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Abstract

Informally, a chemical reaction network is “atomic” if each reaction may be interpreted as the
rearrangement of indivisible units of matter. There are several reasonable definitions formalizing
this idea. We investigate the computational complexity of deciding whether a given network is
atomic according to each of these definitions.

Our first definition, primitive atomic, which requires each reaction to preserve the total
number of atoms, is to shown to be equivalent to mass conservation. Since it is known that it can
be decided in polynomial time whether a given chemical reaction network is mass-conserving [30],
the equivalence gives an efficient algorithm to decide primitive atomicity.

Another definition, subset atomic, further requires that all atoms are species. We show that
deciding whether a given network is subset atomic is in NP, and the problem “is a network subset
atomic with respect to a given atom set” is strongly NP-complete.

A third definition, reachably atomic, studied by Adleman, Gopalkrishnan et al. [1,22], further
requires that each species has a sequence of reactions splitting it into its constituent atoms. We
show that there is a polynomial-time algorithm to decide whether a given network is reachably
atomic, improving upon the result of Adleman et al. that the problem is decidable. We show
that the reachability problem for reachably atomic networks is PSPACE-complete.

Finally, we demonstrate equivalence relationships between our definitions and some special
cases of another existing definition of atomicity due to Gnacadja [21].

1 Introduction

A chemical reaction network is a set of reactions such as A + B
C and X → 2Y , intended to
model molecular species that interact, possibly combining or splitting in the process. The model
is syntactically equivalent to Petri nets: molecules correspond to “tokens”, species correspond
to “places”, reactions correspond to “transitions”, and configurations correspond to “markings”.
Indeed, the study of chemical reaction networks has profited from this connection [3,5,17]. However,
due to their different modeling goals (concurrent systems and well-mixed chemistry, respectively),
sometimes different questions are germane in each model.

For 150 years [23], the model has been a popular language for describing natural chemicals
that react in a well-mixed solution. Several recent wet-lab experiments demonstrate the systematic
engineering of custom-designed chemical reactions [10,31,34,37,38,43,47], and it is known that in
theory any set of reactions can be implemented by synthetic DNA complexes [46]. Thus chemical
reaction networks are now equally appropriate as a programming language that can be compiled into
real chemicals. With advances in synthetic biology heralding a new era of sophisticated biomolecular
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engineering, chemical reaction networks will gain prominence as a natural high-level language for
designing molecular control circuitry.

There has been a flurry of recent progress in understanding the ability of chemical reaction
networks to carry out computation: computing functions [2, 5, 7–9,14–17,39, 41, 45], as well as other
computational tasks such as space- and energy-efficient search [49], signal processing [25,40], linear
I/O systems [33], machine learning [32], and even identifying function computation in existing
biological chemical reaction networks [6]. These studies generally assume that any set of reactions is
permissible, but not all are physically realistic. Consider, for example, the reaction X → 2X, which
appears to violate the law of conservation of mass. Typically such a reaction is a shorthand for a
more realistic reaction such as F +X → 2X, where F is an anonymous and plentiful source of “fuel”
providing the necessary matter for the reaction to occur. The behavior of the two is approximately
equal only when the number of executions of X → 2X is far below the supplied amount of F , and
if F runs out then the two reactions behave completely differently. Thus, although X → 2X may
be implemented approximately, to truly understand the long-term behavior of the system requires
studying its more realistic implementation F +X → 2X. A straightforward generalization of this
“realism” constraint is that each chemical species S may be assigned a mass m(S) ∈ R+, where in
each reaction the total mass of the reactants equals that of the products. Indeed, conservative Petri
nets formalize this very idea [28,30], and it is straightforward to decide algorithmically if a given
network is conservative by reducing to a question of linear algebra.

The focus of this paper is a more stringent condition: that the network should be atomic, i.e., each
reaction rearranges discrete, indivisible units (atoms), which may be of different noninterchangeable
types.1 (In contrast, mass conservation requires each reaction to rearrange a conserved quantity
of continuous, generic “mass”.) We emphasize that this is not intended as a study of the atoms
appearing in the periodic table of the elements. Instead, the goal is to model chemical systems
whose reactions rearrange certain units, but never split, create, or destroy those units. For example,
DNA strand displacement systems [46,50] have individual DNA strands as indivisible components,
and each reaction merely rearranges the secondary structure among the strands (i.e., which bases
on the strands are hybridized to others).

In contrast to the idea of mass conservation, there is not a single “obviously correct” definition
of what it means for a chemical reaction network to be atomic, as we will discuss. Furthermore, at
least two inequivalent definitions exist in the literature [1, 21]. It is not the goal of this paper to
identify a single correct definition. Instead, our goal is to evaluate the choices that must be made in
formalizing a definition, to place existing and new definitions in this context to see how they relate
to each other, and to study the computational complexity of deciding whether a given network is
atomic. This is a step towards a more broad study of the computational abilities of “physically
realistic” chemical reaction networks.

Consider the following system with 2 (real world) reactions for example:

H2SO4 + Cu(OH)2 → 2H2O + CuSO4

Fe + CuSO4 → FeSO4 + Cu

If we ignore the change of oxidation number in the second reaction (which Chemical Reaction
Networks will not be modelling anyway), we may as well just let the “atom” set– set of invariant

1This usage of the term “atomic” is different from its usage in traditional areas like operating system or syntactic
analysis, where an “atomic” execution is an uninterruptable unit of operation [44].
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component in this reaction system – be

∆1 = {X := H, Y := OH, Z := Cu, U := Fe,W := SO4}

where we define all indecomposable components in the specific reaction system as atoms; and the let
the molecule2 set be:

M = {S := H2SO4, T := Cu(OH)2, G := H2O, N := CuSO4, P := FeSO4}

and rewrite the reaction system as

S + T → 2G+N

U +N → P + Z

and note that the collection of compositions (i.e., atomic makeups):

{S 7→ {2X, 1W}, T 7→ {1Z, 2Y }, G 7→ {1X, 1Y },
N 7→ {1Z, 1W}, P 7→ {1U, 1W}, A 7→ {1A}(∀A ∈ ∆1)}

will maintain all the composition information in the two-reaction system. Instead of using the entire
periodic table , we now shrink the size of atom set into 5. Note, also, that we may alternatively
define ∆ in a more “canonical” way—the subset of elements in the periodic table that are actually
used in the system, which in this case will be ∆2 = {H,O,S,Cu,Fe}, and the corresponding set of
compositions shall be:

{S 7→ {2H, 4O, 1S}, T 7→ {2H, 2O, 1Cu}, G 7→ {2H, 1O},
N 7→ {4O, 1S, 1Cu}, P 7→ {4O, 1S, 1Fe}, A 7→ {1A}(∀A ∈ ∆2)}

which shows that we may have multiple choices of “atoms” set and corresponding set of compositions
when modelling the chemical reactions.

1.1 Summary of Results and Connection with Existing Work

The most directly related previous work is that of Adleman, Gopalkrishnan, Huang, Moisset, and
Reishus [1] and of Gnacadja [21], which we now discuss in conjunction with our results.

We identify two fundamental questions to be made in formalizing a definition of an “atomic”
chemical reaction network:

1. Are atoms required to be species? (for example, if the only reaction is 2H2 + O2
 2H2O; then
H and O are atoms but not species that appear in a reaction)

2. Is each species required to be separable into its constituent atoms via reactions?

A negative answer to (1) implies a negative answer to (2). (If some atom is not a species, then
it cannot be the product of a reaction.) Thus there are three non-degenerate answers to the above
two questions: no/no, yes/no, and yes/yes. We respectively call these primitive atomic, subset

2In this abstract model when we call H2SO4 and CuSO4 “molecules”, we also ignore the caveat that substance like
H2SO4 and CuSO4 does not exist as an actual molecule (in the chemical sense) in water solution.

3



atomic, and reachably atomic, defined formally in Section 3. Intuitively, a network is primitive
atomic if each species may be interpreted as composed of one or more atoms, which themselves are
not considered species (a species can composed of just a single atom, but they will have different
“names”). More formally, if Λ is the set of species, there is a set ∆ of atoms, such that each species
S ∈ Λ has an atomic composition dS ∈ N∆ \ {0} describing the atoms that constitute S, such that
each reaction preserves the atoms. A network is subset atomic if it is primitive atomic and the
atoms are themselves considered species; i.e., if ∆ ⊆ Λ. A network is reachably atomic if it is subset
atomic, and furthermore, for each species S ∈ Λ, there is a sequence of reactions, starting with a
single copy of S, resulting in a configuration consisting only of atoms. (If each reaction conserves
the atomic count, then this configuration must be unique and equal to the atomic composition of S.)

A long-standing open problem in the theory of chemical reaction networks is the global attractor
conjecture [13,24], of which even the following special case remains open: is every network satisfying
detailed balance persistent, i.e., if started with all positive concentrations, do concentrations stay
bounded away from 0? Adleman, Gopalkrishnan, Huang, Moisset, and Reishus [1] defined reachably
atomic chemical reaction networks and proved the global attractor conjecture holds for such networks.
Gnacadja [21], citing similar goals, defined a notion of atomicity called “species composition” and
showed a similar result. We establish links between our definitions and those of both [21] and [1].
We discuss related complexity issues in Sections 6 and 8. In particular, Adleman et al. [1] showed
that it is decidable whether a given network is reachably atomic. This is not obvious since the
condition of a species being separable into its constituent atoms via reactions appears to require an
unbounded search. We improve this result, showing it is decidable in polynomial time.

As mentioned, Petri nets are syntactically equivalent to chemical reaction networks, and we
exploit this connection earnestly. Mayr and Weihmann [30] proved that configuration reachability
graphs for mass conserving chemical reaction networks (i.e., conservative Petri nets) are at most
exponentially large in the size of the binary representation of the network, implying via Savitch’s
theorem [42] a polynomial-space algorithm for deciding reachability in mass-conserving networks.
We use these results in analyzing the complexity of reachability problems in reachably atomic
chemical reaction networks in Section 6.

It is clear that any reasonable definition of atomicity should imply mass conservation: simply
assign all atoms to have mass 1, noting that any reaction preserving the atoms necessarily preserves
their total count. Perhaps surprisingly, the conditions of primitive atomic and mass-conserving are
in fact equivalent, so it is decidable in polynomial time whether a network is primitive atomic and
what is an atomic composition for each species. A key technical tool is Chubanov’s algorithm [11]
for finding exact rational solutions to systems of linear equations with a strict positivity constraint.

Lastly, we note that there have been other models addressing different aspects of atomicity
(not necessarily using the term “atomic”). They focus on features of chemical reaction networks
not modeled in this paper. For example, Johnson, Dong and Winfree [26] study, using concept
called bisimulation, the complexity of deciding whether one network N1 “implements” another
N2. The basic idea involves assigning species S in N1 to represent sets of species {A1, . . . , Ak}
in N2. Thus S may be intuitively thought of as being “composed” of A1, . . . , Ak; however, an
allowed composition is ∅, to account for the fact that some species in N1 have the goal of mediating
interactions between species in N2 without “representing” any of them. Molecules, on the other
hand, are always composed of at least one atom.

3

3One may tend to think at first glance that, for a given chemical reaction network C = (Λ, R) atomic with respect
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Mann, Nahar, Schnorr, Backofen, Stadler, and Flamm [29] studied a notion of atomicity based
on the idea that shared electrons between atoms must be conserved. This model is more chemically
detailed than ours, but also more limited, being unable to model higher-level notions of “shared
subcomponents” such as DNA strands whose secondary structure, but not their primary structure, is
altered by strand displacement reactions [46,50]. Tapia and Faed [48] developed software for finding
atomic compositions in a similarly detailed setting motivated by specific biochemical experiments.

1.2 Structure

With the expectation to fully study the computational power as well as other computationally
interesting properties of atomic chemical reaction networks in future, we decided to focus this paper
on different definitions of atomicity and the computational complexity for deciding atomicity under
each definition.

Section 2 provides some definitions and notations as background for subsequent sections.
Section 3 introduces the core concepts of this paper: primitive atomicity, subset atomicity,

reachable atomicity and reversibly-reachable atomicity. Intuitively and informally, primitive atomicity
requires that

1. There exists a composition for each species into indecomposable components such that each
reaction preserves the total count of each type of indecomposable components.

2. Each composite species can be decomposed into the linear combination of indecomposable
components (and thus its composition should contain at least 2 units of indecomposable
components), while each elementary species — which are indecomposable components that
are themselves species, should be its own “composition”. And,

3. Each elementary species appears in the composition of at least one composite species; thus no
elementary species is “redundant”.

to ∆ via composition matrix D = (dS)S∈Λ, the mapping

d : Λ → NΛ

S 7→ dS

, as defined in our future chapters, gives an interpretation between C = (Λ, R) and C′ = (∆, R′) where R′ ⊆ N∆ is
the natural linear extension of R ⊆ N∆ – that is, for all (r,p) ∈ R, construct (r′,p′) ∈ R′ s.t. r′ =

∑
S∈[r] dS ,p

′ =∑
S∈[p] dS . For example, when C = ({S1, S2}, {S1 → 2S2}), C′ = ({S2}, {2S2 → 2S2}), and the interpretation would

be m = {(S1, 2S2), (S2, S2)}. (To avoid confusion one may also relabel the species in C′: for example, in the previous

case, C′ = ({S
′
2}, {2S

′
2 → 2S

′
2}) and m = {(S1, 2S

′
2), (S2, S

′
2)}.

