Algorithmic self-assembly with DNA tiles

David Doty (University of California, Davis)
Algorithmic Foundations of Programmable Matter
Dagstuhl, August 2018

Aol f
m[ﬁ] iy SCHLOSS DAGSTUHL
mill =

Leibniz-Zentrum fiir Informatik

DNA tile self-assembly

DNA tile self-assembly

monomers (“tiles” made from DNA) bind into a crystal lattice

. I I .
Z8E3 2333332332332 3E3
e F131itidit it da4ad attice
veveved 133333333333 33 33 313 3 Moaiea
wivieivANSE S e e S e et s o "“”ﬁf‘w"'
DOHBODD CRERLRERRREREER fw ‘d«rwm
Y, M»mupmm ettt isis i sy 'wxv-ﬂm
DOOOODOPOHRE %, BIRRRRR2R =R ww'o 0TU0s
MOOD DOODOIPON TR TR TR TR g"}_wl,w, PO
o«..?uu«fu«ouwg 2288555 'WWW
»wpm&wymw‘e EREEE ‘oowwln KROOPOIU
Aquu«w.‘a 000 BRELE -odnqm Wm
"'"‘ OOPOBDOODOVENS £/ 0UPOVONPOWIEY o
nqwue@umw 0000 “IWMW
»m»m»wp.u Q WWMM%V
PO /S GOGOOVTVGUITTVGU
Mmaw?m‘www 2E2S AR 0 W‘”. POV
tq«uwuwt‘mn' RS33 z.énqwzw ‘N'W
wmp a.u»Iwmv EEEEERS gwwwnilww» AV,
509 u""" M%_ﬁ Eé §,§ §,§ §,zgw% »?m U0
AAOADDODAO OFOSCFOTTITY
200 Mtow 0012 2RRIRAIRAIRIRR ! QGUOIPVGUIR
‘hm SS8S32383533333 000000
AOOOAO0L 3 52 ERER 2R XD ED KA odovrre
m R A o b bl
DODOD z;zjgﬁzezﬁzﬁzeietﬁ;s DPUPVP
RS SR SR SRS RSN ERENERERE
SRR IRERIS I I ORLIIIILDS
SR R R RE R T ITREITIITSES
ged8d8esgsg8ssss58s8ss

Source: Programmable disorder in random DNA tilings. Tikhomirov,
Petersen, Qian, Nature Nanotechnology 2017 2

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982

sfelel Al

o
=
o

T

c

T

G

c

A T
C G
G ¢
T A
T A
G c
C G
AT
AT
G ¢
C G
C G
G ¢
AT
T A
T A
G C
cC G
G ¢
G ¢
AT
G ¢
A
G|
A
|
G|

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at

en.wikipedia; Permission: PDB; Released / - .
under the GNU Free Documentation License. C— D NA tl Ie
B
= = G
- =p c
&ﬁf, T Ned Seeman, Journal of
Nk = £) 5
j 1} ' ' o aaSP =BT o8 2 C G . .
et Ry L _ i s < Theoretical Biology 1982
o, — b T A
{ ..‘ o~ » —
G C
C G
AT
AT
G C
C 6
T T[T Tl c T T C TCGICICIAITI
CIGIGITIAIAGCCAATCAGT Tle|lclalclalclslT]als
cC G W
G C
AT
T A .
A sticky end
G C
cC G
G C
G ¢
AT
G C
A
G|
A
|
G|
Ve 3

Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

) ﬁf'-,
ot <1
5 [RTNES
iRg: oLl [}
O o1
Ea X

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982

no)»pno—cqomblolol—ilol—i

[N EeN Bl Bl [oN [N B-0 b3 KN Foll by

sfclel Al T]
G

\/GAAGA

sticky end

»
2] G
X -
[} ® ~
= s A]
7] f ¥ 0
—_ PN h A gura il " .
— ™ Pt s G4 _n.".’ e 1Y
TN L 4 1 o e D
> ‘ : % e
L= & ¥) \\Y
> = X 4 8 Ly
Q 0
@0 i
=)
O @ ot
a‘ Y
o ® -
—
—
4
4
[P $]
-
4
(ol
4
[}
-
(o]
o
4
4
(ol

[aR B=N FoN IoN Eol FoN EN EoN b0 InE Io]

o |o|= o |=/|lo]|=|o|o]e|o]=]=]-]c]e

ile self-assembly

ice of DNA t

Pract

IoN

f DNA tile in soluti

ace many copies o

o

L
. . 1ﬂ M

-
R EEERE B
NANEEEe

B
RN R O e e l-iill.—.lli .
EE RN YRR R oa
A E R R R e
-

e L]

