
Algorithmic self-assembly with DNA tiles

David Doty (University of California, Davis)
Algorithmic Foundations of Programmable Matter

Dagstuhl, August 2018

DNA tile self-assembly

2

DNA tile self-assembly
monomers (“tiles” made from DNA) bind into a crystal lattice

2
Source: Programmable disorder in random DNA tilings. Tikhomirov,
Petersen, Qian, Nature Nanotechnology 2017

tile lattice

Practice of DNA tile self-assembly

DNA tile
Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

3

Practice of DNA tile self-assembly

DNA tile

sticky end

Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

3

Practice of DNA tile self-assembly

DNA tile

sticky end

Ned Seeman, Journal of
Theoretical Biology 1982

Source:en.wikipedia; Author: Zephyris at
en.wikipedia; Permission: PDB; Released
under the GNU Free Documentation License.

3

Place many copies of DNA tile in solution…

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011
4

Practice of DNA tile self-assembly

(not the same tile motif in this image)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly
What really happens in practice to Holliday junction (“base stacking”)

Practice of DNA tile self-assembly

Practice of DNA tile self-assembly

single crossover

Practice of DNA tile self-assembly

single crossover

double crossover

Figure from Schulman, Winfree, PNAS 2009

Practice of DNA tile self-assembly

triple-crossover
tile (LaBean, Yan,
Kopatsch, Liu,
Winfree, Reif,
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein,
Reif, LaBean, Science 2003)

DNA origami tile (Liu, Zhong, Wang,
Seeman, Angewandte Chemie 2011)

Tikhomirov, Petersen, Qian,
Nature Nanotechnology 2017

single-stranded tile (Yin,
Hariadi, Sahu, Choi, Park, LaBean,
Reif, Science 2008)

150 nm

double-
crossover tile
(Winfree, Liu,
Wenzler, Seeman,
Nature 1998)

Theory of algorithmic self-assembly

What if…
… there is more than one tile type?
… some sticky ends are “weak”?

Erik Winfree

8

Abstract Tile Assembly Model

Erik Winfree, Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model
• tile type = unit square

Erik Winfree, Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glue label

Erik Winfree, Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate
strength 0

strength 1 (weak)

strength 2 (strong)
no

rt
h

gl
ue

 la
be

l

so
ut

h
gl

ue
 la

be
l

west glue label

Erik Winfree, Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glue label

Erik Winfree, Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

• assembly starts as a single
copy of a special seed tile

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glue label

Erik Winfree, Ph.D. thesis,
Caltech 1998

9

Abstract Tile Assembly Model
• tile type = unit square

• each side has a glue
with a label and
strength (0, 1, or 2)

• tiles cannot rotate

• finitely many tile types

• infinitely many tiles: copies
of each type

• assembly starts as a single
copy of a special seed tile

• tile can bind to the assembly
if total binding strength ≥ 2
(two weak glues or
one strong glue)

strength 0

strength 1 (weak)

strength 2 (strong)

north glue label

south glue label

w
est glue label

Erik Winfree, Ph.D. thesis,
Caltech 1998

9

W
N

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

10

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

10

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

10

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

“cooperative
binding”

10

W
N

Example tile set

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

N

N
1 W W

1

seed

10

W
N

seed

1
1

1
0

1
1

0
1

N

N
1 W W

1

0
0

0
0

0
0

1
1

11

W
N

W
N

0
0

0
0

0
1

1
1

1
0

1
0

1
0

0
1

N

N
1 W W

0

seed

change function to half-adder

12

W
N

W
N

0
0

0
0

0
1

1
1

1
0

1
0

1
0

0
1

N

N
1 W W

0

seed

change function to half-adder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

12

Algorithmic self-assembly
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image

Algorithmic self-assembly
in action

13

raw AFM image

shearing

[Crystals that count! Physical principles and experimental investigations of DNA tile self-
assembly, Constantine Evans, Ph.D. thesis, Caltech, 2014]

80 nm

sheared image

w

parity

sorting

simulation

AFM image

cellular
automaton
rule 110

100 nm

[Diverse and robust molecular algorithms using reprogrammable DNA
self-assembly. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted]

How computationally powerful
are self-assembling tiles?

