Agents and reagents:
Distributed computing in a test tube

David Doty, David Soloveichik

DISC 2014 Tutorial




| The software of life

David Rogers (\Vanderbilt L., late 1950s, 16 mm film recording) given 1o
Thomas Stossel {(Brigham & Women's, Harvard Med) by Viktor Jajjar (Tufts U).
Stossel converted to digial video {.avi/.qt). George McNamara and Thomas Coates
(City of Hope & Childrens Hospital Los Angeles) changed from original tracking
view to panorama. For scale, the red blood cells are ~5 um diameter, the
5. sureus bacteria are ~1 um long. Neutrophils move ~10 umdmin.

How does the cell
compute?

Polymorphonucdiear leukocyte (PMN, neutraphil) chasing
Staphyfoccocls aureus bacteria in field of red blood cells.




The software of life

David Rogers (Vanderbilt L., late 1950°s, 16 mm film recording) given to

Thomas Stos: sel{ g am & Wol mens Harvard Med) by Viktor Jajjar (Tufts U).

Stossel converted to digital video (.avl/.qt). George McNamara and Thomas Coates

(CRyofBope&C rensH ospital Los Angeles) changed from original tracking
view to panorama. orsoai the red bicod cells are ~5 um diameter, the
5. aureus bacteria are ~ umlong Neutrophils move ~10 um/min

How does the cell
compute?

“ NN

Polymo rphcn uciear leukocyte (PMN, neutrophil) chasing
Stwnmocacusaum = bacteria in field of red blood cells.

W

chemistry /
geometry




The software of life

David Rogers (Vandearbilt L., late 1950°s, 16 mm film recording) given to
Thomas Stossal (Brigham & Women's, Harvard Med) by Viktor Jajjar (Tufts U).
Stossel converted to digital video (.avl/.qt). George McNamara and Thomas Coates
(City of Hope & Childrens Hospital Los Angeles) changed from original tracking
view to panorama. For scala, the red blood cells are ~5 um diamater, the
5. aureus bacteria are ~1 um long. Neutrophils mave ~10 um/min.

Howdoeesthe—<cett
eempute?

n a0 O_~1

Po!ymorphar:uelaar leukocyte (PMN, netitrophil) chasing

SR R What is possible

to compute with

chemistry?
geoemetry

W




B

Chemical reaction networks (CRN)




B

Chemical reaction networks (CRN)

R—P, +P,




B

Chemical reaction networks (CRN)

R—P, +P,

A+B—-C




B

Chemical reaction networks (CRN)

R—P, +P,

A+B—-C

X+Y->X+Z




Chemical reaction networks (CRN)

R—P, +P,

A+B—-C

X+Y->X+Z

A+/7—

(anonymous
waste product)




W e S — —

Chemical reaction networks (CRN)

|

R— P, +P,
A+B—-C
X+Y—->X+Z

A+/7—

(anonymous
waste product)

X —2X

(anonymous
fuel source)

10




W e S — —

Chemical reaction networks (CRN)

|

2.5
R:3 P +P,
A+BL C
X+Y2S X+7

A+Z@>

(anonymous
waste product)

X 2 ox

(anonymous
fuel source)

11




T —

What behavior is possible
for chemistry in principle?




What behavior is possible
for chemistry in principle?

Inspiration



What behavior is possible
for chemistry in principle?

-

\\
formally definable CRNs P
« N
found in biology
Vo
A 4

- this talk

- Inspiration

14



What behavior is possible
for chemistry in principle?

-

\\
formally definable CRNs P
a N
actual chemicals V-
« N
found in biology
Vo
\ A 4

- this talk

- ultimate interest

//,,inspWaﬁon

15




B

Can we compute with chemistry?

“Not every crazy CRN you scribble on paper describes actual chemicals!”




Ve e — I — —

Can we compute with chemistry?

“Not every crazy CRN you scribble on paper describes actual chemicals!” ‘

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

17




Can we compute with chemistry?

“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

X, +X — X,

18




Can we compute with chemistry?

“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

X, +X — X,

identiier
T2 3
— i — s

X

species
identifier
4 5 6

1 | E—
X3
species

A
127 8 o

19




W e S — —

Can we compute with chemistry?

