respect to each set

fdSgS2K. See Example D.2 and Remark D.2 (Doty and

Zhu 2017) for more discussion on decomposition matrices.

The next definition requires all atoms to be species.

Definition 6 (subset atomic) Let C ¼ ðK;RÞ be a chemical

reaction network and let D � K be nonempty. We say that

C is subset-D-atomic if C is primitive atomic with respect to

D and, for each S 2 K:

1. S 2 K \ D ¼ D ¼) dS ¼ fSg, and

2. S 2 K n D ¼) kdSk	 2.

We say C is subset atomic if 9; 6¼ D � K such that C is

subset-D-atomic.
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By Definition 6, no two atoms can have the same atomic

decomposition, but it is allowed that two distinct molecular

(i.e. non-atom) species to have the same decomposition. In

this case we say the two species are isomers (reminiscent of

isomers in nature that are composed of the same atoms in

different geometrical arrangements). As for the require-

ment that each non-atom species decompose to a vector of

size at least 2, that is to incorporate the idea that generally a

molecule should be composed of at least 2 atoms.

For example, the network C ¼ f2X þ Y þ Z ! 2W þ
Z;X þ 2Y þW þ Z ! Y þW þ 2Zg mentioned above is

subset-atomic: just redefine D ¼ fXg and dX ¼ ð1Þ;
dY ¼ ð2Þ; dZ ¼ ð3Þ; dW ¼ ð2Þ. One may verify that in the

first reaction, each side has 7 atoms X, while in the second

each side has 10.

The next definition further requires that decomposition

of each molecular species Si can be ‘‘realized’’ via a

sequence of reactions, given f1Sig as initial state. As dis-

cussed in Sect. 1.1, this definition was originally developed

in Adleman et al. (2014) to help their approach to the

Global Attractor Conjecture in the field of mass action

kinetics. Considering the convention for most networks, we

relax their requirement of reversibility for each reaction.

Definition 7 (reachably atomic) A chemical reaction

network C ¼ ðK;RÞ is reachably atomic if

1. C is subset atomic with respect to some D � K, and

2. for each S 2 K n D, f1Sg )� dS.

Here and wherever necessary, with slight abuse of

notation, dS, which represents the atomic decomposition of

S, simultaneously represents a configuration in ND reach-

able from f1Sg. Observe that C ¼ f2X þ Y þ Z ! 2W þ
Z;X þ 2Y þW þ Z ! Y þW þ 2Zg is not reachably-

atomic unless we add the following reactions:

Y ! 2X; Z ! 3X;W ! 2X, in which case the set of atoms

is fXg.
Condition 2 is a strong restriction ensuring some nice

properties. For example, the atom set of a reachably atomic

network is unique:

Lemma 8 If C ¼ ðK;RÞ is reachably atomic, then the

choice of D with respect to which C is reachably atomic is

unique. Moreover, for each S 2 K, dS is unique, i.e., if

f1Sg )� c 2 ND, then c ¼ dS.

Proof The intuition is to show that should there exist

D1 6¼ D2 and without loss of generality, assume

9A 2 D1 n D2, then the decomposition of A with respect to

D1 violates the preservation of atoms in D2.

Assume for the sake of contradiction that for some

reachably atomic network C, there exist D1 6¼ D2 with

respect to both of which C is reachably atomic, respectively

via decomposition matrices D1 and D2. Note that

ðD1 n D2Þ [ ðD2 n D1Þ 6¼ ;. Take A 2 ðD1 n D2Þ[ðD2 n D1Þ:

1. If A 2 D1 n D2, then f1Ag is decomposible into some

c 2 NK j ½c� � D2 via a sequence of reactions, with

kck1	 2. There is no way for this sequence of

reactions to preserve atoms with respect to D1, for

the initial configuration has a single atom A 2 D1 while

the final configuration has no atom A.

2. Similarly, if A 2 D2 n D1, there will be a sequence of

reactions violating preservation of atoms with respect

to D2.

We next prove the uniqueness of decomposition vectors

dS for all S 2 K, or equivalently, the uniqueness of

decomposition matrix D. Suppose not, then there exists

S 2 K n D s.t. f1Sg )� y1; y2 2 NK, y1 6¼ y2 and

½y1�; ½y2� � D, via reaction sequences s1; s2 respectively.

Assume without loss of generality that s1 preserves the

number of atoms in each reaction, which meansy1 ¼ dS. Then

there must be one or more actions in s2 that does (do) not

preserve the number of atoms, for s1; s2 share the same initial

configuration f1Sig yet reach different final count of atoms,

while no atoms are allowed to be isomeric to each other. h

Conservation laws in ‘‘-atomic’’ networks reminds us of

a more familiar type of conservation law, which is mass

conservation. The next section exhibits some observations

on the relationship between these two types of conservation

laws.

4 Mass-conservation and primitive
atomicity

This section shows that ‘‘primitive atomic’’ and ‘‘mass

conserving’’ are equivalent concepts. We first formalize

what it means for a network to conserve mass:

Definition 9 (mass conserving) A chemical reaction net-

work C ¼ ðK;RÞ is mass conserving if

ð9m2RK
[0Þð8ðr;pÞ 2RÞ

X

S2K
rðSÞ �mðSÞ¼

X

S2K
pðSÞ �mðSÞ

Equivalently, if A is the stoichiometric matrix in Defini-

tion 4, then C is mass conserving if ð9m 2 RK
[ 0Þ A �m ¼

0: We call m a mass distribution vector.

Using our familiar example, C ¼ f2X þ Y þ Z ! 2W þ
Z;X þ 2Y þW þ Z ! Y þW þ 2Zg is mass conserving

with respect to m ¼ ð0:5; 1; 1:5; 1ÞT . ‘‘Mass Conserving’’

captures the feature that for every reaction in C, the total

mass of reactants are equal to the total mass of products.

Difference between the definitions of Mass Conserving and
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Primitive Atomic (as well as all ‘‘-atomic’’ definitions

descended therefrom) become clear if we compare the

matrix form of their respective conservation laws: mass

conservation requires a single conservation relation

(A �m ¼ 0jRj), while primitive atomicity requires jDj of

them (A � D ¼ 0 where D is a jKj � jDjÞ matrix.

