
David Doty, David Soloveichik

Agents and reagents:
Distributed computing in a test tube

DISC 2014 Tutorial

2

The software of life

How does the cell
compute?

3

The software of life

How does the cell
compute?

chemistry /
geometry

4

The software of life

How does the cell
compute?

What is possible
to compute with
chemistry /
geometry

?

5

Chemical reaction networks (CRN)

6

Chemical reaction networks (CRN)

R → P
1
 + P

2

7

Chemical reaction networks (CRN)

A + B → C

R → P
1
 + P

2

8

Chemical reaction networks (CRN)

A + B → C

R → P
1
 + P

2

X + Y → X + Z

9

Chemical reaction networks (CRN)

A + B → C

R → P
1
 + P

2

X + Y → X + Z

A + Z →
(anonymous
waste product)

10

Chemical reaction networks (CRN)

A + B → C

R → P
1
 + P

2

X + Y → X + Z

A + Z →
(anonymous
waste product)

X → 2X
(anonymous
fuel source)

11

Chemical reaction networks (CRN)

A + B → C1

R → P
1
 + P

2
2.5

X + Y → X + Z5

A + Z →
(anonymous
waste product)

0.1

X → 2X0.1

(anonymous
fuel source)

 12

What behavior is possible
for chemistry in principle?

 13

What behavior is possible
for chemistry in principle?

found in biology inspiration

 14

formally definable CRNs this talk

What behavior is possible
for chemistry in principle?

found in biology inspiration

 15

formally definable CRNs this talk

actual chemicals
ultimate interest

What behavior is possible
for chemistry in principle?

found in biology inspiration

16

Can we compute with chemistry?
“Not every crazy CRN you scribble on paper describes actual chemicals!”

17

Can we compute with chemistry?
“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

18

Can we compute with chemistry?
“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

X
1
 + X

2
 → X

3

19

Can we compute with chemistry?
“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

X
1
 + X

2
 → X

3

20

Can we compute with chemistry?
“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

X
1
 + X

2
 → X

3

21

Can we compute with chemistry?
“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

X
1
 + X

2
 → X

3

+

+

+

+

+

+→

→→

→→

22

Why compute with chemistry?

versus

23

Why compute with chemistry?

versus

speed?

24

Why compute with chemistry?

slower faster

versus

speed?

25

Why compute with chemistry?

slower faster

versus

speed?

26

Why compute with chemistry?

slower faster

versus

speed?

component size?

27

Why compute with chemistry?

slower faster

≈ 10-100 nm

versus

speed?

component size?

28

Why compute with chemistry?

slower faster

≈ 10-100 nm ≈ 10-100 nm

versus

speed?

component size?

29

Why compute with chemistry?

slower faster

≈ 10-100 nm ≈ 10-100 nm

versus

speed?

component size?

30

Why compute with chemistry?

slower faster

≈ 10-100 nm ≈ 10-100 nm

Compatible with
biological or other
“wet environments”?

not easily

bioreactorscells

“chemical
controller” to
increase yield of
metabolically
produced
biofuels/drugs/etc.

“smart drug” to
detect microRNAs
levels of cell and
release appropriate
drug in response

versus

speed?

component size?

yes

31

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

32

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

Boolean logic

33

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

Boolean logic

signal processing

34

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

Boolean logic

signal processing

oscillation

35

analog computing

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

Boolean logic

signal processing

oscillation

36

analog computing

discrete algorithms

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

Boolean logic

signal processing

oscillation

37

Discrete (stochastic) kinetic CRN model

● species: {X, Y, …}

38

Discrete (stochastic) kinetic CRN model

● species: {X, Y, …}

● reactions:

X → W + 2Y + Z
k

1

k
2A + B → X

39

Discrete (stochastic) kinetic CRN model

● species: {X, Y, …} ● state: integer vector of counts
s = (#X, #Y, ...)