“Not every crazy CRN you scribble on paper describes actual chemicals!” ‘

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

X +X - X
1 2 3
species
identifier 12 Lo
2 ,—’l—\l 33 6‘1;-’ \1I 2 3 5 ﬁ/ 2_34‘
i i O i i i
min;gméL %_ o R
H; '
1 2 4 5 6 5 6 12 7
J”ml iy *
|q- 7% JEfE S¥ g% 0:
! waste !
species
5 6 17 identifier
Dpunmndi 27 80,
g¥ 12 7% ' 20
waste X3




Ve e — I — —

Can we compute with chemistry?

“Not every crazy CRN you scribble on paper describes actual chemicals!”

Response to objection: Soloveichik et al. [PNAS 2010]
showed a physical implementation of every CRN, using
DNA strand displacement

+

X X2 — X,
species
ienIifier 12

7 1T 2 3 + 2 34 \1' 2 3 > ﬁ/ 2 3e
Pm%@mﬂ TF' T 3*_1& % 6* B

H;

\l aNJa 5 6 5 6 12 7
o+ »
G, 2% 3%4% 5% 6k 0.
! waste I
species
5 6 12 7 identifier
' "y
GO 4 z T2,
fF 2% 7% 21
waste X3




Why compute with chemistry?

versus




Why compute with chemistry?

versus

speed?




versus

slower speed? faster




Versus

slower s%d? faster




Versus

slower s%d? faster

component size?




Why compute with chemistry?

& ~ 2 3 NN EY
L & - 2 i A pligy Ny

Versus

slower s%d? faster

~ 10-100 nm component size?




Why compute with chemistry?

o X3 2 X a0 U0 € 4
s /a & - pliy

Versus

slower s%d? faster

~ 10-100 nm component size? ~ 10-100 nm




Why compute with chemistry?

o X3 2 X fsannst- 0 0 & € 4
s /a & - pliy

Versus

slower s%d? astor

~ 10-100 nm compop€nt size? =~ 10-100 nm




slower SW? toster
~ 10-100 nm compopgnt size? ~ 10-100 nm
Compatible with

yes not easily

biological or other
“wet environments”?

“smart drug” to
- detect microRNAs

‘ levels of cell and
release appropriate
drug in response

& “chemical

controller” to

increase yield of

metabolically

produced 30
M biofuels/drugs/etc.




What does it mean to compute with chemistry?

CRNSs have a wide range of behaviors:




(

What does it mean to compute with chemistry?

CRNSs have a wide range of behaviors:

/Boolean logic )

T

—J )—o

.

=

Ty

J

32



What does it mean to compute with chemistry?

CRNSs have a wide range of behaviors:

A

=

/Boolean logic )

—J )—o

.

=

Ty

J

/ signal processing\

33



(

What does it mean to compute with chemistry?

CRNSs have a wide range of behaviors:

A

/Boolean logic )

=

—J )—o

il

=

Ty

J

N

4 oscillation )

=0 1=55 1=10s 1=15s =205

/ signal processing\

Cireyy

34



(

What does it mean to compute with chemistry?

CRNSs have a wide range of behaviors:

/analo ' \
g computing
/Boolean logic )

A I_D___

£>°’ —) Do
l 4 oscillation N

ALAAR
(AREER

35

N e .




(

What does it mean to compute with chemistry?

CRNSs have a wide range of behaviors:

/analo ' \
g computing
/Boolean logic ) | |
A I'D— djscrete algorithms
0/ 0|o|ofela]a]B]o]o:
£>°” —) o | () 3
Gy /
l « oscillation A
11111
(BRREE

36

N e .




B

Discrete (stochastic) kinetic CRN model

- species: {X, Y, ...}




W e S — —

Discrete (stochastic) kinetic CRN model

- species: {X, Y, ...} ‘

* reactions:

K

X>W+2Y+Z
K

A+B3X

38




Discrete (stochastic) kinetic CRN model

- species: {X, Y, ...} - state: integer vector of counts
s = (#X, #Y, ...)