However, apparently these two conservation laws are

closely related. In fact, the freedom of defining D inde-

pendent of K provides us a choice for making D a single-

ton, which enables us to prove the following equivalence:

Proposition 10 For any network C, C is primitive atomic

, C is mass conserving. Further, there exists an OðjhAij5Þ
algorithm to decide if C is primitive atomic, with A the

stoichiometric matrix of C.

Proof Intuitively, the ‘‘¼)’’ direction is shown by

assigning mass 1 to each atom, as ‘‘homogenizing’’ the

atoms preserves the original conservation law; for the

‘‘(¼’’ direction, one may essentially create a D of cardi-

nality 1 with respect to which the network is primitive

atomic by assigning to each molecule the count of that

atom obtained from ‘‘de-fraction-izing’’ its mass. Time

complexity of the decision algorithm for primitive

atomicity follows from the time complexity of Chubanov’s

algorithm (Chubanov 2015; Roos 2015) which can be used

to decide mass conserving property (and give a rational

mass-assignment vector in the ‘‘yes’’ cases), and from the

equivalence established above. The proof also reflects the

difference in number of conservation relations addressed

two paragraphs above. See Section 8(B) (Doty and Zhu

2017) for details and more remarks. h

Recall that subset atomicity imposes the restriction that

D � K. As we’ll show in the following section, this single

restriction increases the computational complexity of the

decision problem ‘‘is a network ‘(prefix)-atomic’ ’’.

5 Complexity of subset atomic

We shall determine in this chapter the computational

complexity for deciding the subset atomicity of networks.

First, we define the relevant languages:

Definition 11 We define the following languages:

Subset-Atomic ¼fhK;Ri j ð9D � KÞðK;RÞis
subset atomic with respect

toDg;
Subset-Fixed-Atomic ¼fhK;R;Di j ðK;RÞ is subset

atomic with respect toDg

By definition, Subset-Atomic is the language whose

elements are the encoding of a subset atomic chemical

reaction network. SUBSET-FIXED-ATOMIC, on the other hand,

is the language consisting of the encoding of a (network,

atom set) pair where the network is subset atomic with

respect to the given atom set. In this section we determine

the complexity classes of these languages.

5.1 SUBSET-FIXED-ATOMIC and SUBSET-ATOMIC are
in NP

It is not immediately obvious that there exists a short

witness for either language (which if true would imply that

both languages are in NP immediately), so we reduce

Subset-Fixed-Atomic to Integer-Program-ming , which is in

NP (Papadimitriou Christos 1981).

Hereinafter, the notation � p
m denotes ‘‘many-one

reduces to’’.

Proposition 12 SUBSET-FIXED-ATOMIC � p
mInteger-

Programming (hereinafter, ‘‘IP’’).

Proof The proof is done by exhibiting a polynomial time

algorithm to transition the conditions in Definition 6 into a

linear system. Note that the atom set D is given as input.

For details of the reduction, see Section 8(B) (Doty and

Zhu 2017). h

Corollary 13 SUBSET-FIXED-ATOMIC, SUBSET-ATOMIC 2 NP.

Proof It is proved (e.g., in Papadimitriou Christos 1981)

that IP 2 NP, hence so is Subset-Fixed-Atomic.

The proof that Subset-Atomic 2 NP is given by a

polynomial time verification algorithm using the poly-

nomial-time verifier of Subset-Fixed-Atomic as an oracle

and taking as witness both the atom set and decomposition

matrix. For details, see Section B (Doty and Zhu 2017). h

5.2 Subset-fixed-atomic is NP-hard

Our proof shall be based on reduction from

Monotone-1-In-3-Sat. Recall that a monotone 3-CNF C is

a conjunctive normal form with no negations, and a 1-in-3

satisfying assignment for C is an assignment of Boolean

values to all variables such that for each clause in C,

exactly one variable is assigned true.

As a well-established result, the following language is

NP-complete (Garey and Johnson 1979).

Monotone-1-In-3-Sat ¼fhV ;Ci j Cis a monotone

3-CNF overV ¼ fvigni¼1;

and there exists a 1-in-3

satisfying assignment for Cg
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Proposition 14 Monotone-1-In-3-Sat� p
mSubset-Fixed-

Atomic.

Proof Given an instance hV ;Ci, we design a chemical

reaction network C where

1. Each molecular species consists of 2 atoms T and

F (representing ‘‘True’’ and ‘‘False’’ respectively), and

2. reactions guarantee the equivalence: C is subset-D-

atomic if and only if the hV ;Ci 2 Monotone-

1-In-3-SAT.

For each instance hV;Ci of Monotone-1-In-3-Sat, let

D ¼ fT;F;P;Qg, K ¼ fS1; S2; . . .; Sn;X1;X2; . . .; Xng [ D.

To construct R, we denote C ¼ c1 ^ c2 ^ � � � ^ ck. For

the i-th clause ci 2 C, let vij denote the j-th literal of

c. Same indexing convention applies for fSigni¼1 and

fXigni¼1, hence each Sij (resp. Xij) denotes an element in

fSigni¼1 (resp. fXigni¼1) .4 The set R contains the following

reactions5:

3Pþ 2F þ T ! Sm1 þ Sm2 þ Sm3 ð8m 2 ½1; k�Þ ð5:1Þ
3Qþ 2F þ T ! Xm1 þ Xm2 þ Xm3 ð8m 2 ½1; k�Þ ð5:2Þ
Si þ Q! Xi þ P ð8i 2 ½1; n�Þ ð5:3Þ

Note that we only need to construct 4þ 2n species and

2k þ n reactions whose coefficients are constant, so this

transformation is polynomial in time and space. We argue

that hV ;Ci 2 Monotone-1-In-3-Sat if and only if

hK;R;Di 2 Subset-Fixed-Atomic.