14

Turing machines

15

Turing machines

15

…0 1 0 0 1 _1 _ _

tape ≈ memory

Turing machines

15

…0 1 0 0 1 _1 _ _

tape ≈ memory

state ≈ line of code

Turing machines

15

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→ s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

q

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = scurrent state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

s

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

q

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

t

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0 1

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Turing machines

15

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

u

…0 1 0 0 1 _1 _ _

tape ≈ memory

initial state = s

0 11

current state

current symbol

next state

next symbol

next move

transitions
(instructions)

state ≈ line of code

Tile assembly is Turing-universal

Tile assembly is Turing-universal

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6s 0 1
s 0

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6s 0 1
s 0

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 q
→

0

s 0

s 0 1
s 0

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 q
→

0

s 0

s 0 1
s 0

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 q
→

0

s 0

s 0 1
s 0

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 q
→

0

s 0

s 0 1
s 0

q 1←
q 1

q
→

1

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

s 0 1
s 0

q 1←
q 1

q
→

1

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

0 s
→

0
→

q 1
0 →
0

0
s 0←
s 0

s
→

0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ *
_

←
_^

_
_^

* s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

0 s
→

0
→

q 1
0 →
0

0
s 0←
s 0

s
→

0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

0 q
→

0
→

s 0
0 →
0

→
0

0 →
0

0
q 0←

q 0
q
→

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

0 s
→

0
→

q 1
0 →
0

0
s 0←
s 0

s
→

0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

0 q
→

0
→

s 0
0 →
0

→
0

0 →
0

0
q 0←

q 0
q
→

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

1 ←
1

t
←

q 0
t 0 t

←

t 0
→

0
0 →
0

→
0

0 →
0

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

0 s
→

0
→

q 1
0 →
0

0
s 0←
s 0

s
→

0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

0 q
→

0
→

s 0
0 →
0

→
0

0 →
0

0
q 0←

q 0
q
→

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

1 ←
1

t
←

q 0
t 0 t

←

t 0
→

0
0 →
0

→
0

0 →
0

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

1 u
→

1
→

t 0
u 1←
halt

u
→

1
0 →
0

→
0

0 →
0

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

0 s
→

0
→

q 1
0 →
0

0
s 0←
s 0

s
→

0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

0 q
→

0
→

s 0
0 →
0

→
0

0 →
0

0
q 0←

q 0
q
→

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

1 ←
1

t
←

q 0
t 0 t

←

t 0
→

0
0 →
0

→
0

0 →
0

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

1 u
→

1
→

t 0
u 1←
halt

u
→

1
0 →
0

→
0

0 →
0

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

HALT
halt

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALT

Tile assembly is Turing-universal

1 2
1

1 0 3
0

2 0 4
0

3 1 5
1

4 1 6
1

5 _
_^

6

0 ←
0

←
0

0 q
→

0

s 0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ *
_

←
_^

_
_^

*

s 0 1
s 0

q 1←
q 1

q
→

1

0 s
→

0
→

q 1
0 →
0

0
s 0←
s 0

s
→

0
0 ←
0

←
0

1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

0 q
→

0
→

s 0
0 →
0

→
0

0 →
0

0
q 0←

q 0
q
→

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

1 ←
1

t
←

q 0
t 0 t

←

t 0
→

0
0 →
0

→
0

0 →
0

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

1 u
→

1
→

t 0
u 1←
halt

u
→

1
0 →
0

→
0

0 →
0

0
1 ←
1

←
1

1 ←
1

←
1

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ ←
_

←
_

_ *
_

←
_^

_
_^

*

HALT
halt

s,0: q,0,→
q,0: t,1,←
q,1: s,0,→
t,0: u,1,→
u,1: HALTspace

time

Putting the algorithm in algorithmic self-assembly

• set of tile types is like a program
• shape it creates, or pattern it paints, is like the output of the program

17

Putting the algorithm in algorithmic self-assembly
How is a set of tile types not like a program?

18

Putting the algorithm in algorithmic self-assembly
How is a set of tile types not like a program?

• Where’s the input to the program?

18

Putting the algorithm in algorithmic self-assembly
How is a set of tile types not like a program?

• Where’s the input to the program?
• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly
How is a set of tile types not like a program?

• Where’s the input to the program?
• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly
How is a set of tile types not like a program?

• Where’s the input to the program?
• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly
How is a set of tile types not like a program?

• Where’s the input to the program?
• One perspective: pre-assembled seed encodes the input

18

Putting the algorithm in algorithmic self-assembly
How is a set of tile types not like a program?