But this reduction does not necessarily work, as the correct interpretation defined in [26] requires “equivalence of
trajectories”. Consider a slightly modified example from [26]: let C = {Λ, R} where Λ = {A,B1, B2, C,D} and R =

A → B1

A → B2

B1 → C

C → A

∀S ∈ Λ where S 6= D : S → 3D

By our conjecture above, this would give an interpretation from C to C′, where C′ = ({D′}, {3D′ → 3D′}) and
m = {(A, 3D′), (B1, 3D

′), (B2, 3D
′), (C, 3D′), (D,D′)}. Yet this is NOT a correct interpretation, for, as [26] pointed

out, C is subject to deadlock yet C′ is not.
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It is called “primitive” because it captures our primitive sense of what properties a chemical
reaction network with indecomposable components (“atoms”) should have. Subset atomicity, on the
other hand, requires all the above as well as an additional condition: all indecomposable components
are themselves elementary species. As mentioned in previous sections, reachable-atomicity further
requires that each composite species can be actually decomposed into elementary species via
sequences of reactions. Lastly, reversibly-reachable atomicity requires in addition to all that are true
for reachably atomic networks, plus that each composite species can be constructed from its atomic
compositions via sequences of reactions. It will be shown in subsequent sections that the problems
of deciding different atomicity type belong to different computation complexities.

Section 4 proves the equivalence between the concept of mass conservation and primitive atomicity.
Intuitively, when the set of atoms might be defined independently from the set of species, one
may translate between “a mass assignment to each species that preserves the total mass” and “an
assignment of number of same type of atoms that preserves the total count of atoms” using some
algebraic manipulation of the given assignment.

Section 5 attends to the complexity of deciding whether a chemical reaction network is subset
atomic. We define two languages, Subset-Fixed-Atomic and Subset-Atomic, the first describing
chemical reaction networks paired with a given atom set with respect to which it is indeed subset
atomic, and the second describing subset atomic chemical reaction networks without a given atom
set. We proved both languages in NP, with the first one NP-hard. We conjecture that the second is
also NP-hard.

Proof that both languages are in NP is based on a reduction to the Integer-Programming
problem, which is itself in NP. The reduction is necessary because no obvious short witness for
Subset-Fixed-Atomic and Subset-Atomic exists due to potentially large size of composition.
Proof of the strong NP-hardness of Subset-Fixed-Atomic is based on a reduction from the
“Monotone 1-in-3” problem.

Section 6 looks into the complexity of deciding reachable-atomicity as well as the configuration
reachability problem under the reachably atomic constraint. By exhibiting a polynomial time
bottom-up algorithm based on the special structure of configuration reachability graphs of reachably
atomic chemical reaction networks, we solved the complexity of deciding reachable-atomicity; By first
applying Savitch’s Theorem and then modifying [30]’s result into a simulation of polynomial space
Turing machines with reachably atomic chemical reaction networks, we proved that reachability
problem for reachably atomic chemical reaction networks are PSPACE-complete.

Section 8, as mentioned above, mainly discusses about the relationships between our model and
some models established in [21]. By defining the corresponding mappings and then treading through
the definitions, we proved that a chemical reaction network is subset atomic if and only if it admits a
core composition, disallows isomerism of elementary species and contains no “redundant” elementary
species. We then gave two proofs, one by defining an auxilliary subspace of Rn (n being the number
of types of elementary species) and arguing its set-containment relationship with other relevant
subspaces, and another one by directly applying a Theorem in [21], that reachable-atomicity implies
constructivity of chemical reaction networks. Lastly, we gave a combinatorics-based proof that
reversibly-reachable atomcity is equivalent to explicitly-reversibly constructivity plus the restriction
that no isomerism is allowed among elementary species.

Section 7 mentioned some open problems left for future works.
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2 Preliminaries

Let Z,N,R respectively denote the set of integers, nonnegative integers, and reals. Let Λ be a finite
set. We write NΛ to denote {f : Λ→ N}. Equivalently, by assuming a “canonical” ordering on Λ,
an element c ∈ NΛ can also be viewed as a |Λ|-dimensional vector of natural numbers, with each
coordinate labeled by S ∈ Λ interpreted as the count of S. c ∈ NΛ interpreted this way is called a
configuration. We sometimes use multiset notation, e.g., {3A, 2B} to denote the configuration with
3 copies of A, 2 of B, and 0 of all other species. ZΛ,RΛ,NΛ×∆ (where ∆ is also a finite set) are
defined analogously.

We write c ≤ c′ to denote that (∀X ∈ Λ) c(X) ≤ c′(X), and c < c′ if c ≤ c′ and c 6= c′. We
say c and c′ are incomparable if c 6≤ c′ and c 6≥ c′.

Definition 2.1. Given a finite set of chemical species Λ, a reaction over Λ is a pair α = (r,p) ∈
NΛ × NΛ, specifying the stoichiometry of the reactants and products respectively.4

A chemical reaction network is a pair C = (Λ, R), where Λ is a finite set of chemical species,
and R is a finite set of reactions over Λ.

A chemical reaction network is reversible if (∀(r,p) ∈ R) (p, r) ∈ R.
For configurations c1, c2 ∈ NΛ, we write c1 ⇒∗C c2 (read “C reaches c2 from c1”) if there exists a

finite reaction sequence (including the empty sequence) that starts with c1 and ends with c2. For
the sake of simplicity, we write c1 ⇒∗ c2 (read “c2 is reachable from c1”) when C is clear from
context.

Remark 2.2. Note that r ⇒∗ r is vacuously true for any (r,p) ∈ R, by setting the reaction
sequence to be empty (length-0). There may also be positive-length reaction sequences for certain
networks and certain (r,p) ∈ R to reach r from r: for example, C = ({S1, S2, S3, S4}, {S1 →
S2 + S3, S2 + S3 → S4, S4 → S1}). Consider the reaction ({1S1}, {1S2, 1S3}) ∈ R, we have
{1S1} ⇒∗ {1S1} by executing the three reactions in order.

Note also that this does not contradict our previous assumption that (∀(r,p) ∈ R)r 6= p., for
r⇒∗ r does not require that (r, r) ∈ R.

Definition 2.3. Given c ∈ NΛ (or ZΛ,RΛ etc. analogously), the support of c, written as [c], is
the set {S ∈ Λ | c(S) 6= 0}.

A few more notation conventions are listed here: We write eA ∈ NΛ as the unit vector that has
count 1 on A ∈ Λ and 0 on everything else. Given a vector x ∈ NΛ, write ‖x‖ = ‖x‖1 =

∑
S∈Λ x(S).

When · is any data, write 〈·〉 for its binary representation as a string, so |〈·〉| is the length of the
binary representation of ·. Given f : A → B and C ⊆ A, f � C is the function C → B, c 7→ f(c)
(∀c ∈ C). Lastly, when M is a matrix, write MT as its transposition.

3 Definitions of “Atomic”

This section addresses definitions of several classes of networks, some computational complexity
result of which will be exhibited later.

4There is typically a positive real-valued rate constant associated to each reaction, but we ignore reaction rates in
this paper and consequently simplify the definition.

7



3.1 Primitive Atomic

We now arrive at our first definition of “atomic”, which we call primitive atomic. All later definitions
of atomic will imply this definition (i.e, the set of primitive atomic networks is a superset of the set
defined by other definitions).

Intuitively, C is primitive atomic if all species can be decomposed into the combination of some
atoms. Atoms are not required to be a subset of the set of species. Each reaction conserves the total
number of each type of atom in the species involved (i.e., the reaction can only rearrange atoms but
not create or destroy them).

Definition 3.1 (primitive atomic). Let ∆ be a nonempty finite set and C = (Λ, R) a chemical
reaction network. C is primitive atomic with respect to ∆ if for all S ∈ Λ, there is dS ∈ N∆ \ {0}
such that

1. (∀(r,p) ∈ R)(∀A ∈ ∆)
∑
S∈Λ

r(S) · dS(A) =
∑
S∈Λ

p(S) · dS(A). (reactions preserve atoms)

2. (∀A ∈ ∆)(∃S ∈ Λ) dS(A) 6= 0. (each atom appears in the composition of some species)

For S ∈ Λ, call dS in Condition (1) the (atomic) composition of S. We say C is primitive
atomic if there is a nonempty finite set ∆ such that C is primitive atomic with respect to ∆.

Condition (1) embodies the intuition above. Condition (2) prescribes that each atom appears in
the composition of at least one species.

Next, we introduce the definitions of stoichiometric matrix and composition matrix, in order
to facilitate a more terse and transparent way of expressing conservation laws. In particular, A
encodes the net change of species that applying a reaction causes, and D compiles all composition
vectors into one data structure.

Definition 3.2 (Stoichiometric Matrix). The stoichiometric matrix A for a chemical reaction
network C = (R,Λ) is the |R|× |Λ| matrix where the entry A(r,p),S = p(S)−r(S) for each (r,p) ∈ R
and S ∈ Λ.

Notationwise, A(r,p),S is the entry whose row is labeled by the reaction (r,p) and column by
the species S. Each row of the stoichiometric matrix represents the change of count of each species
via execution of 1 unit of (r,p).

Example 3.3. Consider the network C = ({X,Y,W,Z}, {((2, 1, 0, 1)T , (0, 0, 2, 1)T ), ((1, 2, 1, 1)T , (0, 1, 1, 2)T )}).
The set of reactions can be described as:{

2X + Y + Z → 2W + Z
X + 2Y +W + Z → Y +W + 2Z

For C, the stoichiometric matrix A =

[
−2 −1 2 0
−1 −1 0 1

]
.

Definition 3.4 (Composition Matrix). Let C = (Λ, R) be primitive atomic with respect to ∆. The
composition matrix D∆ for C with respect to ∆ is the |Λ| × |∆| matrix whose row vectors are
(dS � ∆)T (S ∈ Λ).

8



The composition matrix composes the information of atomic composition for each species in the
form of a matrix.

Remark 3.5. We note that a composition matrix has the following properties:

1. Let c ∈ NΛ be a configuration for primitive atomic C = (Λ, R), then the vector DT
∆ · c ∈ N∆

illustrates the current count of each atom in the system. That is, (DT
∆ · c)(A), the entry of

DT
∆ · c labeled by A ∈ ∆, represents the current count of atom A in the system. In fact, for

each A ∈ ∆,

current count of A in system =
∑
S∈Λ

dS(A) · c(S)

= (DT
∆)(A,:) · c,

where (DT
∆)(A,:) stands for the row vector of DT

∆ labeled by A.

2. If C = (Λ, R) is primitive atomic with respect to ∆, then A · D∆ = 0, where A is the
stoichiometric matrix in Definition 3.2 above, and 0 is the |R| × |∆| zero matrix. Intuitively,
this illustrates the fact that the number of each type of atom is preserved throughout all
reactions. Indeed, for each (r,p) ∈ R, A ∈ ∆, the entry

(A ·D∆)((r,p),A) =
∑
S∈Λ

(p(S)− r(S)) · dS(A)

=
∑
S∈Λ

0 (by -Atomicity)

= 0

Conversely, let ∆ be a set and D∆ be a |Λ| × |∆| matrix with rows labeled by each S ∈ Λ
and columns labeled by each A ∈ ∆. If A ·D∆ = 0, then by the same arithmetics above and
by Definition 3.1, C is primitive atomic with respect to ∆. It follows that one may rewrite
Condition (1) of Definition 3.1 as:

(a) (∃∆ | 0 < |∆| <∞)(∃D∆ ∈ NΛ×∆ | ∀S ∈ Λ, (D∆)(S,:) 6= (0∆)T ) such that A ·D∆ = 0.

We use these two expressions for condition (1) interchangeably in future parts of this paper.
Furthermore, when C,∆ is clear from the context, we use D as shorthand for D∆, and we say
C is primitive atomic with respect to ∆ via D.

Example 3.6. For the network defined in Example 3.3:

C = ({X,Y,W,Z}, {((2, 1, 0, 1)T , (0, 0, 2, 1)T ), ((1, 2, 1, 1)T , (0, 1, 1, 2)T )})

and the set of atoms ∆ = {H,O}, a valid composition matrix could be:

D =


2 0
0 2
2 1
2 2


9



It can also be verfied that

A ·D =

[
−2 −1 2 0
−1 −1 0 1

]
·


2 0
0 2
2 1
2 2


=

[
0 0
0 0

]
So C is primitive atomic with respect to ∆ = {H,O} via D.

3.2 Subset Atomic

The next definition requires all atoms to be species themselves.

Definition 3.7 (subset atomicity). Let C = (Λ, R) be a chemical reaction network and let ∆ ⊆ Λ
be nonempty. We say that C is subset-∆-atomic if C is primitive atomic with respect to ∆ and, for
each S ∈ Λ, S ∈ ∆ =⇒ dS = {S} and S 6∈ ∆ =⇒ ‖dS‖ ≥ 2. We say C is subset atomic if there
exists a nonempty ∆ ⊆ Λ such that C is subset-∆-atomic.

By definition 3.7, no two atoms can have the same atomic composition, but it allows for two
distinct molecular species to have the same composition. In this case we say the two species
are isomers (reminiscent of isomers in nature that are composed of the same atoms in different
geometrical arrangements). As for the requirement that each non-atom species decompose to a
vector of size at least 2, that is to illustrate the idea that a molecule should be composed of at least
2 atoms.