* reactions:

K

X>W+2Y+Z
K

A+B3X

39




Discrete (stochastic) kinetic CRN model

- species: {X, Y, ...} - state: integer vector of counts

s = (#X, #Y, ...)
* reactions: » rate of reaction:
k
XS>SW+2Y+Z7 K #X

A+BL X k *#A+#B | volume

40




Discrete (stochastic) kinetic CRN model

species: {X, Y, ...} state: integer vector of counts
s = (#X, #Y, ...)
reactions: rate of reaction:
Xﬁ W+2Y+ 7 K #X
A+BL X k *#A+#B | volume

rate of that reaction

Prob[some reaction] =
sum of all reaction rates

41




Discrete (stochastic) kinetic CRN model

species: {X, Y, ...} state: integer vector of counts
s = (#X, #Y, ...)
reactions: rate of reaction:
Xﬁ W+2Y+ 7 K #X
A+B% X k *#A+#B | volume

rate of that reaction

Prob[some reaction] =
sum of all reaction rates

time until next reaction = exponential
random variable .

.




Population protocols

n finite-state agents

———

43




Population protocols

n finite-state agents

q
repeatedly pick pair
to interact ® ¢
5(q,r) = (st) @ ®
5(s.r) = (q,9) ®

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

_———

Ve e — I — —

44



n finite-state agents

repeatedly pick pair

to interact
o(q.r) = (s.1)
o(s,r) = (q.9)

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

N e .

Population protocols

45



Population protocols

n finite-state agents

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

N e .

repeatedly pick pair B
to interact
5(q,)=(st) ©
5(s.r) = (q,9) ®

46



n finite-state agents

Population protocols

repeatedly pick pair B
to interact

d(q,r)=(s,f)
o(s,r) = (q,9)

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

N e .

47



n finite-state agents

repeatedly pick pair ®
to interact
5.0 =(s,t)
| o(s,r) = (q.9)

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

N e ~

Population protocols

48



Population protocols

n finite-state agents

repeatedly pick pair ®
to interact

d(q,r)=(s,t) 't

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

N e ~

5(s,n) = (9.9) ®

49



Population protocols

n finite-state agents

(s)
repeatedly pick pair ®
to interact
5(q,r) = (s,t)
5(s.r) = (q,9) ®

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

N e .

®

50



Population protocols

n finite-state agents

(s)
repeatedly pick pair e
to interact
5(q,r) = (s,t)
5(s.1) = (9,9) ®

‘parallel time” = # of interactions / n

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

N e ~

®

51



A PP is a CRN such that...




B

A PP is a CRN such that...

« all reactions have 2 reactants and 2 products




A PP is a CRN such that...

» all reactions have 2 reactants and 2 products

- all rate constants are 1

54




A PP is a CRN such that...

» all reactions have 2 reactants and 2 products

» all rate constants are 1

» volume = number of molecules
(constant over time because of first constraint)

55




A PP is a CRN such that...

all reactions have 2 reactants and 2 products

all rate constants are 1

volume = number of molecules
(constant over time because of first constraint)

order of reactants can matter
(there's a “sender” and a “receiver” molecule)

56




A PP is a CRN such that...

all reactions have 2 reactants and 2 products

all rate constants are 1

volume = number of molecules
(constant over time because of first constraint)

order of reactants can matter
(there's a “sender” and a “receiver” molecule)

sender/receiver states uniquely determine products
(e.g., cannot have A+B — C+D and A+B — X+Y)

57




Computation with CRNs: Outline

- Stable computation (“deterministic”)

» Randomized computation:

— probability of error = small
— probability of error =0

58



Stable (deterministic) CRN computation




Stable CRN predicate computation
(definition)

task: compute predicate p(x,,..., C X,

60




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,,...,x,), X,...x, € N

votes: two disjoint subsets of species: “yes” and “no” voters

61




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,,...,x,), X,...x, € N
votes: two disjoint subsets of species: “yes” and “no” voters

output ¢(s) of state s: the consensus vote (if voters unanimous)

62




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,,...,x,), X,...x, € N
votes: two disjoint subsets of species: “yes” and “no” voters

output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

63




(

Stable CRN predicate computation
(definition)
task: compute predicate p(x,,...,x,), X,...x, € N
votes: two disjoint subsets of species: “yes” and “no” voters

output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

output-stable state: all states reachable from it have same output

64




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,,...,x,), X,...x, € N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

