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| The software of life

David Rogers (\Vanderbilt L., late 1950s, 16 mm film recording) given 1o
Thomas Stossel {(Brigham & Women's, Harvard Med) by Viktor Jajjar (Tufts U).
Stossel converted to digial video {.avi/.qt). George McNamara and Thomas Coates
(City of Hope & Childrens Hospital Los Angeles) changed from original tracking
view to panorama. For scale, the red blood cells are ~5 um diameter, the
5. sureus bacteria are ~1 um long. Neutrophils move ~10 umdmin.

How does the cell
compute?

Polymorphonucdiear leukocyte (PMN, neutraphil) chasing
Staphyfoccocls aureus bacteria in field of red blood cells.
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Discrete (stochastic) kinetic CRN model

species: {X, Y, ...} state: integer vector of counts
s = (#X, #Y, ...)
reactions: rate of reaction:
Xﬁ W+2Y+ 7 K #X
A+B% X k *#A+#B | volume

rate of that reaction

Prob[some reaction] =
sum of all reaction rates

time until next reaction = exponential
random variable .

.
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Population protocols

n finite-state agents

q
repeatedly pick pair
to interact ® ¢
5(q,r) = (st) @ ®
5(s.r) = (q,9) ®

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
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Population protocols

repeatedly pick pair B
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(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
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Population protocols

n finite-state agents

(s)
repeatedly pick pair e
to interact
5(q,r) = (s,t)
5(s.1) = (9,9) ®

‘parallel time” = # of interactions / n

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
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A PP is a CRN such that...

all reactions have 2 reactants and 2 products

all rate constants are 1

volume = number of molecules
(constant over time because of first constraint)

order of reactants can matter
(there's a “sender” and a “receiver” molecule)

sender/receiver states uniquely determine products
(e.g., cannot have A+B — C+D and A+B — X+Y)
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Computation with CRNs: Outline

- Stable computation (“deterministic”)

» Randomized computation:

— probability of error = small
— probability of error =0
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output ¢(s) of state s: the consensus vote (if voters unanimous)
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Stable CRN predicate computation
(alternate definition)

execution: infinite sequence of states s, s, ..., where s is s,
after applying a reaction (allow “null” reaction for convenience)

fair execution: every state always reachable is infinitely often
reached

stable computation: predicate p(x,,...,x,) is stably computed if

every fair execution contains an output stable state o with
®(0) = P(X,;--,X,)
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predicate: p(x): parity of x
initial state: { X X, 1 N } X

reactions: N+ X —>Y ®
Y+ X—> N
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reactions: N + X1 — Y %)
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Stable CRN predicate computation
(example)

predicate: p(x,,X,): "X, =x,""?

initial state: { x, X, , x, X,, 1Y}
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(example)

predicate: p(x,,X,): "X, =x,""?

initial state: { x, X, , x, X,, 1Y}

reactions: X + X, — Y
Y+N—>Y
X +Y—->X+N
X,+Y—=X +N
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Stable CRN function computation
(example)

function: f(x) = 2x

reactions: X — 2Y . ' |
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Stable CRN function computation
(example)

function: f(x) = 2x v Y

o X a
reactions: X — 2Y '




B

Stable CRN function computation
(example)

function: f(x) = 2x v Y

Y
reactions: X — 2Y ‘ ' I'




B

Stable CRN function computation
(example)

function: f(x) = 2x
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Stable CRN function computation
(example)

function: f(Xx) = x/2
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Stable CRN function computation
(example)

function: f(Xx) = x/2 X X
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Stable CRN function computation
(example)

function: f(Xx) = x/2
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Stable CRN function computation
(example)

function: f(x,,x,) = X, + X,
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Stable CRN function computation
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Stable CRN function computation
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function: f(x,,x,) = x, — X,
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Stable CRN function computation
(example)
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function: f(x,,x,) = min{x_,X,}

reactions: X1 + X2 —Y
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Stable CRN function computation
(example)
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function: f(x,,x,) = max{x,,x,} =x, + X, —min{x X}

reactions: X1 — Y+X1'
X2 — Y+X2'
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Stable CRN function computation
(example)

function: f(x,,x,) = max{x,,x,} = x, + x, —min{x_, X}

reactions: X1 — Y+X1'
X, — Y +X
X'+ X' — K
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Stable CRN function computation
(example)