● reactions:

X → W + 2Y + Z
k

1

k
2A + B → X

40

Discrete (stochastic) kinetic CRN model

● species: {X, Y, …}

● rate of reaction:

k
1
•#X

k
2
•#A•#B / volume

● state: integer vector of counts
s = (#X, #Y, ...)

● reactions:

X → W + 2Y + Z
k

1

k
2A + B → X

41

Discrete (stochastic) kinetic CRN model

● species: {X, Y, …}

● rate of reaction:

k
1
•#X

k
2
•#A•#B / volume

● state: integer vector of counts
s = (#X, #Y, ...)

● reactions:

X → W + 2Y + Z
k

1

k
2A + B → X

Prob[some reaction] = _______________rate of that reaction

sum of all reaction rates

42

Discrete (stochastic) kinetic CRN model

● species: {X, Y, …}

● rate of reaction:

k
1
•#X

k
2
•#A•#B / volume

● state: integer vector of counts
s = (#X, #Y, ...)

● reactions:

X → W + 2Y + Z
k

1

k
2A + B → X

Prob[some reaction] = _______________rate of that reaction

sum of all reaction rates

time until next reaction = exponential
random variable

 43

Population protocols

n finite-state agents

q

rr

r

q

q

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

 44

Population protocols

n finite-state agents

q

rr

r

q

q

δ(q,r) = (s,t)

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

repeatedly pick pair
to interact

 45

Population protocols

n finite-state agents

q

rr

r

q

q

δ(q,r) = (s,t)

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

repeatedly pick pair
to interact

 46

Population protocols

n finite-state agents

r

r

q

q

δ(q,r) = (s,t)

s

t

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

repeatedly pick pair
to interact

 47

Population protocols

n finite-state agents

r

r

q

q

δ(q,r) = (s,t)

s

t

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

repeatedly pick pair
to interact

 48

Population protocols

n finite-state agents

r

q

q

δ(q,r) = (s,t) t

q q

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

repeatedly pick pair
to interact

 49

Population protocols

n finite-state agents

r

q

q

δ(q,r) = (s,t) t

q q

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

repeatedly pick pair
to interact

 50

Population protocols

n finite-state agents

r

q

q

δ(q,r) = (s,t) t

q q

t

s

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

repeatedly pick pair
to interact

 51

Population protocols

n finite-state agents

r

q

q

δ(q,r) = (s,t) t

q q

t

s

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

“parallel time” = # of interactions / n

repeatedly pick pair
to interact

 52

A PP is a CRN such that...

 53

A PP is a CRN such that...
● all reactions have 2 reactants and 2 products

 54

A PP is a CRN such that...
● all reactions have 2 reactants and 2 products

● all rate constants are 1

 55

A PP is a CRN such that...
● all reactions have 2 reactants and 2 products

● all rate constants are 1

● volume = number of molecules
(constant over time because of first constraint)

 56

A PP is a CRN such that...
● all reactions have 2 reactants and 2 products

● all rate constants are 1

● order of reactants can matter

● volume = number of molecules
(constant over time because of first constraint)

(there's a “sender” and a “receiver” molecule)

 57

A PP is a CRN such that...
● all reactions have 2 reactants and 2 products

● all rate constants are 1

● order of reactants can matter

● volume = number of molecules
(constant over time because of first constraint)

(there's a “sender” and a “receiver” molecule)

● sender/receiver states uniquely determine products
(e.g., cannot have A+B → C+D and A+B → X+Y)

 58

Computation with CRNs: Outline

● Stable computation (“deterministic”)
● Randomized computation:

– probability of error = small

– probability of error = 0

 59

Stable (deterministic) CRN computation

 60

Stable CRN predicate computation
(definition)

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

 61

Stable CRN predicate computation
(definition)

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

votes: two disjoint subsets of species: “yes” and “no” voters

 62

Stable CRN predicate computation
(definition)