65




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,,...,x,), X,...x, € N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

X

66




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,...,x,), X,,...x, €N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

67




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,,...,x,), X,...x, € N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species
output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

9(0) = p(x,....X,
N e ~ S

68




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,...,x,), X,,...x, €N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species
output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

9(0) = p(x,....X,
N e ~ S

69




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,...,x,), X,,...x, €N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

70

9(0) = p(x,....X,




Stable CRN predicate computation
(definition)
task: compute predicate p(x,...,x,), X,,...x, €N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

~&

71

9(0) = p(x,....X,




( Stable CRN predicate computation
(definition)
task: compute predicate p(x,...,x,), X,,...x, €N
votes: two disjoint subsets of species: “yes” and “no” voters
output ¢(s) of state s: the consensus vote (if voters unanimous)
initial state: #X_ = x_,...,#X = x,, constant counts of other species

output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

LI

@(0) = p(x,,...X,) = ¢(0,)
L — . E—




Stable CRN predicate computation
(alternate definition)




( Stable CRN predicate computation
(alternate definition)

execution: infinite sequence of states s, s, ..., where s is s,
after applying a reaction (allow “null” reaction for convenience)

74




(

Stable CRN predicate computation
(alternate definition)

execution: infinite sequence of states s, s, ..., where s is s,
after applying a reaction (allow “null” reaction for convenience)

fair execution: every state always reachable is infinitely often
reached

75




Stable CRN predicate computation
(alternate definition)

execution: infinite sequence of states s, s, ..., where s is s,
after applying a reaction (allow “null” reaction for convenience)

fair execution: every state always reachable is infinitely often
reached

stable computation: predicate p(x,,...,x,) is stably computed if

every fair execution contains an output stable state o with
®(0) = P(X,;--,X,)

76




Stable CRN predicate computation
(example)

predicate: p(x): parity of x




Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { x X, 1 N } X ®




Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { x X, 1 N } X ®

N+X—Y ® ®
Y+X—N

reactions:

79




Stable CRN predicate computation
(example)

predicate: p(x): parity of x

initial state: { X X, 1 N } X

N+X—Y ® ®
Y+X—N

reactions:

80




Stable CRN predicate computation
(example)

predicate: p(x): parity of x
initial state: { X X, 1 N } X

reactions: N+ X —>Y ®
Y+ X—> N

81




Stable CRN predicate computation
(example)

predicate: p(x): parity of x
initial state: { X X, 1 N }

reactions: N+ X —>Y ®
Y+ X—> N

82




B

Stable CRN predicate computation
(example)

predicate: p(x,,Xx,): "X, > x,""?




Stable CRN predicate computation

(example)
predicate: p(x,,Xx,): "X, > x,""? &)
initial state: { x, X, x, X, , 1 N} % ®
®

®)
®)
®)




Stable CRN predicate computation
(example)

predicate: p(x,,Xx,): "X, > x,""? &)

initial state: { x, X, x, X, , 1 N}

reactions: N + X1 — Y %y
Y+ X — N

XX

85




Stable CRN predicate computation
(example)

predicate: p(x,,Xx,): "X, > x,""? &)

initial state: { x, X, x, X, , 1 N}

@

reactions: N + X1 — Y
Y+ X — N

XX

86




Stable CRN predicate computation
(example)

predicate: p(x,,Xx,): "X, > x,""? &)

initial state: { x, X, x, X, , 1 N}

reactions: N + X1 — Y %)
Y+ X — N X,

87




V e E—
Stable CRN predicate computation

(example)
predicate: p(x,,Xx,): "X, > x,""? &)
initial state: { x, X, x, X, , 1 N} &
reactions: N+ X — Y X

Y+X — N

Lo}




Stable CRN predicate computation
(example)

predicate: p(x,,Xx,): "X, > x,""? &)

initial state: { x, X, x, X, , 1 N}

reactions: N + X1 — Y %)
Y+ X — N

89




Stable CRN predicate computation
(example)

predicate: p(x,,X,): "X, =x,""?

