Constructive Dimension and Turing Degrees

Laurent Bienvenu* David Doty! Frank Stephan?
Université de Provence Towa State University National University of Singapore
Abstract

This paper examines the constructive Hausdorff and packing dimensions of Turing
degrees. The main result is that every infinite sequence S with constructive Hausdorff
dimension dimy (S) and constructive packing dimension dimp (.5) is Turing equivalent
to a sequence R with dimg(R) > (dimp(S)/dimp(S)) — €, for arbitrary ¢ > 0.
Furthermore, if dimp(S) > 0, then dimp(R) > 1 — €. The reduction thus serves as a
randomness extractor that increases the algorithmic randomness of S, as measured
by constructive dimension.

A number of applications of this result shed new light on the constructive dimen-
sions of Turing degrees. A lower bound of dimy(S)/dimp(S) is shown to hold for the
Turing degree of any sequence S. A new proof is given of a previously-known zero-one
law for the constructive packing dimension of Turing degrees. It is also shown that,
for any regular sequence S (that is, dimyg(S) = dimp(S)) such that dimg(S) > 0,
the Turing degree of S has constructive Hausdorff and packing dimension equal to 1.

Finally, it is shown that no single Turing reduction can be a universal constructive
Hausdorff dimension extractor, and that bounded Turing reductions cannot extract
constructive Hausdorff dimension. We also exhibit sequences on which weak truth-
table and bounded Turing reductions differ in their ability to extract dimension.

1 Introduction

Hausdorff [8] initiated the study of dimension as a general framework to define the size of
subsets of metric spaces. Recently this framework had been effectivized; Lutz [13] gives
an overview of this historical development. Furthermore, Lutz [12, Section 6] reviews
early results that anticipated the effectivization of Hausdorff dimension. Constructive
Hausdorff dimension was defined by Lutz [12] to study effective dimension at the level

*Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence, 39 rue Joliot-Curie,
13453 Marseille Cedex 13, France. laurent.bienvenu@lif.univ-mrs.fr.

"Department of Computer Science, Iowa State University, Ames, IA 50011, USA. ddoty@iastate.edu.

School of Computing and Department of Mathematics, National University of Singapore, 2 Science
Drive 2, Singapore 117543, Republic of Singapore. fstephan@comp.nus.edu.sg. Supported in part by
NUS research grants no. R252-000-212-112 and R252-000-308-112.

of computability theory. Intuitively, given an infinite binary sequence S — interpreted
as a language or decision problem — the constructive Hausdorff dimension dimg(S) of S
is a real number in the interval [0,1] indicating the density of algorithmic randomness
of the sequence. The constructive Hausdorff dimension of a class C of sequences is the
supremum of the dimensions of individual sequences in C. For many classes C of interest
in computability theory, the problem of determining the constructive Hausdorff dimension
of C remains open.

Independently of each other, Reimann [20] and Terwijn investigated in particular whether
there are degrees of fractional constructive Hausdorff dimension. Stated in terms of individ-
ual sequences, Reimann and Terwijn asked which reducibilities (such as Turing, many-one,
weak truth-table etc.) are capable of increasing the constructive Hausdorff dimension of
a sequence. We call such a reduction a dimension extractor, since its purpose bears a
resemblance to that of the randomness extractors of computational complexity [24], which
are algorithms that turn a source of weak randomness (a probabilistic source with low
entropy) into a source of strong randomness (a source with high entropy). Viewing a se-
quence with positive, but still fractional, constructive Hausdorff dimension as a weak source
of randomness, Reimann essentially asked whether such randomness can be extracted via a
reduction to create a sequence with dimension closer to 1. If such extraction is not possible
for some sequence S, this indicates that the degree of S under the reduction has fractional
dimension.

A number of negative results for dimension extractors are known. Reimann [20, The-
orem 3.10] and Terwijn proved that there are many-one and bounded truth-table degrees
with constructive Hausdorff dimension strictly between 0 and 1. Later Reimann and Sla-
man [21] extended this result to truth-table degrees. Stephan [26] showed that there is a
relativized world in which there exists a wtt degree of constructive Hausdorff dimension
between § and 3. Furthermore, Nies and Reimann [16] obtained a non-relativized vari-
ant of this result and constructed, for each rational o between 0 and 1, a wtt degree of
constructive Hausdorff dimension «.

Doty [5] attempted positive results by considering the interaction between constructive
Hausdorff dimension and constructive packing dimension [1], a dual quantity that is a
constructive effectivization of classical packing dimension [27, 28], another widely-studied
fractal dimension. The constructive packing dimension dimp(S) of a sequence S always
obeys

0 < dimg(S) < dimp(5) <1,

with each inequality tight in the strong sense that there are sequences S in which dimpy(.5)
and dimp(S) may take on any values obeying the stated constraint. Doty showed that every
sequence S with dimy(S) > 0 is Turing equivalent to a sequence R with dimp(R) > 1 — ¢,
for arbitrary € > 0. This implies that the constructive packing dimension of the Turing
degree of any sequence S with dimy(.S) > 0 is equal to 1. Unfortunately, since dimg(R) <
dimp (R), this Turing reduction constitutes a weaker example of a dimension extractor than
that sought by Reimann and it tells us nothing of the constructive dimensions of arbitrary
Turing degrees.

Doty [5] obtained stronger results for other effective dimensions such as computable
dimension and various time and space bounded dimensions [11]. Zimand [30] has shown
that, given two independent sequences with positive constructive Hausdorff dimension, a
truth-table reduction with access to both sequences suffices to compute a sequence with
constructive Hausdorff dimension equal to 1.

