
Dimension Extractors and
Optimal Decompression

David Doty∗

Department of Computer Science
Iowa State University
Ames, IA 50011, USA
ddoty@iastate.edu

Abstract

A dimension extractor is an algorithm designed to increase the effective dimension
– i.e., the amount of computational randomness – of an infinite binary sequence, in
order to turn a “partially random” sequence into a “more random” sequence. Extrac-
tors are exhibited for various effective dimensions, including constructive, computable,
space-bounded, time-bounded, and finite-state dimension. Using similar techniques,
the Kučera-Gács theorem is examined from the perspective of decompression, by show-
ing that every infinite sequence S is Turing reducible to a Martin-Löf random sequence
R such that the asymptotic number of bits of R needed to compute n bits of S, divided
by n, is precisely the constructive dimension of S, which is shown to be the optimal
ratio of query bits to computed bits achievable with Turing reductions. The extractors
and decompressors that are developed lead directly to new characterizations of some
effective dimensions in terms of optimal decompression by Turing reductions.

1 Introduction

Effective dimension [33, 34] and strong dimension [2] are effectivizations of classical Haus-
dorff [21] and packing [49,50] dimension, which can each be characterized in terms of betting
strategies called martingales. By placing resource bounds on the martingales, individual
infinite binary sequences can be assigned a non-zero effective dimension, interpreted as the
density of computational randomness of the sequence. A dimension extractor is an algorithm
designed to increase the effective dimension of a sequence. Like their counterparts in compu-
tational complexity theory [46], dimension extractors transform a source of weak randomness

∗This research was funded in part by grant number 9972653 from the National Science Foundation as
part of their Integrative Graduate Education and Research Traineeship (IGERT) program.

1



into a source of strong randomness, the difference being that the algorithmic randomness of
a sequence is being extracted, rather than classical randomness of a probabilistic source.

To attack (but not settle) a question raised by Reimann [41], Terwijn, Miller, and Nies [38]
concerning the ability of Turing reductions to increase the constructive dimension [34] of a
sequence, we exhibit a constructive dimension extractor by showing that every sequence of
positive constructive dimension is Turing equivalent to a sequence of constructive strong
dimension [2] arbitrarily close to 1. The reduction is uniform with respect to the input
sequence: a single oracle Turing machine, taking as input a rational upper bound on the
dimension of the input sequence, works for every input sequence of positive constructive
dimension. The construction of this extractor follows in a straightforward manner from an
earlier result of Ryabko [42,43] on constructive dimension and compression, and from May-
ordomo’s [36] characterization of constructive dimension in terms of Kolmogorov complexity
(cf. [30]).

We then develop new techniques to extend and improve this result for effective dimensions
at lower levels of computability; in particular, our first main result shows that computable,
pispace, and pi dimension [33] can be extracted using truth-table reductions, pispace Turing
reductions, and pi Turing reductions, respectively. The pi hierarchy was defined by Lutz [31]
as a hierarchy of classes of functions computable in super-polynomial, but sub-exponential,
space or time. For instance, p1space is simply pspace, the class of functions computable
in space nk for some constant k, and p2space is the class of functions computable in space
n(logn)k

. It is also shown that finite-state dimension [2, 12] can be extracted with informa-
tion lossless finite-state transducers [26]. Thus, with respect to constructive, computable,
pispace, pi, and finite-state information density, any sequence in which almost every prefix
has information density bounded away from zero can be used to compute a sequence in which
infinitely many prefixes have information density that is nearly maximal. Furthermore, in
the case of all dimensions except constructive dimension, in addition to the strong dimension
extraction, a lower bound of d/D− ε is derived on the dimension of the extracted sequence,
where d and D are the dimension and strong dimension, respectively, of the input sequence,
and ε is an arbitrarily small positive constant. It follows that for any regular sequence (a
sequence in which the dimension and strong dimension agree), both strong dimension and
dimension are nearly optimally extracted.

For all dimensions, the intuition behind the proof is the same. The extractor acts as
a compressor that compresses the input sequence close to its optimal compression ratio
under the resource bound ∆, which is precisely the ∆-dimension of the sequence. It is well-
known [30] that the shortest program to produce a finite string must itself be incompressible
(i.e., have maximal Kolmogorov complexity). Mayordomo’s Kolmogorov complexity char-
acterization of constructive dimension [36], Hitchcock’s ∆-bounded Kolmogorov complexity
characterization of ∆-dimension for ∆ = comp or pispace [22], López-Valdés and Mayor-
domo’s pi compressor/decompressor characterization of pi dimension [51], and Dai, Lath-
rop, Lutz, and Mayordomo’s compression characterization of finite-state dimension [12], are
invoked to show that a compressed representation of a sequence must itself be more incom-
pressible than the sequence and thus have higher dimension. Of course, this technique works

2



for any dimension that has a characterization in terms of Kolmogorov complexity, such as,
for instance, exponential time or exponential space bounded dimension.

In each case, the extractor is no more powerful than the resource bound defining the
dimension, which is necessary to make the results non-trivial. For instance, without access
to any oracle sequence, but given exponential space, a program can diagonalize against
all pspace-bounded martingales to compute a pspace-random sequence. An extractor is
interesting only when it has no more computational power than the class of algorithms it is
trying to fool: all the randomness present in the output sequence must originate from the
input sequence, and the extractor merely acts as a filter that distills the randomness out
from the redundancy.

We then examine the Kučera-Gács theorem from the perspective of decompression.
Kučera [28, 29] and Gács [18] independently showed that every infinite sequence is Turing
reducible to a Martin-Löf random sequence. Our second main result extends this theorem
by showing that every infinite sequence S is Turing reducible to a Martin-Löf random se-
quence R such that the asymptotic best-case and worst case number of bits of R needed to
compute n bits of S, divided by n, are precisely the constructive dimension and constructive
strong dimension, respectively, of S. We show that this is the optimal ratio of query bits to
computed bits achievable with Turing reductions.

As an application of these results and techniques, the resource-bounded extractors are
used to characterize the computable dimension of individual sequences in terms of decom-
pression via truth-table reductions and to characterize the pispace dimension of individual
sequences in terms of decompression via pispace-bounded Turing reductions, and the optimal
decompression result is used to characterize constructive dimension in terms of decompres-
sion via Turing reductions.

The paper is organized as follows. Section 2 explains notation and background material.
Section 3 introduces the concepts of compression and decompression via reductions, and
also gives definitions and background for effective dimension. Section 4 exhibits dimension
extractors for various effective dimensions. Section 5, which appeared in preliminary form
as [13], uses techniques developed in section 4 to show that every sequence is optimally
decompressible from a random one. Section 6 uses results of sections 4 and 5 to prove new
characterizations of constructive, computable, and space-bounded dimensions.

2 Preliminaries

We refer the reader to [30] for an introduction to Kolmogorov complexity and algorithmic
information theory, [48] for an introduction to computability theory, and [40] for an intro-
duction to computational complexity theory.

2.1 Notation

All logarithms are base 2. We write R, Q, Q2, Z, and N for the set of all reals, rationals,
dyadic rationals, integers, and non-negative integers, respectively. For all A ⊆ R, A+ denotes

3



A∩ (0,∞). {0, 1}∗ denotes the set of all finite, binary strings. For all x ∈ {0, 1}∗, |x| denotes
the length of x. λ denotes the empty string. Let s0, s1, s2, . . . ∈ {0, 1}∗ denote the standard
enumeration of binary strings s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . .. For k ∈ N, {0, 1}k denotes
the set of all strings x ∈ {0, 1}∗ such that |x| = k. C = {0, 1}∞ denotes the Cantor space,
the set of all infinite, binary sequences. For x ∈ {0, 1}∗ and y ∈ {0, 1}∗ ∪C, xy denotes the
concatenation of x and y, x v y denotes that x is a prefix of y; i.e., there exists u ∈ {0, 1}∗∪C
such that xu = y, and x < y denotes that x v y and x 6= y. For S ∈ {0, 1}∗∪C and i, j ∈ N,
S[i] denotes the ith bit of S, with S[0] being the leftmost bit, S[i . . j] denotes the substring
consisting of the ith through jth bits of S (inclusive), with S[i . . j] = λ if i > j, and S � i
denotes S[0 . . i−1]. A language is a subset of {0, 1}∗, and we identify a language L ⊆ {0, 1}∗
with its characteristic sequence χL ∈ C, where the nth bit of χL is 1 if and only if sn ∈ L,
writing L � i to denote χL � i.

2.2 Kolmogorov Complexity and Coding

Fix a universal self-delimiting Turing machine U . Let w ∈ {0, 1}∗. The Kolmogorov com-
plexity of w is

K(w) = min
π∈{0,1}∗

{ |π| | U(π) = w} .

The quantity K(w)
|w| is called the Kolmogorov rate of w. Given a time- and space-constructible

bound t : N→ N, the t-time-bounded Kolmogorov complexity of w is

Kt(w) = min
π∈{0,1}∗

{ |π| | U(π) = w in at most t(|w|) time} ,

and the t-space-bounded Kolmogorov complexity of w is

KSt(w) = min
π∈{0,1}∗

{ |π| | U(π) = w in at most t(|w|) space} .

Fact 2.1. For all w ∈ {0, 1}∗ and t : N→ N, K(w) ≤ KSt(w) ≤ Kt(w).

For all q ∈ Q, let K(q) = K(bq), Kt(q) = Kt(bq) and KSt(q) = KSt(bq), where bq ∈ {0, 1}∗
is some standard binary representation of the rational q with a numerator, denominator, and
sign bit.

Define the self-delimiting encoding function enc : {0, 1}∗ → {0, 1}∗ for all w ∈ {0, 1}∗ by

enc(w) = 0|s|w||1s|w|w.
For all n ∈ N, let enc(n) = enc(sn). Strings encoded by enc and valid programs for U are
self-delimiting. They can be prepended to arbitrary strings and uniquely decoded.

Observation 2.2. For all w ∈ {0, 1}∗, |enc(w)| ≤ |w|+ 2 log |w|+ 3, and for all n ∈ N such
that n ≥ 2, enc(n) ≤ log n+ 2 log log n+ 3.

Our results, being asymptotic in nature, do not depend crucially on using the self-
delimiting Kolmogorov complexity K; it is simply more convenient for encoding purposes.
All results in this paper hold if we use the plain Kolmogorov complexity C : {0, 1}∗ → N
(see [30]) instead. Whenever we would need to add a program to a string and retain the
ability to uniquely decode it, we could simply encode the program using the function enc.

4



2.3 Space/Time Bounds

The following explanation of growth rates and function classes is taken nearly verbatim
from [31].

For each i ∈ N, define a class Gi of growth rates between linear and exponential as follows.

G0 = { t : N→ N | (∃k ∈ N)(∀∞n ∈ N) t(n) ≤ kn }
Gi+1 = 2Gi(logn) =

{
t : N→ N

∣∣ (∃g ∈ Gi)(∀∞n ∈ N) t(n) ≤ 2g(logn)
}

Unless stated otherwise, in this paper, for each i ∈ N, ∆ represents any of the following
classes of functions

comp = { f : {0, 1}∗ → {0, 1}∗ | f is computable } ,
pi = { f : {0, 1}∗ → {0, 1}∗ | f is computable in Gi time } ,

pispace = { f : {0, 1}∗ → {0, 1}∗ | f is computable in Gi space } .

For example, p0space is the set of all functions computable in linear space, p1space, ab-
breviated pspace, is the set of all functions computable in polynomial space, and p2space
is the set of all functions computable in space n(logn)k

for some k ∈ N. Given a class of
functions ∆, let bound(∆) ⊆ {t : N→ N} denote the class of time or space bounds defining
∆: bound(comp) is the set of all computable functions t : N → N, and, for all i ∈ N,
bound(pi) = bound(pispace) = Gi.

If D is a discrete domain, we say a function f : D → R is ∆-computable if there is a
function f̂ : D×N→ Q such that |f̂(x, r)− f(x)| ≤ 2−r for all r ∈ N and x ∈ D, and f̂ ∈ ∆
(with r coded in unary and x and the output coded in binary). We say that f is exactly
∆-computable if f : D → Q and f ∈ ∆, and we say that f is dyadically ∆-computable if
f : D → Q2 and f ∈ ∆.

2.4 Reductions

Let M be a Turing machine and S ∈ C. We say M computes S if, on input n ∈ N, M outputs
the string S � n. We define an oracle Turing machine (OTM ) to be a Turing machine M
that can make constant-time queries to an oracle sequence, and we let OTM denote the set
of all oracle Turing machines. For R ∈ C, we say M operates with oracle R if, whenever M
makes a query to index n ∈ N, the bit R[n] is returned. We write MR to denote the OTM
M with oracle R.

Let S,R ∈ C and M ∈ OTM. We say S is Turing reducible to R via M , and we write
S ≤T R via M , if MR computes S.1 In this case, define M(R) = S. We say S is Turing
reducible to R, and we write S ≤T R, if there exists M ∈ OTM such that S ≤T R via M .
We say S is ∆-Turing reducible to R via M , and we write S ≤∆

T R via M , if MR computes
S, and there is a function q ∈ bound(∆) such that, for all n ∈ N, M(n) outputs S � n using

1This differs from the more standard definition of a Turing reduction in that S � n, instead of S[n], is
computed on input n. The definitions are equivalent if at least polynomial time is allowed.