): If hV;Ci 2 Monotone-1-In-3-Sat, there exists a / :
V ! f0; 1g under which 9ðn1; n2; . . .; nqÞ(ð1; 2; . . .; nÞ s.t.

/ðvniÞ ¼ 1 ð8i 2 ½1; q�Þ, /ðvjÞ ¼ 0 ðj 2 ð½1; n� n ðn1; n2;

. . .; nqÞÞÞ, and for each ci 2 C, exactly one in three of its

literals evaluates to 1. Let:

KTP ¼fSnj j j 2 ½1; q�g
KFP ¼K n ðD [ KTP [ fXi j i 2 ½1; n�gÞ
KTQ ¼fXnj j j 2 ½1; q�g
KFQ ¼K n ðD [ KTQ [ KTP [ KFPÞ

Then hK;R;Di 2 Subset-Fixed-Atomic because with all

atoms listed in the order: fT ;F;P;Qg, one may make the

following decomposition:

dU ¼ð1; 0; 1; 0ÞT ; 8U 2 KTP

dV ¼ð0; 1; 1; 0ÞT ; 8V 2 KFP

dW ¼ð1; 0; 0; 1ÞT ; 8W 2 KTQ

dZ ¼ð0; 1; 0; 1ÞT ; 8Z 2 KFQ

Because of the way fnjgqj¼1 was taken, for each reaction

in (5.1), exactly one of the product species decompose to

1T and 1P, with the other two decomposing to 1F and

1P. Similar argument applies for reactions in (5.2),

substituting Xi for Si and Q for P. Arithmetics show that

all three reactions (5.1) through (5.3) preserve the number

of atoms, each atom appears in the decomposition of at

least one molecular species, and the number of atoms in the

decomposition of each species complies with the Definition

11. Therefore hK;R;Di 2 Subset-Fixed-Atomic.

(: If hK;R;Di 2 Subset-Fixed-Atomic, (5.1) ensures

that each molecular species contains exactly two atoms.

That is because for each i 2 ½1; n�,
dSiðTÞ þ dSiðFÞ þ dSiðPÞ þ dSiðQÞ	 2 ð5:4Þ

by Definition 11, so for each m 2 ½1; k�,
X3

j¼1

ðdSmjðTÞ þ dSmjðFÞ þ dSmjðPÞ þ dSmjðQÞÞ	 3� 2 ¼ 6

ð5:5Þ

However the total number of atoms on the left hand side

of 5.1 is exactly 6, meaning the equal sign has to be taken

everywhere in (5.5) for any m 2 ½1; k�, forcing (5.4) to take

equal sign as well.

Similarly, (5.2) ensures jjdXi
jj1 ¼ 2 for each i 2 ½1; n�.

The reaction series (5.3) implies that each Si has at least

one P and each Xi has at least one Q. Furthermore,

1. if any Si decomposes to 2P, its corresponding Xi shall

be composed of PQ, contradicting (5.2) which says

that no Xi contains any P;

2. if any Si decomposes to PQ, it contradicts with (5.1)

which says that no Si contains any Q.

Therefore all Si shall decompose to either f1F; 1Pg
(ð0; 1; 1; 0ÞT ) or f1T; 1Pg (ð1; 0; 1; 0ÞT ). Correspondingly,

Xi decompose to either ð0; 1; 0; 1ÞT or ð1; 0; 0; 1ÞT .

Construct / such that /ðvjÞ ¼ 1 for all

vj 2 fvj j dSj ¼ ð1; 0; 1; 0Þ
Tg, and /ðvmÞ ¼ 0 for all

vm 2 V n fvj j dSj ¼ ð1; 0; 1; 0ÞTg. Exactly one in three of

the products in the right hand side of (5.1) decomposes to

(1, 0, 1, 0), so exactly one in three of the variables

4 For example, for V ¼ fv1; v2; . . .; v5g, C ¼ ðv1 _ v3 _ v4Þ^
ðv3 _ v2 _ v5Þ, v11 ¼ v1; v12 ¼ v3; v13 ¼ v4; . . .; v23 ¼ v5. Correspond-

ingly, S11 ¼ S1;X11 ¼ X1; � � � ; S23 ¼ S5;X23 ¼ X5.
5 To continue the example in the previous footnote, the set of

reactions shall be:

3Pþ 2F þ T ! S1 þ S3 þ S4

3Pþ 2F þ T ! S3 þ S2 þ S5

3Qþ 2F þ T ! X1 þ X3 þ X4

3Qþ 2F þ T ! X3 þ X2 þ X5

Si þ Q! Xi þ P ði ¼ 1; 2; . . .; 5Þ:
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(literals) in each clause of C evaluates to 1. It follows that

hV;Ci 2 Monotone-1-In-3-Sat. h

We notice that the coefficients of all species in all the

reactions (5.1)–(5.3) are constants, so the numerical

parameters—entries of each ðr; pÞ 2 R—of the instances

hK;R;Di constructed above are bounded by the constant 3,

which is again bounded by a polynomial of the length of

hV;Ci, presuming the encoding scheme is ‘‘reasonable and

concise’’ (Garey and Johnson 1978). We therefore con-

clude that:

Corollary 15 Subset-Fixed-Atomic is strongly NP-hard

(and hence strongly NP-complete).

Remark 16 Subset-Fixed-Atomic remains NP—complete

even restricted to instances where R contains only uni-

molecular and bimolecular reactions.

In fact, one may convert, for each m 2 ½1; k� (recall that

k is the number of clauses in C), any reaction in the series

(5.1) (3Pþ 2F þ T ! Sm1 þ Sm2 þ Sm3 ð8m 2 ½1; k�Þ) into

the following series:

T þ F � Mm1

Mm1 þ F � Mm2

Mm2 þ P � Mm3

Mm3 þ P � Mm4

Mm4 þ P!Mm5 þ Sm1

Mm5 ! Sm2 þ Sm3

And apply similar methods to the Xi species. Such

conversion creates 2� 10k ¼ 20k extra reactions and 2�
5k ¼ 10k intermediate species, which is polynomial in both

time and space.