initial state: { x, X, , x, X,, 1Y}




(T e —
Stable CRN predicate computation

(example)

predicate: p(x,,X,): "X, =x,""?

initial state: { x, X, , x, X,, 1Y}

reactions: X + X, — Y
Y+N—>Y
X +Y—->X+N
X,+Y—=X +N




B

Stable CRN function computation
(example)

function: f(x) = 2x




B

Stable CRN function computation
(example)

function: f(x) = 2x

® |
®




T —

Stable CRN function computation
(example)

function: f(x) = 2x

reactions: X — 2Y . ' |




B

Stable CRN function computation
(example)

function: f(x) = 2x v Y

o X a
reactions: X — 2Y '




B

Stable CRN function computation
(example)

function: f(x) = 2x v Y

Y
reactions: X — 2Y ‘ ' I'




B

Stable CRN function computation
(example)

function: f(x) = 2x

» © |
reactions: X — 2Y ‘ ‘




B

Stable CRN function computation
(example)

function: f(Xx) = x/2




B

Stable CRN function computation
(example)

function: f(Xx) = x/2 X X

x© % |
x X




Stable CRN function computation
(example)

function: f(Xx) = x/2 X X

@ ®




Stable CRN function computation
(example)

function: f(Xx) = x/2

@ ®




B

Stable CRN function computation
(example)

function: f(x) = x/2

reactions: 2X — Y . @ @ i




B

Stable CRN function computation
(example)

function: f(Xx) = x/2

o ) a
reactions: 2X — Y '




B

Stable CRN function computation
(example)

function: f(x,,x,) = X, + X,




Stable CRN function computation
(example)

function: f(x,,x,) = X, + X,

reactions: X1 — Y

X,—Y




B

Stable CRN function computation
(example)

function: f(x,,x,) = x, — X,




Stable CRN function computation
(example)

function: f(x,,x,) = x, — X,

reactions: X1 — Y

X2+Y—>




B

Stable CRN function computation
(example)

function: f(x,,x,) = min{x_,X,}




Stable CRN function computation
(example)

function: f(x,,x,) = min{x_,X,}

reactions: X1 + X2 —Y




B

Stable CRN function computation
(example)

function: f(x,,Xx,) = max{x,,X,}




Stable CRN function computation
(example)

function: f(x,,x,) = max{x,,x,} = x, + x, —min{x_,Xx_}




V e —
Stable CRN function computation

(example)

function: f(x,,x,) = max{x,,x,} =x, + X, —min{x X}

reactions: X1 — Y+X1'
X2 — Y+X2'




W e S — —

Stable CRN function computation
(example)

function: f(x,,x,) = max{x,,x,} = x, + x, —min{x_, X}

reactions: X1 — Y+X1'
X, — Y +X
X'+ X' — K

113




W e S — —

Stable CRN function computation
(example)

function: f(x,,x,) = max{x,,x,} = x, + x, —min{x_,X_}

reactions: X, — Y + X/
X, — Y +X
X'+ X'—K
K+Y—

114




Stable CRN predicate computation
(example)

predicate: p(x,,X,): “3x, > Xx,/2°7

initial state: { x, X, x, X, , 1 N}




Stable CRN predicate computation
(example)

predicate: p(x,,X,): “3x, > Xx,/2°7
initial state: { x, X, x, X, , 1 N}

reactions: X1 — 3Z1

2X, — Z,

116




(T e —
Stable CRN predicate computation

(example)

predicate: p(x,,X,): “3x, > Xx,/2°7

initial state: { x, X, x, X, , 1 N}

reactions: X, — 3Z,
2X, — Z,
N+Z —Y
Y+Z, — N




(

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

118




Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

119

e e




Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests l

X, — 3x2 < -7/

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

120

e S




Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests l

2x1+x253mod5 x1—3x2<—7

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

121

e S




Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests l

2x1+x253mod5 x1—3x2<—7

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

(Chen, Doty, Soloveichik, DNA 2012, for function computation)
122

e S




Deciding output stability




Deciding output stability

- Each CRN has a set of p vectors {u,....,u } such that
o is output stable if and only if nou, = o

124




Deciding output stability

- Each CRN has a set of p vectors {u,....,u } such that
o is output stable if and only if nou, = o

- [Brijder, DNA 2014]: An algorithm can compute {u,,...,u }
in time O(p logs?>(p) r s? log(u)) for population protocols

u=max, |u]
S = # species
r = # reactions

125




Deciding output stability

Each CRN has a set of p vectors {u,,...,u } such that
o is output stable if and only if nou, = o

[Brijder, DNA 2014]: An algorithm can compute {u,,...,u }
in time O(p logs?>(p) r s? log(u)) for population protocols

u=max, |u]
S = # species
r = # reactions

Open question: how big can p and u get?