5



at most q(n) time or space (depending on the resource defining ∆). We say S is ∆-Turing
reducible to R, and we write S ≤∆

T R, if there exists M ∈ OTM such that S ≤∆
T R via M .

We say S is Turing equivalent to R, and we write S ≡T R, if S ≤T R and R ≤T S, and we
say S is ∆-Turing equivalent to R, and we write S ≡∆

T R, if S ≤∆
T R and R ≤∆

T S.
If ∆ = comp, then a ∆-Turing reduction is nothing more than a truth-table reduction

(see [48]).2 We write S ≤tt R to denote that S is truth-table reducible to R (i.e., that
S ≤comp

T R). If ∆ = pispace or pi, and we identify a sequence S ∈ C with the language
L ⊆ {0, 1}∗ for which S = χL, then a ∆-Turing reduction is an EiSPACE or Ei (see [31])
Turing reduction, respectively. Since this paper deals exclusively with sequences, we will use
the convention of calling such a reduction a pispace- or pi-Turing reduction, indicating that
the polynomial bound is in terms of the length of the prefix of the characteristic sequence
(the output) and not in terms of the length of the strings in the language (the input).

Let S, P,R ∈ C and MS,MP ∈ OTM such that S ≤T P via MS and P ≤T R via MP .
Define the composition of MS with MP , denoted MS ◦MP , to be the OTM that works as
follows. On input n ∈ N and with oracle R, (MS ◦MP )R simulates MP

S to compute S � n.
Whenever a bit of P is queried by MS, (MS ◦MP )R simulates MR

P for the minimum number
of steps needed to compute that bit of P .

Observation 2.3. ≤T is transitive: if S ≤T P via MS and P ≤T R via MP , then S ≤T R
via MS ◦MP .

3 Decompression and Dimension

3.1 Decompression via Reductions

Let S,R ∈ C and M ∈ OTM such that S ≤T R via M . Define #(S � n,MR) to be the
query usage of MR on S � n, the number of bits of R queried by M when computing the
string S � n. (If we instead define #(S � n,MR) to be the index of the rightmost bit of R
queried by M when computing S � n, all results of the present paper still hold.) Define

ρ−M(S,R) = lim inf
n→∞

#(S � n,MR)

n
,

ρ+
M(S,R) = lim sup

n→∞

#(S � n,MR)

n
.

Viewing R as a compressed version of S, ρ−M(S,R) and ρ+
M(S,R) are respectively the best-

and worst-case compression ratios as M decompresses R into S. Note that 0 ≤ ρ−M(S,R) ≤
ρ+
M(S,R) ≤ ∞. For S ∈ C, the lower and upper Turing decompression ratios of S are

2A truth-table reduction is typically defined to be a Turing reduction that halts on all oracles; it is easy
to to see that this occurs if and only if the time (equivalently, space) used by the reduction on input n is
bounded by a computable function of n.

6



respectively defined

ρ−(S) = min
R∈C

M∈OTM

{
ρ−M(S,R)

∣∣ S ≤T R via M
}
,

ρ+(S) = min
R∈C

M∈OTM

{
ρ+
M(S,R)

∣∣ S ≤T R via M
}
.

Note that 0 ≤ ρ−(S) ≤ ρ+(S) ≤ 1. As we will see, by Lemma 5.2 and Theorem 5.5, the
two minima above exist. In fact, there is a single OTM M that achieves the minimum
decompression ratio in each case.

The lower and upper ∆-Turing decompression ratios of S are respectively defined

ρ−∆(S) = inf
R∈C

M∈OTM

{
ρ−M(S,R)

∣∣ S ≤∆
T R via M

}
,

ρ+
∆(S) = inf

R∈C
M∈OTM

{
ρ+
M(S,R)

∣∣ S ≤∆
T R via M

}
.

Recall that a ≤comp
T -reduction is simply a truth-table reduction. Therefore, for all S ∈ C,

the lower and upper truth-table decompression ratios of S are respectively defined

ρ−tt(S) = ρ−comp(S) = inf
R∈C

M∈OTM

{
ρ−M(S,R)

∣∣ S ≤tt R via M
}
,

ρ+
tt(S) = ρ+

comp(S) = inf
R∈C

M∈OTM

{
ρ+
M(S,R)

∣∣ S ≤tt R via M
}
.

3.2 Effective Dimension

See [33,34] for an introduction to the theory of effective dimension.
Effective dimension was first defined in [33]. It is based on martingales, which are strate-

gies for betting on bits of an infinite sequence.

1. An s-gale is a function d : {0, 1}∗ → [0,∞) such that, for all w ∈ {0, 1}∗,

d(w) = 2−s[d(w0) + d(w1)].

2. A martingale is a 1-gale.

Intuitively, a martingale is a strategy for gambling in the following game. The gambler starts
with some initial amount of capital (money) d(λ), and it reads an infinite sequence S of bits.
d(w) represents the capital the gambler has after reading the prefix w < S. Based on w, the
gambler bets some fraction of its capital that the next bit will be 0 and the remainder of its
capital that the next bit will be 1. The capital bet on the bit that appears next is doubled,
and the remaining capital is lost. The condition d(w) = d(w0)+d(w1)

2
ensures fairness : the

martingale’s expected capital after seeing the next bit, given that it has already seen the
string w, is equal to its current capital. The fairness condition and an easy induction lead
to the following observation.

7



Observation 3.1. Let k ∈ N and let d : {0, 1}∗ → [0,∞) be a martingale. Then∑
u∈{0,1}k

d(u) = 2kd(λ).

An s-gale is a martingale in which the capital bet on the bit that occurred is multiplied
by 2s, as opposed to simply 2, after each bit. The parameter s may be regarded as the
unfairness of the betting environment ; the lower the value of s, the faster money is taken
away from the gambler. Let d : {0, 1}∗ → [0,∞) be a martingale and let s ∈ [0,∞). Define
the s-gale induced by d, denoted d(s), for all w ∈ {0, 1}∗ by

d(s)(w) = 2(s−1)|w|d(w).

If a gambler’s martingale is given by d, then, for all s ∈ [0,∞), its s-gale is d(s).
The following theorem, due to Lutz, establishes an upper bound on the number of strings

on which an s-gale can perform well.

Theorem 3.2 ( [33]). Let d be an s-gale. Then for all w ∈ {0, 1}∗, k ∈ N, and α ∈ R+,

there are fewer than 2k

α
strings u ∈ {0, 1}k for which

max
vvu

{
2(1−s)|v|d(wv)

}
≥ αd(w).

Corollary 3.3. Let d be a martingale. Then for all l ∈ R, w ∈ {0, 1}∗, k ∈ N, and α ∈ R+,

there are fewer than 2l

α
strings u ∈ {0, 1}k for which

d(wu) ≥ α2k−ld(w).

Let S ∈ C, s ∈ [0,∞), and let d : {0, 1}∗ → [0,∞) be an s-gale. d succeeds on S, and we
write S ∈ S∞[d], if

lim sup
n→∞

d(S � n) =∞.

d strongly succeeds on S, and we write S ∈ S∞str[d], if

lim inf
n→∞

d(S � n) =∞.

The next lemma follows easily from the proof of the Exact Computation Lemma of [33].

Lemma 3.4 ( [33]). If d is a ∆-computable s-gale and 2s is a dyadic rational, then there is

a dyadically ∆-computable s-gale d̃ such that S∞[d] ⊆ S∞[d̃] and S∞str[d] ⊆ S∞str[d̃].

Let d : {0, 1}∗ → [0,∞) be an s-gale. We say that d is constructive (a.k.a. lower

semicomputable, subcomputable) if there is a computable function d̂ : {0, 1}∗ × N→ Q such
that, for all w ∈ {0, 1}∗ and t ∈ N,

1. d̂(w, t) ≤ d̂(w, t+ 1) < d(w), and

8



2. lim
t→∞

d̂(w, t) = d(w).

Let R ∈ C. We say that R is Martin-Löf random, and we write R ∈ RAND, if there
is no constructive martingale d such that R ∈ S∞[d]. This characterization of Martin-
Löf randomness, due to Schnorr [44], is equivalent to Martin-Löf’s traditional definition
(see [30, 35]).

If there is a martingale d that succeeds on a sequence S ∈ C, then d makes arbitrarily high
capital on S. Using a standard technique (cf. [37]), one may construct from d a martingale
d′ that strongly succeeds on S. This is done by maintaining a “side account” of capital that
is not used to bet: i.e., the capital in that account is always allocated equally between 0 and
1 when betting. Whenever d makes strictly more than $1, $1 is moved into the side account.
Since d succeeds on S, it will eventually make more than $1 in the main account again, and
so infinitely often, the side account will grow by $1, whence d′ strongly succeeds on S. It is
clear that if d is ∆-computable, then d′ is also ∆-computable.

Observation 3.5. Let S ∈ C such that there is a ∆-computable martingale that succeeds
on S. Then there is a ∆-computable martingale that strongly succeeds on S.

This technique works for constructive martingales as well. Furthermore, Schnorr [44]
showed that there is a universal constructive martingale that succeeds on every sequence
not in RAND. This leads to the following observation.

Observation 3.6. There is a constructive martingale d such that S∞str[d] = RANDc.

Let d̂ : {0, 1}∗ × N→ Q be the computable function testifying that d is constructive.
The following theorem, due independently to Hitchcock and Fenner, states that d(s) is

“optimal” for the class of constructive t-gales whenever s > t.

Theorem 3.7 ( [16, 24]). Let s > t ∈ [0,∞), and let d be a constructive t-gale. Then

S∞[d] ⊆ S∞[d(s)] and S∞str[d] ⊆ S∞str[d
(s)].

By Theorem 3.7, the following definition of constructive dimension is equivalent to the
definitions given in [2,34]. Let S ∈ C. The (constructive) dimension and the (constructive)
strong dimension of S are respectively defined

dim(S) = inf{s ∈ [0,∞) | S ∈ S∞[d(s)]},
Dim(S) = inf{s ∈ [0,∞) | S ∈ S∞str[d

(s)]}.

Intuitively, the constructive (strong) dimension of S is the most unfair betting environment
s in which the optimal constructive gambler d (strongly) succeeds on S.

Observation 3.8. If S ∈ RAND, then dim(S) = Dim(S) = 1.

The following theorem, due to Mayordomo [36], gives a useful characterization of the
constructive dimension of a sequence in terms of Kolmogorov complexity, and it justifies the
intuition that constructive dimension measures the density of algorithmic information in a
sequence.

9



Theorem 3.9 ( [36]). For all S ∈ C,

dim(S) = lim inf
n→∞

K(S � n)

n
,

and

Dim(S) = lim sup
n→∞

K(S � n)

n
.

Let G
(s)
∆ denote the set of all ∆-computable s-gales. For all S ∈ C, the ∆-dimension and

the ∆-strong dimension of S are respectively defined

dim∆(S) = inf
{
s ∈ [0,∞)

∣∣∣ (∃d ∈ G(s)
∆

)
S ∈ S∞[d]

}
,

and
Dim∆(S) = inf

{
s ∈ [0,∞)

∣∣∣ (∃d ∈ G(s)
∆

)
S ∈ S∞str[d]

}
.

We say S ∈ C is ∆-regular if dim∆(S) = Dim∆(S).
The following alternate characterization of the space-bounded ∆-dimensions, resembling

Theorem 3.9, is due to Hitchcock [22].

Theorem 3.10 ( [22]). Let i ∈ N and ∆ ∈ {comp, pispace}. For all S ∈ C,

dim∆(S) = inf
p∈bound(∆)

lim inf
n→∞

KSp(S � n)

n
,

and

Dim∆(S) = inf
p∈bound(∆)

lim sup
n→∞

KSp(S � n)

n
.

Let r, t ∈ [0,∞) and S ∈ C. Note that if d1 and d2 are martingales such that d
(t)
1

succeeds on S and d
(r)
2 strongly succeeds on S, then d1 and d2 can be combined into a single

martingale d that simulates d1 and d2 in separate “accounts”. Furthermore, if d1 and d2 are
both ∆-computable, then d is also ∆-computable. This leads to the following observation.

Observation 3.11. Let S ∈ C, t > dim∆(S), and r > Dim∆(S). Then there is a ∆-
computable martingale d such that d(t) succeeds on S and d(r) strongly succeeds on S.

If d is a ∆-computable s-gale, then d′ : {0, 1}∗ → [0,∞) defined for all w ∈ {0, 1}∗ by
d′(w) = d(w)/d(λ) is also an s-gale. It is clear that d′ is ∆-computable, and that d′ (strongly)
succeeds on the same sequences on which d (strongly) succeeds, whence the following holds.

Observation 3.12. Let s > 0. For every ∆-computable s-gale d, there exists a ∆-computable
s-gale d′ such that d′(λ) = 1, S∞[d′] = S∞[d], and S∞str[d

′] = S∞str[d].

The same technique cannot be used in general for a constructive s-gale d, since the initial
capital d(λ) may be uncomputable. However, by dividing each value d(w) by a rational
approximation to d(λ), we may assume that all constructive s-gales have initial capital
arbitrarily close to 1.

10



Observation 3.13. Let s > 0 and ε > 0. For every constructive s-gale d, there exists a
constructive s-gale d′ such that 1 ≤ d′(λ) < 1 + ε, S∞[d′] = S∞[d], and S∞str[d

′] = S∞str[d].