The lower bound of the complexity of Subset-Ato-mic

therefore remains open, but we conjecture that SUBSET-

ATOMIC is NP-hard (hence NP-complete).

6 Complexity of reachably atomic

Without repeating the intuition of the definition of reach-

ably atomic which has been explained in Sects. 1.1 and 3,

we proceed with the corresponding definition of languages

for deciding reachable atomicity and the reachability

problem in reachably atomic networks.

Definition 17 We define the following languages

Reachably-Atomic ¼fhK;Ri j ð9D � KÞ
ðK;RÞis reachably

atomic with respect

toDg;
Reachably-Fixed-Atomic ¼fhK;R;Di j ðK;RÞis

reachably atomic with

respect toDg

Distinction between Reachably-Fixed-Atomic and

Reachably-Atomic is analogous to ‘‘SUBSET-FIXED-ATOMIC

v.s. SUBSET-ATOMIC’’. However, by Lemma 8 there is no

semantic reason to distinguish between ‘‘REACHABLY-

REACHABLY ATOMIC’’ and ‘‘REACHABLY-ATOMIC’’. So we

shall only consider REACHABLY-ATOMIC from now on.

6.1 REACHABLY-ATOMIC is in P

As mentioned before, the requirement that f1Sg )�
dS ð8S 2 KÞ ensures some interesting results. The com-

plexity results in this subsection confirm this.

Lemma 18 If a network C ¼ ðK;RÞ is reachably atomic

with respect to D via decomposition matrix D (or equiva-

lently, via the set of decomposition vectors fdSgS2K), then

9S 2 K n D and ðr; pÞ 2 R s.t. r ¼ f1Sg and p ¼ dS.

Proof The claim is saying that if a network is reachably

atomic, then there exists a molecular species that can be

decomposed into its atomic decomposition in one single

reaction. Proof is done by assuming otherwise and chasing

the decomposition sequence to find an infinite descending

chain of species ordered by the size of their decomposition

vectors, contradicting the finiteness of species set. Suppose

not, then for all reactions with r ¼ f1Sg for some

S 2 K n D, either ½p� \ ðK n DÞ 6¼ ;, or ½p� � D but p 6¼ dS.

The last case cannot happen, due to the uniqueness of

atomic decomposition for reachably atomic networks

(Recall Lemma 8). Hence for all ðr; pÞ with r ¼ f1Sg for

some S 2 K n D, ½p� \ ðK n DÞ 6¼ ; [*].

[*], together with the reachable-atomicity, implies that

for each S 2 K n D one may find a S0 s.t. kdSk1 [ kdS0 k1

½���. To see this, consider an arbitrary Si 2 K n D: any

ðr; pÞ with r ¼ f1Sig has either kpk1 ¼ 1, or kpk1	 2. In

the second case we are done, for any Sj 2 ½p� \ ðK n DÞ
satisfies kdSjk1\kdSik1; in the first case, we have found

some Siþ1 s.t. dSiþ1
¼ dSi (and we call such ðr; pÞ an

isomerization reaction), so we recursively inspect into all

ðr1; p1Þ with r1 ¼ f1Siþ1g. Such a recursion must finally

terminate with some Siþm that satisfies

ð9ðrm; pmÞ j rm ¼ f1SiþmgÞkpmk1	 2, for otherwise dSi
would not be reachably decomposible into dSi via any
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reaction sequence. It follows that any Siþmþ1 2 ½pm� \ ðK \
DÞ satisfies kdSik1 [ kdSiþmþ1

k1.

We have argued that our initial assumption (for the sake

of contradiction) implies ½���. But ½��� would imply that

there exists no molecular species with minimal size,

contradicting the finiteness of K. h

Theorem 19 REACHABLY-ATOMIC 2 P.

Proof We need to exhibit a polynomial time algorithm

that decides whether there exists a separation of K into two

non-empty, disjoint sets M (molecules) and D (atoms), with

elements in M decomposable via sequences of reactions

into combination of elements in D.

To achieve this goal, we set M ¼ fS 2 K j
ð9ðr; pÞ 2 RÞr ¼ f1Sgg, the subset of species which are

the single reactant of some reaction; apparently M is non-

empty for reachably-atomic networks, by Lemma 18. Then

recursively, we check if there exist elements in M that can

be decomposed into combination of atoms via a reaction

sequence of length i ¼ 1; 2; . . ., and reject if we succeed to

do so at i ¼ k but fails at i ¼ k þ 1 while not all elements

in M have been examined. When this process terminates

(note that M is finite) finding (candidate) atomic decom-

position for all molecules, we verify if the necessary

conservation laws hold. We describe this polynomial time

algorithm in more details, argue for its correctness, and

then exhibit the pseudo-code.

Our algorithm will compose of the following steps:

1. Enumerate all reactions in R: for each reaction starting

with f1Sg for some S 2 K, put S in the set M of

molecules. After the enumeration, define D ¼ K nM.

If D ¼ ; or M ¼ ;, reject.

2. Find if there exists some molecular species S 2 M such

that S is decomposible into some dS with ½dS� � D by

execution of a single reaction. If any of such dS is of

size 0 or 1, reject. Keep track of each decomposition

vector dS;

Construct a subset M0 of M s.t. M0 contains all

molecular species which cannot be decomposed into

dS with ½dS� � D by execution of one reaction. If

M0 ¼ M, then reject.

3. While M0 is not empty, iterate and try to find an S 2 M0

that satisfies this condition: 9ðr; pÞ 2 R s.t. r ¼ f1Sg
and ½p� � ðM nM0Þ [ D. Note that all elements S00 in

M nM0 satsifies f1S00g )� dS00 , hence if S can be

decomposed into complexes consisting solely of

elements in ðM nM0Þ [ D via execution of one reac-

tion, then S itself satisfies f1Sg )� dS as well. Keep

track of dS and exclude such S from M0.
If in some iteration we cannot find any such S 2 M0,

then reject; else, the iteration will finally halt excluding

all such S’s and making M0 empty.