3.3 Reachably Atomic

The next definition imposes further requirement that each composition can be “realized” via a
sequence of reactions. As discussed in Subsection 1.1, this definition was originally developed in [1]
to help their approach to the Global Attractor Conjecture in the field of mass action kinetics.
Considering the convention for most networks, we relax their requirement of reversibility for each
reaction.

Definition 3.8 (reachable atomicity). A chemical reaction network C = (Λ, R) is reachably atomic
if

1. C is subset atomic with respect to some ∆ ⊆ Λ, and

2. for each S ∈ Λ \∆, {1S} ⇒∗ dS.

Here and wherever necessary, with slight abuse of notation, dS , which represents the atomic
composition of S, simultaneously represents a configuration in N∆ reachable from {1S}.

Condition 2 is a strong restriction. For example, the atom set of a reachably atomic network is
unique:

Lemma 3.9. If (Λ, R) is reachably atomic, then the choice of ∆ with respect to which (Λ, R) is
reachably atomic is unique. Moreover, for each S ∈ Λ, dS is unique, i.e., if {1S} ⇒∗ c ∈ N∆, then
c = dS .
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Proof. The intuition of the proof by contradiction is to show that should there exist an element
A in the set difference between two atom sets, the composition of A with respect to one atom set
violates the preservation of atoms in another. Assume for the sake of contradiction that for some
reachably atomic network C, there exist ∆1 6= ∆2 with respect to both of which C is reachably
atomic, respectively via composition matrices D1 and D2. Note that (∆1 \∆2) ∪ (∆2 \∆1) 6= ∅.
Take A ∈ (∆1 \∆2) ∪ (∆2 \∆1):

1. If A ∈ ∆1 \∆2, then {1A} is decomposible into some c ∈ NΛ | [c] ⊆ ∆2 via a sequence of
reactions, with ‖c‖1 ≥ 2. There is no way for this sequence of reactions to preserve atoms
with respect to ∆1, for the initial configuration has a single atom A ∈ ∆1 while the final
configuration has no atom A.

2. Similarly, if A ∈ ∆2 \∆1, there will be a sequence of reactions violating preservation of atoms
with respect to ∆2.

We next prove the uniqueness of composition vectors dS for all S ∈ Λ, or equivalently, the
uniqueness of composition matrix D. Suppose not, then there exists S ∈ Λ \ ∆ s.t. {1S} ⇒∗
y1,y2 ∈ NΛ, y1 6= y2 and [y1], [y2] ⊆ ∆, via reaction sequences s1, s2 respectively. Assume without
loss of generality that s1 preserves the number of atoms in each reaction, which means y1 = dS .
Then there must be one or more actions in s2 that does (do) not preserve the number of atoms, for
s1, s2 share the same initial configuration {1Si} yet reach different final count of atoms, while no
atoms are allowed to be isomeric to each other.

Conservation laws in “-atomic” networks reminds us of a more familiar type of conservation
law, which is mass conservation. The next section exhibits some observations on the relationship
between these two types of conservation laws.

4 Mass-Conservation and primitive atomicity

This section shows that primitive atomicity and mass conservation are equivalent. We first formalize
the latter concept, that “mass can neither be created nor destroyed”:

Definition 4.1 (Mass Conservation). A chemical reaction network C = (Λ, R) is mass conserving if

(∃m ∈ RΛ
>0)(∀(r,p) ∈ R)

∑
S∈Λ

r(S) ·m(S) =
∑
S∈Λ

p(S) ·m(S)

Equivalently, if A is the stoichiometric matrix in Definition 3.2, then C is mass conserving if
(∃m ∈ RΛ

>0) A ·m = 0. We call m a mass distribution vector.

“Mass Conserving” captures the feature that for every reaction in C, the total mass of reactants
are equal to the total mass of products. Difference between the definitions of Mass Conserving and
Primitive Atomicity (as well as all “-atomicity” definitions descended therefrom) become clear if we
compare the matrix form of their respective conservation laws: mass conservation requires a single
conservation relation (A ·m = 0|R|), while primitive atomicity requires |∆| of them (A ·D = 0
where D is |Λ| × |∆|).

However, it is very intuitive that these two types of conservation laws are closely related. In
fact, the freedom of defining ∆ independent of Λ provides us a choice for making ∆ a singleton,
which enables us to prove the following equivalence:
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Proposition 4.2. For any network C, C is primitive atomic ⇔ C is mass conserving. Further,
there exists an O(|〈A〉|5) algorithm to decide if C is primitive atomic, with A the stoichiometric
matrix of C.

Proof. Intuitively, converting a mass distribution vector into integral and interpreting it as composi-
tion vectors proves the “mass conservation ⇒ primitive atomicity” direction, while assigning mass 1
to each atom for a primitive atomic chemical reaction network gives the mass distribution vector.

1. primitive atomic ⇔ mass conserving:

(a) mass Conserving ⇒ primitive Atomic:

If a chemical reaction network C is mass conserving, then there exists a mass distribution
vector m ∈ RΛ

>0 s.t. A ·m = 0|R|, with A the stoichiometric matrix of C. We shall
exhibit a constructive way of finding a rational solution to the linear system A ·m = 0|R|,
thereby enabling further manipulation to finally yield an integral solution that could be
used to construct a desired composition matrix D.

i. Knowing the existence of the distribution vector m ∈ RΛ
>0 s.t. A ·m = 0|R|, we

run Sergei’s “strictly positive solution finder for linear system” algorithm [11, 12]
to find m′ ∈ QΛ

>0 ⊆ RΛ
>0, s.t. A · m′ = 0|R|. The algorithm has complexity

O(max{|Λ|4, |R|4} · |〈A〉|) = O(|〈A〉|5) [11,12].

ii. Now that we have obtained a solution vector m′ ∈ QΛ
>0, for each S ∈ Λ we may write

m′(S) = aS
bS
| aS ∈ Z, bS ∈ Z6=0. Compute c = lcm{bS}S∈Λ , and let m′′ = m′ · c.

Since A ·m′′ = c · (A ·m′) = 0|R| , by definition m′′ ∈ N|Λ|>0 is also a valid mass
distribution vector.
Complexitywise, one may apply the binary Euclidean Algorithm (Let us denote the
algorithm as gcd(a, b)) for |Λ| − 1 times, finding gcd(bS1 , bS2), gcd(bS1 , bS2 , bS3) =
gcd(gcd(bS1 , bS2), bS3), · · · , gcd(bS1 , bS2 , · · · , bS|Λ|) dynamically, and then compute

c =lcm{bS}S∈Λ =

∏
S∈Λ bS

gcd{bS}S∈Λ
. Since the complexity of Euclidean Algorithm

gcd(a, b) is O((max{|〈a〉|, |〈b〉|})3) [27], complexity for computing gcd(b1, · · · , bS|Λ|)
as well as c =lcm(b1, · · · , bS|Λ|) is O(|Λ| · (max{|〈m′(S)〉|})3).
Lastly, it is shown in the footnote that computing m′′ = m′ · c expands the binary
size of m′ by at most a factor of |Λ|,5 so altogether, the complexity for this Step
(1(a)ii) is O(|Λ|2 · (max{|〈m′(S)〉|})3). Since m′ is obtained from Step (1(a)i) with
size-bound |〈A〉|5, we have

O(|Λ|2 · (max{|〈m′(S)〉|})3) = O(|〈A〉|17) (4.1)

5To make the notations a little simpler, let the i-th entry of m′ be written as ci
di

, so the the numerator and

denominator are log(|ci|) and log(|di|) bits long, respectively (∀i ∈ [1, |Λ|]). Define

t :=

|Λ|∑
j=1

(log(cj) + log(dj))︸ ︷︷ ︸
binary size of m′

In the worst case where di, dj(∀i, j) are pairwise co-prime, multiplying each entry with gcd(d1, d2, · · · d|Λ|) is equivalent

to first setting all di’s to 1, then expending each ci by (
∑|Λ|

j=1 log(dj))− log(di) bits. The net effect is expanding the
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iii. Output ∆ = {A1} where A1 6∈ Λ, and D = 2m′′.
Note that D is a length-|Λ| column vector when |∆| = 1, and so is 2m′′, hence their
dimensions match.

Intuitively, the last step is assigning mass 1 to the single atom A1, and then decomposing
each S ∈ Λ into 2m′′(S) of A1’s. We formally verify the correctness of this output:

i. A ·D = 2(A ·m′′) = 0|R|, so Condition (1) for primitive atomicity is satisfied;

ii. A1 as the single atom in ∆ is used in the composition of each molecular species,
verifying Condition (2) as well.

Complexitywise, Step (1(a)ii) dominates, so (4.1) is the complexity of the whole algorithm.

(b) primitive atomic ⇒ mass conserving:

We shall prove that given any chemical reaction network C primitive atomic with respect
to ∆ via composition matrix D, there exists a polynomial time algorithm to compute a
valid mass distribution vector m. For each S ∈ Λ, let m(S) =

∑
A∈∆

dS(A) = ‖D(S,:)‖1;

that is, we assign mass 1 to all atoms, making the mass of a molecular species equal to
the total count of atoms in its atomic composition. Then for each (r,p) ∈ R, the entry

(A ·m)(r,p) =
∑
S∈Λ

(A((r,p),S) ·
∑
A∈∆

dS(A))

=
∑
S∈Λ

∑
A∈∆

(A((r,p),S) ·D(S,A))

=
∑
A∈∆

∑
S∈Λ

(A((r,p),S) ·D(S,A))

= ‖(A ·D)((r,p),:)‖1
= 0,

as desired. Note that ‖〈m〉‖1 = O(|〈D〉|), which gives the upper bound of complexity.

2. There exists an O(|〈A〉|5) algorithm to decide if C is primitive atomic.

By the equivalence relationship shown right above, deciding primitive atomicity is equivalent
to deciding mass conservation, which is in turn equivalent to deciding if there exists a strictly
positive solution to the linear system A ·m = 0|R| with A the stoichiometric matrix of C. The
latter problem is decidable by an O(|〈A〉|5) algorithm, as mentioned in Step 1(a)i [11,12].

size of the input by

|Λ|∑
i=1

(((

|Λ|∑
j=1

log(dj))− log(di))− (log di − 1)) =

|Λ|∑
i=1

((

|Λ|∑
j=1

log(dj))− 2 log(di) + 1)

= (|Λ| − 2)(

|Λ|∑
j=1

log(di)) + |Λ|

< |Λ| · t + |Λ|
= O(|Λ| · t)

bits, as desired.
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Remark 4.3. The equivalence with Mass Conserving is not true for subset atomic networks:
Consider C = ({X,Y }, {((1, 0), (0, 1)}). This network involves a single reaction: X → Y . There
are only three choices for the set of atoms ∆, which is now required to satisfy |∆| > 0,∆ ⊆ Λ:
∆ = {X}, ∆ = {Y } or ∆ = {X,Y }, respectively.
C is Mass Conserving, the mass distribution vector being m(X) = m(Y ) = 1; Nonetheless, no

choice of ∆ makes C subset atomic. Take ∆ = {X,Y } for example, and consider the atom X: the
reactants have a single atom of X but the products have no X (since Y is itself an atom it cannot
be composed of X). If ∆ = {X}, then Y is not an atom, but the definition of atomic composition
requires that non-atomic species have a composition with at least two atoms, which means that
since X is the only atom, dY contains at least two X’s, while the reactants have only one X. A
similar argument applies if ∆ = {Y }.

Recall that subset atomicity imposes the restriction that ∆ ⊆ Λ. As we’ll show in the following
section, this single restriction increases the computational complexity in deciding subset atomicity,
compared to primitive atomicity.

5 Complexity of subset atomic

We shall find in this chapter the computational complexity for deciding the subset atomicity
of networks. First, we define languages of encodings of chemical reaction networks with subset
atomicity:

Definition 5.1. We define the following languages:

Subset-Atomic = {〈Λ, R〉 | (∃∆ ⊆ Λ)((Λ, R) is subset atomic with respect to ∆)}
Subset-Fixed-Atomic = {〈Λ, R,∆〉 | (Λ, R) is subset atomic with respect to ∆}

By definition, Subset-Atomic is the language whose elements are the encoding of a subset
atomic chemical reaction network. Subset-Fixed-Atomic, on the other hand, is the language
consisting of the encoding of a (network, atom set) pair where the network is subset atomic with
respect to the given atom set. In this section we determine the complexity classes of these languages.

5.1 Subset-Fixed-Atomic and Subset-Atomic are in NP

It is not obviously true that there exists a short witness for either language (which if true would have
proved that both languages are in NP immediately). We therefore reduce Subset-Fixed-Atomic
to Integer-Programming, which is in NP [35].

Lemma 5.2. Subset-Fixed-Atomic is polynomial-time many-one reducible to Integer-Programming
(hereinafter, “ IP”).