Though an analogue of Theorem 3.10 for pi-bounded Kolmogorov complexity and the pi-
dimensions is currently unknown, López-Valdés and Mayordomo [51] have proved a character-
ization of polynomial-time dimension and strong dimension in terms of reversible polynomial-
time compressors and decompressors. This characterization will be useful in constructing
time-bounded dimension extractors. It is easily verified that their characterization extends
to the pi-dimensions for i ≥ 1.

López-Valdés and Mayordomo characterize the pi-dimensions as follows. Let i ∈ Z+. A
pi-compressor is a pair (C,D) of functions C : {0, 1}∗ → {0, 1}∗ and D : {0, 1}∗ × N →
{0, 1}∗, each computable in pi time, such that, for all w ∈ {0, 1}∗, D(C(w), |w|) = w. A
pi-compressor does not start from scratch if, for all but finitely many k ∈ N and w ∈ {0, 1}∗,∑

u∈{0,1}k
2−|C(wu)| ≤ 2k/ log k2−|C(w)|.

In particular, López-Valdés and Mayordomo note that a pi-compressor (C,D) does not start
from scratch if, for all w, u ∈ {0, 1}∗, C(w) and C(wu) have a common prefix of length at
least

|C(w)| − |u|
log |u|

+ log |u|. (3.1)

Let PCi denote the set of all pi-compressors that do not start from scratch.

Theorem 3.14 ( [51]). For all i ∈ Z+ and S ∈ C,

dimpi
(S) = inf

{
(C,D) ∈ PCi

∣∣∣∣ lim inf
n→∞

|C(S � n)|
n

}
,

and

Dimpi
(S) = inf

{
(C,D) ∈ PCi

∣∣∣∣ lim sup
n→∞

|C(S � n)|
n

}
.

4 Dimension Extractors

This section investigates various effective dimensions in which effective reducibilities may be
used as extractors: constructive dimension, extracted with Turing reductions, computable
dimension, extracted with truth-table reductions, pispace-dimension, extracted with pispace-
bounded Turing reductions, pi-dimension, extracted with pi-bounded Turing reductions, and
finite-state dimension, extracted with information lossless finite-state transducers.

To understand the motivation for studying dimension extractors, it is helpful to under-
stand classical extractors. In general, an extractor is an algorithm used to transform a source
of weak randomness into a source of stronger randomness. Extractors are motivated in part
by the abundance of weak random sources in nature – for instance, electrical noise from Zener

11



diodes – and the need for uniform (i.e., strong) random sources in probabilistic algorithms.
Von Neumann’s [53] coin flip technique is the simplest and most famous extractor: a biased
coin (a random experiment with outcomes H and T occurring with probabilities other than
1/2) may be used to simulate an unbiased coin by always flipping the coin twice, ignoring
the combinations HH and TT, and interpreting HT to mean H and TH to mean T.

More formally, in computational complexity theory, a extractor is a function, generally
computable in polynomial time, taking as input a string drawn from a probability distribution
X on {0, 1}n with min-entropy at least k, and a much smaller string of length d, called the
seed, drawn from the uniform distribution on {0, 1}d. The extractor’s output is “close” to
uniformly distributed, but much longer than the seed. The min-entropy of X is defined
minx∈{0,1}n log Pr[x = X]−1; it is the Shannon self-information [47] of the string with the
highest probability in {0, 1}n. If k is strictly between 0 and n, X may be thought of as
“partially random”; n bits drawn from X have at least k bits of randomness. The goal of
an extractor is to transform X into a distribution that is closer to “fully random”, i.e., to
output m bits that have close to m bits of randomness. See [46] for a comprehensive survey
of extractors in computational complexity.

For algorithmic purposes, a deterministic infinite sequence that appears random to any
algorithm often works just as well as a truly probabilistic source. The complexity class
BPP, defined by Gill [19] to be those languages decidable by a randomized polynomial
time algorithm with probability of correctness at least 2/3, is generally regarded as the set
of decision problems feasibly decidable by a randomized algorithm. Bennett [4] (refining
measure-theoretic arguments of [5] and [1]) has demonstrated that, given access to any
oracle sequence that is algorithmically random in the sense of Martin-Löf, every language in
BPP can be decided deterministically in polynomial time. Book, Lutz, and Wagner [8] have
shown a wealth of similar characterizations of BPP and other randomized complexity classes
in terms of oracle access to Martin-Löf random sequences. Lutz [32], using the techniques of
resource-bounded measure [31], improved the result of Bennett by showing that all of BPP
can be decided in polynomial time relative to any pspace-random oracle, which is a sequence
that appears random to any polynomial-space-bounded algorithm.

Recall that, given a resource bound ∆, ∆-dimension quantifies how close a sequence is to
being ∆-random. Gu and Lutz [20] improved Lutz’s above-mentioned pspace-random oracle
result by showing that all of BPP is polynomial time decidable relative to any oracle sequence
with positive pspace-dimension (in fact, the oracle needs only have positive ∆p

3-dimension).
Therefore, for certain applications, if a sequence has positive effective dimension, it contains
sufficient algorithmic randomness to act as a substitute for a truly probabilistic source. This
highlights the parallels between the theory of effective dimension and randomness extractors.
A non-random sequence with positive dimension may be considered “weakly random”: the
first n bits of a sequence with Hausdorff and packing ∆-dimension equal to α contain about
αn bits of ∆-randomness.

Reimann [41] and Terwijn asked the question, given any sequence S such that dim(S) > 0,
does oracle access to S allow us to compute a Martin-Löf random sequence? Miller and
Nies [38] posed the related questions, does oracle access to S allow us to compute a sequence

12



of constructive dimension 1, or arbitrarily close to 1, or strictly greater than dim(S)? Viewing
constructive dimension as a quantification of the amount of randomness contained in a
sequence, a computation increasing the constructive dimension of a sequence performs the
same function as the extractors mentioned earlier: the computation transforms a partially
random source into a more random source. Therefore Reimann, Terwijn, Miller and Nies
are essentially asking whether Turing reductions can extract constructive dimension.

4.1 Constructive Dimension Extractors

We show that constructive dimension can be extracted in a weaker sense. Using Ryabko’s
result [42,43] on optimal reversible compression of sequences, we demonstrate that, for every
ε > 0 and every sequence S such that dim(S) > 0, there is a sequence P , Turing equivalent
to S, such that Dim(P ) ≥ 1 − ε. In fact, there is a single oracle Turing machine that
accomplishes this extraction, taking a rational β > dim(S) as an input parameter used to
control the size of ε. Moreover, the extractor uses close to an optimal number of bits of
the input sequence to compute the output sequence, in the sense that for infinitely many n,
about n bits are required from S to compute dim(S) · n bits of P .

The next theorem is due to Ryabko [42,43].

Theorem 4.1 ( [42, 43]). There exist OTMs Me and Md, with Me taking a single input
β ∈ Q, with the property that, for every S ∈ C and every rational β > dim(S), there exists
P ∈ C such that P ≤T S via Me(β), S ≤T P via Md, and ρ−Md

(S, P ) < β.

The next theorem states that any sequence in which almost every prefix has Kolmogorov
rate bounded away from zero can be used to compute a sequence with infinitely many
prefixes of nearly maximal Kolmogorov rate. Furthermore, this can be done with a single
OTM taking a rational upper bound on the constructive dimension of the input sequence.

Theorem 4.2. There exists an OTM Me, with Me taking β ∈ Q as input, such that, for all
S ∈ C such that dim(S) > 0, and all ε > 0 such that 0 < β − dim(S) ≤ ε · dim(S)/3, there
exists P ∈ C such that P ≤T S via Me(β), S ≤T P , and Dim(P ) ≥ 1− ε.

Laurent Bienvenu [6] has shown that the bound of β − dim(S) ≤ ε · dim(S)/3 required
in the hypothesis of Theorem 4.2 can be improved to β − dim(S) ≤ ε · dim(S).

The statement of Theorem 4.2 is complicated by the rational input β required to make
the OTM Me uniform over all sequences. The following corollary states simply that Turing
reductions can extract constructive strong dimension from positive constructive dimension.

Corollary 4.3. For each ε > 0 and each S ∈ C such that dim(S) > 0, there exists P ∈ C
such that P ≡T S and Dim(P ) ≥ 1− ε.

Proof of Theorem 4.2. Let S, β, and ε be as in the statement of the theorem, and define
δ = β − dim(S) > 0. Let Me,Md ∈ OTM be as in Theorem 4.1, so that MS

e (β) computes

13



P , MP
d computes S, and, for all n ∈ N let np = #(S � n,MP

d ). Since ρ−Md
(S, P ) < β,

lim inf
n→∞

np
n
< β

=⇒ (∃∞n ∈ N) lim inf
m→∞

K(S � m)

m
>
np
n
− δ by Theorem 3.9

=⇒ (∃∞n ∈ N) K(S � n) > np − δn. (4.1)

Since δ ≤ ε · dim(S)/3 < ε · dim(S)/2,

(∀∞n ∈ N) K(S � n) >
2

ε
δn. (4.2)

Ryabko’s construction of Md is such that entire prefixes of the oracle sequence are queried
at once: whenever the bit at index i ∈ N is queried, all bits j < i are also queried. Thus,
a program M simulating Md with the first np bits of P can calculate S � n, and M can
be encoded in |enc(P � np)| + O(1) bits. Thus there is a constant c such that K(S � n) ≤
np + 2 log np + c, which together with (4.2) implies that

(∀∞n ∈ N) δn <
ε

2
(np + 2 log np + c). (4.3)

Combining (4.1) and (4.3),

(∃∞n ∈ N) K(S � n) > np −
ε

2
(np + 2 log np + c) . (4.4)

If the OTMs Me and Md are defined as in Theorem 4.1, then Me(β) and Md testify that
P ≡T S. It remains to show that Dim(P ) ≥ 1 − ε. Suppose for the sake of contradiction
that Dim(P ) < 1− ε. Then it would be the case that

(∀∞m ∈ N) K(P � m) < m− εm. (4.5)

Since dim(S) > 0, S is uncomputable, and therefore np grows unboundedly with n. A
program that produces P � np can be used in conjunction with Md to produce S � n.
Therefore, for a suitable constant c′ ≈ |Md|,

(∀∞n ∈ N) K(S � n) ≤ K(P � np) + c′

< np − εnp + c′

< np −
ε

2
(np + 2 log np + c) . (4.6)

But (4.6) contradicts (4.4). Hence, Dim(P ) ≥ 1− ε.

Unfortunately, the technique of the preceding proof does not show that Turing reductions
are able to increase constructive dimension in addition to constructive strong dimension (i.e.,
that almost every prefix of the output sequence has high Kolmogorov complexity). Nies
and Reimann [39] have shown that constructive dimension cannot be extracted with weak

14



truth-table reductions (a Turing reduction in which the query usage on input n is bounded
by a computable function of n): for every rational α ∈ [0, 1], there is a sequence S such
that dim(S) = α, and every sequence P that is weak truth-table reducible to S satisfies
dim(P ) ≤ α. Since the Turing reduction in our proof is also a weak truth-table reduction,
it cannot always be the case that dim(P ) > dim(S).

Bienvenu, Doty, and Stephan [7] have shown that the stronger results of the next sub-
section hold for constructive dimension as well, using weak truth-table reductions, thereby
improving the present paper’s Corollary 4.3 to be as strong as Theorem 4.8 (and in fact
stronger, as a uniform extractor is exhibited similar to that in Theorem 4.2). However, it is
also shown in [7] that there is no uniform Turing reduction is capable of always increasing
constructive dimension by a fixed amount: for every α, β with 0 < α < β < 1, and every
Turing reduction M , there is a sequence S such that dim(S) ≥ α and, if MS computes the
sequence R, then dim(R) < β. This implies that the reduction techniques of [7] and of the
present paper, which use no property of the input sequence other than a simple bound on
its dimension, cannot be used to prove the existence of constructive dimension extractors.

Buhrman, Fortnow, Newman, and Vereshchagin [10] and Fortnow, Hitchcock, Pavan,
Vinodchandran, and Wang [17] have demonstrated related constructions for extracting Kol-
mogorov complexity from finite strings. Buhrman, Fortnow, Newman, and Vereshchagin
show that there is an efficient algorithm, taking as input any non-random string, that out-
puts a small list of strings of the same length as the input string, where at least one output
string is guaranteed to have higher Kolmogorov complexity than the input. Note that given
a finite string x and the value K(x), an algorithmically random string containing exactly
the amount of algorithmic information in x may be extracted from x: namely, a shortest
program for x. The value K(x) – requiring at most log |x| bits to represent – may be consid-
ered “advice” bits that help the algorithm extract randomness from x. Fortnow, Hitchcock,
Pavan, Vinodchandran, and Wang improve upon this observation by showing that there is
an efficient algorithm such that, for any α, β such that 0 < α < β < 1, if the input string x
has Kolmogorov complexity at least α|x|, then, given a constant (with respect to α and β)
number of advice bits, the output string y (with |y| = Ω(|x|)) will have Kolmogorov com-
plexity at least β|y|. This is shown to hold for space-bounded Kolmogorov complexity as
well. The advice bits are necessary; Vereshchagin and Vyugin [52] have shown, in a certain
sense, that no uniform algorithm is capable of extracting Kolmogorov complexity from finite
strings.