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output φ(s) of state s: the consensus vote (if voters unanimous)

votes: two disjoint subsets of species: “yes” and “no” voters

 63

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output φ(s) of state s: the consensus vote (if voters unanimous)

votes: two disjoint subsets of species: “yes” and “no” voters

 64

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

votes: two disjoint subsets of species: “yes” and “no” voters

 65

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

votes: two disjoint subsets of species: “yes” and “no” voters

 66

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

x

votes: two disjoint subsets of species: “yes” and “no” voters

 67

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

x

s

votes: two disjoint subsets of species: “yes” and “no” voters

 68

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

x o

s

φ(o) = p(x
1
,..,x

k
)

votes: two disjoint subsets of species: “yes” and “no” voters

 69

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

x o

s

s
2 φ(o) = p(x

1
,..,x

k
)

votes: two disjoint subsets of species: “yes” and “no” voters

 70

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

x o

s

s
2 φ(o) = p(x

1
,..,x

k
)

votes: two disjoint subsets of species: “yes” and “no” voters

 71

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

x o

s

s
2

s
3

φ(o) = p(x
1
,..,x

k
)

votes: two disjoint subsets of species: “yes” and “no” voters

 72

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

Stable CRN predicate computation
(definition)

initial state: #X
1
 = x

1
,…,#X

k
 = x

k
, constant counts of other species

task: compute predicate p(x
1
,...,x

k
), x

1
,...,x

k
 ∈ ℕ

output-stable state: all states reachable from it have same output

output φ(s) of state s: the consensus vote (if voters unanimous)

x o

s

s
2

s
3

o
2

φ(o) = p(x
1
,..,x

k
) = φ(o

2
)

votes: two disjoint subsets of species: “yes” and “no” voters

 73

Stable CRN predicate computation
(alternate definition)

 74

Stable CRN predicate computation
(alternate definition)

execution: infinite sequence of states s
1
, s

2
, …, where s

i+1
 is s

i

after applying a reaction (allow “null” reaction for convenience)

 75

Stable CRN predicate computation
(alternate definition)

execution: infinite sequence of states s
1
, s

2
, …, where s

i+1
 is s

i

after applying a reaction (allow “null” reaction for convenience)

fair execution: every state always reachable is infinitely often
reached

 76

Stable CRN predicate computation
(alternate definition)

execution: infinite sequence of states s
1
, s

2
, …, where s

i+1
 is s

i

after applying a reaction (allow “null” reaction for convenience)

fair execution: every state always reachable is infinitely often
reached

stable computation: predicate p(x
1
,...,x

k
) is stably computed if

every fair execution contains an output stable state o with
φ(o) = p(x

1
,...,x

k
)

 77

Stable CRN predicate computation
(example)

predicate: p(x): parity of x

 78

Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { x X , 1 N }
X

X

X

N

 79

Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { x X , 1 N }

reactions: N + X → Y
Y + X → N

X

X

X

N

 80

Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { x X , 1 N }

reactions: N + X → Y
Y + X → N

X

X

Y

 81

Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { x X , 1 N }

reactions: N + X → Y
Y + X → N

X

N

 82

Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { x X , 1 N }

reactions: N + X → Y
Y + X → N

Y

 83

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
 > x

2
”?

 84

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
 > x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

X
1

X
2

N

X
1

X
2

X
2

X
2

 85

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
 > x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: N + X
1
 → Y

Y + X
2
 → N

X
1

X
2

N

X
1

X
2

X
2

X
2

 86

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
 > x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: N + X
1
 → Y

Y + X
2
 → N

X
2

Y

X
1

X
2

X
2

X
2

 87

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
 > x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: N + X
1
 → Y

Y + X
2
 → N

N

X
1

X
2

X
2

X
2

 88

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
 > x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: N + X
1
 → Y

Y + X
2
 → N

Y

X
2

X
2

X
2

 89

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
 > x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: N + X
1
 → Y

