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DNA tile self-assembly



DNA tile self-assembly

monomers (“tiles” made from DNA) bind into a crystal lattice
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

DNA tile

Ned Seeman, Journal of
Theoretical Biology 1982
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at

en.wikipedia; Permission: PDB; Released / - .
under the GNU Free Documentation License. C— D NA tl Ie
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Practice of DNA tile self-assembly

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.
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Ned Seeman, Journal of
Theoretical Biology 1982
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(not the same tile motif in this image)
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Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)




Practice of DNA tile self-assembly

What really happens in practice to Holliday junction (“base stacking”)
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly
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Practice of DNA tile self-assembly
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Theory of algorithmic selt-assembly

What if...
... there is more than one tile type?

... some sticky ends are “weak”?

\ e . .
(0 Sml  Erik Winfree




Abstract Tile Assembly Model

Erik Winfree, Ph.D. thesis,
Caltech 1998




Abstract Tile Assembly Model

* tile type = unit square ”‘%
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Abstract Tile Assembly Model

* tile type = unit square B

north glue label

* each side has a glue
with a label and south glue label
strength (0, 1, or 2) H

[99e| an|3 1sam

strength O

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—

Caltech 1998
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* each side has a glue
with a label and
strength (0, 1, or 2)

west glue labg

strength O
* tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—
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Abstract Tile Assembly Model

* tile type = unit square B * finitely many tile types

north glue label

[99e| an|3 1sam

* each side has a glue * infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) B
strength O

 tiles cannot rotate

strength 1 (weak)

strength 2 (strong)

Erik Winfree, Ph.D. thesis, —-—

Caltech 1998




Abstract Tile Assembly Model

* tile type = unit square B * finitely many tile types

north glue label

[99e| an|3 1sam

* each side has a glue * infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) H
strength 0 e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
H
strength 2 (strong)
Erik Winfree, Ph.D. thesis, —-—

Caltech 1998



Abstract Tile Assembly Model

* tile type = unit square B * finitely many tile types

north glue label

[99e| an|3 1sam

* each side has a glue * infinitely many tiles: copies

with a label and southglue label of each type
strength (O, 1, or 2) B
strength 0 e assembly starts as a single
* tiles cannot rotate copy of a special seed tile
strength 1 (weak)
- * tile can bind to the assembly
strength 2 (strong) if total binding strength > 2
. (two weak glues or
Erik Winfree, Ph.D. thesis,

Caltech 1998 one strong glue)
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Example tile set

“cooperative
binding”

10



Example tile set

“cooperative
binding”

10



Example tile set

“cooperative
binding”

10



Example tile set

“cooperative
binding”

10



Example tile set
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Algorithmic self-assembly
In action
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[Crystals that co:’ﬁ! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]
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Algorithmic self-assembly
In action (
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assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014] self-assembly. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted] 13



How computationally powerful
are self-assembling tiles?



Turing machines



Turing machines
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Turing machines
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Turing machines
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Tile assembly is Turing-universal
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Tile assembly is Turing-universal
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Tile assembly is Turing-universal
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Putting the algorithm in algorithmic self-assembly

* set of tile types is like a program

* shape it creates, or pattern it paints, is like the output of the program

tile set A:

!

tile set B:

17
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How is a set of tile types not like a program?
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Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
Al 0 seed X: a
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Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set
A 00 seed X: . seed Y. E

EEEEE ﬂ @

A(X) A(Y)




Putting the algorithm in algorithmic self-assembly

How is a set of tile types not like a program?
* Where’s the input to the program?
* One perspective: pre-assembled seed encodes the input

tile set o

A oo seed X: . seed Y E seed Z: (DNA origami
- rectangle with sticky

EEEE®m @ @ ends on right edge)