4. We have obtained dS for each S 2 K (note that dA ¼ eA
for all A 2 D) s.t. ½dS� � D and f1Sg )� dS. By

Lemma 8, such set of decomposition is unique. Now,

check if this decomposition conserves atoms by

composing stoichiometric matrix A and decomposition

matrix D and examine if A � D ¼ 0, and finally check if

each atom A appears at least once in some dS for some

S 2 M.

We first prove that if reachably atomic then the

algorithm will halt in ACCEPT:

if C is reachably atomic, then we claim that the set fS 2
K j 9ðr; pÞ 2 R s:t: f1Sg ¼ rg is exactly the set of mole-

cules M, with its complement D ¼ K nM. To see this,

recall that we prescribed there being no ‘‘r! r’’ reactions

in R, so all reactions ðr; pÞ 2 R j krk ¼ 1 is either an

isomerization reaction (kpk1 ¼ 1; p 6¼ r) or disassociation

reaction (kpk1	 2). Both types of reactions can only

happen when S 2 ½r� is a molecule; it follows that fS 2 K j
9ðr; pÞ 2 R s:t: f1Sg ¼ rg � M. Conversely, when S 2 M,

reachably atomicity gives S 2 fS 2 K j 9ðr;pÞ 2
R s:t: f1Sg ¼ rg.6

Neither M nor D would be empty, for ðD ¼ ;Þ ) ðC is

not reachably atomic) and ðM ¼ ;Þ ) ðR ¼ ;Þ. Hence the

algorithm passes Step 1, correctly identifying the partition

ðM;DÞ of K.

By Lemma 18, reachable-atomicity implies that the

algorithm will find at least one molecular species S that

directly decomposes to its atomic decomposition dS and

grantedly, kdSk	 2, so Step (2) will be passed.

Further, applying the same argument in Lemma 18 on

the set M0, the while loop must shrink the cardinality of M0

by at least 1 per iteration, and finally exit by making M0

empty,7 passing Step (3);

Finally, the decomposition must preserve atoms for all

reactions, and all atoms must appear in the decomposition

of at least one molecule, which make both tests in Step (4)

passed.

It remains to show that if C is not reachably atomic then

our algorithm will halt in REJECT. We claim that: if C is not

6 We point out that the set of atoms M 6¼ fS 2 K j 9ðr;pÞ 2
R s:t: ðf1Sg ¼ rÞ ^ ðkpk	 2Þg, so we have to test the kdSk	 2

condition in later steps. This is because it might be the case that

the only reaction ðr;pÞ with r ¼ f1Sg turns out to be an isomerization

reaction. A counter example would be:

A!B

B!2C

By our definition M ¼ fS 2 K j 9ðr;pÞ 2 R s:t: f1Sg ¼ rg, we shall

correctly identify M ¼ fA;Bg, yet the added condition kpk	 2 would

make M ¼ fBg, a mis-identification.
7 That is, if (8S 2 M0)(8ðr;pÞ 2 R) (r ¼ f1Sg ) ½p� \M0 6¼ ;), then

for each species S in M0 there will be S0 2 M0 s.t. kSk1 [ kS0k1,

contradicting the finiteness of M0.
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reachably atomic, then exactly one of the following will be

true:

1. There is no valid separation of K into M and D. That is,

either fS 2 K j 9ðr; pÞ 2 R s:t: f1Sg ¼ rg ¼ ; (no spe-

cies is the single reactant of an isomerization or

disassociation reaction, so no species S is decomposi-

ble from f1Sg), or fS 2 K j 9ðr; pÞ 2 R s:t: f1Sg ¼
rg ¼ K (every species is the single reactant of some

isomerization or disassociation reaction, which contra-

dicts the definition of subset atomicity for atoms

should be neither isomerizable nor decomposible). An

example where fS 2 K j 9ðr; pÞ 2 R s:t: f1Sg ¼ rg ¼
; would be ðK ¼ fA;B;Cg;R ¼ f2Aþ 3B! 4CgÞ,
while ðK0 ¼ fA;Bg;R0 ¼ fA! B;B! AgÞ would be

an instance where fS 2 K j 9ðr; pÞ 2 R s:t: f1Sg ¼
rg ¼ K.

Observe such a valid separation ðM;DÞ of K, if

existing, is unique for a certain C ¼ ðK;RÞ, since S 2
M if and only if 9ðr; pÞ 2 R s.t. r ¼ f1Sg, and this

property is uniquely decided by R.

2. There exists the unique valid separation ðM;DÞ of K,

but there exists no molecular species directly decom-

posible into its atomic decomposition via execution of

one single reaction. That is, ð8S 2 MÞð8ðr; pÞ
2 RÞðr ¼ f1Sg ) ½p� \M 6¼ ;Þ. An example of this

is ðK ¼ fA;B;Cg;R ¼ fA! Bþ 5C;B! Aþ 5CgÞ.
We would successfully identify M ¼ fA;Bg;D ¼ fCg,
but for all reactions we ðr; pÞ 2 R have ½p� \M 6¼ ;.

3. There exists the unique valid separation ðM;DÞ of K
and fS 2 M j ð9ðrS; pSÞ 2 RÞ ððrS ¼ f1SgÞ^
ð½pS� � DÞÞg 6¼ ;, but for some S 2 fS 2 M j
ð9ðrS; pSÞ 2 RÞððr ¼ f1SgÞ ^ð½pS� � DÞÞg, kpk� 1.

That is, we have some reaction S1 ! A1 with S1 2 M

and A1 2 D, or S1 ! ;. In this case, either a molecule

decomposes to a single atom, or it vanishes.

Typical examples are: C1 ¼ ðfA;B;Cg; fA!
B;B! CgÞ, C2 ¼ ðfA;B;Cg; fA! 2C;B! ;gÞ. In

both cases one would identify MC1
¼ MC2

¼ fA;Bg;
for both networks, fS 2 M j ð9ðrS; pSÞ 2 RÞððr ¼
f1SgÞ ^ ð½pS� � DÞÞg ¼ fA;Bg. But In C1, B decom-

poses to a single atom C; in C2, B vanishes. This

disqualifies both sets from being reachably atomic by

placing them in the third case.