Y + X
2
 → N

N

X
2

X
2

 90

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
=x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 Y }

 91

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “x

1
=x

2
”?

reactions: X
1
 + X

2
 → Y

Y + N → Y
X

1
 + Y → X

1
 + N

X
2
 + Y → X

2
 + N

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 Y }

 92

Stable CRN function computation
(example)

function: f(x) = 2x

 93

Stable CRN function computation
(example)

function: f(x) = 2x

X

X

X

 94

Stable CRN function computation
(example)

function: f(x) = 2x

reactions: X → 2Y
X

X

X

 95

Stable CRN function computation
(example)

function: f(x) = 2x

reactions: X → 2Y
X

YY

X

 96

Stable CRN function computation
(example)

function: f(x) = 2x

reactions: X → 2Y
Y

Y

YY

X

 97

Stable CRN function computation
(example)

function: f(x) = 2x

reactions: X → 2Y
Y

Y

YY

YY

 98

Stable CRN function computation
(example)

function: f(x) = x/2

 99

Stable CRN function computation
(example)

function: f(x) = x/2

X
X

XX

XX

 100

Stable CRN function computation
(example)

function: f(x) = x/2

reactions: 2X → Y
X

X

XX

XX

 101

Stable CRN function computation
(example)

function: f(x) = x/2

reactions: 2X → Y
X

X

Y

XX

 102

Stable CRN function computation
(example)

function: f(x) = x/2

reactions: 2X → Y
Y

Y

XX

 103

Stable CRN function computation
(example)

function: f(x) = x/2

reactions: 2X → Y
Y

Y

Y

 104

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = x

1
 + x

2

 105

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = x

1
 + x

2

reactions: X
1
 → Y

X
2
 → Y

 106

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = x

1
 – x

2

 107

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = x

1
 – x

2

reactions: X
1
 → Y

X
2
 + Y →

 108

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = min{x

1
,x

2
}

 109

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = min{x

1
,x

2
}

reactions: X
1
 + X

2
 → Y

 110

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = max{x

1
,x

2
}

 111

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = max{x

1
,x

2
} = x

1
 + x

2
 – min{x

1
,x

2
}

 112

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = max{x

1
,x

2
}

reactions: X
1
 → Y + X

1
'

X
2
 → Y + X

2
'

= x
1
 + x

2
 – min{x

1
,x

2
}

 113

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = max{x

1
,x

2
}

reactions: X
1
 → Y + X

1
'

X
2
 → Y + X

2
'

= x
1
 + x

2
 – min{x

1
,x

2
}

X
1
' + X

2
' → K

 114

Stable CRN function computation
(example)

function: f(x
1
,x

2
) = max{x

1
,x

2
}

reactions: X
1
 → Y + X

1
'

X
2
 → Y + X

2
'

= x
1
 + x

2
 – min{x

1
,x

2
}

X
1
' + X

2
' → K

K + Y →

 115

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “3x

1
 > x

2
/2”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

 116

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “3x

1
 > x

2
/2”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: X
1
 → 3Z

1

2X
2
 → Z

2

 117

Stable CRN predicate computation
(example)

predicate: p(x
1
,x

2
): “3x

1
 > x

2
/2”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: X
1
 → 3Z

1

2X
2
 → Z

2

N + Z
1
 → Y

Y + Z
2
 → N

 118

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

(Angluin, Aspnes, Eisenstat, PODC 2006)

 119

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

(Angluin, Aspnes, Eisenstat, PODC 2006)

“semilinear” = Boolean combination of threshold
and mod tests

 120

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

(Angluin, Aspnes, Eisenstat, PODC 2006)

“semilinear” = Boolean combination of threshold

x
1
 – 3x

2
 < –7

and mod tests

 121

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

(Angluin, Aspnes, Eisenstat, PODC 2006)