4.2 Other Effective Dimension Extractors

As noted, Ryabko’s result leads easily to an extractor for constructive dimension. In con-
trast, our main extractor result, Theorem 4.8, relies on new techniques to exhibit extractors
for resource-bounded ∆-dimension [33], where ∆ represents the class comp of computable
functions or, for each i ∈ N, any of the classes pispace of pispace-computable functions or
the classes pi of pi-time computable functions. We show that for every ε > 0 and every
sequence S such that dim∆(S) > 0, there is a sequence P , ∆-Turing equivalent to S, such
that Dim∆(P ) ≥ 1−ε. We show a similar result for finite-state dimension, with the extractor

15



implemented by an information lossless finite-state transducer [26, 47]. In contrast to the
constructive dimension extractor, a different reduction machine is required for each sequence
S.

In addition to the near-optimal extraction of strong dimension, the extractors for com-
putable, pispace, pi, and finite-state dimension are shown to partially extract dimension as
well. More precisely, if the input sequence has dimension d and strong dimension D, then
the sequence output by the extractor has dimension at least d/D−ε, where ε is an arbitrarily
small positive constant. Therefore, for any regular sequence – a sequence whose dimension
and strong dimension agree – dimension is nearly optimally extracted, in addition to strong
dimension.

4.2.1 ∆-Dimension Extractors

This subsection examines dimension extractors for computable dimension, space-bounded
dimension, and time-bounded dimension.

An OTM that computes a sequence S, together with a finite prefix of the oracle that it
queries, is a program to produce a prefix of S. Thus, the query usage of a space-bounded
OTM on that prefix of S cannot be far below the space-bounded Kolmogorov complexity
of the prefix of S. This is formalized in the following lemma, which bounds the optimal
compression ratio below by dimension.

Lemma 4.4. Let i ∈ N and ∆ ∈ {comp, pispace}. For all S ∈ C,

ρ−∆(S) ≥ dim∆(S), and ρ+
∆(S) ≥ Dim∆(S).

Proof. Let S, P ∈ C, and let M ∈ OTM such that S ≤∆
T P via M . For P = S, S ≤∆

T P via
the trivial “bit-copier” OTM that always queries exactly n bits of P to compute n bits of
S, so we may assume that for all n ∈ N, #(S � n,MP ) ≤ n. Thus, since M has available at
least a linear amount of space, we may assume that each bit of P is queried at most once
and cached, and that subsequent queries are retrieved from the cache.

Let πM be a self-delimiting program for M . Let pn ∈ {0, 1}#(S�n,MP ) be the oracle bits of
P queried by M on input n, in the order in which they are queried. Recall the self-delimiting
encoding function enc. For each n ∈ N, let πn = πM ′πMenc(n)enc(pn), where πM ′ is a self-
delimiting program that simulates M , encoded by πM , on input n, encoded by enc(n), with
oracle P , encoded by enc(pn). When M makes its ith query to a bit of P , the bit pn[i] is
returned. Since M queries each bit of P at most once, the bit from pn will be correct, no
matter what index was queried by M , since the bits of pn are arranged in the order in which
M makes its queries.

Then U(πn) = S � n, so if there exists s ∈ bound(∆) such that M uses at most s(n)
space on input n, there exists q ∈ bound(∆) such that, for all n ∈ N, KSq(S � n) ≤ |πn|. By

16



Theorem 3.10,

dim∆(S)

= inf
q∈bound(∆)

lim inf
n→∞

KSq(S � n)

n

≤ lim inf
n→∞

|πM ′πMenc(n)enc(pn)|
n

≤ lim inf
n→∞

|πM ′πM |+ log n+ 2 log log n+ #(S � n,MP ) + 2 log #(S � n,MP ) + 6

n

= lim inf
n→∞

#(S � n,MP )

n
= ρ−M(S, P ),

whence dim(S) ≤ ρ−∆(S). Similarly, Dim(S) ≤ ρ+
∆(S).

The following theorem is used to construct ∆-dimension extractors, and to give new
characterizations of these dimensions for ∆ = comp or pispace. The theorem also holds
for pi dimension, but the second application, the characterization of dimension in terms of
optimal sequence decompression, seems to require a pi-time-bounded Kolmogorov complexity
characterization of pi dimension, which at the present time is unknown. Furthermore, the
theorem is only known to hold for polynomial time and above, and does not include linear
time.

Theorem 4.5. Let i ∈ N and ∆ ∈ {comp, pispace, pi+1}. For all S ∈ C and δ > 0, there is
a sequence P ∈ C and an OTM M such that

1. S ≡∆
T P , with S ≤∆

T P via M .

2. ρ−M(S, P ) ≤ dim∆(S) + δ.

3. ρ+
M(S, P ) ≤ Dim∆(S) + δ.

Proof idea: If the ∆-dimension of S is small, then a ∆-computable martingale d performs
well on S. Thus, if we have already computed a prefix S � n of S, then on average, d increases
its capital more on the next k bits of S than it would on other k-bit strings that could extend
S � n. This places the next k bits of S in a small (on average) subset of {0, 1}k, namely,
those strings on which d increases its capital above a certain rational threshold c, which is
chosen to be slightly smaller than d(S � (n+ k)), the amount of capital made after the next
k bits of S. Since d is ∆-computable, it is possible to enumerate strings from this small set
by evaluating d in parallel on all possible length-k extensions of S � n, and outputting a
string u ∈ {0, 1}k whenever d((S � n)u) is greater than c. We will encode the next k bits of
S as an index into this set, where the index will represent the order in which this parallel
evaluation enumerates the string we want – the next k bits of S. This technique is similar
to that used by Merkle and Mihailović [37] to prove Theorem 5.4.

17



We require two lemmas to prove Theorem 4.5. Lemma 4.7 shows that the average number
of bits needed to encode the index of a length-k extension of S � n is close to the dimension
of S times k. We will also need to encode the threshold c into the oracle sequence. Lemma
4.6 shows that we can find a rational threshold c that requires so few bits to represent that
it will not affect the compression ratio when added to the oracle sequence, yet which is still
a close enough approximation to d(S � (n+k)) to keep the index length of Lemma 4.7 small.

In the following lemma, intuitively, the values ki, ni, ri, and ci respectively represent the
number of bits in the ith block of the sequence S, the number of bits in the first i blocks,
the value of a martingale after reading the first ni bits, and a rational approximation to that
value from below.

Lemma 4.6. There exists a constant C such that the following holds. Let N ∈ Z+. Let
k0 = n0 = 2. For all i ∈ Z+, let ki = dN log ni−1e and ni = ni−1 + ki. Let ri ∈ [1, 2ni ] ∩Q2.

Then for all but finitely many i ∈ N, there exists ci ∈ Q2 such that ri

(
1− 1

k2
i

)
≤ ci < ri

and KCni(ci) ≤ ki · 2/N . Furthermore, such a program can be computed from ki and ri in at
most Cni steps.

Proof. We prove the cases k2
i ≤ ri ≤ 2ni+1 and 1 ≤ ri < k2

i separately.
Suppose that k2

i ≤ ri ≤ 2ni+1. In this case we will choose ci to be an integer. Set m ∈ Z+

such that 2m−1 < k2
i ≤ 2m. Since ri ≥ k2

i > 2m−1, dlog rie > m− 1.
If ri is an integer ending in at least dlog rie − m bits, let ci = ri − 1. Otherwise, let

ci ∈ Z+ be the integer whose binary representation is x0dlog rie−m, where x ∈ {0, 1}m is the
first m bits of bric. Since ci shares its first m bits with ri or is equal to ri − 1,

ri − ci ≤ 2dlog rie−m − 1 ≤ ri + 2

2m
− 1 ≤ ri

k2
i

,

so ri

(
1− 1

k2
i

)
≤ ci < ri. ci can be fully described by the first m bits of ri, along with

the binary representation of the number dlog rie −m of 0’s that follow. Thus, describing ci
requires no more than

m+ log(dlog rie −m) ≤ log k2
i + log ni

≤ log k2
i + log 2ki+1/N

≤ 2ki/N

bits, for all but finitely many i ∈ N.
Now suppose that 1 ≤ ri < k2

i . We let ci approximate ri by the binary integer bric, plus
a finite prefix of the bits to the right of ri’s decimal point in binary form. If x.S is the binary
representation of ri, where x ∈ {0, 1}∗ and S ∈ C, let ci ∈ Q+

2 be represented by x.y, where
y v S. Then ri − ci ≤ 2−|y|.

Since ri < k2
i , |x| ≤ log k2

i = 2 log ki. We need ri − ci ≤ ri/k
2
i . Since ri − ci ≤ 2−|y|, it

suffices to choose y v S such that 2−|y| ≤ ri/k
2
i , or |y| ≥ log(k2

i /ri). Let |y| = dlog(k2
i /ri)e ≤

2 log ki, since ri ≥ 1. Thus |x|+ |y| ≤ 4 log ki, so describing ci requires at most 4 log ki bits.

18



If this results in ci = ri, rather than ci < ri, then ri is already a dyadic rational requiring
no more than |y| bits to the right of the decimal point. In this case, let ci = ri − 2−|y| ≥
ri

(
1− 1

k2
i

)
instead.

Let π(ci) be one of the two programs just described for computing ci from ri. It is clear
that π(ci) runs in O(ni) time. We now demonstrate that π(ci) itself can be computed from
i and ri in O(ni) time. π(ci) is simply constructed from initial bits of ri in either case. It
follows that in the first case, π(ci) can be created in O(ni) time, since log ri ≤ ni, and the
first case uses only the integral part of ri. In the second case, we have already shown that
the integral part x of ci and the fractional part y of ci each consist of O(log ki) bits of ri.
Therefore, in the second case, π(ci) can be created in O(ni) time.

For t ∈ R, c ∈ Q, s ∈ {0, 1}∗, k ∈ N, and d : {0, 1}∗ → [0,∞) a t-gale, define

A
(k)
d,c,s =

{
u ∈ {0, 1}k

∣∣ d(su) > c
}

(4.7)

to be the set of all length-k extensions of s on which d makes at least c capital. The
following lemma shows that |A(k)

d,c,s| is small on average if d makes a lot of capital on a
sequence beginning with prefix s, if c is close to the capital that d has after reading k bits
beyond s.

Lemma 4.7. Let S ∈ C, r ≥ t > 0, and let d be a martingale such that d(t) succeeds on S
and d(r) strongly succeeds on S. Write S = ŝ0ŝ1ŝ2 . . ., where, for all i ∈ N, ki = |ŝi|, and
ni = |ŝ0 . . . ŝi|. Let ci ∈ R satisfy d(S � ni)g(i) ≤ ci ≤ d(S � ni), where g(i) ∈ (0, 1) satisfies
−
∑i

j=2 log g(j) = o(ni) as i→∞. Then

lim sup
i→∞

∑i
j=0 log

∣∣∣A(kj)
d,cj ,S�nj−1

∣∣∣
ni

≤ r, (4.8)

and, if ki = o(ni) as i→∞, then

lim inf
i→∞

∑i
j=0 log

∣∣∣A(kj)
d,cj ,S�nj−1

∣∣∣
ni

≤ t, (4.9)

Proof. We first show that (4.9) holds. Let t′ > t, and, for all i ∈ N, let Ai = A
(ki)
d,ci,S�ni−1

. It

suffices to show that, for infinitely many i ∈ N,
∑i

j=0 log |Aj| ≤ t′ni. Since d(t) succeeds on
S, for infinitely many n ∈ N,

d(S � n) ≥ 2(1−t)nd(λ). (4.10)

A martingale can at most double its capital after every bit, and each index n with ni ≤ n <
ni+1 is at most ki bits beyond ni. It follows that for infinitely many i ∈ N,

d(S � ni) ≥ 2(1−t)ni−kid(λ). (4.11)

19



For all i ∈ N, set li ∈ R such that d(S � ni) = 2ki−lid(S � ni−1). By induction on i,

d(S � ni) = d(λ)
i∏

j=0

2kj−lj . (4.12)

Then, by equations (4.11) and (4.12), and the fact that
∑i

j=0 ki = ni, for infinitely many
i ∈ N,

i∏
j=0

2kj−lj ≥ 2(1−t)ni−ki =⇒
i∑

j=0

(kj − lj) ≥ (1− t)ni − ki

=⇒
i∑

j=0

lj ≤ tni + ki.

Recall that ci ≥ d(S � ni)g(i) = g(i)2ki−lid(S � ni−1). By Corollary 3.3 (take k = ki, l =
li, α = 1 − 1

i2
, w = S � ni−1) and the definition of li, it follows that |Ai| ≤ 2li/g(i), and so

log |Ai| ≤ li − log g(i). Let c0,1 = log |A0|+ log |A1| − l0 − l1. Then

i∑
j=0

log |Aj| ≤
i∑

j=0

lj −
i∑

j=2

log g(i) + c0,1

≤ tni + ki −
i∑

j=2

log g(i) + c0,1

= t′ni + (t− t′)ni + ki −
i∑

j=2

log g(i) + c0,1. (4.13)

t < t′, ki = o(ni), and
∑i

j=2 log g(i) = o(ni), so for infinitely many i,
∑i

j=0 log |Aj| ≤ t′ni.
The proof of (4.8) is similar, replacing “for infinitely many i” conditions with “for all

but finitely many i.” The only difference is that (4.10) holds for all but finitely many n,
and so there is no need to derive (4.11). Consequently, the term ki does not appear on the
right-hand side of (4.13), and so the condition ki = o(ni) is not necessary to show that (4.8)
holds.