Proof. The proof is done by translating the axioms/constraints in the definition of subset atomicity
into linear equations or inequalities. We transform the input into the encoding of the following
equivalent linear system: In the following, b1, b2, · · · bm−n, c1, c2, · · · , cn ∈ N are slack variables so
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that we may express an inequality as an equality together with a nonnegativity constraint on bs, ca
(1 ≤ s ≤ m− n, 1 ≤ a ≤ n).

for a ∈ [1, n] :
for r ∈ [1, k] :

m∑
s=1

vr(Ss) · xsa = 0

for s ∈ [1,m− n] : (
n∑
a=1

xs,a

)
− bs = 2

bs ≥ 0
for a ∈ [1, n] : (

m−n∑
s=1

xs,a

)
− ca = 1

ca ≥ 0
for a ∈ [1, n] :

for a′ ∈ [1, n] :
if a = a′

xa′+m−n,a = 1
else

xa′+m−n,a = 0
for s ∈ [1,m] :

for a ∈ [1, n] :
xsa ≥ 0

(5.1)

The equivalence between the linear system and the subset atomicity of (Λ, R,∆) follows from
Definitions 5.1 and 3.7. In fact, the first equation of (5.1) asks the number of each atom to be
preserved across each reaction; the second equation and third inequality prescribes that for all
non-atomic species S ∈ Λ \∆, ||dS ||1 ≥ 2; the fourth equation and fifth inequality prescribes that
for all atomic species A ∈ ∆,

∑
S∈Λ\∆ dS(A) ≥ 1, which is equivalent to saying that each A appears

in at least one atomic composition for some molecules; the sixth and seventh equation translates to
∀A ∈ ∆, dA = eA (recall eA is the unit vector that is 1 on A and 0 on everything else); and the last
inequality restricts atomic counts in species to be nonnegative integers.

Note, also, that dS 6= 0Λ has been ensured by the respective restrictions on composition for
non-atom species and atoms.

Let us analyse the complexity of the reduction. To construct a constraint system

Ax = b, x ∈ Nn

we first observe that

|x| = |{xs,a | s ∈ [1,m], a ∈ [1, n]}|+ |{ds | s ∈ [1,m− n]}|+ |ca | a ∈ [1, n]| = mn+m

and that

|b| = number of equations in (5.1)

= nk +m+ n2
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which means the matrix A is (nk+m+ n2)× (mn+m), a polynomial in m,n, k. Further, each
entry of b is an integer in [0, 2], while the absolute value of each integral entry of A is bounded by
max{ max

r∈R,s∈[1,m]
{vr(Ss)}, 1}. This shows that the linear system is of size polynomial in m,n, k and

the binary size of 〈Λ, R,∆〉, and the process reducing 〈Λ, R,∆〉 to the linear system is also of time
polynomial to the same parameters.

Since 〈Λ, R,∆〉 ∈ Subset-Fixed-Atomic if and only if ∆ ⊆ Λ and the linear system (5.1)
has a solution, and since constructing the encoding of the linear system (5.1) takes polynomial
time, we conclude that Subset-Fixed-Atomic is polynomial-time many-one reducible to Integer
Programming.

We immediately obtain the following corollaries:

Corollary 5.3. Subset-Fixed-Atomic ∈ NP.

Proof. Papadimitriou [35] proved that for the m× n integer matrix A and m-vector b, the problem
of deciding whether there exists x ∈ Nn such that

Ax = b, x ∈ Nn (5.2)

is contained in NP. Since Subset-Fixed-Atomic ≤pm IP, the conclusion follows.

Corollary 5.4. Subset-Atomic ∈ NP.

Proof. The proof is given by an polynomial time verification algorithm using the polynomial-time
verifier of Subset-Fixed-Atomic as an oracle. From Corollary 5.3 we know that there exists
a polynomial time verifier V ′ for the language Subset-Fixed-Atomic, who takes an instance
〈Λ, R,∆〉 and a witness 〈D〉, the latter being encoding of a composition matrix D, and accepts
(resp. rejects) if and only if 〈Λ, R,∆〉 ∈ Subset-Fixed-Atomic (resp. 〈Λ, R,∆〉 6∈ Subset-
Fixed-Atomic) via D.

We exhibit a polynomial time verifier V for Subset-Atomic. On instance c = 〈Λ, R〉 and
witness w = 〈∆,D〉, the algorithm V :

1 Parses 〈c, w〉 into 〈c′, w′〉 where c′ = (Λ, R,∆) and w′ = D;
2 Runs V ′ on 〈c′, w′〉 and echos its output ;

Algorithm 1: Verifier V for Subset-Atomic

A valid witness w = 〈∆,D〉6 has a size polynomial of the input size since a valid ∆ ⊆ Λ, while
Corollary 5.3 ensures that a valid D has size polynomial of the input as well. Step 1 therefore takes
linear time and by Corollary 5.3 again, step 2 takes polynomial time too.

5.2 Subset-Fixed-Atomic is NP-hard

Our proof shall be based on reduction from Monotone-1-In-3-Sat. Recall that a monotone
3-CNF C is a conjunctive normal form with no negations, and a 1-in-3 satisfying assignment for
C is an assignment of Boolean values to all variables such that for each clause in C, exactly one
variable is assigned true.

6In fact the witness could even be a single 〈D〉, as one may read each row of D and decide if the species represented
by that row is a molecule (sum of entries in the row is at least 2) or an atom (the row would be a unit vector)
immediately, thereby determining ∆.
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As a well-established result, the following language is NP-complete [19].

Monotone-1-In-3-Sat = {〈V,C〉 | C is a monotone 3-CNF over V = {v1, v2, · · · , vn},
and there exists a 1-in-3 satisfying assignment for C}

We shall prove that Monotone-1-In-3-Sat is polynomial time many-one reducible to Subset-Fixed-Atomic.

Lemma 5.5. Monotone-1-In-3-Sat ≤pm Subset-Fixed-Atomic.

Proof. We design a chemical reaction network whose molecular species consist of 2 atoms while atoms
in ∆ represent “True” and “False”, and whose reactions force the network to be subset-∆-atomic if
and only if the original input instance is in Monotone-1-In-3-Sat. For each instance 〈V,C〉 of
Monotone-1-In-3-Sat,

let ∆ = {T, F, P,Q}, Λ = {S1, S2, · · · , Sn, X1, X2, · · · , Xn} ∪∆.
To construct R, we denote C = c1 ∧ c2 ∧ · · · ∧ ck. For the i-th clause ci ∈ C, let vij denote the

j-th literal of c. Same indexing convention applies for {Si}ni=1 and {Xi}ni=1, hence each Sij (resp.
Xij) denotes an element in {Si}ni=1 (resp. {Xi}ni=1).7 The set R contains the following reactions8:

3P + 2F + T → Sm1 + Sm2 + Sm3 (∀m ∈ [1, k]) (5.3)

3Q+ 2F + T → Xm1 +Xm2 +Xm3 (∀m ∈ [1, k]) (5.4)

Si +Q → Xi + P (∀i ∈ [1, n]) (5.5)

Note that we only need to construct 4 + 2n species and 2k + n reactions whose coefficients
are constant, so this transformation is polynomial in time and space. We argue that 〈V,C〉 ∈
Monotone-1-In-3-Sat if and only if 〈Λ, R,∆〉 ∈ Subset-Fixed-Atomic.
⇒: If 〈V,C〉 ∈Monotone-1-In-3-Sat, there exists a φ : V → {0, 1} under which ∃(n1, n2, · · · , nq) (

(1, 2, · · · , n) s.t. φ(vni) = 1 (∀i ∈ [1, q]), φ(vj) = 0 (j ∈ ([1, n] \ (n1, n2, · · · , nq))), and for each
ci ∈ C, exactly one in three of its literals evaluates to 1. Let:

ΛTP = {Snj | j ∈ [1, q]}
ΛFP = Λ \ (∆ ∪ ΛTP ∪ {Xi | i ∈ [1, n]})
ΛTQ = {Xnj | j ∈ [1, q]}
ΛFQ = Λ \ (∆ ∪ ΛTQ ∪ ΛTP ∪ ΛFP )

Then 〈Λ, R,∆〉 ∈ Subset-Fixed-Atomic because with all atoms listed in the order: {T, F, P,Q},
7For example, for V = {v1, v2, · · · , v5}, C = (v1∨v3∨v4)∧ (v3∨v2∨v5), v11 = v1, v12 = v3, v13 = v4, · · · , v23 = v5.

Correspondingly, S11 = S1, X11 = X1, · · · , S23 = S5, X23 = X5.
8To continue the example in the previous footnote, the set of reactions shall be:

3P + 2F + T → S1 + S3 + S4

3P + 2F + T → S3 + S2 + S5

3Q + 2F + T → X1 + X3 + X4

3Q + 2F + T → X3 + X2 + X5

Si + Q → Xi + P (i = 1, 2, · · · , 5)
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one may make the following composition:

dU � ∆ = (1, 0, 1, 0)T , ∀U ∈ ΛTP

dV � ∆ = (0, 1, 1, 0)T , ∀V ∈ ΛFP

dW � ∆ = (1, 0, 0, 1)T , ∀W ∈ ΛTQ

dZ � ∆ = (0, 1, 0, 1)T , ∀Z ∈ ΛFQ

Because of the way {nj}qj=1 was taken, for each reaction in (5.3), exactly one of the product
species decompose to 1T and 1P , with the other two decomposing to 1F and 1P . Similar argument
applies for reactions in (5.4), substituting Xi for Si and Q for P . Arithmetics show that all three
reactions (5.3) through (5.5) preserve the number of atoms, each atom appears in the composition of
at least one molecular species, and the number of atoms in the composition of each species complies
with the Definition 5.1. Therefore 〈Λ, R,∆〉 ∈ Subset-Fixed-Atomic.
⇐: If 〈Λ, R,∆〉 ∈ Subset-Fixed-Atomic, (5.3) ensures that each molecular species contains

exactly two atoms. That is because for each i ∈ [1, n],

dSi(T ) + dSi(F ) + dSi(P ) + dSi(Q) ≥ 2 (5.6)

by Definition 5.1, so for each m ∈ [1, k],

3∑
j=1

(dSmj (T ) + dSmj (F ) + dSmj (P ) + dSmj (Q)) ≥ 3× 2 = 6 (5.7)

However the total number of atoms on the left hand side of 5.3 is exactly 6, meaning the equal
sign has to be taken everywhere in (5.7) for any m ∈ [1, k], forcing (5.6) to take equal sign as well.

Similarly, (5.4) ensures ||dXi ||1 = 2 for each i ∈ [1, n].
The reaction series (5.5) implies that each Si has at least one P and each Xi has at least one Q.

Furthermore,

1. if any Si decomposes to 2P , its corresponding Xi shall be composed of PQ, contradicting
(5.4) which says that no Xi contains any P ;

2. if any Si decomposes to PQ, it contradicts with (5.3) which says that no Si contains any Q.

Therefore all Si shall decompose to either {1F, 1P} ((0, 1, 1, 0)T ) or {1T, 1P} ((1, 0, 1, 0)T ).
Correspondingly, Xi decompose to either (0, 1, 0, 1)T or (1, 0, 0, 1)T .

Construct φ such that φ(vj) = 1 for all vj ∈ {vj | dSj � ∆ = (1, 0, 1, 0)T }, and φ(vm) = 0 for all
vm ∈ V \ {vj | dSj � ∆ = (1, 0, 1, 0)T }. Exactly one in three of the products in the right hand side
of (5.3) decomposes to (1, 0, 1, 0), so exactly one in three of the variables (literals) in each clause of
C evaluates to 1. It follows that 〈V,C〉 ∈Monotone-1-In-3-Sat.

We notice that the coefficients of all species in all the reactions (5.3) ∼ (5.5) are constants, so
the numerical parameters – entries of each (r,p) ∈ R – of the instances 〈Λ, R,∆〉 constructed above
are bounded by the constant 3, which is again bounded by a polynomial of the length of 〈V,C〉,
presuming the encoding scheme is “reasonable and concise” [18]. We therefore conclude that:

Corollary 5.6. Subset-Fixed-Atomic is strongly NP-hard.
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Combining Corollary 5.6 and Corollary 5.3, we immediately obtain:

Theorem 5.7. Subset-Fixed-Atomic is strongly NP-complete.

Remark 5.8. Another interesting thing to note is that Subset-Fixed-Atomic remains NP-
complete even restricted to instances where R contains only unimolecular and bimolecular reactions.

In fact, one may convert, for each m ∈ [1, k] (recall that k is the number of clauses in C), any
reaction in the series (5.3) (3P + 2F + T → Sm1 + Sm2 + Sm3 (∀m ∈ [1, k])) into the following
series:

T + F � Mm1

Mm1 + F � Mm2

Mm2 + P � Mm3

Mm3 + P � Mm4

Mm4 + P → Mm5 + Sm1

Mm5 → Sm2 + Sm3

And apply similar methods to the Xi species. Such conversion creates 2 × 10k = 20k extra
reactions and 2× 5k = 10k intermediate species, which is polynomial in both time and space.

However, the case of Subset-Atomic is more complicated. We first note that in many cases,
for some 〈Λ, R〉 ∈ Subset-Atomic, there exist multiple possible ∆’s with respect to whom (Λ, R)
is subset atomic. It remains open as to what complexity class Subset-Atomic belongs to, but we
have the following conjecture:

Conjecture 5.9. Subset-Atomic is NP-complete.

6 Complexity of reachably atomic

Without regurgitating the intuition of the definition of reachably atomicity which has been explained
in subsections 1.1 and 3.3, we proceed with the corresponding definition of languages for deciding
reachably atomicity and the reachability problem in reachably atomic networks.

Definition 6.1. We define the following languages:

Reachably-Atomic = {〈Λ, R〉 | (∃∆ ⊆ Λ)((Λ, R) is reachably atomic with respect to ∆)}
Reachably-Fixed-Atomic = {〈Λ, R,∆〉 | (Λ, R) is reachably atomic with respect to ∆}

Distinction between Reachably-Fixed-Atomic and Reachably-Atomic is analogous to that
between Subset-Fixed-Atomic and Subset-Atomic. However, given the uniqueness of choice
of ∆ as well as the composition matrix D (Lemma 3.9), there is no reason to distinguish between
“Reachably-Fixed-Atomic” and Reachably-Atomic. Hence, for subsequent discussions we
shall only consider Reachably-Atomic.
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6.1 Reachably-Atomic is in P

As mentioned before, the requirement that {1S} ⇒ dS (∀S ∈ Λ) seems strong. The complexity
results in this subsection confirm this.