• Where’s the input to the program?
• One perspective: pre-assembled seed encodes the input

18

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

seed encoding 100101

seed encoding 110101

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

single set of tiles
computing parity

seed encoding 100101

seed encoding 110101

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

single set of tiles
computing parity

seed encoding 100101

seed encoding 110101

Calculating parity of 6-bit string:
1 algorithm, 26 inputs

19

[Iterated Boolean circuit computation via a programmable DNA tile
array. Woods, Doty, Myhrvold, Hui, Wu, Yin, Winfree, submitted]

single set of tiles
computing parity

seed encoding 100101

seed encoding 110101

26 seeds:

So tiles can compute… what’s that good for?

20

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

σsmiley_face

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

σsmiley_face
σEiffel_tower

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

σsmiley_face
σEiffel_tower

So tiles can compute… what’s that good for?
Theorem: There is a single set T of tile types, so that, for any finite
shape S, from an appropriately chosen seed σS “encoding” S, T self-
assembles S.

20[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

These tiles are universally programmable for building any shape.

Open problems
Theory of programmable barriers to nucleation in tile self-assembly

21

Experimental tile self-assembly

Wei, Dai, Yin, Nature 2012

Experimental tile self-assembly

Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017

Experimental tile self-assembly

Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017 Tikhomirov, Peterson, QIan, Nature 2017

Experimental tile self-assembly

Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017 Tikhomirov, Peterson, QIan, Nature 2017

Experimental tile self-assembly

Wei, Dai, Yin, Nature 2012 Ong et al, Nature 2017 Tikhomirov, Peterson, QIan, Nature 2017

after purification!

Secret to higher yields: Control of nucleation

23

Schulman, Winfree, SICOMP 2009

“zig-zag” tile set

Secret to higher yields: Control of nucleation

23

Schulman, Winfree, SICOMP 2009

“zig-zag” tile set

intended growth
from seed:

growth pathways
without seed:

Secret to higher yields: Control of nucleation

23

Schulman, Winfree, SICOMP 2009

“zig-zag” tile set

intended growth
from seed:

growth pathways
without seed:

Schulman,
Winfree,
PNAS 2009

Open problems

• Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Ω(b) weak attachments”.

24

Open problems

• Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Ω(b) weak attachments”.

• Conjecture: If tiles self-assemble with seed σ, but have kinetic barrier
b to nucleation without σ, then σ must be “size” at least b.

24

Open problems

• Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Ω(b) weak attachments”.

• Conjecture: If tiles self-assemble with seed σ, but have kinetic barrier
b to nucleation without σ, then σ must be “size” at least b.

• Conjecture: If there is a “combinatorial” barrier to nucleation (at least
b weak attachments must occur to grow a structure α), then there is a
“classical physics” barrier to nucleation (growth rate of α is “low”
under mass-action kinetics)

24

Open problems

• Goal: Define kinetic barrier to nucleation: something like “assembling
any structure of size b requires Ω(b) weak attachments”.

• Conjecture: If tiles self-assemble with seed σ, but have kinetic barrier
b to nucleation without σ, then σ must be “size” at least b.

• Conjecture: If there is a “combinatorial” barrier to nucleation (at least
b weak attachments must occur to grow a structure α), then there is a
“classical physics” barrier to nucleation (growth rate of α is “low”
under mass-action kinetics)

• Goal: Develop general scheme for self-assembling shapes with
programmable kinetic barriers to nucleation. (even “hard-coded”
would be interesting given low yields of experimental results)

24

Thank you!
Questions?

25

	Algorithmic self-assembly with DNA tiles
	DNA tile self-assembly
	DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Practice of DNA tile self-assembly
	Theory of algorithmic self-assembly
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Abstract Tile Assembly Model
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Example tile set
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Algorithmic self-assembly in action
	Algorithmic self-assembly in action
	How computationally powerful are self-assembling tiles?
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Turing machines
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Tile assembly is Turing-universal
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Putting the algorithm in algorithmic self-assembly
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	Calculating parity of 6-bit string: �1 algorithm, 26 inputs
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	So tiles can compute… what’s that good for?
	Open problems
	Experimental tile self-assembly
	Experimental tile self-assembly
	Experimental tile self-assembly
	Experimental tile self-assembly
	Experimental tile self-assembly
	Secret to higher yields: Control of nucleation
	Secret to higher yields: Control of nucleation
	Secret to higher yields: Control of nucleation
	Open problems
	Open problems
	Open problems
	Open problems
	Thank you!