Let t ∈ R, c ∈ Q, s ∈ {0, 1}∗, k ∈ N, and let d : {0, 1}∗ → [0,∞) be a t-gale. If d is

exactly ∆-computable and u ∈ A(k)
d,c,s, then the following procedure computes the index of u

in a lexicographical ordering of A
(k)
d,c,s.

ind
(k)
d,c,s

(
u ∈ {0, 1}k

)
1 i′ ← 0
2 for each u′ ∈ {0, 1}k in lexicographical order
3 do if d(su′) > c
4 then if u′ = u
5 then output i′ and exit
6 else i′ ← i′ + 1

20



If u 6∈ A(k)
d,c,s, ind

(k)
d,c,s(u) is undefined. For all u ∈ {0, 1}k, ind

(k)
d,c,s(u) ≤

∣∣∣A(k)
d,c,s

∣∣∣ when it is

defined. The computation of str
(k)
d,c,s : N→ {0, 1}k, the inverse of ind

(k)
d,c,s, is similar:

str
(k)
d,c,s (i ∈ N)

1 i′ ← 0
2 for each u′ ∈ {0, 1}k in lexicographical order
3 do if d(su′) > c
4 then if i′ = i
5 then output u′ and exit
6 else i′ ← i′ + 1

Both ind
(k)
d,c,s and str

(k)
d,c,s are uniformly ∆-computable for all d, c, s, and k, in the sense that

each may be implemented by a single ∆-bounded Turing machine taking d, c, s, and k as
auxiliary input, provided d is exactly ∆-computable.

Proof of Theorem 4.5. If dim∆(S) = 1, then the trivial “bit-copier” OTM M suffices to
compute P = S, where ρ−M(S, P ) = ρ+

M(S, P ) = dim∆(S) = Dim∆(S) = 1, so assume that
dim∆(S) < 1.

Let t, r ∈ Q2 such that dim∆(S) < t < dim∆(S) + δ and Dim∆(S) < r < Dim∆(S) + δ.
Then by Observation 3.11, there is a ∆-computable martingale d such that d(t) succeeds on
S and d(r) strongly succeeds on S. By Observation 3.5, dim∆(S) < 1 implies that we may
assume that d strongly succeeds on S. By Lemma 3.4, we may assume that d is dyadically
∆-computable. By Observation 3.12, we may assume that d(λ) = 1.

Let N =

⌈
max

{
2

dim∆(S) + δ − r
,

2

Dim∆(S) + δ − t

}⌉
. Let k0 = n0 = 2. For all i ∈ Z+,

let ki = dN log ni−1e and ni = ni−1 + ki. Write S = ŝ0ŝ1ŝ2 . . ., where, for all i ∈ N, ki = |ŝi|,
and ni = |ŝ0 . . . ŝi|. By Observation 3.1, d(S � ni) ≤ 2ni for all i ∈ N. Since d strongly
succeeds on S, for all but finitely many i, d(S � ni) ≥ 1. Let C ∈ N be as in Lemma 4.6. For
all such i ∈ N, taking ri = d(S � ni), choose ci ∈ Q+ for i, a, and ri as in Lemma 4.6, and let
π(ci) represent a program testifying that KCni(ci) ≤ ki · 2/N , which can be computed from
i, d(λ), and d(S � ni) in at most Cni steps.

Let P = p0p1p2 . . . , where, for all i ∈ N,

pi = enc
(

ind
(ki)
d,ci,S�ni−1

(ŝi)
)
π(ci).

Because str
(ki)
d,ci,S�ni−1

is an inverse of ind
(ki)
d,ci,S�ni−1

, we can write each ŝi as

ŝi = str
(ki)
d,ci,S�ni−1

(
ind

(ki)
d,ci,S�ni−1

(ŝi)
)
.

Since ind
(ki)
d,ci,S�ni−1

, str
(ki)
d,ci,S�ni−1

and d are all ∆-computable, P ≡∆
T S. Note in particular

that, since ki = O(log ni), the search over all strings of length ki done in the computation of

ind
(ki)
d,ci,S�ni−1

and str
(ki)
d,ci,S�ni−1

requires searching only a polynomial (in ni) number of strings.

21



LetM be the OTM such thatMP computes S. It suffices to show that ρ−M(S, P ) ≤ dim∆(S)+
δ and ρ+

M(S, P ) ≤ Dim∆(S) + δ. Recall that ki = ni − ni−1, and ki grows unboundedly with
i, so i = o(ni) as i→∞. Then

−
i∑

j=2

log

(
1− 1

k2
j

)
=

i∑
j=2

[2 log kj − log(kj + 1)− log(kj − 1)]

≤ 2
i∑

j=2

[log kj − log(kj − 1)]

≤ 2
i∑

j=2

[log(N log(nj−1) + 1)− log(N log(nj−1)− 1)]

= O(i) = o(ni),

since limj→∞ [log(N log(nj−1) + 1)− log(N log(nj−1)− 1)] = 0. Thus g(j) = 1− 1
k2

j
satisfies

the requirement −
∑i

j=2 log g(j) = o(ni) in the hypothesis of Lemma 4.7. Then

ρ+
M(S, P ) = lim sup

n→∞

#(S � n,MP )

n
= lim sup

i→∞

#(S � ni,MP )

ni
since ki = o(ni)

= lim sup
i→∞

∑i
j=0

∣∣∣enc
(

ind
(kj)
d,cj ,S�nj−1

(ŝj)
)
π(cj)

∣∣∣
ni

= lim sup
i→∞

(∑i
j=0 |π(cj)|
ni

+

∑i
j=0 log ind

(kj)
d,cj ,S�nj−1

(ŝj)

ni

)

≤ lim sup
i→∞

(∑i
j=0 kj · 2/N∑i

j=0 kj
+

∑i
j=0 log ind

(kj)
d,cj ,S�nj−1

(ŝj)

ni

)
≤ 2/N + r ≤ Dim∆(S) + δ by Lemma 4.7.

Similarly, ρ−M(S, P ) ≤ dim∆(S) + δ.

We now arrive at the main result of this section. It is a ∆-bounded extension and
improvement of Corollary 4.3. It states that ∆-strong dimension may be extracted, using
∆-Turing reductions, from any sequence of positive ∆-dimension, for ∆ = comp, pispace
(for i ≥ 0), or pi (for i ≥ 1). Furthermore, Theorem 4.8 achieves a partial extraction of
dimension in addition to strong dimension. The reduction is not uniform: the OTMs used
depend on the sequence from which dimension is being extracted. The case of Theorem 4.8
for ∆ = comp was independently discovered by Laurent Bienvenu [6]. Theorem 4.8 has been
extended to constructive dimension by Bienvenu, Doty, and Stephan [7].

Theorem 4.8. Let i ∈ N and ∆ ∈ {comp, pispace, pi+1}. For each ε > 0 and each S ∈ C

such that dim∆(S) > 0, there exists P ∈ C such that P ≡∆
T S, dim∆(P ) ≥ dim∆(S)

Dim∆(S)
− ε, and

Dim∆(P ) ≥ 1− ε.

22



Proof. Let i ∈ N and ∆ ∈ {comp, pispace}. We first prove this case, and at the end of the
proof we handle the case ∆ = pi for i ∈ Z+.

Let S and ε be as in the statement of the theorem. Let 0 < δ < ε · dim∆(S)/2. Choose
P ∈ C, Md ∈ OTM, and Me ∈ OTM for S and δ as in Theorem 4.5 such that P ≡∆

T S and,
letting np = #(S � n,MP

d ) for all n ∈ N,

lim inf
n→∞

np
n
< dim∆(S) + δ

=⇒ inf
q∈bound(∆)

lim inf
m→∞

KSq(S � m)

m
> lim inf

n→∞

np
n
− δ by Theorem 3.10

=⇒ (∀q ∈ bound(∆)) lim inf
m→∞

KSq(S � m)

m
> lim inf

n→∞

np
n
− δ

=⇒ (∀q ∈ bound(∆))(∃∞n ∈ N) lim inf
m→∞

KSq(S � m)

m
>
np
n
− δ

=⇒ (∀q ∈ bound(∆))(∃∞n ∈ N) KSq(S � n) > np − δn. (4.14)

Since δ < ε · dim∆(S)/2, by Theorem 3.10,

(∀q ∈ bound(∆))(∀∞n ∈ N) KSq(S � n) >
2

ε
δn. (4.15)

Note that the construction of Md in the proof of Theorem 4.5 is such that entire prefixes of the
oracle sequence are queried at once: whenever the bit at index i ∈ N is queried, all bits j < i
are also queried. Thus, a program M ′ simulating Md with the first np bits of P can calculate
S � n, and M ′ can be encoded in |enc(P � np)|+ O(1) bits. Thus there is a constant c and,
since Md uses ∆ space, there exists t ∈ bound(∆) such that KSt(S � n) ≤ np + 2 log np + c,
which together with (4.15) implies that

(∀∞n ∈ N) δn <
ε

2
(np + 2 log np + c). (4.16)

Combining (4.14) and (4.16),

(∀q ∈ bound(∆))(∃∞n ∈ N) KSq(S � n) > np −
ε

2
(np + 2 log np + c) . (4.17)

Suppose for the sake of contradiction that Dim∆(P ) < 1 − ε. Then by Theorem 3.10, it
would be the case that

(∃s ∈ bound(∆))(∀∞m ∈ N) KSs(P � m) < m− εm. (4.18)

Since dim∆(S) > 0, S is not ∆-computable (see [33], Lemma 4.13), and since S is ∆-
computable by Md with access to P , np must grow unboundedly with n. A program that
produces P � np in s(np) space can be used in conjunction with Md (which uses at most t(n)
space) to produce S � n in at most t(n) + s(np) space. For the case ∆ = comp, t(n) + s(np)
is bounded by a computable function of n. By part 3 of Theorem 4.5, np = O(n), so, for the

23



case ∆ = pispace, the space bound n 7→ t(n) + s(np) is contained in Gi = bound(pispace).
Then for a suitable constant c′ ≈ |Md|,

(∃q ∈ bound(∆))(∀∞n ∈ N) KSq(S � n) ≤ KSs(P � np) + c′

< np − εnp + c′

< np −
ε

2
(np + 2 log np + c) . (4.19)

But (4.19) contradicts (4.17). Hence, Dim∆(P ) ≥ 1− ε.
To see that dim∆(P ) ≥ dim∆(S)

Dim∆(S)
− ε, let 0 < d < dim∆(S), D′ > D > Dim∆(S), and

0 < δ < min{dim∆(S) − d,D − Dim∆(S)}. (Note that our previous requirement that
0 < δ < ε · dim∆(S)/2 does not contradict this.)

Let q ∈ bound(∆). It suffices to prove that, for all but finitely many n, KSr+q(P � n) ≥
d
D′
n, where r ∈ bound(∆) is given below.
By Theorem 4.5, P ≡∆

T S and ρ+
Md

(S, P ) < D. Recall that for each n ∈ N, np = #(S �
n,MP

d ). Then there exists r ∈ bound(∆) such that, for all but finitely many n,

dn < KSq(S � n) < KSr+q(P � np) + 2 log n. (4.20)

The first inequality holds because d < dim∆(S), and the second because M
P �np

d together
with a binary encoding of n (requiring less than 2 log n bits) is a program computable in
r(n) + q(n) space to output S � n.

By the fact that ρ+
Md

(S, P ) < D, the assumption that D′ > D, and (4.20), for all but
finitely many n,

Dn > np =⇒ D′n− 2
D′

d
log n > np

=⇒ dn− 2 log n >
d

D′
np

=⇒ KSr+q(P � np) >
d

D′
np. (4.21)

Recall from the proof of Theorem 4.5 that |ŝi|, the length of the ith block in S, is o(i),
and that |pi|, the length of the ith block of P , is at most |ŝi| + o(|ŝi|). This implies that
|pi| = o(np) if pi occurs on prefix np. Thus, for all n, |np − (n + 1)p| = o(np). Therefore,
(4.21) implies that, for all but finitely many n ∈ N, KSr+q(P � n) ≥ d

D′
n. This proves the

theorem for ∆ ∈ {comp, pispace}.
We next show that the theorem holds for ∆ = pi, where i ∈ Z+. Note that the OTMs

used in the proof of Theorem 4.5 compute P from S (respectively, S from P ) using S � n to
compute P � np (respectively, P � np to compute S � (n− 1)), where, for all n ∈ N,

(n+ 1)p − np = O(log n), (4.22)

because the blocks in which S and P are processed have length logarithmic in the length of
the prefixes they extend. This implies that there exist pi-computable functions C : {0, 1}∗ →

24



{0, 1}∗ and D : {0, 1}∗ × N → {0, 1}∗ such that, for all n ∈ N, D(C(S � n), n) = S � n; C
simply encodes however many whole blocks of S fit into S � n as the corresponding blocks
from P , and the last partial block of S may simply be copied bit-for-bit. Equation (4.22) tells
us that the last block’s length is negligible, which implies that (C,D) achieves a compression
ratio asymptotically as good as that of Theorem 4.5. Therefore

lim inf
n→∞

|C(S � n)|
n

≤ dimpi
(S) + δ (4.23)

and

lim sup
n→∞

|C(S � n)|
n

≤ Dimpi
(S) + δ. (4.24)

Equation (4.22) also implies that (C,D) satisfies (3.1) and therefore, (C,D) is a pi-compressor
that does not start from scratch. Although Lemma 4.4 is not known to hold for pi-dimension,
Theorem 3.14 and inequalities (4.23) and (4.24) tell us that (C,D) achieves a compression
ratio within δ of the optimal compression ratio achievable by pi-compressors that do not
start from scratch. Hence, by an incompressibility argument similar to that given in the first

part of the proof (and similar to the proof of Theorem 4.14), dimpi
(P ) ≥ dimpi (S)

Dimpi (S)
− ε, and

Dimpi
(P ) ≥ 1− ε.