function: f(x,,x,) = max{x,,x,} = x, + x, —min{x_,X_}

reactions: X, — Y + X/
X, — Y +X
X'+ X'—K
K+Y—
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Stable CRN predicate computation
(example)

predicate: p(x,,X,): “3x, > Xx,/2°7
initial state: { x, X, x, X, , 1 N}

reactions: X1 — 3Z1

2X, — Z,
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(example)

predicate: p(x,,X,): “3x, > Xx,/2°7

initial state: { x, X, x, X, , 1 N}

reactions: X, — 3Z,
2X, — Z,
N+Z —Y
Y+Z, — N
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Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)
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Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)
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Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests l

X, — 3x2 < -7/

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)
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Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests l

2x1+x253mod5 x1—3x2<—7

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)
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Stable computation characterization

Theorem: A predicate is stably computed by a CRN if
and only if it is semilinear.

“semilinear” = Boolean combination of threshold
and mod tests l

2x1+x253mod5 x1—3x2<—7

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

(Chen, Doty, Soloveichik, DNA 2012, for function computation)
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Deciding output stability

- Each CRN has a set of p vectors {u,....,u } such that
o is output stable if and only if nou, = o
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Deciding output stability

- Each CRN has a set of p vectors {u,....,u } such that
o is output stable if and only if nou, = o

- [Brijder, DNA 2014]: An algorithm can compute {u,,...,u }
in time O(p logs?>(p) r s? log(u)) for population protocols

u=max, |u]
S = # species
r = # reactions
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Deciding output stability

Each CRN has a set of p vectors {u,,...,u } such that
o is output stable if and only if nou, = o

[Brijder, DNA 2014]: An algorithm can compute {u,,...,u }
in time O(p logs?>(p) r s? log(u)) for population protocols

u=max, |u]
S = # species
r = # reactions

Open question: how big can p and u get?
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Deciding output stability

Each CRN has a set of p vectors {u,,...,u } such that
o is output stable if and only if nou, = o

[Brijder, DNA 2014]: An algorithm can compute {u,,...,u }
in time O(p logs?>(p) r s? log(u)) for population protocols

u=max, |u]
S = # species
r = # reactions

Open question: how big can p and u get?

Open question: extension to general CRNs?

127




B

Time complexity of stable computation

n = # molecules in initial state




Time complexity of stable computation

n = # molecules in initial state

O(n) if initial state contains only input molecules

(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)
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Time complexity of stable computation

n = # molecules in initial state

O(n) if initial state contains only input molecules

(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)

(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)
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Time complexity of stable computation

n = # molecules in initial state

O(n) if initial state contains only input molecules

(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)

(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

polylogarithmic time = “fast” = polynomial in binary expansion of n

linear time = “slow” = exponential in binary expansion of n
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Time complexity in CRNs

time until next reaction = exponential r.v.

reaction expected time
A+B— X volume / (#A*#B)
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Time complexity (example)

1 X}
X—Y+Y
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Time complexity (example)

1 X}
X—Y+Y

E[time to consume all X] =




Time complexity (example)

N X}
X—>Y+Y

E[time to consume all X] =

E
+ E
+ E
+

time to consume first X]
time to consume second X]

time to consume third X]

+ E[time to consume final X]
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Time complexity (example)

N X}
X—>Y+Y

E[time to consume all X] =

E
+ E
+ E
+

time to consume first X]
time to consume second X]

time to consume third X]

+ E[time to consume final X]

=1n+1/(n-1) + 1/(n-2) + ... + 1/1
= log n
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Time complexity (example)

{n X}, volume n
X+ X->Y

E[time to consume all X] =
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Time complexity (example)

{n X}, volume n
X+X->Y

E[time to consume all X] = n/n? + n/(n-2)* + n/(n—4)> + ... + n
<n(1/22 + 1/42 + 1/62 + 1/8%2 + ...)
= 0(n)
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Time complexity (example)

{n X}, volume n
X+X->Y

E[time to consume all X] = n/n? + n/(n-2)* + n/(n—4)> + ... + n
<n(1/22 + 1/42 + 1/62 + 1/8%2 + ...)
= 0(n)
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Time complexity (example)

{n X}, volume n
X+X->Y

E[time to consume all X] = n/n? + n/(n-2)* + n/(n—4)> + ... + n
<n(1/22 + 1/42 + 1/62 + 1/8%2 + ...)
= 0(n)
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{n L}, volume n
L+L — L




Time complexity (leader election)

{n L}, volume n
L+L — L

E[time getto 1 L] = O(n)




Time complexity (leader election)

{n L}, volume n

L+ 1] E[time getto 1 L] = O(n)

Is there a faster CRN?
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Time complexity (leader election)

{n L}, volume n
L+L — L

Is there a faster CRN?