126




Deciding output stability

Each CRN has a set of p vectors {u,,...,u } such that
o is output stable if and only if nou, = o

[Brijder, DNA 2014]: An algorithm can compute {u,,...,u }
in time O(p logs?>(p) r s? log(u)) for population protocols

u=max, |u]
S = # species
r = # reactions

Open question: how big can p and u get?

Open question: extension to general CRNs?

127




B

Time complexity of stable computation

n = # molecules in initial state




Time complexity of stable computation

n = # molecules in initial state

O(n) if initial state contains only input molecules

(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

129




Time complexity of stable computation

n = # molecules in initial state

O(n) if initial state contains only input molecules

(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)

(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

130




Time complexity of stable computation

n = # molecules in initial state

O(n) if initial state contains only input molecules

(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)

(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

polylogarithmic time = “fast” = polynomial in binary expansion of n

linear time = “slow” = exponential in binary expansion of n

131




Time complexity in CRNs

time until next reaction = exponential r.v.

reaction expected time
A+B— X volume / (#A*#B)

132



e —

T —

Time complexity (example)

1 X}
X—Y+Y




B

Time complexity (example)

1 X}
X—Y+Y

E[time to consume all X] =




Time complexity (example)

N X}
X—>Y+Y

E[time to consume all X] =

E
+ E
+ E
+

time to consume first X]
time to consume second X]

time to consume third X]

+ E[time to consume final X]

135




Time complexity (example)

N X}
X—>Y+Y

E[time to consume all X] =

E
+ E
+ E
+

time to consume first X]
time to consume second X]

time to consume third X]

+ E[time to consume final X]

=1n+1/(n-1) + 1/(n-2) + ... + 1/1
= log n

136



Time complexity (example)

{n X}, volume n
X+ X->Y

E[time to consume all X] =




W e S — S—

Time complexity (example)

{n X}, volume n
X+X->Y

E[time to consume all X] = n/n? + n/(n-2)* + n/(n—4)> + ... + n
<n(1/22 + 1/42 + 1/62 + 1/8%2 + ...)
= 0(n)

138

|



W e S — S—

Time complexity (example)

{n X}, volume n
X+X->Y

E[time to consume all X] = n/n? + n/(n-2)* + n/(n—4)> + ... + n
<n(1/22 + 1/42 + 1/62 + 1/8%2 + ...)
= 0(n)

139

|



W e S — S—

Time complexity (example)

{n X}, volume n
X+X->Y

E[time to consume all X] = n/n? + n/(n-2)* + n/(n—4)> + ... + n
<n(1/22 + 1/42 + 1/62 + 1/8%2 + ...)
= 0(n)

140

|



B

Time complexity (leader election)

{n L}, volume n
L+L — L




Time complexity (leader election)

{n L}, volume n
L+L — L

E[time getto 1 L] = O(n)




Time complexity (leader election)

{n L}, volume n

L+ 1] E[time getto 1 L] = O(n)

Is there a faster CRN?

152




Time complexity (leader election)

{n L}, volume n
L+L — L

Is there a faster CRN?

E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
* In mass-conserving CRNs, we don't know

- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

- If we require 0 probability of error, no (unpublished)

153




Time complexity (leader election)

{n L}, volume n
L+L — L

Is there a faster CRN?

E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
* In mass-conserving CRNs, we don't know

- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

- If we require 0 probability of error, no (unpublished)

154




Time complexity (leader election)

{n L}, volume n
L+L — L

Is there a faster CRN?

E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
* In mass-conserving CRNs, we don't know

- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

- If we require 0 probability of error, no (unpublished)

155




Time complexity (leader election)

{n L}, volume n
L+L — L

Is there a faster CRN?