Lemma 6.2. If a network C = (Λ, R) is reachably atomic with respect to ∆ via decompositin matrix
D (or equivalently, via the set of composition vectors {dS}S∈Λ), then ∃S ∈ Λ \∆ and (r,p) ∈ R s.t.
r = {1S} and p = dS.

Proof. The claim is saying that if a network is reachably atomic, then there exists a molecular
species that can be decomposed into its atomic composition in a single reaction. Proof is done
by supposing otherwise and chasing the composition sequence to find an infinite descending chain,
contradicting to the finiteness of species set. Suppose not, then for all reactions with r = {1S} for
some S ∈ Λ \∆, either [p] ∩ (Λ \∆) 6= ∅, or [p] ⊆ ∆ but p 6= dS . The last case cannot happen, due
to the uniqueness of atomic composition for reachably atomic networks (Recall Lemma 3.9). Hence
for all (r,p) with r = {1S} for some S ∈ Λ \∆, [p] ∩ (Λ \∆) 6= ∅ [*].

[*], together with the reachable-atomicity, implies that for each S ∈ Λ \∆ one may find a S′ s.t.
‖dS‖1 > ‖dS′‖1 [∗∗]. To see this, consider an arbitrary Si ∈ Λ \∆: any (r,p) with r = {1Si} has
either ‖p‖1 = 1, or ‖p‖1 ≥ 2. In the second case we are done, for any Sj ∈ [p] ∩ (Λ \∆) satisfies
‖dSj‖1 < ‖dSi‖1; in the first case, we have found some Si+1 s.t. dSi+1 = dSi (and we call such (r,p)
an isomerization reaction), so we recursively inspect into all (r1,p1) with r1 = {1Si+1}. Such a
recursion must finally terminate with some Si+m that satisfies (∃(rm,pm) | rm = {1Si+m})‖pm‖1 ≥
2, for otherwise dSi would not be reachably decomposible into dSi via any reaction sequence. It
follows that any Si+m+1 ∈ [pm] ∩ (Λ ∩∆) satisfies ‖dSi‖1 > ‖dSi+m+1‖1.

We have argued that our initial assumption (for the sake of contradiction) implies [∗∗]. But [∗∗]
would imply that there exists no molecular species with minimal size, contradicting the finiteness of
Λ.

Theorem 6.3. Reachably-Atomic ∈ P.

Proof. Intuitively, we would need to exhibit a polynomial time algorithm to identify if there exists
a separation of Λ into two non-empty, disjoint sets M and ∆, with elements in M decomposable via
sequences of reactions into combination of elements in ∆. To achieve this goal, we set M = {S ∈
Λ | (∃(r,p) ∈ R)r = {1S}}, which would later be justified as the very set of molecular species; upon
successfully obtaining such a separation (should it exist), we first check if there exists a molecular
species decomposable into its atomic composition via one single reaction, which should exist if
the network is reachably atomic, by Lemma 6.2; then recursively, we check if there exist elements
in M that can be decomposed into combination of atoms and previously identified decomposable
molecules via one single reaction. If this process terminates, finding (candidate) atomic composition
for all molecules, we proceed to check if the compositions preserve molecules and if each atom
appears in the composition of at least one molecule. We only accept when the network passes all
those tests. describe this polynomial time algorithm in more details, argue for its correctness, and
then exhibit the pseudo-code.

Our algorithm will compose of the following steps:

1. Enumerate all reactions in R: for each reaction starting with {1S} for some S ∈ Λ, put S in
the set M of molecules. After the enumeration, define ∆ = Λ \M . If ∆ = ∅ or M = ∅, reject.
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2. Find if there exists some molecular species S ∈M such that S is decomposible into some dS
with [dS ] ⊆ ∆ by execution of a single reaction. If any of such dS is of size 0 or 1, reject.
Keep track of each composition vector dS ;

Make a subset M ′ of M s.t. M ′ contains all molecular species which CANNOT be decomposed
into dS with [dS ] ⊆ ∆ by execution of one reaction. If M ′ = M , then reject.

3. while M ′ is not empty, iterate and try to find an S ∈ M ′ that satisfies this condition:
∃(r,p) ∈ R s.t. r = {1S} and [p] ⊆ (M \M ′) ∪∆. Note that all elements S′′ in M \M ′
satsifies {1S′′} ⇒∗ dS′′ , hence if S can be decomposed into complexes consisting solely of
elements in (M \M ′) ∪∆ via execution of one reaction, then S itself satisfies {1S} ⇒∗ dS as
well. Keep track of dS and exclude such S from M ′.

If in some iteration we cannot find any such S ∈M ′, then reject; else, the iteration will finally
halt excluding all such S’s and making M ′ empty.

4. We have obtained dS for each S ∈ Λ (note that dA = eA for all A ∈ ∆) s.t. [dS ] ⊆ ∆
and {1S} ⇒∗ dS . By Lemma 3.9, such set of composition is unique. Now, check if this
composition conserves atoms by composing stoichiometric matrix A and composition matrix
D and examine if A ·D = 0, and finally check if each atom A appears at least once in some
dS for some S ∈M .

We first prove that if reachably atomic then the algorithm will halt in accept:
if C is reachably atomic, then we claim that the set {S ∈ Λ | ∃(r,p) ∈ R s.t. {1S} = r} is exactly

the set of molecules M , with its complement ∆ = Λ \M . To see this, recall that we prescribed there
being no “r → r” reactions in R, so all reactions (r,p) ∈ R | ‖r‖ = 1 is either an isomerization
reaction (‖p‖1 = 1,p 6= r) or disassociation reaction (‖p‖1 ≥ 2). Both types of reactions can
only happen when S ∈ [r] is a molecule; it follows that {S ∈ Λ | ∃(r,p) ∈ R s.t. {1S} = r} ⊆ M .
Conversely, when S ∈M , reachably atomicity gives S ∈ {S ∈ Λ | ∃(r,p) ∈ R s.t. {1S} = r}.9

Neither M nor ∆ would be empty, for (∆ = ∅)⇒ (C is not reachably atomic) and (M = ∅)⇒
(R = ∅). Hence the algorithm passes Step 1, correctly identifying the partition (M,∆) of Λ.

By Lemma 6.2, reachable-atomicity implies that the algorithm will find at least one molecular
species S that directly decomposes to its atomic composition dS and grantedly, ‖dS‖ ≥ 2, so Step
(2) will be passed.

Further, applying the same argument in Lemma 6.2 on the set M ′, the while loop must shrink
the cardinality of M ′ by at least 1 per iteration, and finally exit by making M ′ empty, 10 passing
Step (3);

Finally, the composition must preserve atoms for all reactions, and all atoms must appear in the
composition of at least one molecule, which make both tests in Step (4) passed.

9 We point out that the set of atoms M 6= {S ∈ Λ | ∃(r,p) ∈ R s.t. ({1S} = r) ∧ (‖p‖ ≥ 2)}, so we have to test
the ‖dS‖ ≥ 2 condition in later steps. This is because it might be the case that the only reaction (r,p) with r = {1S}
turns out to be an isomerization reaction. A counter example would be:

A → B

B → 2C

By our definition M = {S ∈ Λ | ∃(r,p) ∈ R s.t. {1S} = r}, we shall correctly identify M = {A,B}, yet the added
condition ‖p‖ ≥ 2 would make M = {B}, a mis-identification.

10That is, if (∀S ∈M ′)(∀(r,p) ∈ R) (r = {1S} ⇒ [p]∩M ′ 6= ∅), then for each species S in M ′ there will be S′ ∈M ′

s.t. ‖S‖1 > ‖S′‖1, contradicting the finiteness of M ′.
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It remains to show that if C is not reachably atomic then our algorithm will halt in reject. We
claim that: if C is not reachably atomic, then exactly one of the following will be true:

1. There is no valid separation of Λ into M and ∆. That is, either {S ∈ Λ | ∃(r,p) ∈
R s.t. {1S} = r} = ∅ (no species is the single reactant of an isomerization or disassociation
reaction, so no species S is decomposible from {1S}), or {S ∈ Λ | ∃(r,p) ∈ R s.t. {1S} =
r} = Λ (every species is the single reactant of some isomerization or disassociation reaction,
which contradicts the definition of subset atomicity for atoms should be neither isomerizable
nor decomposible).An example where {S ∈ Λ | ∃(r,p) ∈ R s.t. {1S} = r} = ∅ would be
(Λ = {A,B,C}, R = {2A+ 3B → 4C}), while (Λ′ = {A,B}, R′ = {A→ B,B → A}) would
be an instance where {S ∈ Λ | ∃(r,p) ∈ R s.t. {1S} = r} = Λ.

Observe such a valid separation (M,∆) of Λ, if existing, is unique for a certain C = (Λ, R),
since S ∈M if and only if ∃(r,p) ∈ R s.t. r = {1S}, and this property is uniquely decided by
R.

2. There exists the unique valid separation (M,∆) of Λ, but there exists no molecular species
directly decomposible into its atomic composition via execution of one single reaction. That is,
(∀S ∈M)(∀(r,p) ∈ R)(r = {1S} ⇒ [p] ∩M 6= ∅). An example of this is (Λ = {A,B,C}, R =
{A→ B + 5C,B → A+ 5C}). We would successfully identify M = {A,B},∆ = {C}, but for
all reactions we (r,p) ∈ R have [p] ∩M 6= ∅.

3. There exists the unique valid separation (M,∆) of Λ and {S ∈ M | (∃(rS ,pS) ∈ R)((rS =
{1S}) ∧ ([pS ] ⊆ ∆))} 6= ∅, but for some S ∈ {S ∈M | (∃(rS ,pS) ∈ R)((r = {1S}) ∧ ([pS ] ⊆
∆))}, ‖p‖ ≤ 1. That is, we have some reaction S1 → A1 with S1 ∈M and A1 ∈ ∆, or S1 → ∅.
In this case, either a molecule decomposes to a single atom, or it vanishes.

Typical Examples are: C1 = ({A,B,C}, {A→ B,B → C}), C2 = ({A,B,C}, {A→ 2C,B →
∅}). In both cases one would identify MC1 = MC2 = {A,B}; for both networks, {S ∈ M |
(∃(rS ,pS) ∈ R)((r = {1S}) ∧ ([pS ] ⊆ ∆))} = {A,B}. But In C1, B decomposes to a single
atom C; in C2, B vanishes. This disqualifies both sets from being reachably atomic by placing
them in the third case.

4. There exists the unique valid separation (M,∆) of Λ, and {S ∈ M | (∃(rS ,pS) ∈ R)((rS =
{1S}) ∧ ([pS ] ⊆ ∆))} 6= ∅; further, each S ∈ {S ∈M | (∃(rS ,pS) ∈ R)((rS = {1S}) ∧ ([pS ] ⊆
∆))} satisfies ‖p‖1 ≥ 2. However, there exists some indecomposible molecular species. That
is, ∃ S′ ∈M s.t. ∀c ∈ NΛ where {1S′} ⇒∗ c, [c] ∩M 6= ∅.
An example for this case is C = ({A,B,C,D,E}, {A → B,B → C,D → 3E}). One may
identify M = {A,B,D} and find {D} = {S ∈ M | (∃(r,p) ∈ R)((r = {1S}) ∧ ([p] ⊆ ∆))}.
Further, the reaction D → 3E where r = {1D} satisfie ‖p‖ = 3. This network does not
belong to any of the first few cases but it does belong to Case 4, for ∀c where {1A} ⇒∗ c,
[c] ⊆ {B,C} ⊆M .

5. There is a unique valid composition (M,∆) of Λ and (∀S ∈ M) (∃cS with [cS ] ⊆ ∆)
({1S} ⇒∗ cS) ∧ (‖cS‖1 ≥ 2), but the composition does not preserve atoms for some reaction.
That is, with A the stoichiometric matrix and D the composition matrix (row vectors being the
cS ’s restricted to ∆), A ·D 6= 0. Note that for reachably atomic networks, atomic composition
vectors (or equivalently, matrix) should be unique.
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One example of this would be ({A,B,C,D}, {A→ B,B → 3C,A+B → 5C +D}). Here we
have M = {A,B} and {3C} =︸︷︷︸

B→3C

dB =︸︷︷︸
A→B

dA =︸︷︷︸
A+B⇒5C+D,B→3C

{2C + D}, contradicting the

preservation of atoms. Note that this happens to be another example where a network is
mass conserving (Just set m(A) = m(B) = 3m(C) = 3m(D) = 3) but not subset atomic (and
hence not reachably atomic).

6. There is a unique valid composition (M,∆) of Λ and (∀S ∈ M) (∃cS with [cS ] ⊆ ∆)
({1S} ⇒∗ cS) ∧ (‖cS‖1 ≥ 2), and the composition preserves atoms (A ·D = 0), but some
atoms are ”redundant”: ∃A ∈ ∆ s.t. ∀S ∈M , A /∈ [dS ] = [cS ].

One may “fix” the last example into this case: ({A,B,C,D}, {A→ B,B → 3C,A+B → 6C}).
Here we have M = {A,B} and {3C} =︸︷︷︸

B→3C

dB =︸︷︷︸
A→B

dA =︸︷︷︸
A+B⇒6C,B→3C

{3C}, so every condition

for reachably atomic is satisfied, except that (∀S)D 6∈ [dS ].