We obtain in the current paper stronger positive results for constructive dimension
extractors, dual to those obtained for other effective dimensions in [5]. Our main result, in
section 2, is that, given any infinite sequence S and € > 0, there exists R =t S such that

dimy(R) > 2 — ¢ and, if dimp(S) > 0, then dimp(R) > 1 — €. This has immediate

consequences for the dimensions of Turing degrees:

e Given any sequence S, dimg(degp(S)) > jii?l—zg;.
o If dimp(S) > 0, then dimp(degp(S)) = 1, implying that every Turing degree has
constructive packing dimension 0 or 1.

e Given any reqular sequence S such that dimg(S) > 0, dimy(degp(S5)) = 1, where a
sequence S is called regular if it satisfies dimg(.S) = dimp(5).

In section 3, we use Theorem 2.1 to show that, for every a > 0, there is no universal Turing
reduction that is guaranteed to extract dimension from all sequences of dimension at least
a. We also obtain the result that bounded Turing reductions (which are allowed to make
at most a constant number of queries to the input sequence) cannot extract dimension,
and we show examples of sequences in which bounded reductions and Turing reductions
differ in their ability to extract dimension. In particular, we show that there are sequences
from which some bounded reduction can extract packing dimension 1, while no Turing
reduction can compute a sequence with packing dimension greater than 0, and there are
sequences from which some wtt reduction can extract Hausdorff dimension 1, while no
bounded reduction can compute a sequence with packing dimension greater than 0.

Very recently, Joe Miller [15] answered Reimann’s original question by extending the
result of Reimann and Nies from wtt reductions to Turing reductions; that is, there are
sequences of positive constructive Hausdorff dimension that compute (via Turing reduc-
tions) no sequence of higher constructive Hausdorff dimension. This result provides as
a corollary an independent proof of Theorem 4.1 of the current paper. Combined with
Zimand’s previously mentioned two-source extractor [30], this mirrors a phenomenon in
randomness extractors used in computational complexity, which is that no function can
extract randomness from a single classical probabilistic source; two or more independent
sources of randomness are required. See [24] for an explanation of this phenomenon and a
survey of randomness extractors in computational complexity.

This paper corrects an incorrect proof of Theorem 2.4 in [2], a preliminary version of the
current paper. In that paper, the incorrect proof of Theorem 2.4 implied that the reduction
used was a weak truth-table reduction. The corrected version of the proof, of Theorem 2.4
in the current paper, however, uses a Turing reduction that is not weak truth-table. Hence
the conclusions about weak truth-table degrees in Section 2 of [2] are known only to hold

for Turing degrees. Furthermore, the printed version of this paper appearing in Theory of
Computing Systems, 45(4):740-755, 2009, had another error in the proof of Theorem 2.4,
due to insufficient care with the choice of §. This version modifies that proof to fix the
error.

Before going into the details of the results, we introduce the concepts and notations
formally.

Notation. We refer the reader to the textbooks of Li and Vitanyi [10] for an introduc-
tion to Kolmogorov complexity and algorithmic information theory and of Odifreddi [18]
and Soare [25] for an introduction to computability theory. Although we follow mainly
the notation in these books, we nevertheless want to remind the reader of the following
definitions, either for the reader’s convenience or because we had to choose between several
common ways of denoting the corresponding mathematical objects.

All logarithms are base 2. N denotes the set {0,1,2,3,...} of the natural numbers
including 0. {0,1}* denotes the set of all finite, binary strings. For all x € {0,1}*, |z|
denotes the length of x. A\ denotes the empty string. C = {0,1}*° denotes the Cantor
space, the set of all infinite, binary sequences. For z € {0,1}* and y € {0,1}* UC, zy
denotes the concatenation of x and y, C y denotes that z is a prefiz of y (that is, there
exists u € {0,1}* U C such that zu = y) and = C y denotes that x C y and x # y. For
S €{0,1}*UC and i,j € N, S[i] denotes the i*" bit of S, with S[0] being the leftmost bit,
S[i..j] denotes the substring consisting of the i*® through j* bits of S (inclusive), with
S[i..j]=\ifi > j.

Reductions and Compression. Let M be a Turing machine and S € C. We say M
computes S if M on input n € N (written M (n)), outputs the string S[0..n—1]. We define
an oracle Turing machine to be a Turing machine M that can make constant-time queries
to an oracle sequence and we let OTM denote the set of all oracle Turing machines [29].
For R € C, we say M operates with oracle R if, whenever M makes a query to index
n € N, the bit R[n] is returned. We write M* to denote the oracle Turing machine M
with oracle R. We identify an infinite binary sequence S € C with the language of which
S is the characteristic sequence; that is, the set that contains n exactly when S[n| = 1. In
such a case, given x € {0, 1}*, S[z] may also be interpreted as the binary condition “z is
in the language S”. Similarly, we identify each infinite binary sequence as representing the
characteristic sequence of a subset of N.

Let S, R € C and M € OTM. We say S is Turing reducible to R via M and we write
S <r R via M, if M*® computes S (that is, if M®(n) = S[0..n—1] for all n € N). In
this case, write R = M(S). We say S is Turing reducible to R and we write S <t R, if
there exists M € OTM such that S <t R via M. We say S is Turing equivalent to R,
and we write S =1 R, if S <r R and R <t S. The Turing lower span of S is spany(S) =
{ReC | R<t S } and the Turing degree of S is deg(S)={ R€C | R=1 S }.

Let SR € C and M € OTM such that S <t R via the oracle Turing machine M.
Let #(M% S[0..n—1]) denote the query usage of M on S[0..n—1], the index of the

rightmost bit of R queried by M when computing S[0..n—1].

We say S is weak truth-table (wtt) reducible to R via M and we write S <y R via M,
if S <t R via M and there is a computable function ¢ : N — N such that, for all n € N,
#(MPE S[0..n—1]) < q(n) (see [7]).

