
 1

Deterministic Function Computation
with Chemical Reaction Networks

David Doty (joint work with Ho-Lin Chen and David Soloveichik)
University of British Columbia

September 14, 2012

 2

The programming language of
chemical kinetics

Use the language of coupled chemical
reactions prescriptively as a “programming
language” for engineering new systems (rather
than descriptively as a modeling language for
existing systems)

 3

Cells are smart: controlled by
signaling and regulatory networks

source: David Rogers, Vanderbilt University

Human white blood cell
chasing a bacterium:

Want to engineer embedded controllers for biochemical systems,
“wet robots”, smart drugs, etc.

Need to understand theoretical principles of chemical computation

 4

Chemical Reaction Networks (CRN)
syntax:

we use only
stochastic CRNs
in this talk

 5

Discrete (Stochastic) CRN Model

● Finite set of species {X, Y, Z, …}
● A state is a nonnegative integer vector c

indicating the count (number of molecules) of
each species: write counts as #

c
X, #

c
Y, …

● Finite set of reactions: e.g.
X → W + Y + Z
A + B → C

(in this talk, all rate constants are 1, and all reactions
are unimolecular or bimolecular)

 6

Objections?

 7

What is not captured?

 8

Are CRNs an “implementable”
programming language?

● “I don't believe that every crazy CRN you write down actually
describes real chemicals!”

● Response to objection: Soloveichik, Seelig, Winfree [PNAS
2010] found a physical implementation (high-accuracy
approximation) of any CRN, using nucleic-acid strand
displacement cascades

 9

Deterministic Function Computation with CRNs

 10

Deterministic function computation
with CRNs (example 1)

f(x) = 2x

start with x (input amount)
of X

X → Z + Z

Z

 11

Deterministic function computation
with CRNs (example 2)

f(x) = ⌊x/2⌋
start with input
amount of X

X + X → Z

Z

 12

Deterministic function computation
with CRNs (example 3)

f(x
1
,x

2
) = if x

1
 > x

2
 then y = 1 else y = 0

start with 1 N and
input amounts of
X

1
,X

2

X
1
 + N → Y

X
2
 + Y → N

 13

Deterministic function computation
with CRNs (example 4)

f(x
1
,x

2
) = max {x

1
,x

2
}

start with input
amounts of X

1
,X

2

X
1
 → X

1
' + Z

X
2
 → X

2
' + Z

X
1
' + X

2
' → K

K + Z → Ø

Z

 14

Other functions?

f(x) = x2 ?

f(x
1
,x

2
) = x

1
∙x

2
?

f(x) = 2x ?

 15

Deterministic function computation
with CRNs (definition)

● initial state: input counts X
1
, X

2
, …, X

k
 (and fixed

counts of non-input species)
● output: counts of Z

1
, Z

2
, …, Z

l

● output-stable state: all states reachable from it have
same counts of Z

1
, Z

2
, …, Z

l

● deterministic computation: a correct output-stable
state “reached with probability 1 in the limit t → ∞”

task: compute function z = f(x) (x∈ℕk, z∈ℕl)

 16

Main result
Theorem: Functions f: ℕk → ℕl deterministically
computable by CRNs are precisely those with a
semilinear graph. graph(f) = { (x,z)∈ℕk+l | f(x)=z }

A ⊆ℕk+l is linear if there are vectors b, u
1
, …, u

p

so that A = { b + n
1
∙u

1
 + … + n

p
∙u

p
 | n

1
,...,n

p
∈ℕ }

Intuition: linear sets are multi-dimensional
“periodic” sets

Semilinear functions are “piecewise linear
functions” with a finite number of pieces

b

u
1 u

2

b + 3u
1
 + u

2

A is semilinear if it is a finite union of linear sets.

 17

Non-semilinear examples

Z
f(x

1
,x

2
) = x

1
∙x

2

f(x) = 2x

Z

 18

What if we allow error?
● Any function computable by an algorithm is

computable by a randomized CRN with arbitrarily
small positive probability of error.