All six cases contradict each other, so at most one case could hold; on the other hand, the
negation of the disjunction of all six cases says that there exists a non-empty proper subset of Λ and
a composition matrix D, such that all three conditions of primitive atomicity holds with respect to
Λ via D, and {1S} ⇒∗ dS for all S. This is exactly the definition of reachably atomicity. So taking
contraposition, non-reachable-atomicity implies at least one of the six cases hold.

Instances satisfying Case (1) will be rejected in Step (1), while Cases (2) and (3) will get rejected
in Step (2). In case (4), the loop for finding composition vectors must terminate before M ′ is
emptied, so it will get rejected by Step (3); Cases (5) and (6) triggers rejection in Step (4).
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We exhibit the following pseudocode for the decider:

1 Initialize global set M,M ′,∆, D = ∅ //D: {composition vectors}.
2 for (r,p) ∈ R do
3 if (∃S ∈ Λ)r = {1S} then
4 M ←M ∪ {S}
5 end

6 end
7 ∆← Λ \M
8 M ′ ←M
9 if M = ∅ or ∆ = ∅ then

10 Reject
11 end
12 D ← D ∪ {eA}A∈∆

13 for (r,p) ∈ R where (∃S ∈M)r = {1S} do
14 if [p] ⊆ ∆ then
15 if ‖p‖1 ≤ 1 then
16 reject
17 end

18 end
19 D ← D ∪ {〈dS = p〉}
20 M ′ ←M ′ \ {S}
21 end
22 if M ′ = M then
23 reject
24 end
25 while M ′ 6= ∅ do
26 if (∀S ∈M ′) (∀(r,p) ∈ R | r = {1S}) ([p] ∩M ′ 6= ∅) then
27 reject
28 end
29 else
30 for (S ∈M ′ | (∃(r,p) ∈ R | r = {1S} and [p] ∩M ′ = ∅)) do
31 D ← D ∪ {〈dS =

∑
S′∈[p] dS′〉}

32 M ′ ←M ′ \ {S}
33 end

34 end

35 end
36 Compose A (stochiometric matrix) and D (composition matrix)
37 if A ·D 6= 0 then
38 reject
39 end
40 if (∃A ∈ ∆)(∀S ∈M)A 6∈ [dS ] then
41 reject
42 end
43 accept

Algorithm 2: Decider for Reachably-Atomic
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Let us briefly mention that this is a polynomial time algorithm. The first for-loop takes O(|R|)
time; the second for-loop takes at most O(|R|) iterations, and each iteration takes O(|Λ|3) time;
as for the while loop, note that it either shrinks the size of M ′ by 1 per iteration, or rejects.
Hence the while loop takes at most O(|Λ|) to exit. The if-statement inside the while-loop takes
O(|Λ| · |R| · |Λ|2) to evaluate. Lastly, composing and multiplying A ·D takes O(|R||Λ| · |Λ|2) time,
and verifying each A ∈ ∆ is “used” by the composition of some molecule is O(|Λ| · |Λ| · |Λ|). The
times complexity is therefore dominated by the while, which is O(|R||Λ|4). No input, output or
intermediate encoding takes more than polynomial space to record, so Reachably-Atomic ∈ P,
as desired.

6.2 Reachable-Reach is PSPACE-complete

We begin this section by introducing the definition of configuration reachability graphs, followed by
a result proved in relevant literature [30] (see also Subsection 1.1), the idea of which we shall be
using to prove the PSPACE-completeness of Reachable-Reach.

Definition 6.4 (Configuration Reachability Graph). An i-initiated Configuration Reachability
Graph GC,i of the chemical reaction network C = (Λ, R) is a directed graph (V,E), where:

1. each vc ∈ V (c ∈ NΛ) is labeled by a reachable configurationc of C ;

2. vi ∈ V (i ∈ NΛ) is the vertice labeled by the initializing configuration i;

3. the ordered pair (vc1 , vc2) ∈ E if and only if c1 ⇒1 c2.

Remark 6.5. For the sake of simplicity, we use GC,i as shorthand for GC,vi .

For the same C, Configuration Reachability Graphs can be far from isomorphic due to parame-
terization by different initialization vectors.

Example 6.6. Consider C = (Λ, R) where Λ = {S1, S2, S3, A1} (we use the order exhibited above
for NΛ), and R, in its explicit form, consists of

S1 → 4A1 (6.1)

S2 → 9A2 (6.2)

2S1 + S2 → S3 (6.3)

Now consider two intialization vectors, i = (0, 2, 1, 0)T (that is, {2S2, 1S3}) and i
′

=
(2, 1, 3, 0)T (i.e., {2S1, 1S2, 3S3}). For i, the only possible reaction is (6.2) and the only pos-
sible reaction path is two consecutive executions of (6.2). Hence GC,i = (V,E) where V =
{vi, v(0,1,1,9)T , v(0,0,1,18)T }) and E = {(vi, v(0,1,1,9)T ), (v(0,1,1,9)T , v(0,0,1,18)T }.

The case for i
′

is more complicated. Potential execution paths include: (6.3); (6.1) →
(6.1)→ (6.2); (6.1)→ (6.2)→ (6.1); (6.2)→ (6.1)→ (6.1). We may construct the Configuration
Reachability Graph GC,i′ following these paths. Figures of GC,i and GC,i′ are shown below:
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Figure 1: Configuration Reachability Graphs GC,i, GC,i′

We are about ready to prove the conclusion on the complexity of the reachability problem for
reachably atomic networks. But first, we point out that the following Theorem is a direct result of
a finding in [30], giving the complexity class of reachability problems for mass-conserving chemical
reaction networks.

Theorem 6.7. For all mass conserving chemical reaction networks C and initial configuration i of
C, |〈GC,i〉| ∈ O(2poly(|〈C,i〉|)). That is, the binary size of the encoding of the configuration reachability
graph GC,i is at most exponential to the binary size of the encoding of the pair (C, i).

Furthermore, reachability problem for mass conserving networks is PSPACE-complete. That is,
it is PSPACE-complete to decide if an instance is in the following language:

{〈Λ, R, c1, c2 | (Λ, R) is mass conserving; c1, c2 ∈ NΛ; c1 ⇒∗ c2〉}

Built on Theorem 6.7, we now exhibit the proof that the decision problem “Given a Reachably
Atomic network, is c2 reachable from c1” is PSPACE-Complete. More formally,

Definition 6.8. We define the language

Reachable-Reach = {(Λ, R, c1, c2) | (Λ, R) is reachably atomic; c1, c2 ∈ NΛ; c1 ⇒∗ c2}

Referencing the proof ideas and conclusions in Theorem 6.7, we shall show the complexity class
of Reachable-Reach below, using the exponential size bound on configuration reachability graph
of reachably atomic networks and a simulation of polynomial space Turing Machine by reachably
atomic network.

Theorem 6.9. Reachable-Reach is PSPACE-complete.

Proof. We prove the containment in PSPACE by the PSPACE-completeness of reachability problem
in a mass conserving chemical reaction network (Theorem 6.7). Hardness is shown by simulating
polynomial space Turing Machines. Let 〈Λ, R, c1, c2〉 be an instance, and let Z := |〈Λ, R, c1, c2〉|.
In Theorem 6.3 we proved that Reachably-Atomic ∈ P so we may run the polynomial decider
on 〈Λ, R〉 and reject if 〈Λ, R〉 6∈ Reachably-Atomic.
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If the Reachably-Atomic decider halts in accept, we would obtain ∆ ⊆ Λ with respect
to which (Λ, R) is reachably atomic, as well as the set {dS}S∈Λ of composition vectors. Further,
we would have confirmed that C = (Λ, R) is mass-conserving, for this is implied by reachably
atomicity. Recall from [30] that the number of vertices in a configuration reachability graph GC,c1

for mass-conserving network C is at most exponential to the binary size of the input. Now, let
n = |VGC,c1

|, then by Savitch’s Theorem [36],

Reachable-Reach ∈ SPACE((log n)2) = SPACE((log((O(2poly(Z))))2) = SPACE(O(poly(L))2)

It follows that Reachable-Reach ∈ PSPACE.
As for the PSPACE hardness, we shall prove by simulating a polynomial-space Turing Machine.

That is, consider the language

L := {〈M,x, 0|x|
c〉 |M is an O(|x|c)− space, clocked Turing Machine, x ∈ {0, 1}∗ : M(x)→ 1}

Just to clarify the notation, “M(x) → 1” means M on the input x runs for O(|x|c) time and
accepts. We shall construct an Reachable-Reach instance 〈Λ, R, c1, c2〉 by a polynomial time
reduction from an instance 〈M,x, 0|x|

c〉, and show that 〈M,x, 0|x|
c〉 ∈ L

if and only if 〈Λ, R, c1, c2〉 ∈ Reachable-Reach.
Without loss of generality, assume the initial configuration ofM is q1 ∈ QM = {q1, q2, · · · , qt−2, qA, qR}

(where t := |QM |, QA is the accept state and QR is the reject state), and that the TM blank the tape
cells and return the tape head to the leftmost position before halting. Let p denote the maximum
number of tape cells that M may use on input x (Note that p ∈ O(|x|c)). Define the following set
of species:

Λ = {A,Q1, . . . , Qt−2, QA, QR︸ ︷︷ ︸
machine states

, P1, . . . , Pp︸ ︷︷ ︸
head positions

, T 0
1 , T

1
1 , . . . , T

0
p , T

1
p︸ ︷︷ ︸

tape contents

}

and configurations:

c1 = {P1, Q1, T
x[1]
1 , . . . , T

x[|x|]
|x| , T xy|x|+1, . . . T

xy
p }

c2 = {1QA, T xy1 , . . . , T xyp , P1}

Recalling that the transition function δM : QM \ {QA, QR} × Γ → QM × Γ × {−1,+1}, we
construct the set R of reactions in the following way:

1 for (∀qi ∈ QM )(∀b ∈ {0, 1, xy})(∀k ∈ {1, 2, · · · , p}) do
2 if δ(qi, b)→ (qj , b

′,m) then

3 Add Reaction Qi + T bk + Pk → Qj + T b
′
k + Pk+m //m ∈ {±1} : tape head moving

direction.
4 end

5 end
6 for S ∈ Λ \ {A} do
7 Add Reaction S → 2A
8 end

Algorithm 3: Construction of R

Observe that (Λ, R) is a reachably atomic network with respect to ∆ = {A} ⊆ Λ, for any molecular
species can be decomposed to {2A} explicitly via Lines 11-12, A appears in the composition of all
molecular species, and all reactions preserve the number of atoms.
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Further,

〈M,X, 0|x|
c〉 ∈ L ⇔ M(x)→ 1

⇔ ∃computation path (q1, (x[1], x[2], · · · , x[|x|], xy, · · · , xy︸ ︷︷ ︸
p−|x|

))⇒∗ (qA, (xy, xy, · · · , xy︸ ︷︷ ︸
p

))

⇔ c1 ⇒∗ c2

⇔ 〈Λ, R, c1, c2〉 ∈ Reachable-Reach

Finally, |Λ| = 1 + t+ 3p; |R| ∈ O(3pq + |Λ|), ‖c‖1 = ‖c‖2 = p+ 2. All coefficients of reactions
are constant Hence this reduction is polynomial in Z both timewise and spacewise.

Remark 6.10. The fact that all coefficients of reactions are constant also implies that Reachable-Reach
is PSPACE-hard (and hence complete) in the strong sense.

Remark 6.11. The argument above fails if we require all reactions to be reversible. In fact, if that
were the case, one may run the disassociation reactions first and run the reversed disassociation
reactions to create any “input species” (species representing the tape cell) as wanted, breaking the
equivalence.

As mentioned in Subsection 1.1, there are some interesting relationship between some property
of network defined in [21] and ours, which we shall look into in this section.

We begin by introducing some definitions in [21]. We disclaim that all the following definitions and
notations (but not remarks) before Subsection (6.3) are from [21], possibly with slight modification
of notationsand/or interpretations:

Definition 6.12. A species composition map, or simply a composition of chemical reaction network
C is a map E : Λ→ Nn \ {0n}, where n ∈ N>0.

Remark 6.13. We donnot confuse E with d because they are completely different mappings.
In particular, E could map different species to the same ei, which means E � E−1(ei) could be
non-injective, while we donnot allow this for atomic composition d. This point is further illustrated
in the following Lemmas, such as Lemma 6.23.

Definition 6.14.

1. A species S ∈ Λ is E-elementary if ‖E(S)‖1 = 1;

2. A species S ∈ Λ is E-composite if ‖E(S)‖1 ≥ 2;

3. S, S′ ∈ Λ are E- isomeric if E(S) = E(S′); equivalently, we say S, S′ belong to the same
E-isomeric class.

Definition 6.15. The extended composition Ẽ of E is defined as in Equation (6.5).

We denote Θ =span({(p− r)}(r,p)∈R) ⊆ RΛ. With slight abuse of notation, we sometimes also
write Θ =span(R) with R the set of reaction vectors.

Definition 6.16. a composition E is near-core if:

1. ker(Ẽ) ⊇ Θ, which is equivalent to saying C is E-conservative; and
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2. e1, · · · , en ∈ range(E).

Definition 6.17. A composition E is core if E is near-core and further, ker(Ẽ) = Θ.