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011

(not the same tile motif in this image)

T

PN T\ AN
ot tofot S LTS FEENREEEERE R RE R R n_imznzg“_”_“_”_i”:_ﬁ”:_”z“_”_i“_”_/ HEEEEEEERPERERRR

- _._i/ / A

FEEEENNEEENNEENEN

B EENENEEENEEEEE NN EEE NN ENEN
L EENENEEENEEEEENNEEENNEENEN

\ o

EEEEEEEEEEEE ToTToT ol
vvvvvvvvvvv

7

oS
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
clelelololdof ol clelo o<l <ol elelclilrlolofolol olclol el o] <folol | ol ol <] c|o] o

HEENENEEENEEEEENNEEENNEENEN

EEENENEEENEEERENNEEENNEENEN

7 T T
lofetolol Lol el L] FEENRREERPREEREEEXERRERAREE FEEEREEERREREREEESERRERRREE| NERRREREEREREEER
~ N

[N

RN EERNNEENEN
FERErNEEENNEENEN

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

. T
<€

TP

<l

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

1111
TP

L
<L

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)

T e <Jund TN I {mIIIIIIIIIIIIII IIIIIIIIIIIIII"")
T ||||||||IIIIII,HImIIIIIIIIIIIII IIIIIIIIIIIIIEIII“IIIIIIIIIIIII IIIIIIIIIIIIIIHImIIIIIIIIIIIII IIIIIIIIIIIIIEIIIHIIIIIIIIIIIII TN
T ||||IIIIIIIIIQIIIHIIIIIIIIIIIII IIIIIIIIIIIIIwImIIIIIIIIIIIII IIIIIIIIIIIII“IIIHIIIIIIIIIIIII IIIIIIIIIIIIIIHImIIIIIIIIIIIII ™
o (T T < TN g <L I

£ £ 4 £

Practice of DNA tile self-assembly

T T
<€

" TP
<€

Practice of DNA tile self-assembly

T

Al

TP

<L

N

single crossover

Practice of DNA tile self-assembly

T

Al

TP

<L

N

single crossover

— \ —
T ¥ il

Figure from Schulman, Winfree, PNAS 2009

double crossover

Practice of DNA tile self-assembly

| 3R B BN |

Theory of algorithmic selt-assembly

What if...
... there is more than one tile type?

... some sticky ends are “weak”?

\ e . .
(0 Sml Erik Winfree

Abstract Tile Assembly Model

Erik Winfree, Ph.D. thesis,
Caltech 1998

Abstract Tile Assembly Model

* tile type = unit square ”‘%

1# ‘%“.'y;- &,.}';' °F
T4 ;'” B/ }

&

Erik Winfree, Ph.D. thesis,
Caltech 1998

Abstract Tile Assembly Model

* tile type = unit square B

north glue label

* each side has a glue
with a label and south glue label
strength (0, 1, or 2) H

[99e| an|3 1sam

strength O

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—

Caltech 1998

Abstract Tile Assembly Model

* tile type = unit square

o
Q0
&
[
=
oo
L=
+—
=)
-,

* each side has a glue
with a label and
strength (0, 1, or 2)

west glue labg

strength O
* tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—

Caltech 1998

Abstract Tile Assembly Model

* tile type = unit square B * finitely many tile types

north glue label

[99e| an|3 1sam

* each side has a glue * infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) B
strength O

 tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—

Caltech 1998

Abstract Tile Assembly Model

* tile type = unit square B * finitely many tile types

north glue label

[99e| an|3 1sam

* each side has a glue * infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) H
strength 0 e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
H
strength 2 (strong)
Erik Winfree, Ph.D. thesis, —-—

Caltech 1998

Abstract Tile Assembly Model

* tile type = unit square B * finitely many tile types

north glue label

[99e| an|3 1sam

* each side has a glue * infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) B
strength 0 e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
- * tile can bind to the assembly
strength 2 (strong) if total binding strength > 2
. (two weak glues or
Erik Winfree, Ph.D. thesis,

Caltech 1998 one strong glue)

Example tile set

Example tile set

Example tile set

Example tile set

“cooperative
binding”

10

Example tile set

“cooperative
binding”

10

Example tile set

“cooperative
binding”

10

Example tile set

“cooperative
binding”