4. There exists the unique valid separation ðM;DÞ of K,

and fS 2 M j ð9ðrS; pSÞ 2 RÞððrS ¼ f1SgÞ^ ð½pS� �
DÞÞg 6¼ ;; further, each S 2 fS 2 M j ð9ðrS; pSÞ 2
RÞððrS ¼ f1SgÞ ^ ð½pS� � DÞÞg satisfies kpk1	 2.

However, there exists some indecomposible molecular

species. That is, 9 S0 2 M s.t. 8c 2 NK where

f1S0g )� c, ½c� \M 6¼ ;.
An example for this case is C ¼ ðfA;B;C;D;Eg; fA
! B;B! C;D! 3EgÞ. One may identify M ¼

fA;B;Dg and find fDg ¼ fS 2 M j ð9ðr; pÞ 2
RÞððr ¼ f1SgÞ ^ ð½p� � DÞÞg. Further, the reaction

D! 3E where r ¼ f1Dg satisfie kpk ¼ 3. This net-

work does not belong to any of the first few cases but it

does belong to Case 4, for 8c where f1Ag )� c,

½c� � fB;Cg � M.

5. There is a unique valid decomposition ðM;DÞ of K and

ð8S 2 MÞ ð9cS with ½cS� � DÞ ðf1Sg )� cSÞ^
ðkcSk1	 2Þ, but the decomposition does not preserve

atoms for some reaction. That is, with A the stoichio-

metric matrix and D the decomposition matrix (row

vectors being the cS’s restricted to D), A � D 6¼ 0. Note

that for reachably atomic networks, atomic decompo-

sition vectors (or equivalently, matrix) should be

unique.

One example of this would be ðfA;B;C;Dg;
fA! B;B! 3C;Aþ B! 5C þ DgÞ. Note that here

we have M ¼ fA;Bg and f3Cg ¼|{z}
B!3C

dB ¼|{z}
A!B

dA

¼|{z}
AþB)5CþD;B!3C

f2C þ Dg, contradicting the preserva-

tion of atoms. Note that this happens to be another

example where a network is mass conserving (Just set

mðAÞ ¼ mðBÞ ¼ 3mðCÞ ¼ 3mðDÞ ¼ 3) but not subset

atomic (and hence not reachably atomic).

6. There is a unique valid decomposition ðM;DÞ of K and

ð8S 2 MÞ ð9cS with ½cS� � DÞ ðf1Sg )� cSÞ^
ðkcSk1	 2Þ, and the decomposition preserves atoms

(A � D ¼ 0Þ, but some atoms are ’’redundant’’: 9A 2 D
s.t. 8S 2 M, A 62 ½dS� ¼ ½cS�.

One may modify the last example into this case:

ðfA;B;C;Dg; fA! B;B! 3C;Aþ B! 6CgÞ. Here

we have M ¼ fA;Bg and f3Cg ¼|{z}
B!3C

dB ¼|{z}
A!B

dA

¼|{z}
AþB)6C;B!3C

f3Cg, so every condition for reachably

atomic is satisfied, except that ð8SÞD 62 ½dS�.

All six cases exclude each other, so at most one case

could hold; on the other hand, the negation of the

disjunction of all six cases says that there exists a non-

empty proper subset of K and a decomposition matrix D,

such that all three conditions of primitive atomicity holds

with respect to K via D, and f1Sg )� dS for all S. This is

exactly the definition of reachably atomicity. So taking

contraposition, non-reachable-atomicity implies at least

one of the six cases hold.

Instances satisfying Case (1) will be rejected in Step (1),

while Cases (2) and (3) will get rejected in Step (2). In case

(4), the loop for finding decomposition vectors must

terminate before M0 is emptied, so it will get rejected by

Step (3); Cases (5) and (6) triggers rejection in Step (4).
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We present the pseudocode for the decider in Algorithm

1:

1 Initialize global set M, M , Δ, D = ∅ //D: {decomposition
vectors}.

2 for (r,p) ∈ R do
3 if (∃S ∈ Λ)r = {1S} then
4 M ← M ∪ {S}
5 end
6 end
7 Δ ← Λ \ M
8 M ← M
9 if M = ∅ or Δ = ∅ then

10 Reject
11 end
12 D ← D ∪ {eA}A∈Δ

13 for (r,p) ∈ R where (∃S ∈ M)r = {1S} do
14 if [p] ⊆ Δ then
15 if p 1 ≤ 1 then
16 reject
17 end
18 end
19 D ← D dS = p
20 M ← M \ {S}
21 end
22 if M = M then
23 reject
24 end
25 while M = ∅ do
26 if (∀S ∈ M ) (∀(r,p) ∈ R | r = {1S}) ([p] ∩ M = ∅)

then
27 reject
28 end
29 else
30 for (S ∈ M | (∃(r,p) ∈ R | r =

{1S} and [p] ∩ M = ∅)) do
31 D ← D dS = S ∈[p] dS

32 M ← M \ {S}
33 end
34 end
35 end
36 Compose A (stochiometric matrix) and D (decomposition

matrix)
37 if A · D = 0 then
38 reject
39 end
40 if (∃A ∈ Δ)(∀S ∈ M)A [dS ] then
41 reject
42 end
43 accept
Algorithm 1: Decider for Reachably-Atomic

Let us briefly mention that this is a polynomial time

algorithm. The first for-loop takes O(|R|) time; the second

for-loop takes at most O(|R|) iterations, and each iteration

takes OðjKj3Þ time; as for the while loop, note that it either

shrinks the size of M0 by 1 per iteration, or rejects. Hence

the while loop takes at most OðjKjÞ to exit. The if-

statement inside the while-loop takes OðjKj � jRj � jKj2Þ to

evaluate. Lastly, composing and multiplying A � D takes

OðjRjjKj � jKj2Þ time, and verifying each A 2 D is ‘‘used’’

by the decomposition of some molecule is

OðjKj � jKj � jKjÞ. The times complexity is therefore dom-

inated by the while, which is OðjRjjKj4Þ. No input, output

or intermediate encoding takes more than polynomial space

to record, so Reachably-Atomic 2 P, as desired. h

6.2 REACHABLE-REACH is PSPACE-complete

We shall first introduce the definition of configuration

reachability graphs, followed by a result proved in Mayr

and Weihmann (2014) (see also Sect. 1.1), based on which

we prove REACHABLE-REACH (see Definition 23), a problem

motivated by restricting relevant problems such as ‘‘exact

reachability’’ (Leroux 2011), is PSPACE-complete.