We say S is bounded Turing (bT) reducible to R via M (or simply bounded reducible)
and we write S <yr R via M, if S <t R via M and there exists a constant ¢ € N such
that, for every n € N, the number of bits of R queried when computing S[n| is at most ¢
(see [9, 18]).

We say S is truth-table (tt) reducible to R via M and we write S < R via M, if S <t R
via M and, for all R' € C, M(R') is defined; that is, M is total with respect to the oracle
(see [19]).

Bounded reductions and wtt reductions are incomparable. However, every tt reduction
is a wtt reduction.

Given A € {tt, wtt,bT}, define S <o R, S =a R, span,(S) and deg, (.S) analogously
to their counterparts for Turing reductions.

Define

R —
“(SR) = liming 2SO0 n1))
n—0o0 n

(S, R) = limsup#(MR’S[O”n_l]).

n—o0 n

Viewing R as a compressed version of S, py,(S, R) and p},(S, R) are respectively the best-
and worst-case compression ratios as M decompresses R into S. Note that 0 < p;,(S, R) <
par(S, R) < oc.

The following lemma is useful when one wants to compose two reductions:

Lemma 1.1 (Doty [4]). Let S,5",5" € C and My, My € OTM such that S" <t S wvia M,
and S"” <t S’ via M. There exists M € OTM such that S” <t S via M and:

pu(8",8) < o (", 83, (S, 5).
pu(S",8) < pig, (87,83, (5, 9).
pu(S",8) < pap (S, 94 (57,).

(The last bound is not explicitly stated in [4], but it holds for the same reason as the
second one).

For S € C, the lower and upper Turing compression ratios of S are respectively defined as

p(S) = glelél {py(S,R) | S <r Rvia M},
MeOTM

pt(S) =]glelg {p{;/(S,R) | S<rRviaM}.
MeOTM

Doty [4] showed that the above minima exist. Note that 0 < p~=(S) < p™(S) < 1.

bt

Constructive Dimension. Lutz [12] gives an introduction to the theory of constructive
dimension. We use Mayordomo’s characterization [14] of the constructive dimensions of
sequences. For all S € C, the constructive Hausdorff dimension and the constructive
packing dimension of S are respectively defined as

C(S[0..n—1])

dimp(S) = lim inf (510 . n=1) and dimp(S) = lim sup ,

n—00 n n—00 n

where C(w) denotes the Kolmogorov complexity of w € {0,1}* (see [10]). If dimy(S) =
dimp(S), we say S is a reqular sequence. Doty [4] showed that, for all S € C, p~(5) =
dimg(S) and pT(S) = dimp(S).

For all X C C, the constructive Hausdorff dimension and the constructive packing
dimension of X are respectively defined as

dimpy (X) = sup dimg(S) and dimp(X) = sup dimp(5).
Sex Sex

2 Constructive Dimension Extractors

Nies and Reimann [16] showed that wtt reductions cannot always extract constructive
dimension.

Theorem 2.1 (Nies and Reimann [16]). For every rational number o with 0 < o < 1, there
exists a sequence S € C such that, for all wtt reductions M, dimg(M(S)) < dimy(S) = a.

Ryabko [22, 23] discovered the next theorem.

Theorem 2.2 (Ryabko [22, 23|). For all S € C and 6 > 0, there exists R € C and
Ny € OTM such that

1. S <t R via Nj and R <1 S.
2. p]_Vd<S7 R) S dlmH(S) + 0.
The following theorem was shown in [4].

Theorem 2.3 (Doty [4]). There is an oracle Turing machine My such that, for all S € C,
there exists R € C such that

1. S Swtt R via Md.
2. pX/[d(S, R) = dimy(S).
3. py, (S, R) = dimp(S).

The following theorem, which is similar to Ryabko’s Theorem 2.2, shows that the decoding
machine M, of Theorem 2.3 can also be reversed if the compression requirements are
weakened, and if the compression direction is allowed to be a Turing, rather than a weak
truth-table, reduction.

Theorem 2.4. Let My be the oracle Turing machine from Theorem 2.3. For all S € C
and € > 0, there is an oracle Turing machine M, and a sequence R’ € C such that

1. S <gut R via My and R’ <t S via M,.
2. py,(S, R) < dimg(S) +e.
3. pir, (S, R') < dimp(S) + €.

Proof. Let S € C and choose some sequence R for S as in Theorem 2.3. Let 6 = €/4. Let
D € (dimp(S) + 36, dimp(S) 4+ 46) and d € (dimgy(S), dimp(S) +) both be rational. By
Theorem 2.3, there exists ng € N such that, for all n > ng, #(M%E S[0..n—1]) < Dn.

M, will make use of the oracle Turing machine M,. The proof of Theorem 2.3 in [4]
shows that M, has the following useful properties. First, write S = s1s953... and R =
r17rers . . ., where each s;,1; € {0,1}* are blocks such that |s;| =4 and |r;| < [s;| 4 o(]si])-

e M, computes S from R in stages, where it outputs the block s; on the i*" stage.

e Assuming that M, has already computed s ...s;, My uses only the block r;,; and
the prefix s1...s; to compute s;;.