10

Example tile set

st sat st -isat et
SRR R R
ok E o e FE
SRS S R
SRS o EE S -
SRR o R
o SR
S R e,
SRS S et ot it
SR R R
SRS
S
S SR
SR O e
SR
s e
e B L e
N

] | e | P

-~ nat-—at- -t et et

T L
ot - A -ERE R o R
SR PN RS P
T

|
|
|
+
|
I

I
|

SRR

i

I
|
I

44+

SEER
______+_|_______

SRR SRR AR

P R AR
et

-5 R A S

P R RS RS
BRI

-
+

FEE SR B S S R R
SR SR SRR A
SR S SR R SR
RS B S S R R S A
S SRR S R N A
FEE S R SR O S SR S
B R R S SRR S A
FER S R SR S R
[EE S R SRR S R e
FEE R SRR S S AR S SR
B R S SR S

FEE S B SR R S R
S I O I S

okt ++-

T e g S

SLoEs o bl b

change function to half-adder

B - ER
Fiht £ £ £

o
TR

Algorithmic self-assembly
In action

N raw AFM image sheared image

LR

shearing

e
o
.
F
L]
- -
-

80 nm

[Crystals that co:’ﬁ! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

13

Algorithmic self-assembly
In action (

<€—— simulation

. ; <€<—— AFM image
N raw AFM image sheared image sorting < 8
.
Ao N 100 nm
.l
i
A
.. o
I*‘ .' . ~33 :::'oooooooumooooooouumnuunuum»uu
> 9 Teorrasaissummsreasiosh,
. shearing parity <
i |
. |

cellular
automaton
rule 110

80 nm

I I
[Crystals that co:’wt! Physical principles and experimental investigations of DNA tile self- [Diverse and robust molecular algorithms using reprogrammable DNA

assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014] self-assembly. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted] 13

How computationally powerful
are self-assembling tiles?

Turing machines

Turing machines

H/—/

tape = memory

15

Turing machines

state = line of code

H/—/

tape = memory

15

Turing machines
state = line of code

initial state =s

H/—/

tape = memory

15

Turing machines
state = line of code

initial state =s

5,0 q,0,—»

H/—/
transitions

(instructions) tape = memory

15

Turing machines
state = line of code

current state initial state = s

\@): q,0,—~>

W
transitions

(instructions) tape = memory

15

Turing machines
state = line of code
current symbol

current state initial state = s

N

0) 9,0,

W
transitions

(instructions) tape = memory

15

Turing machines
state = line of code
current symbol

next state |n|t|a| state = s

current state \
s,0: ,9

W
transitions

(instructions) tape = memaory

15

Turing machines
state = line of code

current symbol next symbol

current state \ next state initial state = s
s,0: o@

W
transitions

(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

current state next state / next move initial state =s

\S’O: ({O@/

W
transitions

(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

Sext move initial state = s

current state next state

q,0: t,1,&
q,1: s,0,->
t,0: ul,—>
u,1: HALT

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

Sext move initial state = s

current state next state

q,0: t,1,<

t,0: ul,-

u,l: HALT w—/

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

Sext move initial state = s

current state next state

q,0: t,1,<

t,0: ul,-

u,l: HALT w—/

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

current state next state / next move initial state =s

t,0: u,l1,—>

u,1: HALT H/—/

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

current state next state / next move initial state =s

u,1: HALT H/—/

transitions
(instructions) tape = memory

15

Turing machines
state = line of code

current symbol next symbol

current state next state / next move initial state =s

transitions
(instructions) tape = memory

15

Tile assembly is Turing-universal

Tile assembly is Turing-universal

s,0: q,0,>
q,0: t,1,&
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

5,0: 9,0,
q,0: t,1,&
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

5,0: g,0,~>
q,0: t,1,<
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

5,0: g,0,~>
q,0: t,1,<
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

5,0: g,0,~>
q,0: t,1,<
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

5,0: g,0,~>
q,0: t,1,<
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

5,0: g,0,~>
q,0: t,1,<
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

5,0: g,0,~>
q,0: t,1,<
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

gr+4 4+

5,0: g,0,~>
q,0: t,1,<
q,1: s,0,>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

gr+4 4+

s,0: g,0,>
q,0: t,1,<
q,1: s,0,—>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

s,0: g,0,>
q,0: t,1,<
q,1: s,0,—>
t,0: ul,—>
u,l: HALT

Tile assembly is Turing-universal

Tile assembly is Turing-universal

Frh
+HFE

S FE

0) ql 0)

e

Tile assembly is Turing-universal

+FE
O

o
P

Tile assembly is Turing-universal

HALT

+EFE
Tty

0

+HFE

S FE

0) ql 0)

e

u,l: HALT

Tile assembly is Turing-universal

time
A HALT

+EFE
Tty

0

+HFE

S FE

0) ql 0)

e

u,l: HALT

Putting the algorithm in algorithmic self-assembly

* set of tile types is like a program

* shape it creates, or pattern it paints, is like the output of the program

tile set A:

