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DNA tile self-assembly
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DNA tile self-assembly
monomers (“tiles” made from DNA) bind into a crystal lattice

2
Source: Programmable disorder in random DNA tilings. Tikhomirov, 
Petersen, Qian, Nature Nanotechnology 2017

tile lattice



Practice of DNA tile self-assembly

DNA tile
Ned Seeman, Journal of 
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at 
en.wikipedia; Permission: PDB; Released 
under the GNU Free Documentation License.
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Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011
4

Practice of DNA tile self-assembly

(not the same tile motif in this image)



Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly



Practice of DNA tile self-assembly

single crossover



Practice of DNA tile self-assembly

single crossover

double crossover

Figure from Schulman, Winfree, PNAS 2009



Practice of DNA tile self-assembly

triple-crossover
tile (LaBean, Yan, 
Kopatsch, Liu, 
Winfree, Reif, 
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein, 
Reif, LaBean, Science 2003)

DNA origami tile (Liu, Zhong, Wang, 
Seeman, Angewandte Chemie 2011)

Tikhomirov, Petersen, Qian, 
Nature Nanotechnology 2017

single-stranded tile (Yin, 
Hariadi, Sahu, Choi, Park, LaBean, 
Reif, Science 2008)

150 nm

double-
crossover tile 
(Winfree, Liu, 
Wenzler, Seeman, 
Nature 1998)



Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree
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Abstract Tile Assembly Model

Erik Winfree, Ph.D. thesis, 
Caltech 1998
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Abstract Tile Assembly Model
• tile type = unit square

Erik Winfree, Ph.D. thesis, 
Caltech 1998
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Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glue label

Erik Winfree, Ph.D. thesis, 
Caltech 1998
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Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

• tiles cannot rotate
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Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies 
of each type
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Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue 
with a label and 
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies 
of each type

• assembly starts as a single 
copy of a special seed tile

• tile can bind to the assembly 
if total binding strength ≥ 2 
(two weak glues or              
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glue label

Erik Winfree, Ph.D. thesis, 
Caltech 1998
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Algorithmic self-assembly 
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image



Algorithmic self-assembly 
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image

w

parity

sorting

simulation

AFM image

cellular 
automaton
rule 110

100 nm

[Diverse and robust molecular algorithms using reprogrammable DNA 
self-assembly. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted]



How computationally powerful 
are self-assembling tiles?
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Putting the algorithm in algorithmic self-assembly

• set of tile types is like a program
• shape it creates, or pattern it paints, is like the output of the program
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Calculating parity of 6-bit string: 
1 algorithm, 26 inputs
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Calculating parity of 6-bit string: 
1 algorithm, 26 inputs

19

[Iterated Boolean circuit computation via a programmable DNA tile 
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted]

single set of tiles 
computing parity

seed encoding 100101

seed encoding 110101

26 seeds:



So tiles can compute… what’s that good for?
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So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite 
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]
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σsmiley_face
σEiffel_tower

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite 
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

These tiles are universally programmable for building any shape.



Open problems
Theory of programmable barriers to nucleation in tile self-assembly

21



Experimental tile self-assembly

Wei, Dai, Yin, Nature 2012
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Experimental tile self-assembly

Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017 Tikhomirov, Peterson, QIan, Nature 2017

after purification!



Secret to higher yields: Control of nucleation
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Schulman, Winfree, SICOMP 2009
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Schulman, Winfree, SICOMP 2009

“zig-zag” tile set

intended growth 
from seed:

growth pathways 
without seed:

Schulman, 
Winfree, 
PNAS 2009



Open problems

• Goal: Define kinetic barrier to nucleation: something like “assembling 
any structure of size b requires Ω(b) weak attachments”.
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Open problems

• Goal: Define kinetic barrier to nucleation: something like “assembling 
any structure of size b requires Ω(b) weak attachments”.

• Conjecture: If tiles self-assemble with seed σ, but have kinetic barrier 
b to nucleation without σ, then σ must be “size” at least b.

• Conjecture: If there is a “combinatorial” barrier to nucleation (at least 
b weak attachments must occur to grow a structure α), then there is a 
“classical physics” barrier to nucleation (growth rate of α is “low” 
under mass-action kinetics)

• Goal: Develop general scheme for self-assembling shapes with 
programmable kinetic barriers to nucleation. (even “hard-coded” 
would be interesting given low yields of experimental results)

24



Thank you!
Questions?

25
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