Because of these properties, we can use M, to search for a sequence R’ that satisfies re-
quirements 1, 2 and 3 in the statement of Theorem 2.4, as well as the auxiliary requirement
stated at the start of this proof. By Theorem 2.3, R satisfies these requirements, so such
an R’ will exist. By the above two properties of My, if we find a string " = 7} ...r] that
satisfies requirements 1, 2 and 3 (in the sense described below, where 7/ is the i*" block of
R', the block M, reads from R’ when outputting s;), we will always be able to find an ex-
tension 7" = ri,, ...r} (for some j > i) such that r'7" continues to satisfy the requirements.
It will not matter if ' [R, since M, does not use the portion of R coming before block
r;+1 to compute s;,1. In other words, to reverse the computation of M f’ and compute R’
from S, we don’t need to find the R from Theorem 2.3; we need only to find an R’ that
is “close enough” in terms of query usage. Assume without loss of generality that for any
block 7. we consider, the rightmost bit of] ... 7} queried by M when computing s; ... s

is the last bit of r}. Then we have that #(M;"""* s;...s,) = |7} ... 70|

Define the oracle Turing machine M, with oracle S € C as follows. Let i € N and
assume inductively that the prefix ' = r|...7, C R’ has been computed, so that, letting
|s1...8i] =n,

(a) MY (n) outputs S[0..n—1],
(b) #(M7,S[0..n—1]) < dn,
(c) for all m with ng <m <n, #(M},S[0..m—1]) < Dm.

M? searches all strings 7 € {0,1}* until it finds one that satisfies, letting N > n be the
length of the largest output Mc’l"/’”" can produce without querying beyond its finite oracle
string,

(a) M5 (N) outputs S[0.. N—1],

I o ll

(b) #(M75™" S[0..N—1]) < dN,

1.0

(c) for all m with ng <m < N, #(M;",S[0..m—1]) < Dm.

M? then outputs r” and saves it for the computation of the next extension of R'. It remains
to show that such an r” can always be found.

By the existence of R from Theorem 2.3 and a simple induction on the stages of com-
putation that M, performs, M? will always be able to find an " satisfying conditions (a)
and (b). It remains to show that among all such r”, at least one must satisfy (c).

By Theorem 2.3 and our choice of D, for all sufficiently large & € N, |r;...7g| <
(D —30)|sy...s,|. How large k must be depends on D and § but not on ¢ (the number
of blocks satisfying the inductive hypothesis), so assume that i is larger than this value.
Then for all k > 1,

|7 i]

o e T A I TR O

< (D =30)|s1...8k|+|ry...ri] —|ri...m Theorem 2.3 and our choice of D
< (D—30)|s1...86| +d|s1...s;] —|r1...7] inductive hypothesis (b)
< (D —30)|s1...s6 +d|s1...s]— (dimp(S) —§)|s1...s] [4, Lemma 4.1]
< (D —=30)|s1. .8k + (dimg(S) + 6)|s1 ... 8| — (dimp(S) — 0)|s1...s;| choice of d
= (D —30)|s1...s6] +2d|s1...si

< (D —30)|s1...8k| +26]s1... sk

= (D—=90)|s1...58k|

Let " = r;y1...7rp. Because each block length is asymptotically smaller than the length
of the smallest prefix containing the block (|s;| = ¢ implies that |s; ... s;| & %), it suffices
that we have just verified (c¢) (with “an extra ¢ of room”) only for m corresponding to
boundaries between blocks. To formally justify this, recall that for all i € N, |s;| = i. Let
m € N, and let k,, € N be the largest value of k € N for which s;...s, C S[0..m—1]; i.e.,
the block of S immediately before the block containing S[m —1]. Then for all np < m < N,

S (M e 610 1))

I o T N

< e T Ty Sk

= |ri...rrig T, |+ kg

< o ore, | F2Vm 1

< (D=68)|s1...8,,|+2vVm+1 by above inequality
< D=8m+2ym+1

< Dm.

It follows that there exists at least one r” (= 7,41 ... 7, although M, may find another
r” first) satisfying (a), (b), and (c).

The satisfaction of conditions (a), (b), and (c¢) implies that the sequence R’ will satisfy
requirements 1, 2, and 3 of Theorem 2.4. [J

The following theorem is the main result of this paper. It states that constructive packing
dimension can be almost optimally extracted from a sequence of positive packing dimen-
sion, while at the same time, constructive Hausdorff dimension is partially extracted from
this sequence, if it has positive Hausdorff dimension and packing dimension less than 1.
The machine M, from Theorem 2.4 serves as the extractor. Intuitively, this works because
M, compresses the sequence S into the sequence R. Since R is a compressed represen-
tation of S, R must itself be more incompressible than S. However, because dimension
measures the compressibility of a sequence, this means that the constructive dimensions R
are greater than those of S.

Theorem 2.5. For alle > 0 and S € C such that dimp(S) > 0, there exists R =1 S such

that dimp(R) > 1~ ¢ and dimy(F) > 2 — c.

Proof. Let € > 0 and S € C such that dimp(S) > 0. Let § > 0 and R', M, be as in The-
orem 2.4. Let R” € C and M € OTM such that R’ <t R" via M, p,,(R', R") = dimy(R')
and p} (R, R") = dimp(R’) (the existence of M and R” is asserted by Theorem 2.3). By
Lemma 1.1, we have

pr(S) < pig, (S, R)pyy (R, R),
which, by construction of R’ and R” implies p™(S) < (dimp(S)+0) dimp(R’). Since pT(S) =
dlmp(S),
dlmp(R/) > -

Moreover (by Lemma 1.1 again), p~(S) < pj; (S, R')py, (R, R”), which, by construction of
R’ and R”, implies p~ (5) < (dimp(S) + d) dimy(R’). Since p~(S) = dimy(.9),

) dimg(S)
/
> .
dimp(R) mp(S) +0

Taking 0 small enough, we get by the above inequalities: dimp(R) > 1 — ¢ and dimy(R) >
dimg (S)
—= — e [

dimp (S)
Theorem 2.5 has a number of applications, stated in the following corollaries, which shed
light on the constructive dimensions of sequences, spans and degrees.

Corollary 2.6. Let S € C and assume that dimy(S) > 0. Then the Hausdorff dimensions

dimyr(degy(S)) and dimp(spang(S)) are both at least G2

We obtain a zero-one law for the constructive packing dimension of Turing lower spans and
degrees.