E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
* In mass-conserving CRNs, we don't know

- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

- If we require 0 probability of error, no (unpublished)
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E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
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- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation
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Time complexity (leader election)

{n L}, volume n
L+L — L

Is there a faster CRN?

E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
* In mass-conserving CRNs, we don't know

- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

- If we require 0 probability of error, no (unpublished)
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Time complexity (leader election)

{n L}, volume n
L+L — L

Is there a faster CRN?

E[time getto 1 L] = O(n)

 If we really abuse the CRN model, yes (use 2X—3X)
* In mass-conserving CRNs, we don't know

- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that
seems to work in simulation

- If we require 0 probability of error, no (unpublished)
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What if we allow a small probability of error? ‘
(Randomized CRN computation)
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Randomized CRNs are Turing universal

|

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)
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Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/

(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)
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Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to
predict their behavior.

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/

(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)
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Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial
slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to
predict their behavior.

Formal: For each TM M, there is a CRN C so that, for each €> 0
and natural number n, there is an initial state x of C so that C
simulates M(n) with probability € of error, and expected time
poly(set), where t and s are the time and space usage of M(n).

“in a sense”
(Angluin, Aspnes, Eisenstat, DISC 2006)/

(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)
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Counter (register) machine

“Input” counter

r/ S

~_

~_

Y
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Counter (register) machine

“Input” counter

r/ S

N

N~

N
N

N~
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Counter (register) machine

“Input” counter
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N~
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“Input” counter
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“Input” counter
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Counter (register) machine

“Input” counter

r/ S

Y
N

N~

N
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“Input” counter

d
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)
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3) inc(s) ~ A A S

) Inc(s)
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Counter (register) machine

“Input” counter

d
ec(r) . / S t

)

) Inc(s) N YN Yy
3) inc(s) ~ A A S

) Inc(s)

)

)

dec(t) N &/ N
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Counter (register) machine

“Input” counter

1 d if t to 6
ec(r) if empty goto . / S t

inc(s)

)

) inc(s) YR
) inc(s) P I N I
) Inc(s) ® °

) dec(t) if empty goto1 .~ Q N~
)
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Counter (register) machine

“Input” counter

d if t to 6
ec(r) if empty goto . / S t

)

) inc(s) TN T
3) inc(s) D I N I

) Inc(s)

)

)

dec(t) if empty goto1 .~ &/ N
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Counter (register) machine

“Input” counter

d if t to 6
ec(r) if empty goto . / S t

)

) inc(s) TN T
3) inc(s) D I N I

) Inc(s)

)

)

dec(t) if empty goto1 .~ &/ N
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Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /
2) inc(s) r S t
N YN Yy
3) inc(s) D I R I
nc(s)
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Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /
2) inc(s) r S t
N YN Yy
3) inc(s) D I N S I
nc(s)
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Counter (register) machine

“Input” counter

1 d if t to 6
.ec(r) If empty goto . / S t

)

) inc(s) TN N T
) inc(s) (e g
) Inc(s)
)
)

—

—

/

S
O
7y

dec(t) if empty gotot .~ %

inc(s)
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Counter (register) machine

“Input” counter

1 d if t to 6
.ec(r) If empty goto . / S t

)

) inc(s) TN N T
) inc(s) (e g
) Inc(s)
)
)

—

—

/

S
O
7y

® o
dec(t) if empty goto1 .~ Q N

inc(s)

181




W e S — —

Counter (register) machine

“Input” counter

1 d if t to 6
ec(r) if empty goto . / S t

inc(s) N N Y
inc(s) N AN
inc(s) ® o

o ©

dec(t) if empty gotot .~ %

inc(s)

)
)
)
i
)
)
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Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ® o o

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)
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Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ® o o

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)
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Counter (register) machine

“Input” counter

1

d if t to 6
ec(r) if empty goto . / S t

N

inc(s) TN LN o
nc(s) N AN O AN
(S)