E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
* In mass-conserving CRNs, we don't know

- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

- If we require 0 probability of error, no (unpublished)

156




What if we allow a small probability of error? ‘
(Randomized CRN computation)




(T T —

Randomized CRNs are Turing universal

|

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)




(

Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/

(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)
159

N e ~ EE———




Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to
predict their behavior.

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/

(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)
160

e e




Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to
predict their behavior.

Formal: For each TM M, there is a CRN C so that, for each €> 0
and natural number n, there is an initial state x of C so that C
simulates M(n) with probability € of error, and expected time
poly(set), where t and s are the time and space usage of M(n).

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/

(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)
161




Counter (register) machine




— |
Counter (register) machine '




B

Counter (register) machine

“Input” counter

r/ S

~_

~_

Y
]

~_




Counter (register) machine

“Input” counter

r/ S

N

N~

N
N

N~

165




Counter (register) machine

“Input” counter

r/ S

N

N~

N
N

N~

166




Counter (register) machine

“Input” counter

r/ S

Y
N

N~

N
N

N~

167




Counter (register) machine

“Input” counter

r/ S

Y
N

N~

N
N

N~

168




Counter (register) machine

“Input” counter

r/ S

Y
N

N~

N
N

N~

169




Counter (register) machine

“Input” counter

r/ S

Y
N

N~

N
N

N~

170




A
Counter (register) machine

“Input” counter

d
ec(r) . / S t

)

) Inc(s) N YN Yy
3) inc(s) ~ A A S

) Inc(s)

)

)

dec(t) N SN S N




A
Counter (register) machine

“Input” counter

d
ec(r) . / S t

)

) Inc(s) N YN Yy
3) inc(s) ~ A A S

) Inc(s)

)

)

dec(t) N SN S N




A
Counter (register) machine

“Input” counter

d
ec(r) . / S t

)

) Inc(s) N YN Yy
3) inc(s) ~ A A S

) Inc(s)

)

)

dec(t) N SN S N




A —
Counter (register) machine

“Input” counter

d
ec(r) . / S t

)

) Inc(s) N YN Yy
3) inc(s) ~ A A S

) Inc(s)

)

)

dec(t) N &/ N




W e S — S—

Counter (register) machine

“Input” counter

1 d if t to 6
ec(r) if empty goto . / S t

inc(s)

)

) inc(s) YR
) inc(s) P I N I
) Inc(s) ® °

) dec(t) if empty goto1 .~ Q N~
)

175




S
Counter (register) machine

“Input” counter

d if t to 6
ec(r) if empty goto . / S t

)

) inc(s) TN T
3) inc(s) D I N I

) Inc(s)

)

)

dec(t) if empty goto1 .~ &/ N

176




S
Counter (register) machine

“Input” counter

d if t to 6
ec(r) if empty goto . / S t

)

) inc(s) TN T
3) inc(s) D I N I

) Inc(s)

)

)

dec(t) if empty goto1 .~ &/ N

177




W e S — S—

Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /
2) inc(s) r S t
N YN Yy
3) inc(s) D I R I
nc(s)

178




W e S — —

Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /
2) inc(s) r S t
N YN Yy
3) inc(s) D I N S I
nc(s)

179




W e S — —

Counter (register) machine

“Input” counter

1 d if t to 6
.ec(r) If empty goto . / S t

)

) inc(s) TN N T
) inc(s) (e g
) Inc(s)
)
)

—

—

/

S
O
7y

dec(t) if empty gotot .~ %

inc(s)

180




W e S — —

Counter (register) machine

“Input” counter

1 d if t to 6
.ec(r) If empty goto . / S t

)

) inc(s) TN N T
) inc(s) (e g
) Inc(s)
)
)

—

—

/

S
O
7y

® o
dec(t) if empty goto1 .~ Q N

inc(s)

181




W e S — —

Counter (register) machine

“Input” counter

1 d if t to 6
ec(r) if empty goto . / S t

inc(s) N N Y
inc(s) N AN
inc(s) ® o

o ©

dec(t) if empty gotot .~ %

inc(s)

)
)
)
i
)
)

182




Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ® o o

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)

183




Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ® o o

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)

184




Counter (register) machine

“Input” counter

1

d if t to 6
ec(r) if empty goto . / S t

N

inc(s) TN LN o
nc(s) N AN O AN
(S)

W
—

S
O
7y

® o
I o
dec(t) if empty goto1 .~ '\‘/ N
inc(s)

o Ol

185




Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ® o o

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)

186




Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ° ‘:

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)

187




Counter (register) machine

“Input” counter

r/ S

TN
N

N

TN
S
...