Remark 6.18. Intuitively, a core composition E is the composition whose linear extension Ẽ has
the smallest kernel containing the reaction vector space Θ = span(R) as subspace. That ensures
the uniqueness (up to isomorphism) of Ẽ , and avoids including vectors that are not reachable by
reactions into the kernel. Theorem 2.11, 2.12 of [21] has a detailed and more formal discussion on
this matter.

Definition 6.19. A reaction network C is constructive if it admits a core composition.

Definition 6.20.

1. A species Y is explicitly constructible (resp. explicitly destructible) if there are isomerization
reactions Y0 → · · · → Yl (resp. Yl → · · · → Y0), where l ∈ N, such that Y0 is the target of a
binding reaction (resp. the source of a dissociation reaction) and Yl = Y .

Binding reactions are (r,p) ∈ R s.t. ‖r‖1 ≥ 2 and ‖p‖1 = 1, and dissasociation reactions have
similar definition with r and p swapped. Isomerizations are (r,p) ∈ R s.t. |r|1 = |p|1 = 1:
note that the reactant and product of an isomerization reaction are isomers.

2. A species X is explicitly constructive (resp. explicitly destructive) if there is a binding reaction
Q→ Y (resp. a dissociation reaction Y → Q such that X ∈ [Q].

Remark 6.21. Intuitively, a species is explicit constructibile if it is “eventually” a product of a
binding reaction (up to having some isomerization reactions in between), while explicit constructivity
means a species directly participate in a binding reaction as reactant.

And finally,

Definition 6.22. A chemical reaction network C is explicitly-reversibly constructive if:

1. C is constructive;

2. Each composite species is both explicitly constructible and explicitly destructible; and

3. Each elementary species is both explicitly constructive and explicitly destructive.

6.3 Atomic chemical reaction networks with core or near core compositions

We would like to begin this section by showing an equivalence relationship between our definition of
subset atomicity and [21]’s definition of networks admitting near-core compositions with certain
restrictions.

Lemma 6.23. A chemical reaction network C = (Λ, R) is subset atomic if and only if ∃n ∈ N>0, E :
Λ→ Nn \ {0}n, s.t.

1. E is a near-core composition of C;

2. E � E−1({ei}ni=1) is one to one, and
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3. (∀i ∈ [1, n]) (∃S ∈ Λ \
⋃n
i=1 E−1(ei))(E(S))i > 0.

Remark 6.24. Adopting the definition that Xi := {S ∈ Λ | E(S) = ei}, then condition 2 is
saying that pi := |Xi| = 1 for each i. It intuitively translates to “no isomerization is allowed for
E-elementary species”. Note also the similarity between Condition 3 above and Condition 2 of
Definition 3.1. They will translate to each other by construction in the proof below.

Proof. We note that atomic composition in a subset atomic network C describes a similar phenomenon
of a near-core composition of C, and we prove the equivalence by mathematically translating the
constraints in one definition into the other, and vice versa.

1. ⇒:

Suppose C is subset atomic with respect to ∆ via composition matrix D. Let n := |∆|.
Consider

E : Λ → Nn \ {0n} : (6.4)

S 7→ dS , ∀S ∈ Λ \A
A 7→ dA = eA, ∀A ∈ Λ

We shall argue that E has the desired property. By construction, e1 = eA1 , · · · en = eAn ∈ E(Λ),
and E restricted to the preimage of {ei}ni=1 is one-to-one; subset atomicity inherits Condition
(2) of Definition (3.1) (Primitive Atomic), which implies that

(∀i ∈ [1, n])(∃S ∈ Λ \
n⋃
i=1

E−1(ei) = Λ \∆)(E(S))i = dS(Ai) > 0

It remains to show that C is E-conservative, which, by [21], is equivalent to ker(Ẽ) ⊇ Θ where
Θ is the span of the reaction vectors and Ẽ is the linear extension Ẽ of E :

Ẽ : RΛ → Rn : (6.5)

c 7→ (
∑
S∈Λ

c(S) · (E(S))1, · · · ,
∑
S∈Λ

c(S) · (E(S))n)T , c ∈ RΛ

Observe that Ẽ(·) operates on c ∈ RΛ as left mulitplication by DT , the transpose of the decomp-
sition matrix.By definition of subset atomicity, any reaction preserves the count/concentration
of each atom, so DT · (p− r) = 0n (∀(r,p) ∈ R). Hence a1(p1− r1) + · · ·+ak(pk− rk) ∈ ker Ẽ
(k = |R|) for any a1(p1 − r1) + · · ·+ ak(pk − rk) ∈ Θ, as desired.

2. ⇐:

Suppose we have a function E : Λ→ Nn \ {0}n satisfying the three described properties. Then
define

∆ = {E−1(ei)}ni=1 (6.6)
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We argue that C is subset atomic with respect to ∆. Indeed, define the composition vectors:

d : Λ → Nn \ {0}n, (6.7)

S 7→ E(S), ∀S ∈ Λ

Since d coincides with E everywhere and since C is E-conservative, for each S ∈ Λ, (r,p) ∈ R
and Ai ∈ ∆, we have

∑
S∈Λ

(p(S)− r(S)) · dS(Ai) =
∑
S∈Λ

(p(S)− r(S)) · (E(S))i

= (Ẽ(p− r))i

=︸︷︷︸
E conservative⇒p−r∈ker Ẽ

0, (6.8)

which gives the atom-preservation condition of subset atomic.

By construction, (∀i)Ai ∈ ∆ ⊆ Λ, dAi = ei; To see that ‖d(S)‖1 ≥ 2 for all S ∈ Λ \∆, recall
that E � E−1({ei}ni=1) is one to one, which means ∀S ∈ Λ \∆, E(S) 6∈ {ei}ni=1. Given that
range(E) = Nn \ {0}n, this means d(S) is some non-trivial linear combination of ei’s, which
gives ‖d(S)‖1 ≥ 2 as desired;

Lastly, (∀i ∈ [1, n]) (∃S ∈ Λ\
⋃n
i=1 E−1(ei))(E(S))i > 0 translates to (∀A ∈ ∆)(∃S ∈ Λ\∆)A ∈

[dS ] by definition of d.

In order to further describe the relationship between atomic networks and core compositions, we
make the following definitions first.

Definition 6.25 (Associated Composition). Given a subset atomic chemical reaction network
C = (Λ, R) with respect to ∆ via composition matrix D, the associated composition of D is the
function E constructed in (6.4). E’s unique linear extension Ẽ, constructed in (6.5), is defined as
the extended associated composition of D.

Remark 6.26. Note that Ẽ , the linear extension of E , is defined in (6.5) independent of atomic
decompostions.

Next we prove that reachably atomic networks admits a core composition. But first, we exhibit
some auxiliary definitions.

Definition 6.27. Given a subset atomic chemical reaction network (Λ, R) with respect to ∆ via
D, a single-molecule composition vector d

′
Si
∈ NΛ \ {0n} is defined as dSi − eSi. The set of

single-molecule composition vector is denoted as U := {d′Si
}Si∈Λ\∆.

Recall that dSi is the composition vector of Si whose first |Λ|− |∆∩Λ| coordinates are 0 and last
|∆| coordinates correspond to the count of each atom in the molecule. for subset atomic networks,
dSi ∈ NΛ \ {0n}, so d

′
Si

is well-defined by replacing 0 with −1 on the i-th molecular position.
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We explore the relationship between atomicity and core compositions by inspecting into the
relationship between ker(Ẽ) and Θ, the span of reaction vectors. This is in turn done by inspecting
the relation between ker Ẽ and the space spanned by U .

Next, let Υ denote the vector space spanned by U , as a subspace of Rn.We now give the first
approach to the implication “reachably atomicity ⇒ Core-Composition Admission”. To do this,
we will prove that for subset atomic networks with Ẽ defined as previously defined in (6.5,6.4),
ker Ẽ = Υ; for reachably atomic networks (which are by definition also subset atomic), Υ ⊆ Θ. The
two relations combined would give ker Ẽ ⊆ Θ, which is exactly the missing bit from near-core to
core compositions. The proofs will be carried out from Lemma 6.28 through Lemma 6.31.

Lemma 6.28. Vectors in U are linearly independent. Since they also span Υ, this means U is a
basis for Υ.

Proof. Observe that the −1 on the i-th position (∀1 ≤ i ≤ |Λ| − |∆|) cannot be obtained by linear
combination of other vectors in U , the i-th position of which are all 0’s.

This also shows that dim(Υ) = |U | = |Λ−∆| = |Λ| − |∆|.

Lemma 6.29 (Kernel-Span Equivalence). For subset atomic networks with Ẽ defined as in (6.5,6.4),
ker (Ẽ) = Υ.

Proof. By verification of definitions.

1. Υ ⊆ ker (Ẽ):

Take u = a1d
′
S1

+ · · ·+ a|Λ|−|∆|d
′
S|Λ|−|∆|

∈ Υ. Then ∀i ∈ [1, n], we have

(Ẽ(u))i =
∑
Sj∈Λ

u(Sj) · (E(Sj))i

=︸︷︷︸
(6.4)

∑
Sj∈Λ\∆

u(Sj) · dSj (Ai) +
∑
Ak∈∆

u(Ak) · dAk
(Ai)

=
∑

Sj∈Λ\∆

(−aj) · dSj (Ai) + u(Ai) · 1

=
∑

Sj∈Λ\∆

(−aj) · dSj (Ai) +
∑

Sj∈Λ\∆

aj · dSj (Ai)

= 0

2. Υ ⊇ ker (Ẽ):

Take v ∈ ker (Ẽ), and let a1, · · · , a|Λ|−|∆| denote the first |Λ| − |∆| coordiantes of v. We claim
that

v = −
|Λ|−|∆|∑
i=1

aid
′
Si

(6.9)

Indeed, for each Sj ∈ Λ \∆,

v(Sj) = −aj · (−1) =
∑
i 6=j

(−ai) · d
′
Si

(Sj)︸ ︷︷ ︸
0

+(−aj) · d
′
Sj

(Sj)︸ ︷︷ ︸
−1

= −
|Λ|−|∆|∑
i=1

aid
′
Si

(Sj)
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It remains to verify that (6.9) holds the last |∆| = n positions. Let b1, · · · , bn denote the last n

positions of v, c1, · · · , cn denote the last n positions of −
∑|Λ|−|∆|

i=1 aid
′
Si

. Because v ∈ ker (Ẽ),
we know that for each i ∈ [1, n],

(Ẽ(v))i =
∑
Sj∈Λ

v(Sj) · (E(Sj))i

=︸︷︷︸
(6.4)

∑
Sj∈Λ\∆

v(Sj) · dSj (Ai) +
∑
Ak∈∆

v(Ak) · dAk
(Ai)

=
∑

Sj∈Λ\∆

(aj) · dSj (Ai) + v(Ai) · 1

=
∑

Sj∈Λ\∆

(aj) · dSj (Ai) + bi · 1

= 0,

which gives that

bi = −
|Λ|−|∆|∑
j∈1

aj · dSj (Ai)

= −
|Λ|−|∆|∑
j∈1

aj · d
′
Sj

(Ai)

= ci

as desired, completing the proof.

Remark 6.30. The lemmas above directly imply that dim(ker(Ẽ)) = dim(Υ) = |Λ| − |∆|.

The Remark above resonates Gilles’ Theorem 3.3, which gives a equation for general cases where
E � E−1({ei}ni=1) is not necessarily one-to-one. Since the general cases are not directly related to
our discussion on network atomicity,11 we refrain from further discussion thereon.

Lemma 6.31. If a subset atomic chemical reaction network C is reachably atomic, then C admits a
core composition. That is, C is constructive.

Proof. By Lemma (6.23), since C is subset atomic, it admits a near-core composition. By Lemma
(6.29), ker(Ẽ) = Υ, so it suffices to prove Υ ⊆ Θ when C is reachably atomic.

To prove Υ ⊆ Θ, recall that by Lemma (6.28), U is a basis for Υ. Hence we only need
to argue that each basis vector d′Si

∈ U is a linear combination of reaction vectors. Indeed,
∀Si ∈ Λ \ ∆, eSi ⇒∗ dSi , so there exists p1 − r1, · · · ,pk − rk ∈ R for some k with r1 = eSi s.t.
eSi +

∑
k(pk − rk) = dSi . But this means d′Si

= dSi − eSi =
∑

k(pk − rk) ∈ Θ.

Having proved ker Ẽ = Γ = Θ, we conclude that C admits a core composition, as desired.
11For the fact that any species cannot have two atomic compositions in a single composition matrix. Note that

molecular species may admit different atomic compositions, but they belong to different composition matrices (that is,
atomic compositions of other species have to change accordingly).
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Remark 6.32. We exhibit an alternative approach for Lemma 6.31 by directly applying Theorem
4.2 of [21].

Theorem 4.2 of [21] states that if E : Λ → Nn \ {0n} satisfies the following, then E is a core
composition:

1. E is near-core;

2. all E-elementary species of the same E-isomeric class are stoichiometrically-isomeric (X,Y ∈
Xi ⇒ Y −X ∈ Θ = span(R)); here, E-isomeric classes are defined as species having the same
E(·)-value. Restricted to E-elementary species, the E-isomeric classes are Xi := {S ∈ Λ |
E(S) = ei} (i ∈ [1, n]).

3. For every E-composite Y with E(Y ) = α ∈ Zn≥0 \{0n}, there exist one “representative” elemen-
tary species from each elementary isomeric class such that Y and the α-linear combination of
these elementary species are stoichiometrically compatible. That is, ∃W1 ∈X1, · · · ,Wn ∈Xn,
s.t. Y −

∑n
i=1 αiWi ∈ Θ.