Corollary 4.9. Let i ∈ N and ∆ ∈ {comp, pispace, pi+1}. For each ε > 0 and each ∆-regular
S ∈ C such that dim∆(S) > 0, there exists P ∈ C such that P ≡∆

T S and dim∆(P ) ≥ 1− ε.

Fortnow, Hitchcock, Pavan, Vinodchandran, and Wang [17] have shown a similar extrac-
tion result for constructive, computable, and space-bounded strong dimension, which starts
from the weaker hypothesis that only the strong dimension of the input sequence is positive.
Furthermore, the extractor runs in polynomial time. Lemma 4.2 of [17] requires advice and
is stated only for pspace dimension, but can be improved to eliminate the advice [25]. The
technique also works for any dimension having a space-bounded Kolmogorov complexity
characterization, leading to the following theorem.

Theorem 4.10 ( [17]). Let i ∈ N and ∆ ∈ {comp, pispace}. For each ε > 0 and S ∈ C,

1. If Dim(S) > 0, then there exists P ∈ C such that P ≡p
T S and Dim(P ) ≥ 1− ε.

2. If Dim∆(S) > 0, then there exists P ∈ C such that P ≡p
T S and Dim∆(P ) ≥ 1− ε.

4.2.2 Finite-State Dimension Extractors

We next show that information lossless finite-state transducers can extract finite-state di-
mension [12]. Finite-state dimension has multiple equivalent definitions [9,12,14,23]. For this
paper, we exclusively use the characterization given in [12] in terms of information lossless
finite-state transducers.

A finite-state transducer (FST) is a 4-tuple T = (Q, δ, ν, q0), where

• Q is a nonempty, finite set of states,

25



• δ : Q× {0, 1} → Q is the transition function,

• ν : Q× {0, 1} → {0, 1}∗ is the output function,

• q0 ∈ Q is the initial state.

For all x ∈ {0, 1}∗ and b ∈ {0, 1}, define the extended transition function δ̂ : {0, 1}∗ → Q
by the recursion

δ̂(λ) = q0,

δ̂(xb) = δ(δ̂(x), b).

For x ∈ {0, 1}∗, we define the output of T on x to be the string T (x) defined by the recursion

T (λ) = λ,

T (xb) = T (x)ν(δ̂(x), b)

for all x ∈ {0, 1}∗ and b ∈ {0, 1}.
A FST can trivially act as an “optimal compressor” by outputting λ on every transition

arrow, but this is a useless compressor, because the input cannot be recovered. A FST
T = (Q, δ, ν, q0) is information lossless (IL) if the function x 7→ (T (x), δ̂(x)) is one-to-one;
i.e., if the output and final state of T on input x uniquely identify x. An information lossless
finite-state transducer (ILFST) is a FST that is IL. We write ILFST to denote the set of all
information lossless finite-state transducers.

Let S ∈ C. The finite-state dimension [12] and the finite-state strong dimension [2] of S
are respectively defined

dimFS(S) = inf
C∈ILFST

lim inf
n→∞

|C(S � n)|
n

,

and

DimFS(S) = inf
C∈ILFST

lim sup
n→∞

|C(S � n)|
n

.

Intuitively, the finite-state dimension (resp. strong dimension) of a sequence represents the
optimal best-case (resp. worst-case) compression ratio achievable on the sequence with any
ILFST. We say S ∈ C is FS-regular if dimFS(S) = DimFS(S).

Given a sequence P ∈ C and a FST T , define T (P ) to be the output of T on P , the
shortest element S ∈ C ∪ {0, 1}∗ such that, for all n ∈ N, T (P � n) v S. Let S, P ∈ C and
T ∈ ILFST. We say S is IL-finite-state reducible to P via T , and we write S ≤ILFS P via
T , if T (P ) = S. We say S is IL-finite-state reducible to P , and we write S ≤ILFS P , if there
exists T ∈ ILFST such that S ≤ILFS P via T . We say S is IL-finite-state equivalent to P ,
and we write S ≡ILFS P , if S ≤ILFS P and P ≤ILFS S.

The following well-known theorem [26,27] shows that each ILFST T computes a function
T : C→ C whose inverse is computable by another ILFST.

26



Theorem 4.11 ( [26, 27]). For all T ∈ ILFST, there exists T−1 ∈ ILFST such that, for all
S ∈ C, T−1(T (S)) = S.

Corollary 4.12. For all S, P ∈ C, S ≤ILFS P if and only if S ≡ILFS P .

The following lemma, which is similar to Observation 3.11, follows easily from Lemma
5.6 of [9]. It shows that a single ILFST can always be found whose compression ratio
simultaneously approximates both of the optimal compression ratios that dimFS and DimFS

represent.

Lemma 4.13 ( [9]). For all S ∈ C and all δ > 0, there exists an ILFST C such that

lim inf
n→∞

|C(S � n)|
n

< dimFS(S) + δ,

and

lim sup
n→∞

|C(S � n)|
n

< DimFS(S) + δ,

The following theorem shows that ILFST’s can extract finite-state dimension from se-
quences in a similar manner to Theorem 4.8.

Theorem 4.14. For each ε > 0 and each S ∈ C such that dimFS(S) > 0, there exists P ∈ C

such that P ≡ILFS S, dimFS(P ) ≥ dimFS(S)
DimFS(S)

− ε, and DimFS(P ) ≥ 1− ε.

Proof. Let S and ε be as in the statement of the theorem. Let δ = dimFS(S) · ε/3. Choose

C ∈ ILFST for S and δ as in Lemma 4.13, so that lim inf
n→∞

|C(S�n)|
n

< dimFS(S) + δ and

lim sup
n→∞

|C(S�n)|
n

< DimFS(S) + δ. Let P = C(S), and let np = |C(S � n)| for all n ∈ N. Let

α = dimFS(S) · 2/3. Since dimFS(S) > 0, for all but finitely many n ∈ N, np > αn. Then

lim inf
n→∞

np
n
< dimFS(S) + δ

=⇒ inf
C′∈ILFST

lim inf
m→∞

|C ′(S � m)|
m

> lim inf
n→∞

np
n
− δ

=⇒ (∀C ′ ∈ ILFST) lim inf
m→∞

|C ′(S � m)|
m

> lim inf
n→∞

np
n
− δ

=⇒ (∀C ′ ∈ ILFST)(∃∞n ∈ N) lim inf
m→∞

|C ′(S � m)|
m

>
np
n
− δ

=⇒ (∀C ′ ∈ ILFST)(∃∞n ∈ N) |C ′(S � n)| > np − δn
=⇒ (∀C ′ ∈ ILFST)(∃∞n ∈ N) |C ′(S � n)| > np − αεn. (4.25)

Let C2 ∈ ILFST. Let C3 = C2 ◦C denote the composition of C2 with C, the ILFST such
that, for every x ∈ {0, 1}∗, C3(x) = C2(C(x)). It is well-known [26,27] that ILFST’s can be
composed in this manner. By (4.25), for infinitely many n ∈ N,

np − αεn < |C3(S � n)|
= |C2(C(S � n))|
= |C2(P � np)|.

27



Thus, dividing both sides by np, since np ≥ αn for all n,

lim sup
n→∞

|C2(P � n)|
n

≥ lim sup
n→∞

|C2(P � np)|
np

≥ 1− lim sup
n→∞

αε
n

np
≥ 1− ε.

Since C2 was arbitrary, this establishes that DimFS(P ) ≥ 1− ε.
We now show that dimFS(P ) ≥ dimFS(S)

DimFS(S)
− ε. In a similar derivation to that giving (4.25),

lim sup
n→∞

np
n
< DimFS(S) + δ

=⇒ lim sup
n→∞

np
n
< dimFS(S)

DimFS(S)

dimFS(S)
+ δ

=⇒ inf
C′∈ILFST

lim inf
m→∞

|C ′(S � m)|
m

>
dimFS(S)

DimFS(S)

(
lim sup
n→∞

np
n
− δ
)

=⇒ (∀C ′ ∈ ILFST)(∀∞n ∈ N) |C ′(S � n)| > dimFS(S)

DimFS(S)
(np − αεn). (4.26)

By (4.26), for all but finitely many n ∈ N,

dimFS(S)

DimFS(S)
(np − αεn) < |C3(S � n)|

= |C2(C(S � n))|
= |C2(P � np)|.

Since C is an ILFST, there is a constant c > 0 such that, for all n, ((n+ 1)p−np) ≤ c. Since
C2 is an ILFST, the same reasoning implies that there is a constant c′ ∈ N such that, for all
n ∈ N, |C2(P � (n+ 1)p)| − |C2(P � np)| ≤ c′. Therefore

lim inf
n→∞

|C2(P � n)|
n

= lim inf
n→∞

|C2(P � np)|
np

≥ dimFS(S)

DimFS(S)

(
1− lim inf

n→∞
αε

n

np

)
≥ dimFS(S)

DimFS(S)
− ε.

Since C2 was arbitrary, this establishes that dimFS(P ) ≥ dimFS(S)
DimFS(S)

− ε.
Clearly, P ≤ILFS S via C. By Corollary 4.12, P ≡ILFS S.

Corollary 4.15. For each ε > 0 and each FS-regular S ∈ C such that dimFS(S) > 0, there
exists P ∈ C such that P ≡ILFS S and dimFS(P ) ≥ 1− ε.

28



5 Every Sequence is Optimally Decompressible from a

Random One

Kučera [28, 29] and Gács [18] independently obtained the surprising result that every se-
quence is Turing reducible to a Martin-Löf random sequence. In the words of Gács, “it
permits us to view even very pathological sequences as the result of the combination of two
relatively well-understood processes: the completely chaotic outcome of coin-tossing, and
a transducer algorithm.” Merkle and Mihailović [37] have provided a simpler proof of this
result using martingales, which are strategies for gambling on successive bits of a sequence.

Bennett [4] claims that “This is the infinite analog of the far more obvious fact that
every finite string is computable from an algorithmically random string (e.g., its minimal
program).” However, the analogy is incomplete. Not only is every string s computable
from a random string r, but r is an optimally compact representation of s. Gács showed
that his reduction achieves a decompression ratio of 1: for any n, n + o(n) bits of R are
required to compute n bits of S. But as in the case of strings, sequences that are sparse
in information content should in principle be derivable from a more compact description.
Consider the following example. It is well known that K, the characteristic sequence of the
halting language, has constructive dimension and constructive strong dimension 0 [3]. The
binary representation of Chaitin’s halting probability Ω =

∑
M halts 2−|M | (where M ranges

over all halting programs and |M | is M ’s binary description length) is an algorithmically
random sequence [11]. It is known that K ≤T Ω (see [30]). Furthermore, only the first n
bits of Ω are required to compute the first 2n bits of K, so the asymptotic decompression
ratio of this reduction is 0. Ω can be considered an optimally compressed representation of
K, and it is no coincidence that the decompression ratio of 0 achieved by the reduction is
precisely the constructive dimension of K.

We generalize this phenomenon to arbitrary sequences, extending the result of Kučera
and Gács by pushing the decompression ratio of the reduction down to its optimal lower
bound. Thus, we complete Bennett’s above-mentioned analogy between reductions to ran-
dom sequences and reductions to random strings. We show that, for every sequence S, there
is a sequence R such that S ≤T R, where the best-case decompression ratio of the reduction
is the constructive dimension of S, and the worst-case decompression ratio is the construc-
tive strong dimension of S. Furthermore, we show that the sequence R can be chosen to
be Martin-Löf random, although the randomness of R is easily obtained by invoking the
construction of Gács in a black-box fashion. Finally, a single machine works in all cases;
in analogy to the universal Turing machine used to define Kolmogorov complexity, a sin-
gle Turing reduction reproduces each sequence S from its shortest description. This result
gives a way to associate with each sequence S another sequence R that is an optimally com-
pressed representation of S, decompressible by a single, universal reduction machine. As in
the case of Kolmogorov complexity, the compression direction is in general uncomputable;
it is not always the case that R ≤T S. This result also extends a compression result of
Ryabko [42,43], discussed in section 2, although it is not a strict improvement, since Ryabko
considered two-way reductions (Turing equivalence) rather than one-way reductions.

29



The following lemma shows two senses in which the composition of two oracle Turing
machines in a transitive Turing reduction bounds the compression ratio of the transitive
reduction below the product of the compression ratios of the two original reductions.