!

tile set B:

17

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set

A 0o
EE
EEEEE

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
Al 0 seed X: a

H N
EEEEDE

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
A 00 seed X: . seed Y. E

EEEEE ﬂ @

A(X) A(Y)

Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set o

A oo seed X: . seed Y E seed Z: (DNA origami
- rectangle with sticky

EEEE®m @ @ ends on right edge)

. © Barish, Schulman, Rothemund,
Winfree, PNAS 2009

Calculating parity of 6-bit string:
1 algorithm, 2° inputs

Calculating parity of 6-bit string:
1 algorithm, 2° inputs

ey 3 .

10!

single set of tiles {
computing parity

00!

N

19

Calculating parity of 6-bit string:
1 algorithm, 2° inputs

single set of tiles {
computing parity

00!

19

NN] 0(100000) = 211

S PDNLE) B

Calculating parity of 6-bit string: =

0111} = 82

o(100011) =213
o(160101) = 003
o(160110) = 222
pa180a]) = 841

1 algorithm, 2° inputs

{1181} = 1A

o(le1601) =231

o(101010) = 232

0(101100) = 234 [RSC] [ZOP TP

o(101111) = 302 [% I {\..7,,.,..:

o(11000) =310 SERLDE T TRRRONEIN

V2O “esvvmnina

M1 - 1y

SR} = 111

; i L HL E R]
(a &} % \h‘ t ’ t “ ol ‘ m w‘ aiieied) = i1
! e

eilled) = 154

splie e m ol =0

0(110610) = 320

o(110100) = 330

0(110111) = 400

0(111000) = 401

o(111011) = 411

o(111101) = 421

o(100001) = 002

single set of tiles <] B P——

computing parity] R
. D . o(eeelel) = 021

\ ofeee11e) = 022 [

0(100010) = 212

0(16@100) = 221

o(100111) = 223

o(ee10e1) = 024
o(101000) = 230

100!

o(ee1010) = 030
o(101011) = 233

0{001100) = 101
0(101101) = 300
o{ee1111) = 118
0(101110) = 301
o{e1ee01) = 112
0(110000) = 303
o(e16010) = 113

o(116811) = 333

o(e1e1ee) = 121

ote111) = 130§ 0(110101) = 604

o(e11000) = 442 0(111001) = 404

[Iterated Boolean circuit computation via a programmable DNA tile oerzenny= 13
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted] oferion - 0 |

o(011110) = 201

0(111010) = 418

0(111100) = 420

0(111111) = 431

20 seeds: mmm oo Do s s

So tiles can compute... what’s that good for?

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

aEiffeI_tower

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

aEiffeI_tower

These tiles are universally programmable for building any shape.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

Open problems

Theory of programmable barriers to nucleation in tile self-assembly

21

Experimental tile self-assembly

e Design of arbitrary shapes from a molecular canvas

Molecular canvas

o] olalel e lo

<] 8] =2 | o[[0

o o [+~ <]l
ENEDEARE .
. [HHH]

ﬁMIHEEHH

A |
K
U
i
A
o]
@]
I

Wei, Dai, Yin, Nature 2012

2 (T

Experimental tile self-assembly

@ Design of arbitrary shapes from a molecular canvas

Molecular canvas

10,000 components

w’ ~
¥ ;l_:'\!

AEIEIEFIEY PR 6
O T [olanlelillalT

Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017

assembly

Experimental tile self

@ Design of arbitrary shapes from a molecular canvas

Molecular canvas

'wu

DoAY

B swees

Triangle

Eagle head

10,000 components

47 [2" |~ea=(0 [0 fm|™
BROARNDEEL
| xoe] « Joe |0 | | ®] ¥
EIIIEEEEEE

Tikhomirov, Peterson, Qlan, Nature 2017

Ong et al, Nature 2017

Wei, Dai, Yin, Nature 2012

Experimental tile self-assembly

@ Design of arbitrary shapes from a molecular canvas

Molecular canvas

Temperature (°C)

262MDa
507 _509 51.1 512 514 515 M

500 bp 1 0.8% 0.8% 1.4% 1.3% 09%

3.9%
5000

1500

total annealing
time (hours)