“semilinear” = Boolean combination of threshold

x
1
 – 3x

2
 < –72x

1
 + x

2
 ≡ 3 mod 5

and mod tests

 122

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

(Angluin, Aspnes, Eisenstat, PODC 2006)

“semilinear” = Boolean combination of threshold

x
1
 – 3x

2
 < –72x

1
 + x

2
 ≡ 3 mod 5

(Chen, Doty, Soloveichik, DNA 2012, for function computation)

and mod tests

 123

Deciding output stability

 124

Deciding output stability

● Each CRN has a set of p vectors {u
1
,...,u

p
} such that

o is output stable if and only if no u
i
 ≤ o

 125

Deciding output stability

● Each CRN has a set of p vectors {u
1
,...,u

p
} such that

o is output stable if and only if no u
i
 ≤ o

● [Brijder, DNA 2014]: An algorithm can compute {u
1
,...,u

p
}

in time O(p logs-0.5(p) r s2 log(u)) for population protocols

u = max
i
 |u

i
|

s = # species
r = # reactions

 126

Deciding output stability

● Each CRN has a set of p vectors {u
1
,...,u

p
} such that

o is output stable if and only if no u
i
 ≤ o

● [Brijder, DNA 2014]: An algorithm can compute {u
1
,...,u

p
}

in time O(p logs-0.5(p) r s2 log(u)) for population protocols

● Open question: how big can p and u get?

u = max
i
 |u

i
|

s = # species
r = # reactions

 127

Deciding output stability

● Each CRN has a set of p vectors {u
1
,...,u

p
} such that

o is output stable if and only if no u
i
 ≤ o

● [Brijder, DNA 2014]: An algorithm can compute {u
1
,...,u

p
}

in time O(p logs-0.5(p) r s2 log(u)) for population protocols

● Open question: how big can p and u get?

● Open question: extension to general CRNs?

u = max
i
 |u

i
|

s = # species
r = # reactions

 128

Time complexity of stable computation

n = # molecules in initial state

 129

Time complexity of stable computation

O(n) if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

n = # molecules in initial state

 130

Time complexity of stable computation

O(n) if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)
(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

n = # molecules in initial state

 131

Time complexity of stable computation

O(n) if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)
(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

n = # molecules in initial state

polylogarithmic time = “fast” = polynomial in binary expansion of n

linear time = “slow” = exponential in binary expansion of n

 132

Time complexity in CRNs

1 / #X

volume / (#A•#B)

X → W + 2Y + Z

A + B → X

time until next reaction = exponential r.v.

reaction expected time

 133

Time complexity (example)

{n X}
X → Y + Y

 134

Time complexity (example)

{n X}
X → Y + Y

E[time to consume all X] =

 135

Time complexity (example)

{n X}
X → Y + Y

E[time to consume all X] = E[time to consume first X]
+ E[time to consume second X]
+ E[time to consume third X]
+ ...
+ E[time to consume final X]

 136

Time complexity (example)

{n X}
X → Y + Y

E[time to consume all X] = E[time to consume first X]
+ E[time to consume second X]
+ E[time to consume third X]
+ ...
+ E[time to consume final X]

= 1/n + 1/(n-1) + 1/(n-2) + … + 1/1
≈ log n

 137

Time complexity (example)

{n X}, volume n
X + X → Y

E[time to consume all X] =

 138

Time complexity (example)

{n X}, volume n
X + X → Y

E[time to consume all X] = n/n2 + n/(n–2)2 + n/(n–4)2 + … + n
< n(1/22 + 1/42 + 1/62 + 1/82 + ...)
= O(n)

 139

Time complexity (example)

{n X}, volume n
X + X → Y

E[time to consume all X] = n/n2 + n/(n–2)2 + n/(n–4)2 + … + n
< n(1/22 + 1/42 + 1/62 + 1/82 + ...)
= O(n)

 140

Time complexity (example)

{n X}, volume n
X + X → Y

E[time to consume all X] = n/n2 + n/(n–2)2 + n/(n–4)2 + … + n
< n(1/22 + 1/42 + 1/62 + 1/82 + ...)
= O(n)

 150

Time complexity (leader election)

{n L}, volume n
L + L → L

 151

Time complexity (leader election)

{n L}, volume n
L + L → L

E[time get to 1 L] = O(n)

 152

Time complexity (leader election)

{n L}, volume n
L + L → L

E[time get to 1 L] = O(n)

Is there a faster CRN?