Lemma 5.1. Let S, P,R ∈ C and MS,MP ∈ OTM such that S ≤T P via MS and P ≤T R
via MP , and let M = MS ◦MP , so that S ≤T R via M . Then

ρ+
M(S,R) ≤ ρ+

MS
(S, P )ρ+

MP
(P,R),

and
ρ−M(S,R) ≤ ρ−MS

(S, P )ρ+
MP

(P,R).

Proof. Let rP+
S > ρ+

MS
(S, P ), rP−S > ρ−MS

(S, P ), and rR+
P > ρ+

MP
(P,R). It suffices to show

that ρ+
M(S,R) ≤ rP+

S rR+
P and ρ−M(S,R) ≤ rP−S rR+

P .
For infinitely many n, #(S � n,MP

S ) < rP−S n. For all but finitely many n, #(S � n,MP
S ) <

rP+
S n, and #(P � n,MR

P ) < rR+
P n. Then, for all but finitely many n, to compute S � n, MR

requires

#(S � n,MR) = #
(
P � #

(
S � n,MP

S

)
,MR

P

)
< rR+

P #
(
S � n,MP

S

)
< rP+

S rR+
P n

queries to R. Since this holds for all but finitely many n,

ρ+
M(S,R) = lim sup

n→∞

#(S � n,MR)

n
≤ rP+

S rR+
P .

For infinitely many n, to compute S � n, M requires

#(S � n,MR) = #
(
P � #

(
S � n,MP

S

)
,MR

P

)
< rR+

P #
(
S � n,MP

S

)
< rP−S rR+

P n

queries to R. Since this holds for infinitely many n,

ρ−M(S,R) = lim inf
n→∞

#(S � n,MR)

n
≤ rP−S rR+

P .

The following may be proven using the same technique as the proof of Lemma 4.4.

Lemma 5.2. Let S,R ∈ C and M ∈ OTM such that S ≤T R via M . Then

ρ−M(S,R) ≥ dim(S), and ρ+
M(S,R) ≥ Dim(S).

The next lemma is similar to Lemma 4.6, but it achieves a more compact encoding of the
rational number at the expense of a worse approximation to the real it is representing. This
extra compactness is required in order to make the length of the program for the rational
number asymptotically smaller than the length of the block in which it resides, so that its
length can be entirely discounted in the limit (not just made an arbitrarily small percentage
of the block length, as in Lemma 4.6).

30



Lemma 5.3. There exists a constant C ∈ N such that the following holds. For all i ∈ N, let
ri ∈ [1, 2i

2
]. Then for all but finitely many i ∈ N, there is a rational number ci ∈ Q+ such

that ri
(
1− 1

i2

)
≤ ci < ri and K(ci) ≤ C log i.

Proof. We prove the cases ri ≥ i2 and 1 ≤ ri < i2 separately. Suppose ri ≥ i2. In this
case we will choose ci to be an integer. Set m ∈ Z+ such that 2m−1 < i2 ≤ 2m. Since
ri ≥ i2 > 2m−1, dlog rie > m− 1.

Let ci ∈ Z+ be the integer whose binary representation is x0dlog rie−m, where x ∈ {0, 1}m
is the first m bits of bric. Since ci shares its first m bits with ri,

ri − ci ≤ 2dlog rie−m − 1 ≤ ri + 2

2m
− 1 ≤ ri

i2
,

so ri
(
1− 1

i2

)
≤ ci < ri. ci can be fully described by the first m bits of ri, along with the

binary representation of the number dlog rie − m of 0’s that follow. Thus, describing ci
requires no more than m+ log(dlog rie −m) ≤ log i2 + 1 + log log c+ log i2 = O(log i) bits.

This will not work if ri ∈ Z+ and ri’s least significant dlog rie−m bits are 0, which would
result in ci = ri, rather than ci < ri. In this case, let

ci = ri − 1 = num2

(
rep2(num2(x)− 1)1dlog rie−m

)
,

where num2(x) is the integer whose binary representation is x, and rep2(n) is the binary
representation (with possible leading zeroes) of n ∈ N. This likewise requires O(log i) bits
to describe. Since ri ≥ i2, ci = ri − 1 ≥ ri

(
1− 1

i2

)
.

Now suppose that 1 ≤ ri < i2. We approximate ri by the binary integer bric, plus a
finite prefix of the bits to the right of ri’s decimal point in binary form. If x.S is the binary
representation of ri, where x ∈ {0, 1}∗ and S ∈ C, let ci ∈ Z+ be represented by x.y, where
y < S.

Since ri < i2, |x| ≤ log i2 = O(log i). We need ri−ci ≤ ri
i2

for ci to approximate ri closely.

Since ri − ci ≤ 2−|y|, it suffices to choose y < S such that 2−|y| ≤ ri
i2

, or |y| ≥ log i2

ri
. Let

|y| =
⌈
log i2

ri

⌉
= O(log i), since ri ≥ 1. Thus |x| + |y| = O(log i), so describing ci requires

O(log i) bits.
This will not work if ri is a dyadic rational x.z, where x, z ∈ {0, 1}∗ and |z| ≤ |y|,

which would result in ci = ri, rather than ci < ri. In this case, let r′i ∈
[
ri
(
1− 1

2i2

)
, ri
)

be
irrational. Choose ci for r′i by the method just described, such that r′i > ci ≥ r′i

(
1− 1

2i2

)
,

and ci requires O(log(i
√

2)) = O(log i) bits. Then ci ≥ ri
(
1− 1

i2

)
by the triangle inequality,

and ci < r′i < ri.

The next theorem says that every sequence is Turing reducible to a random sequence.
Part 1 is due independently to Kučera and Gács, and part 2 is due to Gács.

31



Theorem 5.4 ( [18, 28, 29]). There is an OTM Mg such that, for all S ∈ C, there is a
sequence R ∈ RAND such that

1. S ≤T R via Mg.

2. ρ+
Mg

(S,R) = 1.

The next theorem is the main result of this section. It shows that the compression
lower bounds of Lemma 5.2 are achievable, and that a single OTM M suffices to carry out
the reduction, no matter which sequence S is being computed. Furthermore, the oracle
sequence R to which S reduces can be made Martin-Löf random. The randomness of R
is easily accomplished by invoking the construction of Gács in a black-box fashion; the
majority of the work in the proof is establishing the bound on the compression. Therefore,
the next theorem improves the query usage bound of Theorem 5.4, but it does not provide
a new proof of Theorem 5.4. The proof is similar to the proof of Theorem 4.5. However,
due to the existence of the optimal constructive martingale d and the fact that we require
only the decompression direction to be computable, we need not approximate the optimal
decompression ratio from above; we can actually achieve it using d.

Theorem 5.5. There is an OTM M such that, for all S ∈ C, there is a sequence R ∈ RAND
such that

1. S ≤T R via M .

2. ρ−M(S,R) = dim(S).

3. ρ+
M(S,R) = Dim(S).

Proof. Parts 1 and 3 are shown. The proof for part 2 is similar to part 3.
If S ∈ RAND, then S ≤T S via the trivial “bit copier” machine M ′, with lower and upper

compression ratio dim(S) = Dim(S) = 1, so assume that S 6∈ RAND.
A single OTM M ′′ suffices to carry out the reduction described below, no matter what

sequence S 6∈ RAND is being computed. If S ∈ RAND, then M ′ is used. These two separate
reductions are easily combined into one by reducing each sequence S to a random sequence
bR via M ∈ OTM, where b ∈ {0, 1}, R = S if S ∈ RAND, and R is given by the construction
below if S 6∈ RAND. The bit b indicates to M whether to use M ′ or M ′′ for the reduction.
Hence a single OTM M implements the “optimal decompression”.

For all i ∈ N, define ki = i + 1, and define n0 = 1 and ni = ni−1 + ki = (i+1)(i+2)
2

for
i > 0. Note that ni ≤ i2 for all sufficiently large i. Write S = ŝ0ŝ1 . . ., such that, for all
i ∈ N, |ŝi| = ki; ki represents the length of the ith block into which we subdivide S. ni is
then |ŝ0 . . . ŝi|, the total length of the first i+ 1 blocks. For all i ∈ N, define ci ∈ Q+ to be a
rational number satisfying

1. d(S � ni)
(
1− 1

i2

)
≤ ci < d(S � ni); i.e., ci is a rational number approximating

d(S � ni) from below.

32



2. K(ci) = o(ki) as i → ∞; i.e. ci can be computed from a program asymptotically
smaller than the length of the ith block.

By Observation 3.13, 1 ≤ d(λ) < 2. By Observation 3.1, d(S � ni) ≤ 2nid(λ) ≤ 2i
2

for
sufficiently large i. By Observation 3.6, S 6∈ RAND implies that for all but finitely many i,
d(S � ni) ≥ 1. Thus, by Lemma 5.3 (take ri = d(S � ni)), there is a ci ∈ Q+ satisfying the
above two conditions.

For all i ∈ N, define the set Ai = A
(ki)
d,ci,S�ni−1

⊆ {0, 1}ki as in Lemma 4.7 by

Ai =
{
u ∈ {0, 1}ki

∣∣ d((S � ni−1)u) > ci
}
,

the set of all length-ki extensions of S � ni−1 that add more capital to the optimal constructive
martingale d than ŝi does, using ci as an approximation to d(S � ni). Since d(S � ni) > ci,
it follows that ŝi ∈ Ai.

For all i ∈ N, let pi ∈ N be the output of the following partial computable procedure,
when given as input the string ŝi ∈ {0, 1}ki :

ind
(ki)
ci,S�ni−1

(ŝi ∈ {0, 1}ki)

1 Ai ← ∅
2 for t← 0, 1, 2, . . .
3 do for each u ∈ {0, 1}ki − Ai
4 do if d̂((S � ni−1)u, t) > ci
5 then add u to Ai
6 if u = ŝi
7 then output |Ai| and halt

In other words, pi is the order in which d(S � ni) is shown to exceed ci (i.e., to belong to

Ai) by a parallel evaluation of d̂((S � ni−1)u, t) on all extensions u ∈ {0, 1}ki of S � ni−1, for

t = 0, 1, 2, . . .. Since ci < d(S � ni), there exists some t ∈ N such that d̂(S � ni, t) > ci, and

so pi is well-defined. The computation of str
(ki)
ci,S�ni−1

, the inverse of ind
(ki)
ci,S�ni−1

, resembles

that of ind
(ki)
ci,S�ni−1

:

str
(ki)
ci,S�ni−1

(pi ∈ N)

1 Ai ← ∅
2 for t← 0, 1, 2, . . .
3 do for each u ∈ {0, 1}ki − Ai
4 do if d̂((S � ni−1)u, t) > ci
5 then add u to Ai
6 if |Ai| = pi
7 then output u and halt

Note that str
(ki)
ci,S�ni−1

will not halt if given as input an integer greater than |Ai|, and

ind
(ki)
ci,S�ni−1

will not halt if given a string that is not an element of Ai.

33



ind
(ki)
ci,S�ni−1

and str
(ki)
ci,S�ni−1

are similar to ind
(k)
d,c,s and str

(k)
d,c,s, respectively, but are designed

explicitly to work with the lower-semicomputable martingale d. Instead of enumerating
strings in lexicographic order, they use the fact that the lower graph of d is computably
enumerable via d̂ to enumerate strings in the set Ai.

For all i ∈ N, let π(ci) denote a self-delimiting, shortest program for computing ci. Define
the sequence P ∈ C by

P = enc(p0)π(c0)enc(p1)π(c1)enc(p2)π(c2) . . . .

Define the oracle Turing machine MS that produces n bits of S, with oracle P , as follows.
Let i(n) denote the block in which n resides – the unique i ∈ N such that ni ≤ n < ni+1.
First, MP

S reads the first i(n) + 1 blocks of P :

enc(p0)π(c0) . . . enc(pi(n))π(ci(n)).

MP
S then calculates the first i(n)+1 blocks of S iteratively. On block i, MP

S first computes pi
from enc(pi) and ci from π(ci). Then, MP

S evaluates str
(ki)
ci,S�ni−1

(pi) to obtain ŝi and outputs

it as the ith block of S.
Since ŝi ∈ Ai, it follows that pi ≤ |Ai|, and so |enc(pi)| ≤ log |Ai|+2 log log |Ai|+3. Note

that

−
i∑

j=2

log

(
1− 1

j2

)
= −

i∑
j=2

log
(j + 1)(j − 1)

j2

= −
i∑

j=2

(log(j + 1) + log(j − 1)− 2 log j)

= − log 1 + log 2 + log i− log(i+ 1),

which converges to 1 as i → ∞, so g(j) = 1 − 1
j2

satisfies −
∑i

j=2 log g(j) = o(ni), whence
the conditions of Lemma 4.7 are satisfied. Therefore, by Lemma 4.7,

lim sup
i→∞

∑i
j=0 |enc(pj)|

ni
≤ lim sup

i→∞

∑i
j=0 log |Aj|

ni
≤ Dim(S). (5.1)

By our choice of ci, |π(ci)| = o(ki), so
∑i

j=0 |π(cj)| = o(ni) as i→∞, giving

lim sup
i→∞

∑i
j=0 |enc(pj)π(cj)|

ni
= lim sup

i→∞

∑i
j=0 |enc(pj)|

ni
. (5.2)

Since ni = ki(ki+1)
2

, ki = o(ni), so

lim sup
n→∞

∑i(n)
j=0 |enc(pj)π(cj)|

n
≤ lim sup

i→∞

∑i
j=0 |enc(pj)π(cj)|

ni
. (5.3)

34



In other words, because the block size grows slower than the prefix length, the lim sup over
all blocks is at least the lim sup over all bits (and they are in fact equal by the definition of
lim sup).