Corollary 2.7. For all S € C, the packing dimensions dimp(deg(.S)) and dimp (spany(5))
are each either 0 or 1.

Because of the extension of Theorem 2.1 to Turing reductions by Joe Miller [15], we must
settle for more conditional results for constructive Hausdor{l dimension. We focus attention
on regular sequences.

Corollary 2.8. For all € > 0 and all reqular S € C such that dimy(S) > 0, there exists
R =1 S such that dimg(R) > 1 — €.

Corollary 2.9. For all reqular S € C such that dimy(S) > 0,

dimg(spanp(S)) = dimg(deg(5)) =
dimp(spany(S)) = dimp(degp(S)) = 1.

We note that the zero-one law for the constructive packing dimension of Turing and Turing
lower spans and degrees also follows from the following theorem due to Fortnow, Hitchcock,
Pavan, Vinodchandran and Wang [6], giving a polynomial-time extractor for constructive
packing dimension. For R, S € C, write R <} S if R <r S via an OTM that, on input n,
runs in time polynomial in n, and similarly for =7..

Theorem 2.10 (Fortnow, Hitchcock, Aduri, Vinodchandran and Wang [6]). For all e > 0
and all S € C such that dimp(S) > 0, there exists R =% S such that dimp(R) > 1 — €.

In fact, Theorem 2.10 holds for any resource-bounded packing dimension [11] defined by
Turing machines allowed at least polynomial space, which includes constructive packing
dimension as a special case.

3 Nonexistence of Universal Extractors

The Turing reduction in the proof of Theorem 2.5 is uniform in the sense that, for all
€ > 0, there is a single Turing reduction M, universal for € and all sequences .S, such that
dimp (M (S)) > dimg(S)/dimp(S) — €.

We can show that there is no universal Turing reduction that is guaranteed to increase
— to a fixed amount — the dimension of all sequences of sufficiently large dimension.

Theorem 3.1. For every Turing reduction M and all reals o, with 0 < o < 8 < 1, there
exists S € C with dimy(S) > a such that M(S) does not ezist or dimy(M(S)) < S3.

Proof. For this proof, it will be convenient to say that R <r S via M if M (n) outputs
R[n], rather than R[0..n—1], bearing in mind that both definitions of a Turing reduction
are equivalent.

Suppose for the sake of contradiction that there exist real numbers «, 3 with 0 < a <
B < 1 and a Turing reduction M such that, for all S € C satisfying dimy(S) > «, then
dimyg(R) > [, where R = M(S). Fix rationals o/, such that o < o <~y < 5. We will

10

convert M into a tt reduction N (meaning that N is also a wtt reduction) that guarantees
the slightly weaker condition that if dimy(S) > o/, then dimg(N(S)) > 3. Then for any
S € C such that dimy(S) = v > «/, it follows that dimy(N(S)) > G > v = dimg(9),
which contradicts Theorem 2.1.

On input n € N and with oracle sequence S, N°(n) simulates M*(n). In parallel, for all
integers m > n, N searches for a program of length at most o/m computing S[0..m—1].
If N finds such a program before the simulation of M*(n) terminates, then N outputs 0.
If instead the simulation of M*“(n) halts before such a short program is found, then N
outputs R[n|, the output bit of M3 (n).

If dimg(S) < o, then for infinitely many m € N, C(S[0..m—1]) < o'm. Therefore
N9 halts, although the output sequence N (S) may contain a lot of 0’s, which is acceptable
because we do not care what N outputs if dimp(S5) < «'.

If dimg(S) > o, then by hypothesis, M® is guaranteed to halt and to compute R
such that dimg(R) > (3. Therefore N° halts, establishing that N is a tt reduction. If
dimy(S) = o/, then once again, we do not care what N outputs. If dimy(S) > «/, then
only finitely many m satisfy C(S[0..m—1]) < a/m. Therefore the parallel search for short
programs will never succeed once N begins checking only prefixes of S of sufficiently large
length. This means that from that point on, N will simulate M exactly, computing a
sequence R’ that is a finite variation of R. Since dimension is unchanged under finite
variations, dimg(R') = dimg(R) > 4. O

Theorem 3.1 tells us that, contrary to the proofs of Theorems 2.4 and 2.5, any extractor
construction for Turing reductions must make use of some property of the sequence beyond
a simple bound on its dimension.

4 Bounded Reductions

In this section, we show that bounded reductions cannot extract dimension, and we exhibit
sequences from which bounded reductions are able to extract dimension, but not wtt
reductions, and vice versa. We also show that any sequence that does not tt-compute a
sequence of positive packing dimension cannot bT-compute a sequence of positive Hausdorff
dimension.

4.1 Nonexistence of Bounded Extractors

The next theorem shows that bounded Turing reductions cannot extract dimension.

Theorem 4.1. For every rational number o with 0 < o < 1, there exists a sequence S € C
such that, for all bounded reductions M, dimy(M(S)) < dimy(S) = a.

Proof. For brevity, we refer to the proof of Theorem 2.1 in [16], as our proof is obtained by
a slight modification of that proof. Nies and Reimann in [16] construct S via a finite-injury

11

argument, in which S is a limit-recursive (that is, A9) sequence given by the prefixes
S0, 81, ... € {0,1}7,

where, for each i € N, m; = |s;|, s; C s;11, and s; is chosen to diagonalize against the ith
wtt reduction. The finite-injury construction may change each s; finitely often, thereby
injuring all s; for j > 4, but each change will be to a string s/ of the same length m,.