Definition 20 (Configuration Reachability Graph) An i-

initiated Configuration Reachability Graph GC;i of the

chemical reaction network C ¼ ðK;RÞ is a directed graph

(V, E), where:

1. each vc 2 V ( c 2 NK) is labeled by a reachable

configuration c of C ;

2. vi 2 V( i 2 NK) is the vertex labeled by the initializing

configuration i;

3. the ordered pair ðvc1
; vc2
Þ 2 E if and only if c1 )1 c2.

Remark 21 For the sake of simplicity, we use GC;i as

shorthand for GC;vi .

For the same C, Configuration Reachability Graphs can

be far from isomorphic due to parameterization by different

initialization vectors. We have included an example (Ex-

ample D.3) in Doty and Zhu (2017).

We will soon prove the conclusion on the complexity of

the reachability problem for reachably atomic networks.

But first, we point out that the following is a straightfor-

ward translation of a finding in Mayr and Weihmann

(2014), giving the complexity class of reachability prob-

lems for mass-conserving chemical reaction networks.

Observation 22 (Result from Mayr and Weihmann 2014)

For all mass conserving chemical reaction networks C and
initial configuration i of C, jhGC;iij 2 Oð2polyðjhC;iijÞÞ. That is,
the binary size of the encoding of the configuration

reachability graph GC;i is at most exponential to the binary

size of the encoding of the pair ðC; iÞ.
Furthermore, the reachability problem for mass con-

serving networks is PSPACE-complete. That is, it is

PSPACE-complete to decide if an instance is in the

following language:

Computational complexity of atomic chemical reaction networks 687

123



fhK;R; c1; c2 j ðK;RÞis mass conserving; c1; c2 2 NK;

c1 )� c2ig

Built on Observation 22, we now exhibit the proof that

the decision problem ‘‘Given a Reachably Atomic network,

is c2 reachable from c1’’ is PSPACE-Complete.

Definition 23 (Reachable-Reach) We define the language

Reachable-Reach ¼fðK;R; c1; c2Þ j ðK;RÞ is reachably

atomic; c1; c2 2 NK; c1 )� c2g

Proposition 24 Reachable-Reach is PSPACE-

Com-plete.

Proof Reachable-Reach 2 PSPACE is a direct applica-

tion of Observation 22—note that all reachably-atomic

chemical reaction networks are primitive atomic, and hence

mass conserving (Proposition 10). Hardness is shown by

simulating polynomial space Turing Machines via reactions.

Let hK;R; c1; c2i be an instance, and let Z :¼ jhK;R;
c1; c2ij. In Theorem 19 we proved that Reachably-

Atomic 2 P so we may run the polynomial decider on

hK;Ri and reject if hK;Ri 62 Reachably-Atomic.

If the Reachably-Atomic decider halts in accept, we

would obtain D � K with respect to which ðK;RÞ is

reachably atomic, as well as the set fdSgS2K of decompo-

sition vectors. Further, we would have confirmed that C ¼
ðK;RÞ is mass-conserving, for this is implied by reachably

atomicity. Recall from Mayr and Weihmann (2014) that

the number of vertices in a configuration reachability graph

GC;c1
for mass-conserving network C is at most exponential

to the binary size of the input . Now, let n ¼ jVGC;c1
j, then

by Savitch’s Theorem (Papadimitriou 2003),

Reachable-Reach 2 SPACEððlog nÞ2Þ
¼ SPACEððlogððOð2polyðZÞÞÞÞ2Þ
¼ SPACEðOðpolyðLÞÞ2Þ

It follows that Reachable-Reach 2 PSPACE.

As for the PSPACE hardness, we shall prove by

simulating a polynomial-space Turing Machine. That is,

consider the language

L :¼fhM; x; 0jxj
c

i j M is an OðjxjcÞ � space, clocked

Turing Machine; x 2 f0; 1g� : MðxÞ ! 1g

Just to clarify the notation, ‘‘MðxÞ ! 1’’ means M on the

input x runs for OðjxjcÞ time and accepts. We shall

construct a Reachable-Reach instance hK;R; c1; c2i by a

polynomial time reduction from an instance hM; x; 0jxj
ci,

and show that hM; x; 0jxj
ci 2 L if and only if

hK;R; c1; c2i 2 Reachable-Reach.

Without loss of generality, assume the initial configu-

ration of M is q1 2 QM ¼ fq1; q2; . . .; qt�2; qA; qRg, where

t :¼ jQM j, qA is the accept state and qR is the reject state,

and assume that the Turing Machine blank the tape cells

and return the tape head to the leftmost position before

halting. Let p denote the maximum number of tape cells

that M may use on input x (Note that p 2 OðjxjcÞ). Define

the following set of species:

K ¼fA;Q1; . . .;Qt�2;QA;QR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
imitate machine states

; P1; . . .;Pp
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

imitate head positions

;

T0
1 ; T

1
1 ; . . .; T

0
p ; T

1
p

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
imitate tape contents

g

and configurations:

c1 ¼fP1;Q1; T
x½1�
1 ; . . .;T

x½jxj�
jxj ; Txy

jxjþ1; . . .T
xy

p g
c2 ¼f1QA;T

xy

1 ; . . .; T
xy

p ;P1g

Recalling that the Turing Machine transition function

dM : QM n fqA; qRg � C! QM � C� f�1;þ1g, we con-

struct the set R of reactions in as in Algorithm 2:8

1 for (∀qi ∈ QM )(∀b ∈ {0, 1, })(∀k ∈ {1, 2, · · · , p}) do
2 if δ(qi, b) (qj , b , m) then
3 Add Reaction

Qi + T b
k + Pk → Qj + T b

k + Pk+m

//m ∈ {±1} : tape head moving direction.
4 end
5 end
6 for S ∈ Λ \ {A} do
7 Add Reaction S → 2A
8 end

Algorithm 2: Construction of R

Observe that ðK;RÞ is a reachably atomic network with

respect to D ¼ fAg � K, for any molecular species can be

decomposed to f2Ag explicitly via Lines 11–12, A appears

in the decomposition of all molecular species, and all

reactions preserve the number of atoms.