For all n ∈ N, MP
S requires

∑i(n)
j=0 |enc(pj)π(cj)| bits of P in order to compute n bits of

S, and hence, by (5.1)-(5.3),

ρ+
MS

(S, P ) = lim sup
n→∞

∑i(n)
j=0 |enc(pj)π(cj)|

n
≤ Dim(S).

Choose R ∈ RAND for P as in the construction of Gács in his proof of Theorem 5.4, satisfying
P ≤T R via Mg and ρ+

Mg
(P,R) = 1. Let M ′′ = MS ◦Mg. Then S ≤T R via M ′′ and, by

Lemma 5.1,
ρ+
M ′′(S,R) ≤ ρ+

MS
(S, P )ρ+

Mg
(P,R) ≤ Dim(S).

By Lemma 5.2, ρ+
M ′′(S,R) ≥ Dim(S). Similarly, ρ−M ′′(S,R) = dim(S).

Note that the block lengths used in the proof grow with the square root of the prefix
length; if we write S = ŝ0ŝ1 . . . as in the proof of Theorem 5.5, then for all i ∈ N, |ŝi+1| =
O(
√
|ŝ0 . . . ŝi|), and similarly for the blocks of R. Bienvenu [6] has shown that this can be

improved to |ŝi+1| = O(log |ŝ0 . . . ŝi|).
It is instructive to compare Theorem 5.5 with Ryabko’s Theorem 4.1. While Ryabko’s

theorem represents S with a more compact sequence R, it is not optimally compact, as
a different decoding machine is required to get the compression ratio closer and closer to
the optimal ratio of dim(S). However, the major difference between the theorems is that
Ryabko’s construction does not achieve the bound between ρ+ and Dim. Intuitively, Ryabko’s
theorem states that S may be compressed to a sequence R, where infinitely often (but not
almost everywhere), approximately the first K(S � n) bits of R suffice to produce S � n.
However, Ryabko’s construction requires that the block lengths grow exponentially: for all
i ∈ N, |ŝ0 . . . ŝi+1| > 2i|ŝ0 . . . ŝi|. Therefore, while the lower compression ratio ρ− is close to
optimal in Ryabko’s theorem, the upper compression ratio ρ+ is infinite.

6 Dimension Characterizations

We use the decompression results of previous sections to characterize constructive dimension
as the optimal decompression ratio achievable on a sequence with Turing reductions, to
characterize computable dimension as the optimal decompression ratio achievable on the
sequence with truth-table reductions, and to characterize pispace-dimension as the optimal
decompression ratio achievable on the sequence with pispace-computable Turing reductions.
See [14] for a collection of similar compression and decompression characterizations of finite-
state dimension.

35



Theorem 6.1. For all i ∈ N and S ∈ C,

dim(S) = ρ−(S),
Dim(S) = ρ+(S),
dimcomp(S) = ρ−tt(S),
Dimcomp(S) = ρ+

tt(S),
dimpispace(S) = ρ−pispace(S),
Dimpispace(S) = ρ+

pispace(S).

Proof. This follows immediately from Theorems 4.5 and 5.5 and Lemmas 4.4 and 5.2.

Note that pi-dimension is absent from Theorem 6.1, because Lemma 4.4 is not known
to hold for pi-dimension without a Kolmogorov complexity characterization of pi-dimension.
Theorem 3.14, however, characterizes pi-dimension in terms of optimal pi-computable de-
compression if pi-computable compression (i.e., reversibility) is also required.

These decompression characterizations differ from Mayordomo’s and Hitchcock’s Kol-
mogorov complexity characterizations of these dimensions in that the compressed version
of a prefix of S does not change drastically from one prefix to the next, as it would in the
case of Kolmogorov complexity. While the theory of Kolmogorov complexity assigns to each
finite string an optimally compact representation of that string – its shortest program –
this does not easily allow us to compactly represent an infinite sequence with another in-
finite sequence. This contrasts, for example, the notions of finite-state compression [26] or
Lempel-Ziv compression [54], which are monotonic: for all strings x and y, x v y implies
that C(x) v C(y), where C(x) is the compressed version of x. Monotonicity enables these
compression algorithms to encode and decode an infinite sequence – or in a more applied
setting, a data stream of unknown length – online, without needing to reach the end of the
data before starting. However, if we let πx and πy respectively be shortest programs for x
and y, then x v y does not imply that πx v πy.

3 In fact, it may be the case that πx is longer
than πy, or that πx and πy do not even share any prefixes in common. In the self-delimiting
formulation of Kolmogorov complexity, πx cannot be a prefix of πy.

The Turing reductions of Theorems 5.4 and 5.5 satisfy the stronger properties of the weak
truth-table reduction (see [48]), which is a Turing reduction in which the query usage of the
OTM on input n is bounded by a computable function of n. Thus, constructive dimension
and strong dimension could also be defined in terms of decompression via weak truth-table
reductions (i.e., dim(S) = ρ−wtt(S) and Dim(S) = ρ+

wtt(S)).

Acknowledgments. I thank Philippe Moser, Xiaoyang Gu, Pavan Aduri, Satyadev Nan-
dakumar, Scott Summers, Frank Stephan, and Laurent Bienvenu for helpful discussions, and
Fengming Wang for pointing out [52]. I also thank anonymous referees for their helpful sug-
gestions, Jack Lutz and Jim Lathrop for their helpful advice in preparing this article, and
John Hitchcock for making useful corrections in an earlier draft, and for helpful discussions.

3Monotone complexity [45, 55] does not resolve this, since the universal monotone machine guarantees
only the converse implication: πx v πy =⇒ x v y.

36



References

[1] K. Ambos-Spies. Randomness, relativizations, and polynomial reducibilities. In Pro-
ceedings of the First Structure in Complexity Theory Conference, pages 23–34, 1986.

[2] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong
dimension, algorithmic information, and computational complexity. SIAM Journal on
Computing, 37(3):671–705, 2007.

[3] Y. M. Barzdin′. Complexity of programs to determine whether natural numbers not
greater than n belong to a recursively enumerable set. Soviet Mathematics Doklady,
9:1251–1254, 1968.

[4] C. H. Bennett. Logical depth and physical complexity. In R. Herken, editor, The
Universal Turing Machine: A Half-Century Survey, pages 227–257. Oxford University
Press, London, 1988.

[5] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA with
probability 1. SIAM Journal on Computing, 10:96–113, 1981.

[6] L. Bienvenu. Personal communication, 2006.

[7] L. Bienvenu, D. Doty, and F. Stephan. Constructive dimension and weak truth-table
degrees. In S. B. Cooper, B. Löwe, and A. Sorbi, editors, Computation and Logic in
the Real World - Third Conference of Computability in Europe, volume 4497 of Lecture
Notes in Computer Science. Springer, 2007.

[8] R. V. Book, J. H. Lutz, and K. W. Wagner. An observation on probability versus
randomness with applications to complexity classes. Mathematical Systems Theory,
27:201–209, 1994.

[9] C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-state
dimension. Theoretical Computer Science, 349:392–406, 2005.

[10] H. Buhrman, L. Fortnow, I. Newman, and N. Vereshchagin. Increasing Kolmogorov
complexity. In Proceedings of the 22nd Symposium on Theoretical Aspects of Computer
Science, number 3404 in Lecture Notes on Computer Science, pages 412–421, Berlin,
2005. Springer.

[11] G. J. Chaitin. A theory of program size formally identical to information theory. Journal
of the Association for Computing Machinery, 22:329–340, 1975.

[12] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theo-
retical Computer Science, 310:1–33, 2004.

37



[13] D. Doty. Every sequence is decompressible from a random one. In A. Beckmann,
U. Berger, B. Löwe, and J. V. Tucker, editors, Logical Approaches to Computational
Barriers, Second Conference on Computability in Europe, CiE 2006, Swansea, UK,
June 30-July 5, 2006, Proceedings, volume 3988 of Lecture Notes in Computer Science,
pages 153–162. Springer, 2006.

[14] D. Doty and P. Moser. Finite-state dimension and lossy decompressors. Technical
Report cs.CC/0609096, Computing Research Repository, 2006.

[15] G. A. Edgar. Classics on Fractals. Westview Press, Oxford, U.K., 2004.

[16] S. A. Fenner. Gales and supergales are equivalent for defining constructive Hausdorff
dimension. Technical Report cs.CC/0208044, Computing Research Repository, 2002.

[17] L. Fortnow, J. Hitchcock, A. Pavan, N. V. Vinodchandran, and F. Wang. Extracting
Kolmogorov complexity with applications to dimension zero-one laws. In Proceedings of
the 33rd International Colloquium on Automata, Languages and Programming. Springer,
2006.

[18] P. Gács. Every sequence is reducible to a random one. Information and Control, 70:186–
192, 1986.

[19] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6:675–695, 1977.

[20] X. Gu and J. H. Lutz. Dimension characterizations of complexity classes. In Proceedings
of the Thirtieth International Symposium on Mathematical Foundations of Computer
Science, pages 471–479. Springer-Verlag, 2006.

[21] F. Hausdorff. Dimension und äußeres Maß. Mathematische Annalen, 79:157–179, 1919.
English version appears in [15], pp. 75-99.

[22] J. M. Hitchcock. Effective fractal dimension: foundations and applications. PhD thesis,
Iowa State University, 2003.

[23] J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical
Computer Science, 304(1–3):431–441, 2003.

[24] J. M. Hitchcock. Gales suffice for constructive dimension. Information Processing
Letters, 86(1):9–12, 2003.

[25] J. M. Hitchcock. Personal communication, 2006.

[26] D. A. Huffman. Canonical forms for information-lossless finite-state logical machines.
IRE Trans. Circuit Theory CT-6 (Special Supplement), pages 41–59, 1959. Also available
in E.F. Moore (ed.), Sequential Machine: Selected Papers, Addison-Wesley, 1964, pages
866-871.

38



[27] Z. Kohavi. Switching and Finite Automata Theory (Second Edition). McGraw-Hill,
1978.

[28] A. Kučera. Measure, Π0
1-classes and complete extensions of PA. Recursion Theory Week,

Lecture Notes in Mathematics, 1141:245–259, 1985.

[29] A. Kučera. On the use of diagonally nonrecursive functions. In Studies in Logic and the
Foundations of Mathematics, volume 129, pages 219–239. North-Holland, 1989.

[30] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Appli-
cations. Springer-Verlag, Berlin, 1997. Second Edition.

[31] J. H. Lutz. Almost everywhere high nonuniform complexity. J. Comput. Syst. Sci.,
44(2):220–258, 1992.

[32] J. H. Lutz. A pseudorandom oracle characterization of BPP. SIAM Journal on Com-
puting, 22(5):1075–1086, 1993.

[33] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236–
1259, 2003.

[34] J. H. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49–79, 2003.

[35] P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,
1966.

[36] E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff
dimension. Information Processing Letters, 84(1):1–3, 2002.

[37] W. Merkle and N. Mihailović. On the construction of effective random sets. Journal of
Symbolic Logic, pages 862–878, 2004.

[38] J. S. Miller and A. Nies. Randomness and computability: Open questions. Technical
report, University of Auckland, 2005.

[39] A. Nies and J. Reimann. A lower cone in the wtt degrees of non-integral effective
dimension. In Proceedings of IMS workshop on Computational Prospects of Infinity,
2006. to appear.

[40] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[41] J. Reimann. Computability and Fractal Dimension. PhD thesis, Universität Heidelberg,
2004.

[42] B. Y. Ryabko. Coding of combinatorial sources and Hausdorff dimension. Soviet Math-
ematics Doklady, 30:219–222, 1984.

39



[43] B. Y. Ryabko. Noiseless coding of combinatorial sources. Problems of Information
Transmission, 22:170–179, 1986.

[44] C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical
Systems Theory, 5:246–258, 1971.

[45] C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and
System Sciences, 7:376–388, 1973.

[46] R. Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the
EATCS, 77:67–95, 2002.

[47] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[48] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin, 1987.

[49] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically
finite Kleinian groups. Acta Mathematica, 153:259–277, 1984.

[50] C. Tricot. Two definitions of fractional dimension. Mathematical Proceedings of the
Cambridge Philosophical Society, 91:57–74, 1982.

[51] M. L. Valdés and E. Mayordomo. Dimension is compression. In J. Jedrzejowicz and
A. Szepietowski, editors, MFCS, volume 3618 of Lecture Notes in Computer Science,
pages 676–685. Springer, 2005.

[52] N. K. Vereshchagin and M. V. Vyugin. Independent minimum length programs to
translate between given strings. Theoretical Computer Science, 271(1-2):131–143, 2002.

[53] J. von Neumann. Various techniques for use in connection with random digits. In von
Neumann’s Collected Works, volume 5, pages 768–770. Pergamon, 1963.

[54] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24:530–536, 1978.

[55] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development
of the concepts of information and randomness by means of the theory of algorithms.
Russian Mathematical Surveys, 25:83–124, 1970.

40