Note that for a reachably atomic network C and its associated composition E , all elementary
E-isomeric classes are singleton, so (∀i)(∀Ai ∈Xi)(Ai −Ai = 0n ∈ Θ)12; Also, for each Y ∈ Λ \∆,
Y −

∑
i dY (Ai)︸ ︷︷ ︸

αi

Ai = (−1) · d′Y ∈ Θ, as d′Y = dY − eY =
∑

j(pj − rj) ∈ Θ is guaranteed by the

reachably atomicity. The reachably atomicity implies subset atomicity, which again implies E is
near-core. Therefore C adopts a core composition, as desired.

Although in the alternative proof exhibited above we talked about the concept of “span” as
linear combinations with real coefficients, in fact our model of reachably atomic networks is not
necessarily equipped with the property that each reaction is reversible. This fact does not break
the proof, but it justifies our decision to keep both approaches. Further, the above observation
indicates the possibility that networks with the reversible property may itself guarantee some more
interesting structures. In fact, let us study the relationship between reversibly-reachably atomic
networks and explicitly-reversibly constructive networks in the following section.

6.4 Reversibly-Reachably Atomicity and Explicitly-Reversibly Constructiveness

In this section we show an equivalence between our definition of reversibly-reachably atomic and [21]’s
definition of explicitly-reversibly constructive with an additional restriction.

We first note that the following subclass of reachably atomic networks has such a property that
each molecular species can be explicitly constructed from its atomic makeup via reactions.

Definition 6.33 (Reversibly-Reachably Atomic). A chemical reaction network C = (Λ, R) is
reversibly-reachably saturated atomic if:

1. It is reachably atomic with respect to some ∆ ⊆ Λ via the composition matrix D;

2. ∀Sj ∈ Λ \∆, dSj ⇒∗ {1Sj}.
12Note that this doesn’t contradict the assumption that (r, r) 6∈ R, since 0n = 1 · (p− r) + (−1) · (p− r) can be

obtained by linear combination of reactions (r,p) ∈ R where r 6= p.
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By definition, reversibly-reachably atomic networks ( reachably atomic networks ( subset
atomic networks ( primitive atomic networks; or equivalently, for a given C, primitive atomicity
⇒ subset atomicity ⇒ reachably atomicity ⇒ reversibly-reachably atomicity, while the reversed
arrows do not necessarily hold.

Correspondingly, we define the following language of encodings of networks with the reversibly-
reachably atomic property:

Definition 6.34.

Reversibly-Reachably-Atomic = {〈Λ, R〉 | (∃∆ ⊆ Λ)((Λ, R) is reversibly-reachably-

atomic with respect to ∆)}

Corollary 6.35. Reversibly-reachably atomic ∈ P.

Proof. The proof is almost mirroring the previous proof of 6.3. It takes polynomial time to decide if
an instance 〈Λ, R〉 ∈ Reachably-Atomic, as shown above. we extend the Reachably-Atomic
decider to decide whether C, if confirmed to be reachably atomic, further satisfies dS ⇒∗ {1S} for
each S ∈ Λ \∆ = M :

Construct M ′′ = M . While M ′′ is not empty, iterate and try to find an S′′ ∈M ′′ that satisfies
this condition: ∃(r,p) ∈ R s.t. p = {1S′′} and [r] ⊆ (M \M′) ∪∆. Note that all elements S′′ in
M \M ′′ satsifies {1S′′} ⇐∗ dS′′ , hence if {S′′} is the product of a reaction whose reactants consist
solely of elements in (M \M ′′) ∪∆ , then S′′ itself satisfies {1S′′} ⇐∗ dS′′ as well. Keep track of
dS′′ and exclude such S′′ from M ′′.

If in some iteration we cannot find such S′′ ∈M ′′, then reject; else, the iteration will finally
halt excluding all such S′′’s and making M ′′ empty, in which case we accept.

Proof of correctness works analogously as the proof above, with the ⇒∗ reversed to ⇐∗ and
disassociation reactions changed into association reactions for consideration.

We omit the pesudocode for the algorithm described above, as it highly resembles Lines 25-35 of
Algorithm 2 (with r and p reversed) and can be reconstructed from the verbal description above.
Lastly, the complexity is dominated by the reachably atomic deciding process.

Theorem 6.36. For a chemical reaction network C, the following are equivalent:

1. C is reversibly-reachably atomic;

2. C is explicitly-reversibly constructive, with pi = 1 (∀i ∈ [1, n]) where pi := |Xi| = |E−1(ei)|.

Note that condition (2) translates to “no E-elementary species is E-isomeric”.

Proof. Proof is done by similar techniques in 6.2: that is, assuming otherwise, then there will be an
infinite descending chain of species ordered by number of atoms in their respective composition.
This contradicts the fact that the set of species is finite.

1. 1⇒ 2:

By Definition 6.33, C is reachably atomic with respect to some ∆ ⊆ Λ. Let |∆| = n, then C
is constructive by lemma (6.31). By Lemma (6.23), since a reachably atomic network with
|∆| = n is subset atomic, pi = 1 for each i ∈ [1, n].
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the weakly reversibility of {1Si} ⇒∗ dSi ensures that each composite species is both explicitly
constructible and explicitly destructible, because it is ensured that each molecular species
directly or indirectly participates in at least one disassociation (resp. binding) reaction as
reactant (resp. product);

We also claim that each elementary species is both explicitly constructive and explicitly
destructive:

suppose for the sake of contradiction Ai ∈ ∆ is not explictly destructive. Then for any
reactions where Ai participates as product, the reactant has to contain at least 2 species. In
particular, since Ai ∈ [dSi ] for some Si ∈ Λ \∆, if we consider the sequence {1Si} ⇒∗ dSi ,
there must be a reaction in this sequence written as

k∑
j=1

ajYj →
s∑
j=1

bsQs (6.10)

with the multisets {ajYj}kj=1 6= {bjQj}sj=1 and Ai ∈ {Qj}sj=1, s.t.

∃Sj ∈ (Λ \∆) ∩ {Yj}kj=1 with Ai ∈ [dSj ]. (6.11)

This is because Ai cannot be directly obtained from {1Si}, and hence must be obtained
from some intermediate molecular species. Apparently ||dSj ||1 < ‖dSi‖1 by conservativity
of atoms. But then consider the decompsoition series {1Si} ⇒∗ dSj and apply the same
argument, we obtain S′j ∈ Λ \∆ s.t. ‖dS′j‖1 < ||dSj ||1 < ‖dSi‖1. By the finiteness of Λ \∆,

this repeated process terminates with a “smallest” molecule containing Ai; that is, there exists
some Sm ∈ Λ \∆ where Ai ∈ [dSm ] and ∀n 6= m, if Ai ∈ [dSn ], then ‖dSm‖1 < ‖dSn‖1.

But now we once again apply the argument (involving equations (6.10,6.11) above, getting
some S′m ∈ Λ \∆ with Ai ∈ [dS′m ] s.t. ‖dS′m‖1 < ‖dSm‖1, a contradiction.

Symmetric argument with “products” and “reactants” swapped, given the reachability of
dSi ⇒∗ {1Si} for each Si ∈ Λ\∆, proves that all Ai ∈ ∆ also have to be explicitly constructive.

2. 2⇒ 1:

Because C admits a core composition, in particular it admits a near-core composition. The
one-to-one condition allows us to define the set of atoms ∆ and composition d as (6.6) and
(6.7) in the proof of Lemma (6.23).

We first argue that condition (2) of Definition 3.1 holds. Suppose not, then ∃Ai ∈ ∆ s.t.
∀Sj ∈ Λ \∆, Ai 6∈ [dSj ]. But then consider the binding reaction Q→ Y where |Y | = 1 and
Ai ∈ [Q]; such a reaction has to exist because of the explicit constructivity of Ai. Y has to be
a molecule containing Ai in [dY ], a contradiction.

By definition 6.7, the above implies that (∀i ∈ [1, n]) (∃S ∈ Λ\∆ = Λ\
⋃n
i=1 E−1(ei))dS(Ai) =

(E(S))i > 0. Together with the condition pi = 1 (∀i ∈ [1, n]) and the near-core property, we
use the equivalence in Lemma (6.23) to conclude that C is subset atomic.

Next, we argue that (2) ⇒ ∀Sj ∈ Λ \∆, dSj ⇒∗ {1Sj} and {1Sj} ⇒∗ dSj . Note that the
latter reachability would also imply the reachable-atomicity of C, given that C is subset atomic

36



and that atomic decompisition is natually unique for reachably atomic networks, by Lemma
3.9.

Consider an arbitrary Si ∈ Λ\∆. For the sake of contradiction, assume {1Si} 6⇒∗ dSi . Since Si
is explicitly destructible, some reaction sequence starting with Si has to eventually split into a
complex Qi with |Qi| ≥ 2. On the other hand, since C is subset atomic, any reaction sequence
starting with {1Si} either reaches dSi or reaches some configuration c with [c] ∩ (Λ \∆) 6= ∅.
Since we assumed that 1Si 6⇒∗ dSi , it must be the second case, and in particular, there exists
Sj ∈ [Qi] ∩ (Λ \∆). Apparently ‖dSj‖1 < ‖dSi‖1 by conservativity of number of atoms.

We apply the same argument to Sj and obtain S′j s.t. ‖dS′j‖1 < ‖dSj‖1 < ‖dSi‖1. Repeat

this process, and by finiteness of Λ \ ∆, we’ll find some Sm ∈ Λ \ ∆ satisfying ∀m′ 6= m,
||dSm′ ||1 > ||dSm ||1. Application of the same argument to Sm yields the contradiction as to
the size of composition vector.

The same “infinite descending chain” argument applies to the other direction, with all the
arrows reversed and the explicit constructibility property applied. This proves the reachable-
atomicity as well as condition (2) in Definition 6.33.

Corollary 6.37. The problem “Given a chemical reaction network, is it explicitly reversibly con-
structible with no isomeric elementary species” as well as the problem “Given a chemical reaction
network C, is C reversibly-reachably atomic” are both polynomial time decidable.

Proof. Immediate from Corollary 6.35 and Theorem 6.36.

7 Open Problems

Since we say that the property of mass conservation captures that mass can be neither created nor
destroyed, it is natural to conjecture that if a network is not mass conserving, then it can either
create mass (i.e., there exist configurations c1 < c2 such that c1 ⇒∗ c2) or destroy mass (i.e., there
exist configurations c1 > c2 such that c1 ⇒∗ c2). However, this is not always the case. Consider
the reactions:

X +A → B (7.1)

Y +B → A+ Z (7.2)

Y → Z +W (7.3)

We first argue that for arbitrary configurations c1, c2 such that c1 ⇒∗C c2, c1 and c2 are
incomparable. Suppose C reaches c2 from c1 via reaction sequence {(ri,pi)}i∈I for some finite index
set I. Observe that if {(ri,pi)}i∈I contains reaction (7.1), then execution of (7.1) will reduce the
count of X and increase the count of B. The configuration immediately after execution of (7.1) is
incomparable with the configuration immediately before execution of (7.1), and the only way to
drain the B’s (to produce a strictly smaller configuration) is to execute equal times of (7.2), which
will irreversibly increase the count of Z. This means c1 ⇒∗C c2 implies ((7.1)) ∈ {(ri,pi)}i∈I ⇒
c1 incomparable with c2).
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But if (7.1) 6∈ {(ri,pi)}i∈I , then {(ri,pi)}i∈I contains only (7.2) and (7.3), which irreversibly
decreases count of Y and increases count of Z. Altogether, (c1 ⇒∗C c2)⇒ c1 is incomparable with
c2.

We should also observe that C is non-mass conserving: for any candidate mass distribution m,
(7.3) requires m(Y ) > m(Z), which together with (7.2) implies m(A) > m(B), yet (7.1) requires
m(B) > m(A). Hence C is a non-mass-conserving example where ∀c1, c2 s.t. c1 ⇒∗ c2, c1 and c2

are incomparable. Note that C is not reversible. However, it is open whether a reversible network
conserves mass if and only if it neither creates nor destroys mass in the reachability sense defined
above. Since reversible networks have a symmetric reachability relation, this is equivalent to the
following conjecture:

Conjecture 7.1. Let a chemical reaction network C be reversible. C is non-mass conserving if and
only if there are c1 < c2 ∈ NΛ such that c1 ⇒∗ c2.

Next, recall the conjecture 5.9 at the end of Section 3:

Conjecture 7.2. Subset-Atomic is NP-complete.

One may note that there are two sources of indeterminancy in the problem Subset-Atomic:
the choice of ∆ and the choice of D. For example, the network constructed in the proof of NP-
hardness of Subset-Fixed-Atomic would remain subset atomic if we define ∆ = {T, F}, and let
dP = dQ = {kT, sF} for any positive k, s.

There is a formal sense in which chemical reaction networks have been shown to be able to
compute functions f : Nk → N [8] and predicates Nk → {0, 1} [4]. A function/predicate can be
computed “deterministically” (i.e., regardless of the order in which reactions occur) if and only if it
is semilinear (see [20] for a definition).

Problem 7.3. What is the computational power of atomic chemical reaction networks? What
semilinear functions/predicates can atomic chemical reaction networks compute deterministically,
and how efficiently? What general functions/predicates can atomic chemical reaction networks
compute with high probability, and how efficiently?
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