 153

Time complexity (leader election)

{n L}, volume n
L + L → L

E[time get to 1 L] = O(n)

Is there a faster CRN?

● If we really abuse the CRN model, yes (use 2X→3X)

● In mass-conserving CRNs, we don't know

– Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

– If we require 0 probability of error, no (unpublished)

 154

Time complexity (leader election)

{n L}, volume n
L + L → L

E[time get to 1 L] = O(n)

Is there a faster CRN?

● If we really abuse the CRN model, yes (use 2X→3X)

● In mass-conserving CRNs, we don't know

– Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

– If we require 0 probability of error, no (unpublished)

 155

Time complexity (leader election)

{n L}, volume n
L + L → L

E[time get to 1 L] = O(n)

Is there a faster CRN?

● If we really abuse the CRN model, yes (use 2X→3X)

● In mass-conserving CRNs, we don't know

– Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

– If we require 0 probability of error, no (unpublished)

 156

Time complexity (leader election)

{n L}, volume n
L + L → L

E[time get to 1 L] = O(n)

Is there a faster CRN?

● If we really abuse the CRN model, yes (use 2X→3X)

● In mass-conserving CRNs, we don't know

– Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

– If we require 0 probability of error, no (unpublished)

 157

What if we allow a small probability of error?
(Randomized CRN computation)

 158

Randomized CRNs are Turing universal

(Angluin, Aspnes, Eisenstat, DISC 2006)
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

“in a sense”

 159

Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

(Angluin, Aspnes, Eisenstat, DISC 2006)
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

“in a sense”

 160

Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

(Angluin, Aspnes, Eisenstat, DISC 2006)
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

Implication: CRN simulation algorithms are the fastest way to
predict their behavior.

“in a sense”

 161

Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

Formal: For each TM M, there is a CRN C so that, for each ε > 0
and natural number n, there is an initial state x of C so that C
simulates M(n) with probability ε of error, and expected time
poly(s•t), where t and s are the time and space usage of M(n).

(Angluin, Aspnes, Eisenstat, DISC 2006)
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

Implication: CRN simulation algorithms are the fastest way to
predict their behavior.

“in a sense”

162

Counter (register) machine

163

r s t

Counter (register) machine

164

r s t

Counter (register) machine

“input” counter

165

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

166

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

167

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

168

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

169

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

170

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

171

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

172

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

173

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

174

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

“input” counter

175

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

176

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

177

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

178

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

179

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

180

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

181

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

182

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

183

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

184

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

185

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

186

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

187

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter

188

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

HALT

“input” counter

189

r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

computes f(n) = 3n+1

HALT

“input” counter

 190

CRNs can simulate counter
machines with probability < 1

 191

CRNs can simulate counter
machines with probability < 1

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 192

CRNs can simulate counter
machines with probability < 1

CRN:

initial state {n R, 1 L
1
}

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 193

CRNs can simulate counter
machines with probability < 1

CRN:

initial state {n R, 1 L
1
}

L
1
 → L

2
 + R

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 194

CRNs can simulate counter
machines with probability < 1

CRN:

initial state {n R, 1 L
1
}

L
2
 + R → L

3

L
1
 → L

2
 + R

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 195

CRNs can simulate counter
machines with probability < 1

CRN:

initial state {n R, 1 L
1
}

L
2
 + R → L

3

L
1
 → L

2
 + R

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 196

CRNs can simulate counter
machines with probability < 1

CRN:

initial state {n R, 1 L
1
}

L
2
 + R → L

3

L
1
 → L

2
 + R

; L
2
 → L

1

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 197

CRNs can simulate counter
machines with probability < 1

CRN:

initial state {n R, 1 L
1
}

L
2
 + R → L

3

L
3
 → L

4
 + S

L
4
 + S → L

5

L
1
 → L

2
 + R

; L
4
 → L

2

; L
2
 → L

1

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 198

CRNs can simulate counter
machines with probability < 1

CRN:

initial state {n R, 1 L
1
}

Need to be
very slow!