The intuitive idea behind the proof of Theorem 2.1 is that each s; € {0,1}™ is chosen
to be an a-incompressible string (that is, C(s) > «|s| for all prefixes s C s;) that guarantees
that the i*" wtt reduction with oracle s; either diverges or outputs an a-compressible string.
In parallel, the construction searches for a program of length at most «|s| that outputs
a prefix s C s;, which would contradict the supposed incompressibility of s;. If no such
short program is ever found, then this means that s; is “doing its part” to ensure that
dimp(S) > a. If such a short program is found, then a new s, € {0,1}" is chosen (in
order to guarantee that dimy(S) > «), and this new choice of s, constitutes an injury to
all later prefixes s;;1, si12, ..., a new search must begin for strings extending s} rather than
s;. The above description is slightly inaccurate; to be more precise, s; is chosen not only to
be a-incompressible itself, but also to have a measure of at least 272~ of a-incompressible
extensions, to ensure future requirements have many extensions of s; from which to choose.
The abundance of incompressible strings ensures that this invariant may be maintained for
all i € N. However, the idea is the same: enumerating too many a-compressible extensions
of s; means the i*® requirement must change to a different s}, causing injury to future
extensions.

The key idea needed by Nies and Reimann is that a very large fraction of {0, 1}™
is incompressible, which is in turn used to obtain compression of the output M(S) (if it
exists for wtt reduction M). To show that bounded reductions cannot extract dimension,
we modify the proof of Theorem 2.1 slightly to introduce one additional type of injury:
whenever it is discovered that, for some n € N, the n'" binary string (call this o,) is
computed by a program of length less than loglog n, then we set S[n| = 0 (thereby possibly
causing an injury in all s;’s of length at least n, all of which are now required to obey
siln] = 0 to ensure that S[n] = 0 in the limit). The scarcity of programs of length
< loglogn ensures that only a logarithmic density of such n’s exist in any prefix of .5, so
dimyg (S) remains unchanged. Furthermore, this scarcity ensures that the set of strings of
length m that have the bit 0 at all indices n < m such that C(o,,) < loglogn is of cardinality
at least 2™71°¢™ Since incompressible strings are similarly abundant, we modify the proof
of Nies and Reimann so that each s; is required both to have a large measure of extensions
that are incompressible and that are 0 at every index n with C(o,) < loglogn, knowing
that there are a large measure of strings satisfying both conditions. In particular, define

P={Ze€C |Vn>ny|[C(Z[0..n—1]) > |an| and Z[m] =0 if C(o,) < log|on|] }.

where nyg is large enough that P has measure at least 1/2. S is chosen to be an element of
P, asin [16]. There, Nies and Reimann [16] defined P to ensure only the first condition, but
it is not difficult to verify that the remainder of their proof goes through with P as defined

12

above; that is, that the S chosen from P wtt-computes no sequence of higher Hausdorff
dimension than S. The key idea is that, in the proof of Lemma 3.2 of [16], if a string
s; is injured by our additional requirement (that is, because s;[n] = 1 initially, but it is
later discovered that C(n) < loglogn), then this discovery must result from enumerating
program of length at most loglogn < «|s;|, which is all that is needed for the original
proof to work.

It remains to show that this modification ensures that no bounded reduction can extract
Hausdorff dimension from S. Let M be a bounded reduction and let R = M(5), if it exists,
and let k € N. Then, whenever M*(k) queries S[n] for some n € N, this constitutes a
computation of o, from an input of length log k+O(1), implying that C(o,,) < log k+O(1).
(The extra O(1) information is needed to specify M, as well as the order in which the query
is made and the answers to queries prior to ¢, both of which are constant length if M is
a bounded reduction.)

k
If n > 2% , then the answer to the query must be 0, since we ensured that all n
computable from an input as short as k satisfy S[n| = 0. Therefore, on input k, any query

k
beyond 22° may be replaced by a constant 0 to obtain the wtt reduction M’, which will
behave the same as M, implying R = M’(S). But Theorem 2.1 tells us that M’ cannot
extract dimension from S because it is a wtt reduction, so dimg(R) < o. O

4.2 Bounded Reductions versus Weak Truth-Table Reductions

The next theorem exhibits a sequence from which a bounded reduction can extract packing
dimension, but no weak truth-table reduction can extract packing dimension.

Theorem 4.2. There is a sequence A € C such that every sequence B <y A satisfies
dimp(B) = 0 while there exists a sequence E <yt A that satisfies dimp(E) = 1.

Proof. For a recursively enumerable language R with some standard enumeration Ry, R,
Ry, ..., we define the convergence-module cg of R by

cr(x) =x4+min{ s e N | Vy <z [Rsly] = R[y]] }

Notice that R computes cg and that any function that majorizes cg computes R. Let now
L be a recursively enumerable maximal language of complete Turing-degree (see [18] for
definitions). The maximality of L ensures that the complement L of L is very sparse in
the sense that the function n — (the n-th integer that does not belong to L) dominates
every recursive function. Let € be Chaitin’s Martin-Lof random sequence [3] and let B be
a recursively enumerable language of high but incomplete Turing degree with the property
that cp dominates every recursive function. Such sequences B exist [25, Page 220, Exercise
X1.2.7]. Now define the following language A:

(r,y) €A <= (z € LANy=0)V(xreQAy>cp(z)).