AEIEIEFIEY PR 6
¢ 15 | Plaftit]blmlal]

Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017 Tikhomirov, Peterson, Qlan, Nature 2017

Experimental tile self-assembly

@ Design of arbitrary shapes from a molecular canvas

Temperature (°C)

262MDa
507 _509 51.1 512 514 515 M

500 bp

1 0.8% 0.8% 1.4% 1.3% 09%

5000

1500

total annealing
time (hours)

3 |
(O[5 |9[o]|t[#] ¢]ma 1]

Wei, Dai, Yin, Nature 2012

Ong et al, Nature 2017 Tikhomirov, Peterson, Qlan, Nature 2017

Secret to higher vields: Control of nucleation

Top Tile

I “_: ” g2
eced Tile

Bottom Tile

' 0ODODOoooooDoooo
olsle[slelsle[s[o]sle]s]e]s
Middle Tiles (L D | | A | | A

(] I

Schulman, Winfree, SICOMP 2009

Secret to higher vields: Control of nucleation

Top Tile
1 “Uos s ” g %
| zig-zag” tile set L Shaped
]

Bottom Tile | [| e | e e |
CO0O0000HO0R0a0aA
FINPINFISIFINIPINFIN SN

Middle Tiles F_3F 3F 3¢ 3¢ 37 JF 3

(] I

Schulman, Winfree, SICOMP 2009

intended growth &%[E% S% ED%ES% SS% oo...
T

2N]#
from seed: —

— e— [r—

| SSCAREON |

growth pathways ~— <% Fﬁ ggﬁ ﬁﬁ Sgﬁ SS ﬁ 0

without seed: W

[r—
[|

Secret to higher vields: Control of nucleation

Top Tile 1-2f—Wwidth 3 s Schulman
] “y,io ” g == \\idth 4 VW -~ !
Zig-2 il o i
. B-zag_tlesel Seed i g Ml—width 5 T 7T | Winfree,
VR o ﬁ 0.81—Width 6 1 PNAS 2009
g | e | e | e | e | e | e = 66l Anneal -
7Y OpOooooooooooog o 06
FINIFZINIZINZINIZIN PINZIN §O.4- Melt
fiddle Tiles AR anlanlanlanlan o
Middle Til = 0.2

rl 10 20 30 40
] D

Temperature (°C)
Schulman, Winfree, SICOMP 2009

intended growth %% @% S% @D%@B% Sg % Sgﬁ
from seed: — —
growth pathways 3 % m:% %e %% %% % % %
without seed: — — — < O'— og </ og
3 3 3

23

Open problems

* Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Q(b) weak attachments”.

Open problems

* Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Q(b) weak attachments”.

* Conjecture: If tiles self-assemble with seed o, but have kinetic barrier
b to nucleation without o, then o must be “size” at least b.

Open problems

* Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Q(b) weak attachments”.

* Conjecture: If tiles self-assemble with seed o, but have kinetic barrier
b to nucleation without o, then o must be “size” at least b.

* Conjecture: If there is a “combinatorial” barrier to nucleation (at least
b weak attachments must occur to grow a structure a), then there is a
“classical physics” barrier to nucleation (growth rate of a is “low”
under mass-action kinetics)

Open problems

* Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Q(b) weak attachments”.

* Conjecture: If tiles self-assemble with seed o, but have kinetic barrier
b to nucleation without o, then o must be “size” at least b.

* Conjecture: If there is a “combinatorial” barrier to nucleation (at least
b weak attachments must occur to grow a structure a), then there is a
“classical physics” barrier to nucleation (growth rate of a is “low”
under mass-action kinetics)

* Goal: Develop general scheme for self-assembling shapes with
programmable kinetic barriers to nucleation. (even “hard-coded”
would be interesting given low yields of experimental results)

Thank you!

	Algorithmic self-assembly with DNA tiles
	DNA tile self-assembly
	DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Theory of algorithmic self-assembly
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Algorithmic self-assembly in action
	Algorithmic self-assembly in action
	How computationally powerful are self-assembling tiles?
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	Open problems
	Experimental tile self-assembly
	Experimental tile self-assembly
	Experimental tile self-assembly
	Experimental tile self-assembly
	Experimental tile self-assembly
	Secret to higher yields: Control of nucleation
	Secret to higher yields: Control of nucleation
	Secret to higher yields: Control of nucleation
	Open problems
	Open problems
	Open problems
	Open problems
	Thank you!