W
—

S
O
7y

® o
I o
dec(t) if empty goto1 .~ '\‘/ N
inc(s)

o Ol
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Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ® o o

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)
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Counter (register) machine

“Input” counter

1) dec(r) if empty goto 6 /

2) inc(s) r S t
N Yy Ty

3) inc(s) N I N S I N

4) inc(s) ° ‘:

5) dec(t) if empty goto1 .~ '\./ N

6) inc(s)
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Counter (register) machine

“Input” counter

r/ S

TN
N

N

TN
S
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O
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Counter (register) machine

“Input” counter

r/ S

TN
N

N

TN
S
..‘

O
o ©

N

N

computes f(n) = 3n+1
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CRNs can simulate counter
machines with probability < 1

Counter machine:

r = input n, start line 1
1) inc(r)

2) dec(r) if zero goto 1
)
) de

3) inc(s)
4) dec(s) if zero goto 2

191




CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r)

2) dec(r) if zero goto 1
)
) de

3) inc(s)
4) dec(s) if zero goto 2
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CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:
r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r) L —-L +R

3) inc(s)

)

2) dec(r) if zero goto 1
)

4) dec(s) if zero goto 2
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CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R— L,

3) Inc(s)

4) dec(s) if zero goto 2
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CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R— L,

3) Inc(s)

4) dec(s) if zero goto 2
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CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}

1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R—L, ;| L,—>L
3) Inc(s)

4) dec(s) if zero goto 2
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CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:

r = input n, start line 1 initial state {(n R, 1 L}

1) inc(r) L —-L +R

2) dec(r) if zero goto 1 L,+R—L, ; L, —L
3) inc(s) L,—>L,+S

4) dec(s) if zero goto 2 L,+S—L, ; L, —L,
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CRNs can simulate counter
machines with probability < 1

Counter machine: CRN:
r = input n, start line 1 initial state {(n R, 1 L}
1) inc(r L —-L +R

) inc(r) LR
2) dec(r) if zero goto 1 L,+R—L, ; L, —L

| — | + S |Needtobe

3) Inc(s) 3 4 very slow!
4) dec(s) if zero goto 2 L,+S— L, &L_)L/
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How to slow down reaction L2 — L1? '
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How to slow down reaction L2 — L1?

Use a clock:
1C,1F,nB
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How to slow down reaction L, — L ? |

Use a clock: ‘
1C,1F,nB
F+C —-F+C, B+C,—-B+C,

F+C,— F+C, B+C,—B+C,
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How to slow down reaction L2 — L1?

Use a clock:
1C,1F,nB
F+C. —-F+C, B+C,—B+C

F+C,— F+C, B+C,—B+C,
1 1 1 1

e Te e T e
n n n n

reverse-biased random walk
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How to slow down reaction L2 — L1?

Use a clock:
1C,1F,nB
F+C. —-F+C, B+C,—B+C

F+C,— F+C, B+C,—B+C,
1 1 1 1
C, appears after
| 6'@‘@ j@ expected time = n*!
n n n n
reverse-biased random walk
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How to slow down reaction L2 N L1?

Use a clock: Ck 0 L2 N C1 o L1
1C,1F,nB

F+C. —-F+C, B+C,—B+C
F+C,— F+C, B+C,—B+C,

1 1 1
C, appears after
| e@@ . j@ expected time = n«

1
n
reverse-biased random walk
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How to slow down reaction L2 N L1?

Use a clock: Ck 0 L2 N C1 o L1
1C,1F,nB

F+C. —-F+C, B+C,—B+C
F+C,— F+C, B+C,—B+C,

1 1 1
C, appears after
| e@@ . j@ expected time = n«

1
n
reverse-biased random walk  E[timeforL,+ R— L]<n

205




Probability 1 computation




B

Probability 1 computation

« Errr... isn't that stable computation?
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Probability 1 computation

« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.
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« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.
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Consider...
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Probability 1 computation

« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.

Consider...

Y52y
1 initial state {1Y,1N}
H

Y
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Probability 1 computation

« Errr... isn't that stable computation?

« With finite state space (e.g. population protocols), yes.

Y 2 2Y
vy

Consider... initial state {1Y,1N\}

| Theorem: All (Turing) computable predicates can be
computed by a CRN with probability 1.

(Cummings, Doty, Soloveichik, DNA 2014)
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