13

For the first part of the theorem, we show that every sequence wtt-reducible to A has
packing dimension 0. For this, it is enough to show that for every computable function f
and almost all n the plain Kolmogorov-complexity of A[0.. f(n)—1] is of order logarithmic
in n and hence no wtt-reduction with use f can produce a sequence of positive packing
dimension. Now, given f computable (which we can assume to be increasing), note that cp
dominates the function m +— f(2™). Furthermore, there are, for sufficiently large n, at most
log n non-elements of L below f(n). Moreover, for sufficiently large n, if a pair (z,y) < f(n)
(which in particular means that both = and y are smaller than f(n)) satisfies y > cp(z),
then one has f(n) >y > cg(x) > f(2%), which, since f is increasing implies < logn.
Thus, for sufficiently large n, a pair (z,y) < f(n) is in A if and only if either z € LAy =0
or z <logn Ay > cp(x) ANz € Q. Hence, for almost n, C(A[0.. f(n)—1]) < 4logn: one
can use logn bits to code B below logn, one can use logn bits to code Q[0..logn—1]
and one can use logn bits to code how many elements of L below f(n) are not in L; then
enumerating L long enough gives away which of the elements below f(n) are in L and
which not. The remaining logn bits are an overhead used to absorb the various constants
stemming from coding this information within the framework of a given universal machine
and so on. These arguments show then that no sequence of positive packing dimension is
wtt-reducible to A.

For the second part of the theorem, we construct a sequence E <yt A which has
packing dimension 1. For this, let [,, = {n!,n! + 1,n! +2,... (n+ 1)! — 1} and define
E[z] for z € I, as follows: First check whether (n,0) € A. If not, let E[z] = 0. If
so, determine the time y needed to enumerate n into L and let E[z] = A[(z,y)]. This
algorithm shows that E[z]| can be computed relative to A with 2 queries and F <pr A. As
L £r B (because B has incomplete r.e. degree) there are infinitely many n such that the
time y to enumerate n into L satisfies y > cg((n + 1)!) (if this was not the case, then the
function n — (n+1)!4+cp((n+1)!), which is B-recursive, would be an upper bound for ¢,
which would imply L <t B, a contradiction). It follows that for these n the characteristic
functions of 2 and E coincide on I,; hence C(E[0.. (n + 1)!—1]) > %5 - (n+1)! for almost
all these n. So dimp(F) = 1. O

The next theorem exhibits a sequence from which a weak truth-table reduction can extract
Hausdorff dimension, but no bounded reduction can even extract packing dimension.

Theorem 4.3. There is a sequence A € C such that every sequence E <yt A satisfies
dimp(E) = 0 while there exists a sequence B <y A that satisfies dimy(B) = 1.

Proof. Let B = () be Chaitin’s Martin-Lof random sequence and define A C N such that
(r,y) € A <= € QAC(y) > 2"

It holds that Q <y A as x € Q if and only if there is a y < 2% with (z,y) € A. As Q is
Martin-Lof random, dimy(£2) = 1, and the second part of the theorem is satisfied.

Now consider any sequence E <y1 A. For every n € N, each of the elements queried
by the given bT-reduction to compute E[0..n—1] have Kolmogorov complexity at most

14

c - logn, for some constant ¢ € N, by the same argument in the proof of Theorem 4.1.
Let (x,y) be a query in this computation. As C(y) > 2% if (z,y) € A, this query can
get an answer “yes” only if 2* < ¢-logn. There are only ¢ - loglogn many x with this
property, and for each such z, one can code, using O(logn) bits, the number of y such that
C(y) < 2*. By simulating the universal machine long enough, one may compute all these
y for each such x. Since there are at most ¢ - loglogn such x with this property, the set
of all queries (z,y) such that, when computing F[0..n—1], the query (x,y) has answer
“yes”, can be computed from an input of O(logn - loglogn) bits.

Hence one can compute F[0..n—1] from an input of size O(logn - loglogn) by com-
puting the pairs (z,y) described above, and then running the bT-reduction with this in-
formation to determine which queries have answer “yes”. Since this holds for every n € N,
it follows that dimp(E) = 0. O

4.3 Truth-Table and Bounded Reductions

Our final result shows that any sequence that does not tt-compute a sequence of positive
packing dimension cannot bT-compute a sequence of positive Hausdorff dimension.

Theorem 4.4. Let A € C such that, for every sequence E <y A, dimp(E) = 0. Then,
for every sequence B <,1 A, dimyg(B) = 0.

Proof. Let k be the maximum number of queries made by the bounded Turing reduction
M from B to A. Furthermore, let I,, contain all numbers m with n! <m < (n+ 1)!. Now
let ¢, be the number of pairs (m, bibs ... by) such that m € I,,, by, by, ..., by € {0,1} and
M on input m converges provided that the oracle queries are answers with by, b, ..., b
where not all bits might be needed. The sequence ¢, /|I,,| oscillates between 0 and 2.
Now let € be any positive real number. One can choose a number § with 0 < 0 < €¢/4
such that for almost all m the Kolmogorov complexity of every string in {0, 1}"" containing
at most 0 - m many digits 1 is at most m - €/4. There is a rational number ¢ such that
q < ¢,/ |1, for almost all n and ¢, /|I,| < ¢ + d for infinitely many n. There is a recursive
function f such that f(n) bounds for every n with ¢,/|I,| > ¢ the convergence time and

places of queries for computations of M for ¢ - |I,| many tuples (m,by, by, ..., by) with
m € I, and by, by, ..., b € {0,1} such that M takes input m and receives the oracle
answers taken from (by,bo, ..., bg).

Having this, one can define the following sequence E: for all n and all m € I, one
follows the activity of M on oracle A for f(n) steps and let E[m] be the result provided
that M terminates within the given time f(n) and that M also does not query A beyond
f(n). Otherwise E[m] = 0.