. © Barish, Schulman, Rothemund,
Winfree, PNAS 2009




Calculating parity of 6-bit string:
1 algorithm, 2° inputs
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Calculating parity of 6-bit string:
1 algorithm, 2° inputs

single set of tiles {
computing parity

00!
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NN ] 0(100000) = 211

S PDNLE) B

Calculating parity of 6-bit string: =

0111} = 82

o(100011) =213
o(160101) = 003
o(160110) = 222
pa180a]) = 841

1 algorithm, 2° inputs

{1181} = 1A

o(le1601) =231

o(101010) = 232

0(101100) = 234 [RSC] [ ZOP TP

o(101111) = 302 [ % I {\..7,,.,..:

o(11000) =310 SERLDE T TRRRONEIN

V2O “esvvmnina

M1 - 1y

SR} = 111

; i L HL E R ]
(a &} % \h‘ t ’ t “ ol ‘ m w‘ aiieied) = i1
! e

eilled) = 154

splie e m ol =0

0(110610) = 320

o(110100) = 330

0(110111) = 400

0(111000) = 401

o(111011) = 411

o(111101) = 421

o(100001) = 002

single set of tiles < ] B P——

computing parity ] R
. D . o(eeelel) = 021

\ ofeee11e) = 022 [

0(100010) = 212

0(16@100) = 221

o(100111) = 223

o(ee10e1) = 024
o(101000) = 230

100!

o(ee1010) = 030
o(101011) = 233

0{001100) = 101
0(101101) = 300
o{ee1111) = 118
0(101110) = 301
o{e1ee01) = 112
0(110000) = 303
o(e16010) = 113

o(116811) = 333

o(e1e1ee) = 121

ote111) = 130§ 0(110101) = 604

o(e11000) = 442 0(111001) = 404

[Iterated Boolean circuit computation via a programmable DNA tile oerzenny= 13
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted] oferion - 0 |

o(011110) = 201

0(111010) = 418

0(111100) = 420

0(111111) = 431

20 seeds:  mmm oo Do s s
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Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]
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Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.
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So tiles can compute... what’s that good for?

Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed o, “encoding” S, T self-
assembles S.

aEiffeI_tower

These tiles are universally programmable for building any shape.

[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]




Open problems

Theory of programmable barriers to nucleation in tile self-assembly

21



Experimental tile self-assembly

e Design of arbitrary shapes from a molecular canvas

Molecular canvas
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Wei, Dai, Yin, Nature 2012
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Experimental tile self-assembly

@ Design of arbitrary shapes from a molecular canvas

Molecular canvas

10,000 components
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Experimental tile self

@ Design of arbitrary shapes from a molecular canvas

Molecular canvas
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Tikhomirov, Peterson, Qlan, Nature 2017

Ong et al, Nature 2017
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Experimental tile self-assembly

@ Design of arbitrary shapes from a molecular canvas

Molecular canvas

Temperature (°C)

262MDa
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500 bp 1 0.8% 0.8% 1.4% 1.3% 09%

3.9%
5000

1500

total annealing
time ( hours)
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Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017 Tikhomirov, Peterson, Qlan, Nature 2017




Experimental tile self-assembly

@ Design of arbitrary shapes from a molecular canvas

Temperature (°C)

262MDa
507 _509 51.1 512 514 515 M

500 bp

1 0.8% 0.8% 1.4% 1.3% 09%

5000

1500

total annealing
time ( hours)

3 |
(O[5 |9[o]|t[#] ¢]ma 1]

Wei, Dai, Yin, Nature 2012

Ong et al, Nature 2017 Tikhomirov, Peterson, Qlan, Nature 2017



Secret to higher vields: Control of nucleation

Top Tile
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Schulman, Winfree, SICOMP 2009




Secret to higher vields: Control of nucleation

Top Tile
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Schulman, Winfree, SICOMP 2009
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Secret to higher vields: Control of nucleation
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Open problems

* Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Q(b) weak attachments”.

* Conjecture: If tiles self-assemble with seed o, but have kinetic barrier
b to nucleation without o, then o must be “size” at least b.

* Conjecture: If there is a “combinatorial” barrier to nucleation (at least
b weak attachments must occur to grow a structure a), then there is a
“classical physics” barrier to nucleation (growth rate of a is “low”
under mass-action kinetics)

* Goal: Develop general scheme for self-assembling shapes with
programmable kinetic barriers to nucleation. (even “hard-coded”
would be interesting given low yields of experimental results)



Thank you!
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