L
2
 + R → L

3

L
3
 → L

4
 + S

L
4
 + S → L

5

L
1
 → L

2
 + R

; L
4
 → L

2

; L
2
 → L

1

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2

 199

How to slow down reaction L
2
 → L

1
?

 200

How to slow down reaction L
2
 → L

1
?

Use a clock:

1 C
1
, 1 F, n B

 201

How to slow down reaction L
2
 → L

1
?

Use a clock:

1 C
1
, 1 F, n B

F + C
1
 → F + C

2
B + C

2
 → B + C

1

F + C
2
 → F + C

3
B + C

3
 → B + C

2

…

 202

How to slow down reaction L
2
 → L

1
?

Use a clock:

1 C
1
, 1 F, n B

F + C
1
 → F + C

2
B + C

2
 → B + C

1

F + C
2
 → F + C

3
B + C

3
 → B + C

2

…
C

1
C

2
C

3
C

k
…

1 1 1 1

nnnn
reverse-biased random walk

 203

How to slow down reaction L
2
 → L

1
?

Use a clock:

1 C
1
, 1 F, n B

F + C
1
 → F + C

2
B + C

2
 → B + C

1

F + C
2
 → F + C

3
B + C

3
 → B + C

2

…
C

1
C

2
C

3
C

k
…

1 1 1 1

nnnn
reverse-biased random walk

C
k
 appears after

expected time ≈ nk-1

 204

How to slow down reaction L
2
 → L

1
?

Use a clock:

1 C
1
, 1 F, n B

F + C
1
 → F + C

2
B + C

2
 → B + C

1

F + C
2
 → F + C

3
B + C

3
 → B + C

2

C
k
 + L

2
 → C

1
 + L

1

…
C

1
C

2
C

3
C

k
…

1 1 1 1

nnnn
reverse-biased random walk

C
k
 appears after

expected time ≈ nk-1

 205

How to slow down reaction L
2
 → L

1
?

Use a clock:

1 C
1
, 1 F, n B

F + C
1
 → F + C

2
B + C

2
 → B + C

1

F + C
2
 → F + C

3
B + C

3
 → B + C

2

C
k
 + L

2
 → C

1
 + L

1

…
C

1
C

2
C

3
C

k
…

1 1 1 1

nnnn
reverse-biased random walk

C
k
 appears after

expected time ≈ nk-1

 E[time for L
2
 + R → L

3
] ≤ n

 206

Probability 1 computation

 207

Probability 1 computation

● Errr... isn't that stable computation?

 208

Probability 1 computation

● Errr... isn't that stable computation?

● With finite state space (e.g. population protocols), yes.

 209

Probability 1 computation

● Errr... isn't that stable computation?

● With finite state space (e.g. population protocols), yes.

Consider... Y → 2Y

Y →

2

1

 → Y1

 210

Probability 1 computation

● Errr... isn't that stable computation?

● With finite state space (e.g. population protocols), yes.

Consider... Y → 2Y

Y →

2

1 initial state {1Y,1N}

 211

Probability 1 computation

● Errr... isn't that stable computation?

● With finite state space (e.g. population protocols), yes.

Consider... Y → 2Y

Y →

2

1 initial state {1Y,1N}

Theorem: All (Turing) computable predicates can be
computed by a CRN with probability 1.
(Cummings, Doty, Soloveichik, DNA 2014)

 212