O
o ©

N

188



Counter (register) machine

“Input” counter

r/ S

TN
N

N

TN
S
..‘

O
o ©

N

N

computes f(n) = 3n+1

189



V T —

CRNs can simulate counter
machines with probability < 1




CRNs can simulate counter
machines with probability < 1

Counter machine:

r = input n, start line 1
1) inc(r)

2) dec(r) if zero goto 1
)
) de

3) inc(s)
4) dec(s) if zero goto 2

191




CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r)

2) dec(r) if zero goto 1
)
) de

3) inc(s)
4) dec(s) if zero goto 2

192




CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:
r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r) L —-L +R

3) inc(s)

)

2) dec(r) if zero goto 1
)

4) dec(s) if zero goto 2

193




CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R— L,

3) Inc(s)

4) dec(s) if zero goto 2

194



CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R— L,

3) Inc(s)

4) dec(s) if zero goto 2

195



CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}

1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R—L, ;| L,—>L
3) Inc(s)

4) dec(s) if zero goto 2

196




CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}

1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R—L, ; L, —L
3) inc(s) L,—>L,+S

4) dec(s) if zero goto 2 L,+S—L, ; L, —L,

197




CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:
r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r L —-L +R

) inc(r) LR
2) dec(r) if zero goto 1 L,+R—L, ; L, —L

| — | + S |Needtobe

3) Inc(s) 3 4 very slow!
4) dec(s) if zero goto 2 L,+S— L, &L_)L/

198




How to slow down reaction L2 — L1? '




B

How to slow down reaction L2 — L1?

Use a clock:
1C,1F,nB




W e S — S—

How to slow down reaction L, — L ? |

Use a clock: ‘
1C,1F,nB
F+C —-F+C, B+C,—-B+C,

F+C,— F+C, B+C,—B+C,

201




How to slow down reaction L2 — L1?

Use a clock:
1C,1F,nB
F+C. —-F+C, B+C,—B+C

F+C,— F+C, B+C,—B+C,
1 1 1 1

e Te e T e
n n n n

reverse-biased random walk

202

) S




How to slow down reaction L2 — L1?

Use a clock:
1C,1F,nB
F+C. —-F+C, B+C,—B+C

F+C,— F+C, B+C,—B+C,
1 1 1 1
C, appears after
| 6'@‘@ j@ expected time = n*!
n n n n
reverse-biased random walk

203




How to slow down reaction L2 N L1?

Use a clock: Ck 0 L2 N C1 o L1
1C,1F,nB

F+C. —-F+C, B+C,—B+C
F+C,— F+C, B+C,—B+C,

1 1 1
C, appears after
| e@@ . j@ expected time = n«

1
n
reverse-biased random walk

204




How to slow down reaction L2 N L1?

Use a clock: Ck 0 L2 N C1 o L1
1C,1F,nB

F+C. —-F+C, B+C,—B+C
F+C,— F+C, B+C,—B+C,

1 1 1
C, appears after
| e@@ . j@ expected time = n«

1
n
reverse-biased random walk  E[timeforL,+ R— L]<n

205




Probability 1 computation




B

Probability 1 computation

« Errr... isn't that stable computation?




A —
Probability 1 computation

« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.




Probability 1 computation

« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.

2
—

1
—

1
—

Y
Y

2Y

Consider...

209




Probability 1 computation

« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.

Consider...

Y52y
1 initial state {1Y,1N}
H

Y

210




Probability 1 computation

« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.

Y 2 2Y
vy

Consider... initial state {1Y,1N\}

| Theorem: All (Turing) computable predicates can be
computed by a CRN with probability 1.

(Cummings, Doty, Soloveichik, DNA 2014)

211

e e




212