This is a truth-table reduction and hence the packing dimension of E is 0. Hence
C(E[0..(n+ 1)) < |I,]- 0 for almost all n. By construction £ C B and |I, N (B — E)| <
d - |I,,| for the n with ¢ < ¢,/|I,] < g+ 0. Furthermore, n!/|I,,| < § - |I,| for almost all
n and so it follows that the conditional Kolmogorov complexity of B[0..(n + 1)!] given
E[0..(n+ 1)!] is at most 2 - d - (n + 1)! for infinitely many n. It follows therefore that

15

C(B[0..(n+1)!]) <e-(n+1)! for infinitely many n. As the choice of € > 0 was arbitrary,

Acknowledgments. We thank Joe Miller for assistance with the proof of Theorem 2.4,
as well as John Hitchcock, Jan Reimann and André Nies for their insightful comments.
Chris Conidis was very helpful in finding problems with the original proof of Theorem 2.4.
We also thank the American Institute of Mathematics which generously invited us to the
Workshop on Effective Randomness; this paper is a result of a workgroup discussing open
questions during this workshop. Besides the American Institute of Mathematics, we would
also like to thank the organizers Denis Hirschfeldt and Joe Miller of the workshop as well
as the participants who discussed this research topic with us.

References

[1] Krishna Athreya, John Hitchcock, Jack H. Lutz and Elvira Mayordomo. Effective
strong dimension, algorithmic information and computational complexity. SIAM Jour-
nal on Computing, 37:671-705, 2007.

[2] Laurent Bienvenu, David Doty, and Frank Stephan. Constructive Dimension and Weak
Truth-Table Degrees. in S. Barry Cooper, Benedikt Lowe, and Andrea Sorbi (editors),
Computation and Logic in the Real World - Third Conference of Computability in
Europe (CiE 2007), (Siena, Italy, June 18-23, 2007), Proceedings, Lecture Notes in
Computer Science, volume 4497, Spring-Verlag, 2007, pp. 63-72.

[3] Cristian S. Calude and Gregory J. Chaitin. Randomness everywhere. Nature, 400:319-
320, 1999.

[4] David Doty. Every sequence is decompressible from a random one. In Logical Ap-
proaches to Computational Barriers, Proceedings of the Second Conference on Com-
putability in Furope, Springer Lecture Notes in Computer Science, volume 3988 of
Computability in Furope, Swansea, UK, July 2006, pp. 153-162.

[5] David Doty. Dimension extractors and optimal decompression. Theory of Computing
Systems, 43(3—4):425-463, 2008. Special issue of selected papers from Computability
in Europe 2006.

[6] Lance Fortnow, John M. Hitchcock, Pavan Aduri, N. Variyam Vinodchandran and
Fengming Wang. Extracting Kolmogorov complexity with applications to dimension
zero-one laws. In Proceedings of the 33rd International Colloguium on Automata,

Languages and Programming, Springer LNCS, 4051:335-345, 2006.

[7] Richard Friedberg and Hartley Rogers. Reducibilities and completeness for sets of inte-
gers. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 5:117-125,
1959.

16

8]

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

Felix Hausdorff. Dimension und &usseres Mass. Mathematische Annalen, 79:157-179,
1919.

Lane Hemaspaandra, Harald Hempel and Jorg Vogel. Optimal Separations for Parallel
versus Sequential Self-Checking: Parallelism Can Fxponentially Increase Self-Checking
Cost. Technical Report TR 691, Department of Computer Science, University of
Rochester, May 1998.

Ming Li and Paul M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, Berlin, 1997. Second Edition.

Jack H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236—
1259, 2003.

Jack H. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49-79, 2003.

Jack H. Lutz. Effective fractal dimensions (invited lecture at the International Con-
ference on Computability and Complexity in Analysis, Cincinnati, OH, August 28-30,
2003), Mathematical Logic Quarterly 51, pp. 62-72, 2005.

Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Haus-
dorff dimension. Information Processing Letters, 84(1):1-3, 2002.

Joseph Miller. Extracting information is hard: a Turing degree of non-integral effective
Hausdorff dimension. To appear in Advances in Mathematics.

André Nies and Jan Reimann. A lower cone in the wtt degrees of non-integral effec-
tive dimension. Proceedings of IMS workshop on Computational Prospects of Infinity,
Singapore, 2008. Earlier version appeared as Technical Report 63, Workgroup Math-
ematical Logic and Theoretical Computer Science, University of Heidelberg, 2005.

André Nies, Frank Stephan and Sebastiaan A. Terwijn. Randomness, relativization
and Turing degrees. The Journal of Symbolic Logic, 70:515-535, 2005.

Piergiorgio Odifreddi. Classical recursion theory, volume 125 of Studies in Logic and
the Foundations of Mathematics. North-Holland, 1989.

Emil Leon Post. Recursively enumerable sets of positive integers and their decision
problems, Bulletin of the American Mathematical Society, 50:284-316, 1944.

Jan Reimann. Computability and fractal dimension. Doctoral thesis, Heidelberg, 2005.

Jan Reimann and Theodore Slaman. Randomness, FEntropy and Reducibility.
Manuscript, 2005.

Boris Ya. Ryabko. Coding of combinatorial sources and Hausdorff dimension. Soviet
Mathematics Doklady, 30:219-222, 1984.

17

[23]

[24]

[25]

[20]

[27]

[28]

[29]

[30]

Boris Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of Information
Transmaission, 22:170-179, 1986.

Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin
of the EATCS, T7:67-95, 2002.

Robert 1. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin,
1987.

Frank Stephan. Hausdorff-dimension and weak truth-table reducibility. Technical
Report TR52/05, School of Computing, National University of Singapore, 2005.

Dennis Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geomet-
rically finite Kleinian groups. Acta Mathematica, 153:259-277, 1984.

Claude Tricot. Two definitions of fractional dimension. Mathematical Proceedings of
the Cambridge Philosophical Society, 91:57-74, 1982.

Alan M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, 45:161-228, 1939.

Marius Zimand. Two sources are better than one for increasing the Kolmogorov
complexity of infinite sequences. Computing Research Repository, Technical Report
0705.4658, 2007.

18