– [Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008]
– [Angluin, Aspnes, Eisenstat, DISC 2006]

● Lesson: disallowing error hurts chemical algorithms
much more than it hurts conventional algorithms

algorithmically
computable

randomized
CRNs

function's
computational
complexity

deterministic
algorithms

randomized
algorithms

finite-state
computable

randomized
finite-state
algorithms

deterministic
finite-state
algorithms

polynomial-time
computable

randomized
poly-time (BPP)

algorithms

deterministic
poly-time (P)
algorithms

exponential-time
computable

deterministic
CRNs

semilinear

 19

How do we show this?

Theorem [Angluin, Aspnes, Eisenstat, PODC 2006]:
The predicates decidable by CRNs are precisely the
semilinear predicates.

We connect computation of functions (integer output)
to computation of predicates (YES/NO output)

 20

Deterministic predicate computation
with stochastic CRNs (definition)

● initial state: input counts X
1
, X

2
, …, X

k
 (and

fixed counts of non-input species)
● output: either #Y > 0 and #N = 0 (yes)

or #Y = 0 and #N > 0 (no)
● output-stable state: all states reachable from it

have same yes/no answer

● set decided by CRN: S
yes

= { x∈ℕk | φ(x) = yes }

task: decide predicate b = φ(x) (x∈ℕk, b {yes,no})∈

 21

Two directions to proof

● Only semilinear functions can be computed:
f computed by CRN C graph(⇒ f) decided by CRN D

● All semilinear functions can be computed:
graph(f) decided by CRN D ⇒ f computed by CRN C
direct systematic construction to show computation
of f(x) can be done in expected time O(polylog ||x||)

(reminder) Theorem [Angluin, Aspnes, Eisenstat,
PODC 2006]: The sets decidable by CRNs are
precisely the semilinear sets.

 22

monotonic production of Z
P

and Z
C
 allows composition

f computed by CRN C ⇒
graph(f) decided by CRN D

● Want to decide, given input (x,z), is f(x) = z?
● Keep track of total number of Z's ever produced or

consumed:
A + B → Z + W becomes A + B → Z + W + Z

P

A + Z → B becomes A + Z → B + Z
C

● Initial state has z copies of Z
C

Z
P
 + Z

C
 → Y Z

P
 + Y → Z

P
 + N

Y + N → Y Z
C
 + Y → Z

C
 + N

Eventually all
Z

P
 and Z

C
 go

away (if
equal) or one
is left over (if
unequal)

If Z
P
 or Z

C
 are

left over,
change
answer to NO

If neither is left over,
change answer to YES

CRN C CRN D

 23

Computing any semilinear f

X

Z

Alternative characterization:
partial linear functions

f
1
(x) = x/3 + 2

f
2
(x) = x - 2

f
3
(x) = 2

… with linear domains

Deciding which domain input x
is in can be done with a CRN

start with 1 L
0
, 2 Z

L
0
 + X → L

1

L
1
 + X → L

2

L
2
 + X → L

0
 + Z

 24

How fast can semilinear functions
be computed?

Theorem: Every semilinear function f can be computed by a
CRN on input x in expected time O(log5 ||x||).

 i.e., in time O(n5), where n is the number of bits to write x in binary

Proof: Combine slow deterministic construction with O(log5 ||x||)
CRN computing f with arbitrarily small probability of error. [1,2]

● If fast CRN is correct then output stabilizes quickly
● Otherwise, slow CRN compares and corrects the output

Error probability is small enough that total expected time to
stabilize to correct answer remains O(log5 ||x||).

Construction on previous slide takes O(||x|| log ||x||), but ...

[1] Angluin, Aspnes, Eisenstat, “Fast
computation by population protocols with a
leader”, DISC 2006

[2] Soloveichik, Cook, Winfree, Bruck,
“Computation with finite stochastic chemical
reaction networks”, Natural Computing 2008

||x|| = Σ
i
 x(i)

 25

 26

 27

Acknowledgments

Thank you!

Ho-Lin
Chen

David
Soloveichik

Niranjan
Srinivas

Damien
Woods

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

