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The programming language of 
chemical kinetics

Use the language of coupled chemical 
reactions prescriptively as a “programming 
language” for engineering new systems (rather 
than descriptively as a modeling language for 
existing systems)
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Cells are smart: controlled by 
signaling and regulatory networks

source: David Rogers, Vanderbilt University

Human white blood cell 
chasing a bacterium:

Want to engineer embedded controllers for biochemical systems, 
“wet robots”, smart drugs, etc.

Need to understand theoretical principles of chemical computation
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Chemical Reaction Networks (CRN)
syntax:

we use only 
stochastic CRNs 
in this talk
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Discrete (Stochastic) CRN Model

● Finite set of species {X, Y, Z, …}
● A state is a nonnegative integer vector c 

indicating the count (number of molecules) of 
each species: write counts as #

c
X, #

c
Y, …

● Finite set of reactions: e.g. 
X → W + Y + Z
A + B → C

(in this talk, all rate constants are 1, and all reactions 
are unimolecular or bimolecular)
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Objections?
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What is not captured?
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Are CRNs an “implementable” 
programming language?

● “I don't believe that every crazy CRN you write down actually 
describes real chemicals!”

● Response to objection: Soloveichik, Seelig, Winfree [PNAS 
2010] found a physical implementation (high-accuracy 
approximation) of any CRN, using nucleic-acid strand 
displacement cascades
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Deterministic Function Computation with CRNs
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Deterministic function computation 
with CRNs (example 1)

f(x) = 2x

start with x (input amount) 
of X 

X → Z + Z

Z
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Deterministic function computation 
with CRNs (example 2)

f(x) = ⌊x/2⌋
start with input 
amount of X 

X + X → Z

Z
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Deterministic function computation 
with CRNs (example 3)

f(x
1
,x

2
) = if x

1
 > x

2
 then y = 1 else y = 0

start with 1 N and 
input amounts of 
X

1
,X

2

X
1
 + N → Y

X
2
 + Y → N
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Deterministic function computation 
with CRNs (example 4)

f(x
1
,x

2
) = max {x

1
,x

2
}

start with input 
amounts of X

1
,X

2

X
1
 → X

1
' + Z

X
2
 → X

2
' + Z

X
1
' + X

2
' → K

K + Z → Ø

Z
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Other functions?

f(x) = x2 ?

f(x
1
,x

2
) = x

1
∙x

2 
?

f(x) = 2x ?
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Deterministic function computation 
with CRNs (definition)

● initial state: input counts X
1
, X

2
, …, X

k
 (and fixed 

counts of non-input species)
● output: counts of Z

1
, Z

2
, …, Z

l
 

● output-stable state: all states reachable from it have 
same counts of Z

1
, Z

2
, …, Z

l
 

● deterministic computation: a correct output-stable 
state “reached with probability 1 in the limit t → ∞”

task: compute function  z = f(x)      (x∈ℕk, z∈ℕl)
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Main result
Theorem: Functions f: ℕk → ℕl deterministically 
computable by CRNs are precisely those with a 
semilinear graph. graph(f) = { (x,z)∈ℕk+l | f(x)=z }

A  ⊆ℕk+l is linear if there are vectors b, u
1
,  …, u

p
 

so that A = { b + n
1
∙u

1
 + … + n

p
∙u

p
 | n

1
,...,n

p
∈ℕ }

Intuition: linear sets are multi-dimensional 
“periodic” sets

Semilinear functions are “piecewise linear 
functions” with a finite number of pieces

b

u
1 u

2

b + 3u
1 
 + u

2 

A is semilinear if it is a finite union of linear sets.
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Non-semilinear examples

Z
f(x

1
,x

2
) = x

1
∙x

2

f(x) = 2x

Z
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What if we allow error?
● Any function computable by an algorithm is 

computable by a randomized CRN with arbitrarily 
small positive probability of error.