Further,

hM;X; 0jxj
c

i 2 L,MðxÞ ! 1

,9computation path ðq1; ðx½1�; x½2�; � � � ;
x½jxj�; xy; � � � ; xy

|fflfflfflfflffl{zfflfflfflfflffl}
p�jxj

ÞÞ )�

ðqA; ðxy; xy; � � � ; xy|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
p

ÞÞ

, c1 )� c2

,hK;R; c1; c2i 2 Reachable-Reach

8 We organize the construction procedure as an algorithm to make

the description more concise.
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Finally, jKj ¼ 1þ t þ 3p; jRj 2 Oð3pqþ jKjÞ, kck1 ¼
kck2 ¼ pþ 2. All coefficients of reactions are constant

Hence this reduction is polynomial in Z both timewise and

spacewise. h

Remark 25 The fact that the coefficients of all reactions

involved in the proof of Proposition 24 are constant also

implies that Reachable-Reach is PSPACE-hard (and

hence complete) in the strong sense. Another side remark

on the irreversibility of reactions may be found in Sec-

tion 8(D) (Doty and Zhu 2017).

We also found connections between our definitions of ‘‘-

atomic’’ and the concept of ‘‘core composition’’, addressed

by Gnacadja (2011) and detailed in Section 8(C) (Doty and

Zhu 2017). Some interesting results are:

1. Lemma C.12 states that a network is subset atomic if

and only if it admits a ‘‘near-core composition’’ with

certain restrictions;

2. Lemma C.20 in the same section says reachable-

atomicity implies admitting a core composition;

3. Theorem C.15 gives the equivalence between ‘‘re-

versibly-reachable atomic’’ and ‘‘explicitly-reversibly

constructive with no isomeric elementary species’’.

7 Open problems

Conjecture 26 SUBSET-ATOMIC 2 NP-complete.

One may note that there are two sources of indetermi-

nancy in the problem Subset-Atomic: the choice of D and

D. For example, the network constructed in the proof of

NP-hardness of Subset-Fixed-Atomic would remain subset

atomic if we define D ¼ fT;Fg, and let dP ¼ dQ ¼
fkT ; sFg for any k; s	 2.

There is a formal sense in which chemical reaction

networks have been shown to be able to compute functions

f : Nk ! N (Chen et al. 2013) and predicates

Nk ! f0; 1g (Angluin et al. 2006). A function/predicate

can be computed ‘‘deterministically’’ (i.e., regardless of the

order in which reactions occur) () it is semilinear

(see Ginsburg and Spanier 1966 for a definition).

Problem 27 What semilinear functions or predicates can

atomic chemical reaction networks compute deterministi-

cally, and how efficiently? What general functions or

predicates can atomic chemical reaction networks compute

with high probability, and how efficiently?

Remark 28 A partial answer for Problem 27 based on

results in Chen et al. (2013) says that primitive atomic

networks and subset atomic networks can stably compute

any seminilear functions , but it is not obvious how to

modify the subset-atomic network into reachably-atomic

with the stably-computation property maintained, or whe-

ther it is even possible to do so.

In fact, in their proof of the lemma that any semilinear

function f : Nk ! N can be stably computed by a chemical

reaction network, Chen et al. (2013) designed a chemical

reaction network which can be made primitive-atomic by a

slight modification:

Ti þ bYP
i;j ! Ti þ YP

i;j þ Yj ð7:1Þ

Fi þ YP
i;j !Fi þMi;j ð7:2Þ

Yj þMi;j ! bYP
i;j ð7:3Þ

Ti þ bYC
i;j ! Ti þ YC

i;j ð7:4Þ

Fi þ YC
i;j !Fi þ bYC

i;j ð7:5Þ

YP
i;j þ YC

i;j !Kj ð7:6Þ

Kj þ Yj !Wj ð7:7Þ

The modified chemical reaction network (7.1)–(7.6) still

stably computes the same function f, as the waste product

Wj’s do not participate in any other reactions. This network

is mass-conserving, via the mass distribution function

m : fTi;Fi; Yj;Kj;Wj; Y
P
i;j;

bYP
i;j; Y

C
i;j;

bYC
i;j;Mi;jgi;j !R

Ti;Fi; Yj; Y
P
i;j;Mi;j; Y

C
i;j;

bYC
i;j 7! 2;

bYP
i;j;Kj 7! 4;

Wj 7! 6

And by setting D ¼ fAg and dSðAÞ ¼ mðSÞ ð8S 2
fTi;Fi; Yj;Kj;Wj; Y

P
i;j;

bYP
i;j; Y

C
i;j;

bYC
i;j; Mi;jgi;j ¼ K), we find

that the network above is also primitive atomic. This shows

that any semilinear function can be stably computed by a

primitive-atomic chemical reaction network.

Redefining K K [ D, we obtain a subset-atomic net-

work that stably computes f, which implies that the com-

putation power of subset-atomic chemical reaction

networks are no weaker than primitive-atomic chemical

reaction networks.

8 Conclusion

We have established the computational complexity to

decide different atomic properties of chemical reaction

networks: polynomial for primitive atomic, NP for subset

atomic (conjectured NP-complete), and polynomial for

reachably atomic. We also determined the computational

complexity for membership-decision of some relevant
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languages, such as Subset-Fixed-Atomic (NP-complete)

and Reachable-Reach (PSPACE-complete).
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