– [Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008]
– [Angluin, Aspnes, Eisenstat, DISC 2006]

● Lesson: disallowing error hurts chemical algorithms 
much more than it hurts conventional algorithms

algorithmically 
computable

randomized 
CRNs

function's
computational 
complexity

deterministic 
algorithms

randomized 
algorithms

finite-state 
computable

randomized 
finite-state 
algorithms

deterministic 
finite-state 
algorithms

polynomial-time 
computable

randomized 
poly-time (BPP) 

algorithms

deterministic 
poly-time (P) 
algorithms

exponential-time 
computable

deterministic 
CRNs

semilinear
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How do we show this?

Theorem [Angluin, Aspnes, Eisenstat, PODC 2006]: 
The predicates decidable by CRNs are precisely the 
semilinear predicates.

We connect computation of functions (integer output) 
to computation of predicates (YES/NO output)
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Deterministic predicate computation 
with stochastic CRNs (definition)

● initial state: input counts X
1
, X

2
, …, X

k
 (and 

fixed counts of non-input species)
● output: either #Y > 0 and #N = 0 (yes)            

or #Y = 0 and #N > 0 (no)
● output-stable state: all states reachable from it 

have same yes/no answer

● set decided by CRN: S
yes

= { x∈ℕk | φ(x) = yes }

task: decide predicate b = φ(x)  (x∈ℕk, b {yes,no})∈
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Two directions to proof

● Only semilinear functions can be computed:
f computed by CRN C  graph(⇒ f) decided by CRN D

● All semilinear functions can be computed:
graph(f) decided by CRN D  ⇒ f computed by CRN C
direct systematic construction to show computation 
of f(x) can be done in expected time O(polylog ||x||)

(reminder) Theorem [Angluin, Aspnes, Eisenstat, 
PODC 2006]: The sets decidable by CRNs are 
precisely the semilinear sets.
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monotonic production of Z
P
 

and Z
C
 allows composition

f computed by CRN C ⇒
graph(f) decided by CRN D

● Want to decide, given input (x,z), is f(x) = z?
● Keep track of total number of Z's ever produced or 

consumed:
A + B → Z + W   becomes   A + B → Z + W + Z

P

A + Z → B   becomes   A + Z → B + Z
C

● Initial state has z copies of Z
C

Z
P
 + Z

C
 → Y Z

P
 + Y → Z

P
 + N

Y + N → Y Z
C
 + Y → Z

C
 + N

Eventually all 
Z

P
 and Z

C
 go 

away (if 
equal) or one 
is left over (if 
unequal)

If Z
P
 or Z

C
  are 

left over, 
change 
answer to NO

If neither is left over, 
change answer to YES

CRN C CRN D
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Computing any semilinear f

X

Z

Alternative characterization: 
partial linear functions

f
1
(x) = x/3 + 2

f
2
(x) = x - 2

f
3
(x) = 2

… with linear domains

Deciding which domain input x 
is in can be done with a CRN

start with 1 L
0
, 2 Z

L
0
 + X → L

1

L
1
 + X → L

2

L
2
 + X → L

0
 + Z
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How fast can semilinear functions 
be computed?

Theorem: Every semilinear function f can be computed by a 
CRN on input x in expected time O(log5 ||x||).

    i.e., in time O(n5), where n is the number of bits to write x in binary

Proof: Combine slow deterministic construction with O(log5 ||x||) 
CRN computing f with arbitrarily small probability of error. [1,2]

● If fast CRN is correct then output stabilizes quickly
● Otherwise, slow CRN compares and corrects the output

Error probability is small enough that total expected time to 
stabilize to correct answer remains O(log5 ||x||).

Construction on previous slide takes O(||x|| log ||x||), but ...

[1] Angluin, Aspnes, Eisenstat, “Fast 
computation by population protocols with a 
leader”, DISC 2006

[2] Soloveichik, Cook, Winfree, Bruck, 
“Computation with finite stochastic chemical 
reaction networks”, Natural Computing 2008

||x|| = Σ
i
 x(i)
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